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Abstract

We derive the Thouless—Anderson—Palmer (TAP) equations for the Ghatak and Sherrington
model (J Phys C 10(16):3149-3156, 1977). Our derivation, based on the cavity method, holds
at high temperature and at all values of the crystal field. It confirms the prediction of Yokota
(J Phys Condens Matter 4(10):2615-2622, 1992).
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1 Introduction and Main Results

The Hamiltonian of the Ghatak and Sherrington (GS) spin-glass model is defined as the
random function

N N
HN(0)=% > gijoioj+DY ol +hY o (1)
l<i<j<N i=1 i=1
where S > 1 is a fixed integer, and ¢ = (01,...,0n) € Ty = {0, £1,..., iS}N. The
parameters 8 > 0, D € R, h € Rrepresent the inverse temperature, crystal field and external
field respectively, and g;; are i.i.d. standard Gaussian random variables for 1 <i < j < N.
This model was introduced by Ghatak and Sherrington [11] as a generalization of the classical
Sherrington—Kirkpatrick (SK) model [17]. It is supposed to model an induced spin glass and
an anisotropic extension of the SK model [11].

As in the SK model, the study of thermodynamic quantities of the GS model has required
significant efforts by many physicists and mathematicians. In particular, it has been predicted
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the existence of multiple phase transitions as the temperature decreases to zero, including
a second replica symmetric phase at low temperature, a phenomena indicative of inverse
freezing [14]. This is in sharp contrast with the SK model (and the p-spin). We refer the
reader to [9-13,15,21] and the references therein for a brief history and importance of the
GS model in the physics community. In the mathematics literature, the most notable progress
was Panchenko’s result establishing the Parisi formula for the GS model [16], which holds
for the SK model defined on the compact product measure as well.
In this paper, we study the behavior of the thermal average of the magnetization

m=(mi,...,my) = ((o1),..., (oN))

and its second moment

p=p1,pn) = (oD, ., (0R),

where for a function f on Xy, we denote (f) the average under the Gibbs measure Gy,
defined as

exp(Hy (o))
Gy({o}) = Zi’
N
with
Zy =) exp(Hy(0)).
o
It has been predicted (in the case S = 1, 7 = 0 [15,21]) that these pairs of random variables

satisfy at high temperature (in a sense that will be made precise later) a system of coupled
self consistent equations given by

2 sinh(B&;) N 2 cosh(B&;)

m; ~ P~ 2
" exp(BA) +2cosh(BE) T exp(BA) + 2cosh(BE) @
with
£ = Lng _EmAZg_Z (p' _m2>
i = ijimj i ij \Pj i)
N J J
VN J J
and
A~——D—£Z 2 ( ~—m2)
i = N £ 8ij\Pj i)
J
Equations (2) are the analogue of the well-studied TAP equations
m; ~ tanh | b+ Y giumi — B2(1 — g)m; ©)

ki

in the SK model [20].

In the mathematics community, there have been several approaches to rigorously under-
stand the TAP equations. First, in the SK model, Talagrand [19] and Chatterjee [6] established
(3) at high temperature. At low temperature, a version of (3) where one decomposes the
Gibbs measure into “pure states” was established by Auffinger—Jagannath [4]. A very fruit-
ful approach to TAP was introduced by Bolthausen through an iteration scheme that shares
some connections to message passing algorithms [5]. Bolthausen’s iteration was recently
shown to indeed approximate the magnetizations by Chen—Tang [8]. A dynamical method
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Fig. 1 The predicted phase diagram for the GS model when S = 1 and &2 = 0 as described in Mottishaw—
Sherrington [15]. Here, T = ﬂ_l. The TAP equations (2) should be valid in the paramagnetic phase. Note
that for certain values of the crystal field D the values of 8 in the paramagnetic phase are the union of two
disjoint intervals, a behavior different than the SK model

to derive (3) was also very recently proposed by Adhikari-Brennecke—von Soosten—Yau [1].
The TAP equations were also viewed as critical point solutions of the TAP functional and
studied in [2,3,7,18].

Different than the SK case or the mixed p-spin, the TAP equations for the GS model depend
on two set of parameters. This creates a few roadblocks to understand its validity. For instance,
in the physics community, there is still a debate of what should be the correct analogue of
the de Almeida—Thouless line and for which set of parameters (8, D, k) one should expect
(2) to be true. The (B, D) phase diagram in the case S = 1, h = 0 is thoroughly discussed
by physicists in the papers of Lage and de Almeida [13], Mottishaw and Sherrignton [15]
and da Costa et al. [10]. In this case, it is predicted that for certain values of the crystal field
D the values of B for which (2) holds is the union of two disjoint intervals, a behavior not
present in the SK model. See Fig. 1 for a phase diagram.

The main goal of this paper is to derive a rigorous interpretation of (2) at high tempera-
ture for all values of the crystal field. We do not expect that our bounds on § are optimal.
As illustrated by the discussion above, deriving the exact conditions when (2) holds is an
interesting and challenging direction to pursue.

We will now state our results. Let X be a standard Gaussian random variable. Given
(8, D, h) as above consider the system of equations in R? given by

[ v 2eh[y (Vg ﬂX+h)]GXP( [D+%2(p—q)])
p=E ; @)
_1+25:12ch[ (vasx +m)]exp (v2[D+ 5 (p - 9)])
v -2sh[y (VaBX +h ]exp( [D+ﬁ (p— q)])
q=E ®)
_1+Zy=12ch[ (JaBX +h)]exp ( [D+7(p_q)])

This system is the analogue of the fixed-point equation ¢ = E tanh?(8 J/aX + h) that
appears in the SK model. Our first result shows that for g small, this system of equations has
a unique solution.
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Proposition 1 There exists a B > 0 such that forall 0 < B < B,h >0, and D € R, the
system of Egs. (4) and (5) has a unique solution.

Assume that 8 < B and the pair (p, g) is the unique solution of (4) and (5). Our main
result describes the validity of the TAP equations in the L? sense as follows.

Theorem 1 There exists some K,/§ > 0, such that for all 0 < g < B, h>0and D € R,
we have forall N > 1 and k > 1

S_ .2sh h 2A 2k
E [(om - ZV_I; hly o + Wlow r' ) } < ©)
1+ 3)_ 2¢h [y (BéEn + h)] exp (y2A) N
[(02)—.Zi:lVz'2Ch[3’(/35N'+’1)]6XP(V2A)]2k<KT )
MRS 2eh [y Bew + W]exp (v2A) | T NE

where

1
Ev=D_ sin(o) —B(p—@lon), and A=D+-p(p—q).
i<N-—1

The proof of Theorem 1 follows the cavity approach as in Sects. 1.6 and 1.7 of Talagrand’s
book [19]. The main difference between the SK model and the GS model is that we now need
to control the self-overlap, and relate it to the solution (p, ¢). This requires new estimates and
a careful analysis of the fixed point equation. The rest of the paper is organized as follows.
In the next section, we show concentration of the overlap and self-overlap, the main tool to
prove Theorem 1. In Sect. 3, we provide the proof of Theorem 1. The proof of Proposition
1 is left to the last section.

2 Concentration of Overlaps

We denote the overlap between configurations ¢! and o2, and the self-overlap of o respec-
tively by

1 1.2 1 2
R]Q:NZUI- of and Ry ZNZ(U,’) .
i<N i<N

In this section, we use the cavity method to show concentration of overlaps R 7 and Ry ;.
We assume from now on that 8 < § and (p, ¢) is the solution given in Proposition 1.

Proposition 2 There exists a ,3 > 0, such that for all B < /§, we have:

1654
E((Rl,z - 51)2> = N
1654
IE((Rl,] - P)2> = N
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We start with some notations and preliminary results needed to prove Proposition 2. For
o=(0y,...,0N),p=(01,...,0N—_1), We Write

N N
B 2

Hy(o) = —(—= Z gij0i0j+DZo,~ +hZUi
VN i=1 i=1

I<i<j<N

B
= Hn-1(p) +on - N Zgi/vm' + Do}, + hoy,
i<N
where with a slight abuse of notation,
B
Hy_1(p) = T Z 8ijoioj + D Z (Fl-z +h Z 0. (8)
N I<i<j<N-1 i<N—1 i<N-1

With the notation above, we have the following identity. Its proof is identical to the proof of
Proposition 1.6.1 in [19].

Proposition 3 Given a function f on Xy, it holds that
(AV (f (o) exp (O’N . \/iﬁ Zi<N giNoi + DO’]%, + hGN>) )7
(Av (exp (O‘N . % >N 8inoi + Do,%, + hoN)) >

where Av means average overoy = 0, £1, ..., S, and (-)_ is the average under the Gibbs
measure with respect to the Hamiltonian Hy_.

(flo)) =

’

Now consider the interpolated Hamiltonian:

Hi(0) = Hy-1(p) +on |:«/Eﬂ > givoi + V1= t,BZ«/C?:|
\/ﬁ i<N

52

2

where z is a standard Gaussian random variable independent of g;;. We denote the overlap

of the first N — 1 coordinates by

+(—1)- " (p —q)o} + Doy + hoy,

_ 1 Il
Rl’l/ = N Zoiai .
i<N

To simplify the notation, let ¢; = a,l\,, and write

€r€y

R y=R ,+—. 9
1,1 T N 9

Lemma 1 We have:
E<O’1%/)O =p and E(UN)% =gq,

where p and q satisfy the Egs. (4) and (5), and {-)¢ is the average under the Gibbs measure
with respect to the interpolated Hamiltonian Hy(a) att = 0.

Proof Note that

2
Hy(o) = Hy-1(p) +on - Bz/q + %(p —q)oy + Doy + hoy.
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Applying Proposition 3 with Ho, we get:

<Av (o3 exp (o - 2y + B (p—q)o + Do + how) ) )7
(Av (exp (oN Bz + B (p—q)0} + Do + hoN)) )

S v22eh[y (Vapx +h)]exp (2 [D+ G (p - q)])

L+ 351 2¢h [y (VaBX +h)]exp (v2[D+ 5 (p - q)])

Similarly,

B <Av (O’N exp (O‘N - Bz/q + %z(p — q)a,%, + Da,%, + hoN)) >_
oo = (AV (exp <O'N ﬁzf—f- 5 (p q)oN + DO'N + hoN)> >

i Zy:l y - 2sh [y (\/J,BX +h)] exp( [D + %z(p — q)]
|

|1+ 35, 2ch [y (JBX +h)]exp ()/2 [D+ Ep- q)]
By [ Y5_ 1y - 2sh [y (VaBX +h)]exp (yz[ +Ep —q)]) T .
1+ Y5 2ch [y ( ﬂx+h)]exp(y2[ +'i22(p—q)])_
[m}
Let

2

B B 2
_ NOION, = Bz , =" (p— , and
o = 7= l%:v 8iNOION, Vo = P/qON. Yo =5 (P = @)y
wg = exp (Hy—1(p) + Do + hay) .
Then the interpolated Hamiltonian can be written as

Hi(0) = Vtug + V1T —tvg + (1 — 1)y, + log(wy).

Let (-); be an average for the corresponding Gibbs measure. We write

d
vi(f) =E(f), and vi(f)= 77 W ()

Then E((Rl,z — q)2> and IE<(R1,1 — p)2> in Proposition 2 are equal to vy ((Rl,z — q)2>
and v ((Rl,l — p)z). Set

! l
U o' = 5 (Bugiitgr —Evgrv,r),  and V(') = —y,i.
Then we have

2 p— 2
Euozua,r =¢ey - B Rl,l” Evgi Vi = €€y - Bq,
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and

. gr
U, o) = ¢ep - 5 Ry =), (10)

l __1372 _ 2
Ve =-Z (-9 (1n)

Lemma 2 If f is a function on (Xy)", then

v, (f(o']7,..,o-”)) — Z vy (U (gl,o-l/) f) _2”2Vt (U (al,a”+])f)

1<ll'<n

— ny, (U (O'n+l, 0n+1) f) + n(n + I)U[ (U (O,I’H-l’ o,n+2) f)
3w (V(o") 1) =mui (v (@) ). (12)
I<n
Proof The proof is similar to Lemma 1.4.2 in [19] with the correct derivatives. The first two

lines on the right side of (12) are the same as those in the SK model, while the last line arises
due to yg. O

If we combine Lemma 2 with Egs. (10) and (11), we get the following.

Lemma 3 Let f be a function on (En)", then for 0 <t < 1, we have

=8 3 w(ae (Ry—a)f)—nd v (e (R —a) f)

1<l<l'<n <n
+1 _ 1 _
+ n(nT)Vz (€z1+1€;1+2 (Rn+1,n+2 - CI> f) + 5 Z Vt (‘5[2 (Rl,l - p) f)
I<n
n _
- Evl (6n2+1 (Rn+l,n+1 - [7) f) ’ (13)
and also
v/(f) = A1 + Ay — B, (14)
where
Ay = ﬂz[ Z vi (erer (Rir —q) f) —n sz (¢t€nt1 (Rins1 —q) f)
1<l<l'<n I<n
+1
+ %w (en+1€ns2 (Rug1nt2 — q) f)] (15)
1
Az = B3 Y v (& (R = p) £) = 591 (5 (Ruvrars = p) 1) (16)
1<n
B n(n+1) + )
B = W[ > vl f)—nd vilefer f)+ v (€ng16miaf)
1<l<l'<n I<n
1
3 2l = ulelan)] an
I<n

Proof The result follows by replacing Egs. (10) and (11) in (12) and by some straightforward
algebra. O
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Lemma4 For a function f > 0on (EZn)", we have

v (f) < exp (6n°B2S%) vi ().
Proof Notethat R, < S*and p, g € [0, S?].So |R;,—q| < 28> forl # I',|R;;—p| < 252,
and (p — ¢)* < S2. Thus, by (13), we have

nn—1) nmn+1) n n

() < < 3 +n% + s t5t 5) B2 - 28 (f)
= (20 +n)p* - 28%v (f) < 6n°B*S i (f).
Thus,
v (f) <6n2,32S4
ve(f)| ’
Let
g1 —1) :=log[v(f)] for te][O0,]1].
Then
’ v/ (f) 222 o4
1—0] =] 6 S*.
lg'(1=1)] ol b B
Therefore,

1—t

1—1
g(l—1) = g(0) + / ¢(5)ds < g(0) + / 1€/ (9)lds < g(0) + (1 — N6n2B>S*,
0 0

ie.
log[v, (/)] < log[vi (/)] + (1 — 1)6n?p*5*.
Hence,

v (f) <exp[(1 —N6n*B2S* i (f) < exp (6n2B2S*) vi(f), as desired.

Now combining Lemmas 3 and 4, for a function f on (Xy)",and 0 <t < 1, we have

W] < <@ N @ 2 g) B2 251 f1)

< 6n*25* exp (6n*B2S*) vi (1 £1). (18)
which will be used several times in the following proof of Proposition 2.
Proof of Proposition 2 We will show concentration of Rj ; first. Recall that ¢, = cr]lv. Using

symmetry among sites, we can write

1
n((Ri2=0)") = 5 Yowllelo? —a) (Riz =) =wi(H. (9
i<N

where

f=(1e2—q)(Ri2—q).
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By (9),
€1€2 _ 2 _
f=(ae—q) (T +R, - 4) =¥ [(c1€2)° — €1€2q] + (€12 — ) (Rl,z - 4) .
Lemma 1 implies
w2 —q) (Riy—a)] = w@e - (R, —q) =0,
and hence
1 2
vo(f) = T [(c1€2)” —€162g] < (20)
Using |e1€x — g < 252, we have
Ifl = |(e1e2—q) (R12 — q)] < 252 |Ri2—q|.
Now apply inequality (18) with n = 2 to get
Wi(f) = vo(f)] < 24878 exp (2487S*) vi (I fD. 1)
Therefore, combining (21) with (19) and (20), we obtain
2 284 2
V1 <|R1,2 — q’ ) < ~ + 24,3254 exp (24/3254) Vi (‘Rl,z — q| ) .
Choose By such that
7
243 5% exp (2483 5%) < 3
then we have
2 284 7 >
fia=a’) 225+ (-l
V] <| 1,2 61| =N +8v1 | 1,2 Q}
and hence
2 165*
Ris— ) <. 22
V1<| 12—q|) < N (22)
We use a similar method to show concentration of R ;. We can write
2 1
v (R =p)*) = 5 v (@) = p) (Rii = p)] = o). (23)

i<N

where

It follows that

K= (ef - )(612+R— )—
=\ N L1 —P)=

and by Lemma 1

Vo [(512 - p) (Rf,l - P)] = (6% —p)vo (Ril - p) =0.
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Hence,
1 1 1 54
w0 = v () —elp] = = Do () —w () p] = S8 =P = T @4

By definition of ., vy ((Rl,l — p)z) = v1(k). Also note that Ry 1, 612, p €0, $2]. We have
lef —p| < 8* and |Riy—pl<S2
thus,
| = [(ef = p) (Ri1 = p)| = S*IRi1 = pl.
Applying inequality (18) withn = 1, we get
Vi) = vole)| < 685 exp (68°5%) vi(lic)). (25)
Therefore, combining (25) with (23) and (24), we obtain

S4
V| <|R1,1 - P’z) =N +6p2S* exp (68%5%) v (‘Rl,l - P‘z) .

Choosing B; such that

6ﬁ%S4exp(6ﬁfS4)§;%%,
we have
st 15
V] (|R1,1 - P|2) < N + I <|R1,1 - P|2)7
ie.
165
V| (|R1,1 - P|2) =

Now takeB = min(Bp, B1). Then for all 8 < ,3, we have:

1654 165
Vi (’RI,Z _q’2> =< T and V1 (‘Rl,l — p‘z) < T
O

Based on Proposition 2, we use an inductive argument to control the higher moments of
the overlaps Ry and Ry ;.

Proposition 4 There existB > 0, and some constant C > 0 such that for all B < ,3 and any
k > 1, we have:

Ck\*
v ((Riz—a)*) = (W) : (26)

Ck\*
v ((Rm - p)Qk) < (W) , 27)

where C does not depend on N or k.

Before proving the above proposition, we show the following lemma first.
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Lemma5 Given a function f on (En)", and t1, 70 > 0 wzth + — =1, we have
1 1
v1(f) = vo(f)] < exp [6n*p>S*] (2n2/3252 [ £ 1™]7 [viR12 — g1™)]

+n?p2s* <2+ N)w(lfl)) (28)
and

Wi (f) — vo(f)] < exp [6n2B2S*] <2n2ﬂ2S2 (1] [vi (Rt — pI™)]=

+n*p*s? (4+ )m(lfl)) (29)
Proof We show (28) first. Note that
1
Wi(f) = vo(f)] = /0 (] = sup ().
<t<l

Also know that |e;epr| < §2 and (p — q)2 < §2.Now apply Holder’s inequality, we will have
for -+ L =1 andl #7,
e (eter (Rup = 4) )] < S (£ 1R = gl) < 8 o (AID]7 [oe(1Re2 = g1™)]
Also we have
v (i f) = S*ui (I fD.
According to Egs. (15) to (17),

-1 1
|A1|§<%+n2+w

5 ) 282w (| FI™]7 [ (Riz — qI™)]=

= 2024282 [w (/1)) [ (IR12 — )]
4ol = B2 5 - 28 w1 D + 5 - 25* (L £D | = 2828 w1 £,

2 _
|B|§%<n(n 1)+ 2+n(n+1)+ +2>S4v;(|f|)

n
2 2 2

52 3820254
=5 (2n* +n) Sty (1 f]) < N —— v (IfD-

Hence based on Eq. (14), we have
/()] < A1l + |A2] + | B

< 2028282 [ve (1 FI™) ]31 [vt<|R12—q|f2>]fz +n?p2s* (2+ )vt<|f|>

Now by Lemma 4, we get
€1 €1
[V ()] < exp[6n*B>S*] <2n2ﬂ252 [V A1 [vi(R12 — gI™)] ™

+n*p*st (2 + %) vy (|f|)>.
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22 Page12of25 A. Auffinger, C. Xi

Therefore,
i) = () < sup vi(f)| < exp[6n®B?5*] <2n2ﬁ252 QA1)
[v1(R12 — q[™)]7 +n2p2Ss* (2 + %) w(lfl))-
Now we show the inequality (29). Note that we have for % + % =1,and! ="/,

v (@rer (Rs — p) £)| < 82 [ F 1] [w(IRt — pl™)] 7= .

Considering different upper bounds for |[A{| and |A>|, we obtain

Al < (”‘”—2‘” +n?y ”(”T“)) 2822570, (1) = 4n2B2S*v, (1 f1).

zl = (5 +5) 282 [ 171 [ (R — p™)] =
< 28282 [ui (| 1] [ (IRus — pI™)] = .

Following the same method as above, we show (29) as desired. ]

‘We now prove Proposition 4.

Proof of Proposition 4 We will show (26) first. For 1 <s < N, let

1 1 2
Aszﬁ Z (0,07 —q).

S<i<N

Then, A; = R 2 —¢q. By Proposition 2, we have for k = 1, v; (A%) < % Note that constant
C may vary from step to step. We will prove by induction over k that we have

Vs <N, w (A§k> < (%")k

Note that when s = N,

€162 — q 252
A = < —,
|[AN] N ‘_ N

hence, for some constant C, we have

2\ 2k k
vy (A%k) < 257 < CkY"
’ N N
For the rest of the proof for (26), we can assume s < N. Notice that symmetry among sites
implies
1 N—-s+1
v (422 = = 3 i ((0le? = ) AT = ST n) = ()l G0)
N s<i<N N

where

f= (e —q) AZFL
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We will use Lemma 5 to control |v;(f)]|. First, we evaluate vo(f). Let

A= Y (lo?—q).

=

By Lemma 1, we obtain
V0 ((6162 —q) A?Hl) = wg(€1€2 — q)vo (A?k+l) =0.
Note that [ejer — g| < 252 Thus,

()] = |vo (162 = 9) AZFT) = v (162 — ) AZHT) | = 2820 (|a2H1 — 2241
(3D
We use the inequality

forx = Agand y = A. Since

[x —yl =

)

N - N

applying Lemma 4 for n = 2, we deduce from (31) that

(/)] = % (w0 (43) + w0 (47))

< % exp(2425%) (vl (Af") + (AZk)) .

Because s < N, we observe that A and A s+1 are equal in distribution under v;. Therefore,
the induction hypothesis yields

8542k + 1 ck\* Clk + D\ !
ol = 2B epaapst) <W> < (%) .

Note that
f — (6162 _ q) A?k-‘rl < 2S2A?k+].

We apply Eq. (28) in Lemma 5 with n = 2, 7; = 333 and 1, = 2k + 2, combining with

(30), to get

n (A292) < ()] = ()] +exp [245°]

L

(16/3254 [m (Azm)]n [vl <|Rl’2 B q|zk+z)]%

3 N
4g2st (o 2. % <A2k+2).
+4 (+N> N—s+1 %
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22 Page 14 0of 25 A. Auffinger, C. Xi

Note that xy < x™ + y™. Then the above inequality becomes

k+1
V] (A?k“) < <7C(k i 1)) + exp [24,3284]

N
3 N
204 24 EAY 2%k+2
([16,8 S* 1 482S <2+N> N_Hl]vl(As )
+m0&2—m%ﬂﬁ. (32)

Since when n = 1, we have A1 = R; 2 — ¢. Then the previous inequality implies that for 8
small enough and some C big enough, we have

Ck 1 k+1
V1 ((R1,2 - q)2k+2) < (%) . (33)

Using (33) in (32) yields that for the other values of s as well, we have
k+1
o (4242) < (M) _
N
Now forl <s < N, let
1 12
Bs:ﬁ Z ((O'i) —p),
s<i<N

then, B = Ry 1 — p. Following the same method as above, we can show (27) as desired. O

3 TAP Equations for the Ghatak-Sherrington Model

In this section, we prove Theorem 1. Set S_ to be

B _ B
N—1 N’
Note that for some positive constant K,
B-pl<=.
- N

Let p—- = p_(N —1)and g_ = g_(N — 1) be so that

i 1 7% 2ch[y (Vg—B-X +h)]exp <y2 b + %(p, - q,)_>
%zE_HQjﬂkMwa&X+wthﬂb+§uL—mf)’

_ZanMﬂszﬁX+MkaﬂP+TUa—qﬂ)2
%zE_H?jﬁkﬂyw¢&X+m&mQﬂb+fuL—¢f)

Note that (p—, g—) exists and is unique for small 8 due to Proposition 1. We have the following
lemma.
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Lemma 6 There exist K, ,3 > 0 such that for all B < f}, D, h € R, we have

Ip—p_lsﬁ, (34)
K

_ <
g —a-1= (35)

Proof We will show (34) first, and (35) follows similarly. Let

Yos_1 v 2ch[y (VaBX +h)]exp (y2 [D +E8(p - q)])

P e ey (Vax + W] (»[p+5e-a])
and
vy = Doty 2l (VapX e (r[p+5w-0])
1+ X5 2eh [y (vaBx +n)]exo (2 [0+ 50 - 0)])
Define
G (B p.q) =E[$(X0)],
and

F(B.p.q) =E[y(X)].
Also define p(B), g(B) by
p(B) =G (B, p(B).q(B). and q(B)=F (B, p(B).q(B)).

Note that p(8) and ¢ (8) are well-defined for small S due to Proposition 1. We have
OF | OF s G | oG
9 T 5, P B 55+ 90 -4 (B)
9 9 E) E)
g =L " and p(p)= L
T g T ap

Plugging the equation of ¢'(8) into p’(8), we obtain
3 IF 3G OF
w(-5) 5 %

(1_m)<1_ai)_&.ai'
ap dq dg  dp

Now we calculate the partial derivatives of G (8, p,q) and F (B, p, q). To simplify the
notation, we introduce the following functions. Define

1

P'(B) =

f(X) = - . (6
1+ 325, 2ch [y (Vapx +h)]exp (v [D+ 5 (0 —9)])
2
ien(X) = 2¢h [y (VgBX + h)]exp (V2 [D + %(p - q)]) ) (37
2
Ksn(X) = 2sh [y (VgBX + h)]exp <J/2 [D + %(p - q)D : (38)
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Then

S S
P =Yy k(X)) f(X), and Y(X) =Dy -k (X) f(X).

y=1 y=1

Define

S S
0 =) vt kX)), and n(X) =Yy ke (X) f(X).

y=1 y=1

Since 8 < B, and D, h € R, it’s clear that ¢ (X), ¥ (X), f(X), 6(X), and n(X) are bounded
functions. By a direct differentiation and noting that | sinh(x)| < cosh(x), it is easy to see
that the functions ¢’ (X), ¥'(X), f'(X), 8'(X), and 1’ (X) are also bounded. For the explicit
bounds, please check inequalities from (50) to (53). In addition, using Gaussian integration
by parts yields that

G
B E[va (n'(X) =¥ (X)p(X) — v (X)$' (X)) + B(p — @) (06(X) — ¢*(X))].
G B o

i —JE[7 X)) —¢ (X))]

G 2
=E [i (n'(X) =¥ (X)p(X) — ¥ (X)p' (X)) + %

el 2X—9X:|,
o 2 Ve (7 (X) — (X))

oF

B 2E [q (V' (X)$(X) + ¥ (X)p'(X) — 3y 2(X) ¥ (X))
+B(p — DV (X) (X)) — Y (X)p(X))],

F 5

i E[B*¢(X) (X)) — ¢ (X)p(X))],

F _g [i (¥ (X)p(X) + ¥ (X)p'(X) — 3y (XY (X))

aq ﬁ

+8% (Y (X)p(X) — Y (X)n(X))].

It follows that all the partial derivatives of G (8, p, g) and F (8, p, q) are bounded, hence
so is p’(B). Note that for some positive number K,

B-pi=t
-l= 5
By the mean value theorem,
p—pl =
pP—Dr-1= N
Similarly, |g — g—| < % is satisfied. O

Before the proof of Theorem 1, we state a result which is the analogue of Theorem
1.7.11 in [19]. Consider independent standard Gaussian random variables y; and &, which
are independent of the randomness of (-), and denote ¢ the expectation with respect to the
random variable £ only.
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Theorem 2 ([19, Theorem 1.7.11]) Assume B < ,8, and D, h € R. Let U be an infinitely
differentiable function on R with derivatives given by UV, Assume for all | and b, the Ith
derivative of U satisfies

ElUP (2)° < o0

where z is a Gaussian random variable. Then, using the notation 6; = o; — (0;), we have
fork=1,2

2k

1
E <U T L6 >—E.§U(f\/17—0) <

i<N

where p and q satisfy the Egs. (4) and (5) respectively, and the constant K depends on U, B,
but not on N.

Proof The proof of Theorem 2 is similar to Talagrand’s proof of the Theorem 1.7.11 [19]
except for the following differences. Let S; = ﬁ > <N Vi dil and [Eg denote the expectation

with respect to y; and & only. Set

. 1
Ti = Eo($”) ~ Boivp = a0 = 5 Y6 = (p ).
i<N
and for [ # I', let
.. 1 ,
T = BoiSi) = Bo e (p— )l = 2 (o) (o).
i<N

We claim that there exists a positive number K such that

K
vr, E(17) < -

N"'

We explain the case [ = I’ first. Since

617 = (of —(00))" = (0> ~ 20} [0} + (011"

it follows that

Ty = % (f’ff)z —(p—q = % > <(0,-1)2 ~ 20} ((fi’) + (Ui>2> (-9

i<N i<N

LX)l -2t

i<N i<N

We control the first and second term of this sum separately. By Proposition 4,

2

]E< % > (a,'l)zr -p > =E((Ri1 - p)¥) < (%) . (39)
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For the second term of the sum, we use the fact that for any A and B, we have the inequality
(A + B)* < 2% (A* 4 B?). Applying Jensen’s inequality and Proposition 2, we have

E< ]1,i;\:]((a,-)z—q)—i-Z(q—ail(oil» >
<2¥ IE< %Z(<ai>2—q) >+IE< % 2(q ot o)) >

(40)

N——
~

C
<2(E((Ri2—9)*)+4E((q — R12)”)) < <Wr

Therefore, combining (39) and (40), we obtain that for some positive number K

s (s{[ L 2 ] sl D)2ttt )

i<N i<N
K
<—.
=N
This is similar for the case [ # I’. Hence, for all / and [/, and some positive number K,
we have
K
vr, ]E<T12[,> < —.
B NV
O

Now we state two corollaries of the Theorem 2, which are equivalent of Talagrand’s Corollary
1.7.13 and 1.7.15 [19].

Corollary 1 There exists a K, B > 0 such that forall B < B, D,h € R, and € € ¥ we have

2k

2,82 K
exp —— Zyzm — exp [7(1) q)} exp —— Z yiloi) | =4 (D)

1<N 1<N

and

2k
202
(< Z YiGiexp—— Zytaz> €B(p — q) exp |:ﬁ(17 4)j|6XP Z Yiloj )
1<N \/>

i<N l<N
< (“2)
where K does not depend on N.
Proof The proof is identical to the proof of Corollary 1.7.13 in [19]. O

For the rest of the section, we will use the following lemma.
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Lemma?7 If %ﬁ < Band B > 1, we have
A_A <|A-A|+|B- B
B’ B| ™~
Corollary 2 Let
E =exp i Z yio; + D +eh|. (43)
ﬁiSN

Recall that Av denotes average over € € X. There exists a constant K > 0 and B > 0 such
that for all B < ,B, and D, h € R, we have

(Aveg)  Ly—1V-2sh [)/ (% di<n Yiloi) + h)] exp (V2 [D + 8- q)]) *

(AVE) 1435 2ch [ (L% Zicy vitod + )] exp (v2 [+ 50 - 9]

(44)

(AveZe) Y1 ¥? - 2h [V (j% 2i<n Yiloi) + h)] exp (V2 [D + 8- q)]) N

We) 1y 55 eh [y (L Sioy viton +4) ] exp (2 [0+ 50— 0)])

: (45)

2k

1 o) ded) 1y
«/N, yl (AVS) p q (AV((.:) \/NiiNyl 12

(46)

Proof Define

232
Ae) = <exr> % > Yi0i> —exp [%(p - q)] exp % > viloi).

i<N i<N

Note that A(0) = 0. Deducing from (41), fory =1, ..., S, we have

2k K
E(yA(y)exp(y?D + yh) — y A(=y) exp(y>D — yh))™ < ~F

and
2 2 % _ K
E (A(y)exp(y”D + yh) + A(=y)exp(y°D — yh) + A(0))” < N
Hence,
s 2k X
E| X [rA@) exp(r*D +yh) =y A=y exp(r?D —y] | =<,
y=1
i.e.
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(Aves Zy 25h|:y( <Zy,a, )}e;ap( {D—l—’iz(p q)]))zkfl\ljk’

E(<Ave2£> Zy 20h|:y(f§vyl oi) ):|exp(y2[D+'322(p—q)]>)2k§]IV{k,
and
2k
E(Avg |:1+Z2ch|:y( l;]y, oi) )}xp<y2[0+ﬂ;(p—q)]>D 5%.
@7)

Equations (44) and (45) follow from Lemma 7. Using the same method, we get from (42)

<f2y,anv5> B(p — CI)ZJ/ eXp[ ]ZSh
2k

i<N y=1
K
J~Z%m < S (48)

i<N

Combining (48) with (47) and using Lemma 7, we obtain

ES R
(AVE)

—Bp—q)

Y51y -2sh [)’ (% D i< Viloi) + h)] exp (7/2 [D + %Q(P - 6])]) )2" _K
L+ 25 2en [y (5 Siey it +0) Jexo (2 [P+ 5o -0]) /) ~ N
(49)
Note that
= 3y ViGiAVE :
<ﬁ (*A]i;;a - > \/LZ)}, GAV5> «;ﬁ;vyi(aﬁ.
Combining (49) with (44) proves (46). ]

Finally, we turn to the proof of Theorem 1.

Proof of Theorem 1 First, we show (6). Recall that the Hamiltonian (8) is the Hamiltonian of
an (N — 1)-spin system with parameter

1

B-=B1-5 =B

€
E =exp Z ginoi + €D +¢eh | =exp b Z ginoi +€°D +€h

€f—
VN —1 i<N—1 \/Nigzv—l
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By Proposition 3, we have

(Ave€)_
(oN) = ———-
(AvE) _
Next, applying (44) to the (N — 1)-spin system and the sequence y; = g;ny, we obtain

2
Zﬁzl Y - 2sh [V (% Doi<N giN(Gi)Arh)]ew(VZ [D+%(p7 - qf)D
E | (on)— ;
1435, 2ch [J/ (% Yi<n &in(oi)— + h)] exp <V2 [D + (o - 61—)])
K
<
< NF°

Now to show (6), it suffices to show that

E( gzly-Zsh [y (%ZingiN(Gi)+h>]eXp<y2 [D
1+ Zi:l 2ch [y (% Y i<y &infoi) + h)] exp ()/2 [D

Y1y 2sh [)’ (% Yien 8in{oi) - + h)] exp <J/2 [D

+ %(pf - qf)D >2k
- 2
L+ 351 2eh [y (Lo Licw sinton) - +h) |exp (yz [D + 50 - q_>])
K
=< NE
Let
S 2
—1V - 2sh(yy)e”™*
Fery) = 22 L e
1+3 5, 2ch(yy)er™
2 B 2
=D+ T = is%;lgiN<o,~> — B (p—q)(on) + 1,
and
B p2 B
x2 =D+ 7(17— —q-), »= Wi Z gin{oi)— +h.
We claim

i<N-—1

K
ELf (1, y0) = f @, 321 <
By taking the partial derivatives of f(x, y), it is straight-forward to show that f(x, y) is a
Lipschitz function with respect to both x and y. There exists a positive number L such that

[f(x1,y) — f(x2, y)| < Lix1 — x2|,
and

[f(x,y1) — f(x,y2)| < Liyr — y2l.

@ Springer



22 Page22o0f25 A. Auffinger, C. Xi

Thus using the fact that for any A and B, (A + B)** < 2%¢(A% 4+ B%), we obtain
ELf G,y — £,y = 2202 [B (0 — 0™ + B — %],

By Lemmas 5 and 6, it follows that

|8 B2
1= x| == —q) - —(p-—q-)
2 2
P4 g _p f’ ﬂ _K
S| B =)+ T e-r|+|T @) = 5
i.e.
K
E (x1 —x2)2k = NE
Now applying (46) to the (N — 1)-spin system, we get
2k
Z gin {(oi) — B-(p— —q-) {oi) — Z gin{(oi) = £k
v i<N-—1 i<N—1 N
If we multiply both sides by ﬂ%k , using |,B2 B2 | <= and Lemma 6 again, we have
2k
K
«/> Z &in (0i) ﬁ (p—q){oi) — f Z gin{oi) Sﬁ’

iI<N-1 iI<N-1
ie.
K
2%k _
Ei =)™ = 47

Therefore, we have

K
ELf (1 y1) — fx, ylf < 2% [E 1 — x)% +E(y — y2)2k] <

Similarly, we can show (7) using the same method. O

4 Proof of Proposition 1

In this proof, we use the same notation as in the proof of Lemma 6.

Proof Recall that

Z}S,zl y?-2ch[y (/gBX + h)]exp (y2 [D + %z(p - q)])
1+ Z)S,:l 2ch [y (VaBX +h)]exp (y2 [D + ’32—2(19 - q)]) ’

¢(X) =

and
Y5_1v-2sh[y (VgBX +h)]exp ()/2 [D + 8- q)])
1+ Zi:l 2ch [y (aBX + h)]exp (y2 [D + %Z(p — q)]) '

v(X) =
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We define functions G (8, p,q) = E[¢(X)] and F (B, p,q) = IE[I#(X)]2, and hence the
Egs. (4) and (5) become

p=G@B.p.q), and g=F (B, p.q).
Define a self-mapping T : [0, $?] x [0, §?] — [0, 5] x [0, $?] by
T(P, l]) = (G (,3’ P q)  F (:8’ P (])) .

By the contraction mapping theorem, it suffices to show that there exists a 8 > 0 such that
forall0 < g < B,h>0,and D € R, T is a contraction.

We have
P(X) = Z Y2 ken(X) f(X) < 82, Y(X) = Z y k(X)) f(X) <8, (50)
y=1 y=1
S S
00 =) vt k(X)) < 8% and n(X) =Yy ka(X)f(X) <8, (D)
y=1 y=1

where f, k55 and k., are given by (36), (37), and (38). Calculating the derivatives of the
above functions, we obtain

¢'(X) = JgB n(X) — ¢(X)V (X)) < 2/gBS°, ¥'(X) = /aB (6(X) — ¥2(X))
<2/qB5% (52)
and
7' (X) = g 0(X) — n(X)¥ (X)) < 2/gBS* (53)

Therefore, we have the following:

G 2

T [ﬂ (Ox) — ¢>2<X))]ss4ﬁ2:=L1,

E=E[ P 04 (08 (X) - w<x>¢’<x>)+’32(¢2(x>—e(x>)}<4s4,32 =L
dq 24 2 - -
JoF

3, = B[P0 000 w09 0x0)] 257 1= L,

8F /3 / ’ 2 /

— =E| = (' X)pX) + ¥ (X)¢' (X) = 3y > (X)y'(X

> [ﬁ(w( )b (X) + Y (X)§' (X) — 3y (XY (X))

+8% (v (X)p(X) — I/f(X)n(X))] < 1288 := Ly.
By Cauchy’s inequality, we have
|G (p1,91) — G (p2, q2)|

< Lilp1 = p2l + L2lq1 — 2| = \/L% + L%\/|Pl — 2 +la1 — a2,

and similarly,

|[F (p1,q1) — F (p2, q2)|
< L3lpi — p2l + Lslg1 — 2| < \/L§ + LZ\/Ipl — 2>+ g1 — q21?.
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Hence,

IT(p1,q1) — T (p2, q2)|

\/[G (p1,q1) = G (p2, @) +[F (p1,q1) = F (p2, )1

4
S 21— paP - a2 = V165582 1p1 — o + la1 — 2P

i=l1

To make this map a contraction map, we need +/1655*8% < 1. Let g = ﬁ. Thus, for

all0 < B < ,3, h>0,and D € R, T is a contraction mapping.
[m}
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