
Journal of Statistical Physics (2021) 184:22
https://doi.org/10.1007/s10955-021-02803-4

Thouless–Anderson–Palmer Equations for the
Ghatak–Sherrington Mean Field Spin Glass Model

Antonio Auffinger1 · Cathy Xi Chen1

Received: 6 April 2021 / Accepted: 13 July 2021 / Published online: 13 August 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
We derive the Thouless–Anderson–Palmer (TAP) equations for the Ghatak and Sherrington
model (J Phys C 10(16):3149–3156, 1977). Our derivation, based on the cavitymethod, holds
at high temperature and at all values of the crystal field. It confirms the prediction of Yokota
(J Phys Condens Matter 4(10):2615–2622, 1992).
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1 Introduction andMain Results

The Hamiltonian of the Ghatak and Sherrington (GS) spin-glass model is defined as the
random function

HN (σ ) = β√
N

∑

1≤i< j≤N

gi jσiσ j + D
N∑

i=1

σ 2
i + h

N∑

i=1

σi , (1)

where S ≥ 1 is a fixed integer, and σ = (σ1, . . . , σN ) ∈ �N = {0,±1, . . . ,±S}N . The
parameters β ≥ 0, D ∈ R, h ∈ R represent the inverse temperature, crystal field and external
field respectively, and gi j are i.i.d. standard Gaussian random variables for 1 ≤ i < j ≤ N .
Thismodel was introduced byGhatak and Sherrington [11] as a generalization of the classical
Sherrington–Kirkpatrick (SK) model [17]. It is supposed to model an induced spin glass and
an anisotropic extension of the SK model [11].

As in the SK model, the study of thermodynamic quantities of the GS model has required
significant efforts by many physicists and mathematicians. In particular, it has been predicted
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the existence of multiple phase transitions as the temperature decreases to zero, including
a second replica symmetric phase at low temperature, a phenomena indicative of inverse
freezing [14]. This is in sharp contrast with the SK model (and the p-spin). We refer the
reader to [9–13,15,21] and the references therein for a brief history and importance of the
GSmodel in the physics community. In the mathematics literature, the most notable progress
was Panchenko’s result establishing the Parisi formula for the GS model [16], which holds
for the SK model defined on the compact product measure as well.

In this paper, we study the behavior of the thermal average of the magnetization

m = (m1, . . . ,mN ) = (〈σ1〉, . . . , 〈σN 〉)
and its second moment

p = (p1, . . . , pN ) = (〈σ 2
1 〉, . . . , 〈σ 2

N 〉),
where for a function f on �N , we denote 〈 f 〉 the average under the Gibbs measure GN ,
defined as

GN ({σ }) = exp(HN (σ ))

ZN
,

with

ZN =
∑

σ

exp(HN (σ )).

It has been predicted (in the case S = 1, h = 0 [15,21]) that these pairs of random variables
satisfy at high temperature (in a sense that will be made precise later) a system of coupled
self consistent equations given by

mi ≈ 2 sinh(βξi )

exp(β�i ) + 2 cosh(βξi )
pi ≈ 2 cosh(βξi )

exp(β�i ) + 2 cosh(βξi )
(2)

with

ξi = 1√
N

∑

j

gi jm j − β

N
mi

∑

j

g2i j

(
p j − m2

j

)
,

and

�i = −D − β

2N

∑

j

g2i j

(
p j − m2

j

)
.

Equations (2) are the analogue of the well-studied TAP equations

mi ≈ tanh

⎛

⎝h +
∑

k 	=i

gikmk − β2(1 − q)mi

⎞

⎠ (3)

in the SK model [20].
In the mathematics community, there have been several approaches to rigorously under-

stand the TAP equations. First, in the SKmodel, Talagrand [19] andChatterjee [6] established
(3) at high temperature. At low temperature, a version of (3) where one decomposes the
Gibbs measure into “pure states” was established by Auffinger–Jagannath [4]. A very fruit-
ful approach to TAP was introduced by Bolthausen through an iteration scheme that shares
some connections to message passing algorithms [5]. Bolthausen’s iteration was recently
shown to indeed approximate the magnetizations by Chen–Tang [8]. A dynamical method
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Fig. 1 The predicted phase diagram for the GS model when S = 1 and h = 0 as described in Mottishaw–
Sherrington [15]. Here, T = β−1. The TAP equations (2) should be valid in the paramagnetic phase. Note
that for certain values of the crystal field D the values of β in the paramagnetic phase are the union of two
disjoint intervals, a behavior different than the SK model

to derive (3) was also very recently proposed by Adhikari–Brennecke–von Soosten–Yau [1].
The TAP equations were also viewed as critical point solutions of the TAP functional and
studied in [2,3,7,18].

Different than the SKcase or themixed p-spin, theTAPequations for theGSmodel depend
on two set of parameters. This creates a few roadblocks to understand its validity. For instance,
in the physics community, there is still a debate of what should be the correct analogue of
the de Almeida–Thouless line and for which set of parameters (β, D, h) one should expect
(2) to be true. The (β, D) phase diagram in the case S = 1, h = 0 is thoroughly discussed
by physicists in the papers of Lage and de Almeida [13], Mottishaw and Sherrignton [15]
and da Costa et al. [10]. In this case, it is predicted that for certain values of the crystal field
D the values of β for which (2) holds is the union of two disjoint intervals, a behavior not
present in the SK model. See Fig. 1 for a phase diagram.

The main goal of this paper is to derive a rigorous interpretation of (2) at high tempera-
ture for all values of the crystal field. We do not expect that our bounds on β are optimal.
As illustrated by the discussion above, deriving the exact conditions when (2) holds is an
interesting and challenging direction to pursue.

We will now state our results. Let X be a standard Gaussian random variable. Given
(β, D, h) as above consider the system of equations in R

2 given by

p = E

⎡

⎣
∑S

γ=1 γ 2 · 2ch [γ (√
qβX + h

)]
exp

(
γ 2

[
D + β2

2 (p − q)
])

1 + ∑S
γ=1 2ch

[
γ
(√

qβX + h
)]
exp

(
γ 2

[
D + β2

2 (p − q)
])

⎤

⎦ , (4)

q = E

⎡

⎣
∑S

γ=1 γ · 2sh [γ (√
qβX + h

)]
exp

(
γ 2

[
D + β2

2 (p − q)
])

1 + ∑S
γ=1 2ch

[
γ
(√

qβX + h
)]
exp

(
γ 2

[
D + β2

2 (p − q)
])

⎤

⎦
2

. (5)

This system is the analogue of the fixed-point equation q = E tanh2(β
√
qX + h) that

appears in the SK model. Our first result shows that for β small, this system of equations has
a unique solution.
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Proposition 1 There exists a β̃ > 0 such that for all 0 ≤ β < β̃, h ≥ 0, and D ∈ R, the
system of Eqs. (4) and (5) has a unique solution.

Assume that β < β̃ and the pair (p, q) is the unique solution of (4) and (5). Our main
result describes the validity of the TAP equations in the L2 sense as follows.

Theorem 1 There exists some K ,
ˆ̂
β > 0, such that for all 0 ≤ β <

ˆ̂
β, h ≥ 0 and D ∈ R,

we have for all N ≥ 1 and k ≥ 1

E

[
〈σN 〉 −

∑S
γ=1 γ · 2sh [γ (βξN + h)

]
exp

(
γ 2�

)

1 + ∑S
γ=1 2ch

[
γ (βξN + h)

]
exp

(
γ 2�

)

]2k

≤ K

Nk
, (6)

E

[
〈
σ 2
N

〉 −
∑S

γ=1 γ 2 · 2ch [γ (βξN + h)
]
exp

(
γ 2�

)

1 + ∑S
γ=1 2ch

[
γ (βξN + h)

]
exp

(
γ 2�

)

]2k

≤ K

Nk
, (7)

where

ξN =
∑

i≤N−1

giN 〈σi 〉 − β(p − q)〈σN 〉, and � = D + 1

2
β2(p − q).

The proof of Theorem 1 follows the cavity approach as in Sects. 1.6 and 1.7 of Talagrand’s
book [19]. The main difference between the SKmodel and the GSmodel is that we now need
to control the self-overlap, and relate it to the solution (p, q). This requires new estimates and
a careful analysis of the fixed point equation. The rest of the paper is organized as follows.
In the next section, we show concentration of the overlap and self-overlap, the main tool to
prove Theorem 1. In Sect. 3, we provide the proof of Theorem 1. The proof of Proposition
1 is left to the last section.

2 Concentration of Overlaps

We denote the overlap between configurations σ 1 and σ 2, and the self-overlap of σ respec-
tively by

R1,2 = 1

N

∑

i≤N

σ 1
i σ 2

i and R1,1 = 1

N

∑

i≤N

(σi )
2.

In this section, we use the cavity method to show concentration of overlaps R1,2 and R1,1.
We assume from now on that β < β̃ and (p, q) is the solution given in Proposition 1.

Proposition 2 There exists a β̂ > 0, such that for all β < β̂, we have:

E

〈(
R1,2 − q

)2〉 ≤ 16S4

N
,

E

〈(
R1,1 − p

)2〉 ≤ 16S4

N
.
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We start with some notations and preliminary results needed to prove Proposition 2. For
σ = (σ1, . . . , σN ), ρ = (σ1, . . . , σN−1), we write

HN (σ ) = β√
N

∑

1≤i< j≤N

gi jσiσ j + D
N∑

i=1

σ 2
i + h

N∑

i=1

σi

= HN−1(ρ) + σN · β√
N

∑

i<N

giNσi + Dσ 2
N + hσN ,

where with a slight abuse of notation,

HN−1(ρ) = β√
N

∑

1≤i< j≤N−1

gi jσiσ j + D
∑

i≤N−1

σ 2
i + h

∑

i≤N−1

σi . (8)

With the notation above, we have the following identity. Its proof is identical to the proof of
Proposition 1.6.1 in [19].

Proposition 3 Given a function f on �N , it holds that

〈 f (σ )〉 =
〈
Av

(
f (σ ) exp

(
σN · β√

N

∑
i<N giNσi + Dσ 2

N + hσN

)) 〉

−〈
Av

(
exp

(
σN · β√

N

∑
i<N giNσi + Dσ 2

N + hσN

)) 〉

−
,

whereAvmeans average over σN = 0,±1, . . . ,±S, and 〈·〉− is the average under the Gibbs
measure with respect to the Hamiltonian HN−1.

Now consider the interpolated Hamiltonian:

Ht (σ ) = HN−1(ρ) + σN

[√
t

β√
N

∑

i<N

giNσi + √
1 − tβz

√
q

]

+ (1 − t) · β2

2
(p − q)σ 2

N + Dσ 2
N + hσN ,

where z is a standard Gaussian random variable independent of gi j . We denote the overlap
of the first N − 1 coordinates by

R−
l,l ′ = 1

N

∑

i<N

σ l
i σ

l ′
i .

To simplify the notation, let εl = σ l
N , and write

Rl,l ′ = R−
l,l ′ + εlεl ′

N
. (9)

Lemma 1 We have:

E
〈
σ 2
N

〉
0 = p and E 〈σN 〉20 = q,

where p and q satisfy the Eqs. (4) and (5), and 〈·〉0 is the average under the Gibbs measure
with respect to the interpolated Hamiltonian Ht (σ ) at t = 0.

Proof Note that

H0(σ ) = HN−1(ρ) + σN · βz
√
q + β2

2
(p − q)σ 2

N + Dσ 2
N + hσN .
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22 Page 6 of 25 A. Auffinger, C. Xi

Applying Proposition 3 with H0, we get:

E〈σ 2
N 〉0 = E

〈
Av

(
σ 2
N exp

(
σN · βz

√
q + β2

2 (p − q)σ 2
N + Dσ 2

N + hσN

)) 〉

−〈
Av

(
exp

(
σN · βz

√
q + β2

2 (p − q)σ 2
N + Dσ 2

N + hσN

)) 〉

−

= E

⎡

⎣
∑S

γ=1 γ 2 · 2ch [γ (√
qβX + h

)]
exp

(
γ 2

[
D + β2

2 (p − q)
])

1 + ∑S
γ=1 2ch

[
γ
(√

qβX + h
)]
exp

(
γ 2

[
D + β2

2 (p − q)
])

⎤

⎦ = p.

Similarly,

〈σN 〉0 =
〈
Av

(
σN exp

(
σN · βz

√
q + β2

2 (p − q)σ 2
N + Dσ 2

N + hσN

)) 〉

−〈
Av

(
exp

(
σN · βz

√
q + β2

2 (p − q)σ 2
N + Dσ 2

N + hσN

)) 〉

−

=
⎡

⎣
∑S

γ=1 γ · 2sh [γ (√
qβX + h

)]
exp

(
γ 2

[
D + β2

2 (p − q)
])

1 + ∑S
γ=1 2ch

[
γ
(√

qβX + h
)]
exp

(
γ 2

[
D + β2

2 (p − q)
])

⎤

⎦ ,

E〈σN 〉20 =
⎡

⎣
∑S

γ=1 γ · 2sh [γ (√
qβX + h

)]
exp

(
γ 2

[
D + β2

2 (p − q)
])

1 + ∑S
γ=1 2ch

[
γ
(√

qβX + h
)]
exp

(
γ 2

[
D + β2

2 (p − q)
])

⎤

⎦
2

= q.

��

Let

uσ = β√
N

∑

i<N

giNσiσN , vσ = βz
√
qσN , yσ = β2

2
(p − q)σ 2

N , and

ωσ = exp
(
HN−1(ρ) + Dσ 2

N + hσN
)
.

Then the interpolated Hamiltonian can be written as

Ht (σ ) = √
tuσ + √

1 − tvσ + (1 − t)yσ + log(ωσ ).

Let 〈·〉t be an average for the corresponding Gibbs measure. We write

νt ( f ) = E〈 f 〉t , and ν′
t ( f ) = d

dt
(νt ( f )).

Then E

〈(
R1,2 − q

)2〉 and E

〈(
R1,1 − p

)2〉 in Proposition 2 are equal to ν1

((
R1,2 − q

)2)

and ν1

((
R1,1 − p

)2). Set

U (σ l , σ l ′) = 1

2

(
Euσ l uσ l′ − Evσ l vσ l′

)
, and V (σ l) = −yσ l .

Then we have

Euσ l uσ l′ = εlεl ′ · β2R−
l,l ′ , Evσ l vσ l′ = εlεl ′ · β2q,
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and

U (σ l , σ l ′) = εlεl ′ · β2

2
(R−

l,l ′ − q), (10)

V (σ l) = −β2

2
(p − q)ε2l . (11)

Lemma 2 If f is a function on (�N )n, then

ν′
t

(
f
(
σ 1, . . . , σ n)) =

∑

1≤l,l ′≤n

νt

(
U
(
σ l , σ l ′

)
f
)

− 2n
∑

l≤n

νt

(
U
(
σ l , σ n+1

)
f
)

− nνt
(
U
(
σ n+1, σ n+1) f

) + n(n + 1)νt
(
U
(
σ n+1, σ n+2) f

)

+
∑

l≤n

νt

(
V
(
σ l
)
f
)

− nνt
(
V
(
σ n+1) f

)
. (12)

Proof The proof is similar to Lemma 1.4.2 in [19] with the correct derivatives. The first two
lines on the right side of (12) are the same as those in the SK model, while the last line arises
due to yσ . ��

If we combine Lemma 2 with Eqs. (10) and (11), we get the following.

Lemma 3 Let f be a function on (�N )n, then for 0 < t < 1, we have

ν′
t ( f ) = β2

[ ∑

1≤l<l ′≤n

νt

(
εlεl ′

(
R−
l,l ′ − q

)
f
)

− n
∑

l≤n

νt

(
εlεn+1

(
R−
l,n+1 − q

)
f
)

+ n(n + 1)

2
νt

(
εn+1εn+2

(
R−
n+1,n+2 − q

)
f
)

+ 1

2

∑

l≤n

νt

(
ε2l

(
R−
l,l − p

)
f
)

− n

2
νt

(
ε2n+1

(
R−
n+1,n+1 − p

)
f
)

, (13)

and also

ν′
t ( f ) = A1 + A2 − B, (14)

where

A1 := β2
[ ∑

1≤l<l ′≤n

νt
(
εlεl ′

(
Rl,l ′ − q

)
f
) − n

∑

l≤n

νt
(
εlεn+1

(
Rl,n+1 − q

)
f
)

+ n(n + 1)

2
νt
(
εn+1εn+2

(
Rn+1,n+2 − q

)
f
)]

, (15)

A2 := β2
[1
2

∑

l≤n

νt
(
ε2l

(
Rl,l − p

)
f
) − n

2
νt
(
ε2n+1

(
Rn+1,n+1 − p

)
f
)]

, (16)

B := β2

N

[ ∑

1≤l<l ′≤n

νt
(
ε2l ε

2
l ′ f

) − n
∑

l≤n

νt
(
ε2l ε

2
n+1 f

) + n(n + 1)

2
νt
(
ε2n+1ε

2
n+2 f

)

+ 1

2

∑

l≤n

νt
(
ε4l f

) − n

2
νt
(
ε4n+1 f

)]
. (17)

Proof The result follows by replacing Eqs. (10) and (11) in (12) and by some straightforward
algebra. ��
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Lemma 4 For a function f ≥ 0 on (�N )n, we have

νt ( f ) ≤ exp
(
6n2β2S4

)
ν1( f ).

Proof Note that R−
l,l ′ ≤ S2 and p, q ∈ [0, S2]. So |R−

l,l ′−q| ≤ 2S2 for l 	= l ′, |R−
l,l−p| ≤ 2S2,

and (p − q)2 ≤ S2. Thus, by (13), we have

|ν′
t ( f )| ≤

(
n(n − 1)

2
+ n2 + n(n + 1)

2
+ n

2
+ n

2

)
β2 · 2S4νt ( f )

= (2n2 + n)β2 · 2S4νt ( f ) ≤ 6n2β2S4νt ( f ).

Thus,
∣∣∣∣
ν′
t ( f )

νt ( f )

∣∣∣∣ ≤ 6n2β2S4.

Let

g(1 − t) := log [vt ( f )] for t ∈ [0, 1].
Then

∣∣g′(1 − t)
∣∣ =

∣∣∣∣
ν′
t ( f )

νt ( f )

∣∣∣∣ ≤ 6n2β2S4.

Therefore,

g(1 − t) = g(0) +
∫ 1−t

0
g′(s)ds ≤ g(0) +

∫ 1−t

0
|g′(s)|ds ≤ g(0) + (1 − t)6n2β2S4,

i.e.

log[νt ( f )] ≤ log[ν1( f )] + (1 − t)6n2β2S4.

Hence,

νt ( f ) ≤ exp
[
(1 − t)6n2β2S4

]
ν1( f ) ≤ exp

(
6n2β2S4

)
ν1( f ), as desired.

��
Now combining Lemmas 3 and 4, for a function f on (�N )n , and 0 < t < 1, we have

|ν′
t ( f )| ≤

(
n(n − 1)

2
+ n2 + n(n + 1)

2
+ n

2
+ n

2

)
β2 · 2S4νt | f |)

≤ 6n2β2S4 exp
(
6n2β2S4

)
ν1(| f |), (18)

which will be used several times in the following proof of Proposition 2.

Proof of Proposition 2 We will show concentration of R1,2 first. Recall that εl = σ l
N . Using

symmetry among sites, we can write

ν1

((
R1,2 − q

)2) = 1

N

∑

i≤N

ν1
[(

σ 1
i σ 2

i − q
) (

R1,2 − q
)] = ν1( f ), (19)

where

f := (ε1ε2 − q)
(
R1,2 − q

)
.

123



TAP Equations for the Ghatak–Sherrington Mean Field Spin Glass Model Page 9 of 25 22

By (9),

f = (ε1ε2 − q)
(ε1ε2

N
+ R−

1,2 − q
)

= 1

N

[
(ε1ε2)

2 − ε1ε2q
] + (ε1ε2 − q)

(
R−
1,2 − q

)
.

Lemma 1 implies

ν0

[
(ε1ε2 − q)

(
R−
1,2 − q

)]
= ν0 (ε1ε2 − q) ν0

(
R−
1,2 − q

)
= 0,

and hence

ν0( f ) = 1

N
ν0
[
(ε1ε2)

2 − ε1ε2q
] ≤ 2S4

N
. (20)

Using |ε1ε2 − q| ≤ 2S2, we have

| f | = ∣∣(ε1ε2 − q)
(
R1,2 − q

)∣∣ ≤ 2S2
∣∣R1,2 − q

∣∣ .

Now apply inequality (18) with n = 2 to get

|ν1( f ) − ν0( f )| ≤ 24β2S4 exp
(
24β2S4

)
ν1(| f |). (21)

Therefore, combining (21) with (19) and (20), we obtain

ν1

(∣∣R1,2 − q
∣∣2
)

≤ 2S4

N
+ 24β2S4 exp

(
24β2S4

)
ν1

(∣∣R1,2 − q
∣∣2
)

.

Choose β0 such that

24β2
0 S

4 exp
(
24β2

0 S
4) ≤ 7

8
,

then we have

ν1

(∣∣R1,2 − q
∣∣2
)

≤ 2S4

N
+ 7

8
ν1

(∣∣R1,2 − q
∣∣2
)

,

and hence

ν1

(∣∣R1,2 − q
∣∣2
)

≤ 16S4

N
. (22)

We use a similar method to show concentration of R1,1. We can write

ν1

((
R1,1 − p

)2) = 1

N

∑

i≤N

ν1
[(

(σ 1
i )2 − p

) (
R1,1 − p

)] = ν1(κ), (23)

where

κ := (
ε21 − p

) (
R1,1 − p

)
.

It follows that

κ = (
ε21 − p

)
(

ε21

N
+ R−

1,1 − p

)
= 1

N

[(
ε21
)2 − ε21 p

]
+ (

ε21 − p
) (

R−
1,1 − p

)
,

and by Lemma 1

ν0

[(
ε21 − p

) (
R−
1,1 − p

)]
= ν0

(
ε21 − p

)
ν0

(
R−
1,1 − p

)
= 0.
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Hence,

ν0(κ) = 1

N
ν0

[(
ε21
)2 − ε21 p

]
≤ 1

N

[
ν0
(
S4
) − ν0

(
ε21
)
p
] ≤ 1

N
(S4 − p2) ≤ S4

N
. (24)

By definition of κ , ν1
((

R1,1 − p
)2) = ν1(κ). Also note that R1,1, ε

2
1 , p ∈ [0, S2]. We have

∣∣ε21 − p
∣∣ ≤ S2 and |R1,1 − p| ≤ S2,

thus,

|κ| = ∣∣(ε21 − p
) (

R1,1 − p
)∣∣ ≤ S4|R1,1 − p|.

Applying inequality (18) with n = 1, we get

|ν1(κ) − ν0(κ)| ≤ 6β2S4 exp
(
6β2S4

)
ν1(|κ|). (25)

Therefore, combining (25) with (23) and (24), we obtain

ν1

(∣∣R1,1 − p
∣∣2
)

≤ S4

N
+ 6β2S4 exp

(
6β2S4

)
ν1

(∣∣R1,1 − p
∣∣2
)

.

Choosing β1 such that

6β2
1 S

4 exp
(
6β2

1 S
4) ≤ 15

16
,

we have

ν1

(∣∣R1,1 − p
∣∣2
)

≤ S4

N
+ 15

16
ν1

(∣∣R1,1 − p
∣∣2
)

,

i.e.

ν1

(∣∣R1,1 − p
∣∣2
)

≤ 16S4

N
.

Now take β̂ = min(β0, β1). Then for all β < β̂, we have:

ν1

(∣∣R1,2 − q
∣∣2
)

≤ 16S4

N
and ν1

(∣∣R1,1 − p
∣∣2
)

≤ 16S4

N
.

��
Based on Proposition 2, we use an inductive argument to control the higher moments of

the overlaps R1,2 and R1,1.

Proposition 4 There exist ˆ̂
β > 0, and some constant C > 0 such that for all β <

ˆ̂
β and any

k ≥ 1, we have:

ν1

((
R1,2 − q

)2k) ≤
(
Ck

N

)k

, (26)

ν1

((
R1,1 − p

)2k) ≤
(
Ck

N

)k

, (27)

where C does not depend on N or k.

Before proving the above proposition, we show the following lemma first.
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Lemma 5 Given a function f on (�N )n, and τ1, τ2 > 0 with 1
τ1

+ 1
τ2

= 1, we have

|ν1( f ) − ν0( f )| ≤ exp
[
6n2β2S4

] (
2n2β2S2

[
ν1(| f |τ1)

] 1
τ1
[
ν1(|R1,2 − q|τ2)] 1

τ2

+ n2β2S4
(
2 + 3

N

)
ν1(| f |)

)
, (28)

and

|ν1( f ) − ν0( f )| ≤ exp
[
6n2β2S4

] (
2n2β2S2

[
ν1(| f |τ1)

] 1
τ1
[
ν1(|R1,1 − p|τ2)] 1

τ2

+ n2β2S4
(
4 + 3

N

)
ν1(| f |)

)
. (29)

Proof We show (28) first. Note that

|ν1( f ) − ν0( f )| =
∣∣∣∣
∫ 1

0
ν′
t ( f )dt

∣∣∣∣ ≤ sup
0<t<1

∣∣ν′
t ( f )

∣∣ .

Also know that |εlεl ′ | ≤ S2 and (p−q)2 ≤ S2. Now apply Hölder’s inequality, we will have
for 1

τ1
+ 1

τ2
= 1, and l 	= l ′,

∣∣νt
(
εlεl ′

(
Rl,l ′ − q

)
f
)∣∣ ≤ S2νt

(| f ||Rl,l ′ − q|) ≤ S2
[
νt (| f |τ1)

] 1
τ1
[
νt (|R1,2 − q|τ2)] 1

τ2 .

Also we have

νt
(
ε2l ε

2
l ′ f

) ≤ S4νt (| f |).
According to Eqs. (15) to (17),

|A1| ≤
(
n(n − 1)

2
+ n2 + n(n + 1)

2

)
β2S2

[
νt (| f |τ1)

] 1
τ1
[
νt (|R1,2 − q|τ2)] 1

τ2

= 2n2β2S2
[
νt (| f |τ1)

] 1
τ1
[
νt (|R1,2 − q|τ2)] 1

τ2 ,

|A2| ≤ β2
[n
2

· 2S4νt (| f |) + n

2
· 2S4νt (| f |)

]
= 2β2nS4νt (| f |),

|B| ≤ β2

N

(
n(n − 1)

2
+ n2 + n(n + 1)

2
+ n

2
+ n

2

)
S4νt (| f |)

= β2

N

(
2n2 + n

)
S4νt (| f |) ≤ 3β2n2S4

N
νt (| f |).

Hence based on Eq. (14), we have

|ν′
t ( f )| ≤ |A1| + |A2| + |B|

≤ 2n2β2S2
[
νt (| f |τ1)

] 1
τ1
[
νt (|R1,2 − q|τ2)] 1

τ2 + n2β2S4
(
2 + 3

N

)
νt (| f |).

Now by Lemma 4, we get

|ν′
t ( f )| ≤ exp

[
6n2β2S4

] (
2n2β2S2

[
ν1(| f |τ1)

] 1
τ1
[
ν1(|R1,2 − q|τ2)] 1

τ2

+ n2β2S4
(
2 + 3

N

)
ν1(| f |)

)
.
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Therefore,

|ν1( f ) − ν0( f )| ≤ sup
0≤t≤1

∣∣ν′
t ( f )

∣∣ ≤ exp
[
6n2β2S4

] (
2n2β2S2

[
ν1(| f |τ1)

] 1
τ1

[
ν1(|R1,2 − q|τ2)] 1

τ2 + n2β2S4
(
2 + 3

N

)
ν1(| f |)

)
.

Now we show the inequality (29). Note that we have for 1
τ1

+ 1
τ2

= 1, and l = l ′,

∣∣νt
(
εlεl ′

(
Rl,l − p

)
f
)∣∣ ≤ S2

[
νt (| f |τ1)

] 1
τ1
[
νt (|R1,1 − p|τ2)] 1

τ2 .

Considering different upper bounds for |A1| and |A2|, we obtain

|A1| ≤
(
n(n − 1)

2
+ n2 + n(n + 1)

2

)
β2S2 · 2S2νt (| f |) = 4n2β2S4νt (| f |) ,

|A2| ≤
(n
2

+ n

2

)
β2S2

[
νt (| f |τ1)

] 1
τ1
[
νt (|R1,1 − p|τ2)] 1

τ2

≤ n2β2S2
[
νt (| f |τ1)

] 1
τ1
[
νt (|R1,1 − p|τ2)] 1

τ2 .

Following the same method as above, we show (29) as desired. ��
We now prove Proposition 4.

Proof of Proposition 4 We will show (26) first. For 1 ≤ s ≤ N , let

As = 1

N

∑

s≤i≤N

(σ 1
i σ 2

i − q).

Then, A1 = R1,2 − q . By Proposition 2, we have for k = 1, ν1(A2
1) ≤ C

N . Note that constant
C may vary from step to step. We will prove by induction over k that we have

∀s ≤ N , ν1

(
A2k
s

)
≤
(
Ck

N

)k

.

Note that when s = N ,

|AN | =
∣∣∣∣
ε1ε2 − q

N

∣∣∣∣ ≤ 2S2

N
,

hence, for some constant C , we have

ν1

(
A2k
s

)
≤
(
2S2

N

)2k

≤
(
Ck

N

)k

.

For the rest of the proof for (26), we can assume s < N . Notice that symmetry among sites
implies

ν1

(
A2k+2
s

)
= 1

N

∑

s≤i≤N

ν1

((
σ 1
i σ 2

i − q
)
A2k+1
s

)
= N − s + 1

N
ν1( f ) ≤ |ν1( f )|, (30)

where

f = (ε1ε2 − q) A2k+1
s .
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We will use Lemma 5 to control |ν1( f )|. First, we evaluate ν0( f ). Let

Ã = 1

N

∑

s≤i≤N−1

(
σ 1
i σ 2

i − q
)
.

By Lemma 1, we obtain

ν0

(
(ε1ε2 − q) Ã2k+1

s

)
= ν0(ε1ε2 − q)ν0

(
Ã2k+1
s

)
= 0.

Note that |ε1ε2 − q| ≤ 2S2. Thus,

|ν0( f )| =
∣∣∣ν0

(
(ε1ε2 − q) A2k+1

s

)
− ν0

(
(ε1ε2 − q) Ã2k+1

s

)∣∣∣ ≤ 2S2ν0
(∣∣∣A2k+1

s − Ã2k+1
s

∣∣∣
)

.

(31)

We use the inequality

|x2k+1 − y2k+1| ≤ (2k + 1)|x − y|(x2k + y2k)

for x = As and y = Ã. Since

|x − y| =
∣∣∣∣
ε1ε2 − q

N

∣∣∣∣ ≤ 2S2

N
,

applying Lemma 4 for n = 2, we deduce from (31) that

|ν0( f )| ≤ 4S4(2k + 1)

N

(
ν0

(
A2k
s

)
+ ν0

(
Ã2k

))

≤ 4S4(2k + 1)

N
exp(24β2S4)

(
ν1

(
A2k
s

)
+ ν1

(
Ã2k

))
.

Because s < N , we observe that Ã and As+1 are equal in distribution under ν1. Therefore,
the induction hypothesis yields

|ν0( f )| ≤ 8S4(2k + 1)

N
exp(24β2S4)

(
Ck

N

)k

≤
(
C(k + 1)

N

)k+1

.

Note that

f = (ε1ε2 − q) A2k+1
s ≤ 2S2A2k+1

s .

We apply Eq. (28) in Lemma 5 with n = 2, τ1 = 2k+2
2k+1 and τ2 = 2k + 2, combining with

(30), to get

ν1

(
A2k+2
s

)
≤ |ν1( f )| ≤ |ν0( f )| + exp

[
24β2S4

]

(
16β2S4

[
ν1

(
A2k+2
s

)] 1
τ1
[
ν1

(
|R1,2 − q|2k+2

)] 1
τ2

+ 4β2S4
(
2 + 3

N

)
· N

N − s + 1
ν1

(
A2k+2
s

))
.

123



22 Page 14 of 25 A. Auffinger, C. Xi

Note that xy ≤ xτ1 + yτ2 . Then the above inequality becomes

ν1

(
A2k+2
s

)
≤
(
C(k + 1)

N

)k+1

+ exp
[
24β2S4

]

([
16β2S4 + 4β2S4

(
2 + 3

N

)
· N

N − s + 1

]
ν1

(
A2k+2
s

)

+ ν1

(
|R1,2 − q|2k+2

))
. (32)

Since when n = 1, we have A1 = R1,2 − q . Then the previous inequality implies that for β

small enough and some C big enough, we have

ν1

((
R1,2 − q

)2k+2
)

≤
(
C(k + 1)

N

)k+1

. (33)

Using (33) in (32) yields that for the other values of s as well, we have

ν1

(
A2k+2
s

)
≤
(
C(k + 1)

N

)k+1

.

Now for 1 ≤ s ≤ N , let

Bs = 1

N

∑

s≤i≤N

((
σ 1
i

)2 − p
)

,

then, B1 = R1,1 − p. Following the same method as above, we can show (27) as desired. ��

3 TAP Equations for the Ghatak–SherringtonModel

In this section, we prove Theorem 1. Set β− to be

β−√
N − 1

= β√
N

.

Note that for some positive constant K ,

|β − β−| ≤ K

N
.

Let p− = p−(N − 1) and q− = q−(N − 1) be so that

p− = E

⎡

⎢⎢⎣

∑S
γ=1 γ 2 · 2ch [γ (√

q−β−X + h
)]
exp

(
γ 2

[
D + β2−

2 (p− − q−)

])

1 + ∑S
γ=1 2ch

[
γ
(√

q−β−X + h
)]
exp

(
γ 2

[
D + β2−

2 (p− − q−)

])

⎤

⎥⎥⎦ ,

q− = E

⎡

⎢⎢⎣

∑S
γ=1 γ · 2sh [γ (√

q−β−X + h
)]
exp

(
γ 2

[
D + β2−

2 (p− − q−)

])

1 + ∑S
γ=1 2ch

[
γ
(√

q−β−X + h
)]
exp

(
γ 2

[
D + β2−

2 (p− − q−)

])

⎤

⎥⎥⎦

2

.

Note that (p−, q−) exists and is unique for smallβ due to Proposition 1.Wehave the following
lemma.
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Lemma 6 There exist K ,
ˆ̂
β > 0 such that for all β <

ˆ̂
β, D, h ∈ R, we have

|p − p−| ≤ K

N
, (34)

|q − q−| ≤ K

N
. (35)

Proof We will show (34) first, and (35) follows similarly. Let

φ(X) =
∑S

γ=1 γ 2 · 2ch [γ (√
qβX + h

)]
exp

(
γ 2

[
D + β2

2 (p − q)
])

1 + ∑S
γ=1 2ch

[
γ
(√

qβX + h
)]
exp

(
γ 2

[
D + β2

2 (p − q)
]) ,

and

ψ(X) =
∑S

γ=1 γ · 2sh [γ (√
qβX + h

)]
exp

(
γ 2

[
D + β2

2 (p − q)
])

1 + ∑S
γ=1 2ch

[
γ
(√

qβX + h
)]
exp

(
γ 2

[
D + β2

2 (p − q)
]) .

Define

G (β, p, q) = E [φ(X)] ,

and

F (β, p, q) = E [ψ(X)]2 .

Also define p(β), q(β) by

p(β) = G (β, p(β), q(β)) , and q(β) = F (β, p(β), q(β)) .

Note that p(β) and q(β) are well-defined for small β due to Proposition 1. We have

q ′(β) =
∂F
∂β

+ ∂F
∂ p · p′(β)

1 − ∂F
∂q

, and p′(β) =
∂G
∂β

+ ∂G
∂q · q ′(β)

1 − ∂G
∂ p

.

Plugging the equation of q ′(β) into p′(β), we obtain

p′(β) =
∂G
∂β

(
1 − ∂F

∂q

)
+ ∂G

∂q · ∂F
∂β(

1 − ∂G
∂ p

) (
1 − ∂F

∂q

)
− ∂G

∂q · ∂F
∂ p

.

Now we calculate the partial derivatives of G (β, p, q) and F (β, p, q). To simplify the
notation, we introduce the following functions. Define

f (X) = 1

1 + ∑S
γ=1 2ch

[
γ
(√

qβX + h
)]
exp

(
γ 2

[
D + β2

2 (p − q)
]) , (36)

κch(X) = 2ch
[
γ
(√

qβX + h
)]
exp

(
γ 2

[
D + β2

2
(p − q)

])
, (37)

κsh(X) = 2sh
[
γ
(√

qβX + h
)]
exp

(
γ 2

[
D + β2

2
(p − q)

])
. (38)
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Then

φ(X) =
S∑

γ=1

γ 2 · κch(X) f (X), and ψ(X) =
S∑

γ=1

γ · κsh(X) f (X).

Define

θ(X) =
S∑

γ=1

γ 4 · κch(X) f (X), and η(X) =
S∑

γ=1

γ 3 · κsh(X) f (X).

Since β <
ˆ̂
β, and D, h ∈ R, it’s clear that φ(X), ψ(X), f (X), θ(X), and η(X) are bounded

functions. By a direct differentiation and noting that | sinh(x)| ≤ cosh(x), it is easy to see
that the functions φ′(X), ψ ′(X), f ′(X), θ ′(X), and η′(X) are also bounded. For the explicit
bounds, please check inequalities from (50) to (53). In addition, using Gaussian integration
by parts yields that

∂G

∂β
= E

[√
q
(
η′(X) − ψ ′(X)φ(X) − ψ(X)φ′(X)

) + β(p − q)
(
θ(X) − φ2(X)

)]
,

∂G

∂ p
= E

[
β2

2

(
θ(X) − φ2(X)

)]
,

∂G

∂q
= E

[
β

2
√
q

(
η′(X) − ψ ′(X)φ(X) − ψ(X)φ′(X)

) + β2

2

(
φ2(X) − θ(X)

)]
,

∂F

∂β
= 2E

[√
q
(
ψ ′(X)φ(X) + ψ(X)φ′(X) − 3ψ2(X)ψ ′(X)

)

+β(p − q)ψ(X) (η(X) − ψ(X)φ(X))] ,

∂F

∂ p
= E

[
β2ψ(X) (η(X) − ψ(X)φ(X))

]
,

∂F

∂q
= E

[
β√
q

(
ψ ′(X)φ(X) + ψ(X)φ′(X) − 3ψ2(X)ψ ′(X)

)

+β2 (ψ2(X)φ(X) − ψ(X)η(X)
)]

.

It follows that all the partial derivatives of G (β, p, q) and F (β, p, q) are bounded, hence
so is p′(β). Note that for some positive number K ,

|β − β−| ≤ K

N
.

By the mean value theorem,

|p − p−| ≤ K

N
.

Similarly, |q − q−| ≤ K
N is satisfied. ��

Before the proof of Theorem 1, we state a result which is the analogue of Theorem
1.7.11 in [19]. Consider independent standard Gaussian random variables yi and ξ , which
are independent of the randomness of 〈·〉, and denote Eξ the expectation with respect to the
random variable ξ only.
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Theorem 2 ([19, Theorem 1.7.11]) Assume β <
ˆ̂
β, and D, h ∈ R. Let U be an infinitely

differentiable function on R with derivatives given by U (l). Assume for all l and b, the lth
derivative of U satisfies

E|U (l)(z)|b < ∞
where z is a Gaussian random variable. Then, using the notation σ̇i = σi − 〈σi 〉, we have
for k = 1, 2

E

⎛

⎝
〈
U

⎛

⎝ 1√
N

∑

i≤N

yi σ̇i

⎞

⎠
〉

− EξU
(
ξ
√
p − q

)
⎞

⎠
2k

≤ K

Nk
,

where p and q satisfy the Eqs. (4) and (5) respectively, and the constant K depends on U , β,

but not on N.

Proof The proof of Theorem 2 is similar to Talagrand’s proof of the Theorem 1.7.11 [19]
except for the following differences. Let Ṡl = 1√

N

∑
i≤N yi σ̇ l

i and E0 denote the expectation
with respect to yi and ξl only. Set

Tl,l = E0(Ṡl
2
) − E0(ξl

√
p − q)2 = 1

N

∑

i≤N

(σ̇ l
i )

2 − (p − q),

and for l 	= l ′, let

Tl,l ′ = E0(Ṡl Ṡl ′) − E0 [ξlξl ′(p − q)] = 1

N

∑

i≤N

(
σ̇ l
i

) (
σ̇ l ′
i

)
.

We claim that there exists a positive number K such that

∀r , E

〈
T 2r
l,l ′
〉
≤ K

Nr
.

We explain the case l = l ′ first. Since

(σ̇ l
i )

2 =
(
σ l
i − 〈σi 〉

)2 = (σ l
i )

2 − 2σ l
i

〈
σ l
i

〉
+ 〈σi 〉2,

it follows that

Tl,l = 1

N

∑

i≤N

(
σ̇ l
i

)2 − (p − q) = 1

N

∑

i≤N

((
σ l
i

)2 − 2σ l
i

〈
σ l
i

〉
+ 〈σi 〉2

)
− (p − q)

= 1

N

∑

i≤N

[(
σ l
i

)2 − p

]
+ 1

N

∑

i≤N

[(〈σi 〉2 − q
) + 2

(
q − σ l

i

〈
σ l
i

〉)]
.

We control the first and second term of this sum separately. By Proposition 4,

E

〈⎡

⎣ 1

N

∑

i≤N

(
σ l
i

)2r − p

⎤

⎦
2〉

= E
〈
(R1,1 − p)2r

〉 ≤
(
Cr

N

)r

. (39)
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For the second term of the sum, we use the fact that for any A and B, we have the inequality
(A + B)2r ≤ 22r (A2r + B2r ). Applying Jensen’s inequality and Proposition 2, we have

E

〈⎡

⎣ 1

N

∑

i≤N

(〈σi 〉2 − q
) + 2

(
q − σ l

i

〈
σ l
i

〉)
⎤

⎦
2r〉

≤ 22r

⎛

⎜⎝E

〈⎡

⎣ 1

N

∑

i≤N

(〈σi 〉2 − q
)
⎤

⎦
2r〉

+ E

〈⎡

⎣ 1

N

∑

i≤N

2
(
q − σ l

i

〈
σ l
i

〉)
⎤

⎦
2r〉⎞

⎟⎠

≤ 2
(
E
〈
(R1,2 − q)2r

〉 + 4E
〈
(q − R1.2)

2r 〉) ≤
(
Cr

N

)r

. (40)

Therefore, combining (39) and (40), we obtain that for some positive number K

E〈T 2r
l,l 〉≤2

⎛

⎜⎝E

〈⎡

⎣ 1

N

∑

i≤N

(
σ l
i

)2− p

⎤

⎦
2r〉

+E

〈⎡

⎣ 1

N

∑

i≤N

(
〈σi 〉2−q

)
+2

(
q − σ l

i

〈
σ l
i

〉)
⎤

⎦
2r〉⎞

⎟⎠

≤ K

Nr .

This is similar for the case l 	= l ′. Hence, for all l and l ′, and some positive number K ,
we have

∀r , E

〈
T 2r
l,l ′
〉
≤ K

Nr
.

��

Nowwe state two corollaries of the Theorem 2, which are equivalent of Talagrand’s Corollary
1.7.13 and 1.7.15 [19].

Corollary 1 There exists a K ,
ˆ̂
β > 0 such that for all β <

ˆ̂
β, D, h ∈ R, and ε ∈ � we have

E

⎛

⎝
〈
exp

εβ√
N

∑

i≤N

yiσi

〉
− exp

[
ε2β2

2
(p − q)

]
exp

εβ√
N

∑

i≤N

yi 〈σi 〉
⎞

⎠
2k

≤ K

Nk
, (41)

and

E

⎛

⎝
〈

1√
N

∑

i≤N

yi σ̇i exp
εβ√
N

∑

i≤N
yiσi

〉
−εβ(p − q) exp

[
ε2β2

2
(p−q)

]
exp

εβ√
N

∑

i≤N

yi 〈σi 〉
⎞

⎠
2k

≤ K

Nk
(42)

where K does not depend on N.

Proof The proof is identical to the proof of Corollary 1.7.13 in [19]. ��

For the rest of the section, we will use the following lemma.
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Lemma 7 If
∣∣∣ A

′
B′
∣∣∣ ≤ B and B ≥ 1, we have

∣∣∣∣
A′

B ′ − A

B

∣∣∣∣ ≤ |A − A′| + |B − B ′|.

Corollary 2 Let

E = exp

⎛

⎝ εβ√
N

∑

i≤N

yiσi + ε2D + εh

⎞

⎠ . (43)

Recall that Av denotes average over ε ∈ �. There exists a constant K > 0 and ˆ̂
β > 0 such

that for all β <
ˆ̂
β, and D, h ∈ R, we have

E

⎛

⎝ 〈AvεE〉
〈AvE〉 −

∑S
γ=1 γ · 2sh

[
γ
(

β√
N

∑
i≤N yi 〈σi 〉 + h

)]
exp

(
γ 2

[
D + β2

2 (p − q)
])

1 + ∑S
γ=1 2ch

[
γ
(

β√
N

∑
i≤N yi 〈σi 〉 + h

)]
exp

(
γ 2

[
D + β2

2 (p − q)
])

⎞

⎠
2k

≤ K

Nk
, (44)

E

⎛

⎝
〈
Avε2E 〉

〈AvE〉 −
∑S

γ=1 γ 2 · 2ch
[
γ
(

β√
N

∑
i≤N yi 〈σi 〉 + h

)]
exp

(
γ 2

[
D + β2

2 (p − q)
])

1 + ∑S
γ=1 2ch

[
γ
(

β√
N

∑
i≤N yi 〈σi 〉 + h

)]
exp

(
γ 2

[
D + β2

2 (p − q)
])

⎞

⎠
2k

≤ K

Nk
, (45)

E

⎛

⎝ 1√
N

∑

i≤N

yi
〈σiAvE〉
〈AvE〉 − β(p − q)

〈AvεE〉
〈AvE〉 − 1√

N

∑

i≤N

yi 〈σi 〉
⎞

⎠
2k

≤ K

Nk
. (46)

Proof Define

A(ε) =
〈
exp

εβ√
N

∑

i≤N

yiσi

〉
− exp

[
ε2β2

2
(p − q)

]
exp

εβ√
N

∑

i≤N

yi 〈σi 〉.

Note that A(0) = 0. Deducing from (41), for γ = 1, . . . , S, we have

E
(
γ A(γ ) exp(γ 2D + γ h) − γ A(−γ ) exp(γ 2D − γ h)

)2k ≤ K

Nk
,

and

E
(
A(γ ) exp(γ 2D + γ h) + A(−γ ) exp(γ 2D − γ h) + A(0)

)2k ≤ K

Nk
.

Hence,

E

⎛

⎝
S∑

γ=1

[
γ A(γ ) exp(γ 2D + γ h) − γ A(−γ ) exp(γ 2D − γ h)

]
⎞

⎠
2k

≤ K

Nk
,

i.e.
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E

⎛

⎝〈AvεE〉 −
S∑

γ=1

γ · 2sh
⎡

⎣γ

⎛

⎝ β√
N

∑

i≤N

yi 〈σi 〉 + h

⎞

⎠

⎤

⎦ exp

(
γ 2

[
D + β2

2
(p − q)

])⎞

⎠
2k

≤ K

Nk
,

E

⎛

⎝
〈
Avε2E

〉
−

S∑

γ=1

γ 2 · 2ch
⎡

⎣γ

⎛

⎝ β√
N

∑

i≤N

yi 〈σi 〉 + h

⎞

⎠

⎤

⎦ exp

(
γ 2

[
D + β2

2
(p − q)

])⎞

⎠
2k

≤ K

Nk
,

and

E

⎛

⎝〈AvE〉 −
⎡

⎣1 +
S∑

γ=1

2ch

⎡

⎣γ

⎛

⎝ β√
N

∑

i≤N

yi 〈σi 〉 + h

⎞

⎠

⎤

⎦ exp

(
γ 2

[
D + β2

2
(p − q)

])⎤

⎦

⎞

⎠
2k

≤ K

Nk
.

(47)

Equations (44) and (45) follow from Lemma 7. Using the same method, we get from (42)

E

⎛

⎝
〈

1√
N

∑

i≤N

yi σ̇iAvE
〉

− β(p − q)

S∑

γ=1

γ · exp
[

γ 2β2

2
(p − q)

]
2sh

⎡

⎣γ

⎛

⎝ β√
N

∑

i≤N

yi 〈σi 〉 + h

⎞

⎠

⎤

⎦

⎞

⎠
2k

≤ K

Nk
. (48)

Combining (48) with (47) and using Lemma 7, we obtain

E

(
〈

1√
N

∑
i≤N yi σ̇iAvE

〉

〈AvE〉 − β(p − q)

∑S
γ=1 γ · 2sh

[
γ
(

β√
N

∑
i≤N yi 〈σi 〉 + h

)]
exp

(
γ 2

[
D + β2

2 (p − q)
])

1 + ∑S
γ=1 2ch

[
γ
(

β√
N

∑
i≤N yi 〈σi 〉 + h

)]
exp

(
γ 2

[
D + β2

2 (p − q)
])

)2k

≤ K

Nk
.

(49)

Note that
〈

1√
N

∑
i≤N yi σ̇iAvE

〉

〈AvE〉 = 1√
N

∑

i≤N

yi
〈σiAvE〉
〈AvE〉 − 1√

N

∑

i≤N

yi 〈σi 〉.

Combining (49) with (44) proves (46). ��
Finally, we turn to the proof of Theorem 1.

Proof of Theorem 1 First, we show (6). Recall that the Hamiltonian (8) is the Hamiltonian of
an (N − 1)-spin system with parameter

β− = β

√
1 − 1

N
≤ β,

E = exp

⎛

⎝ εβ−√
N − 1

∑

i≤N−1

giNσi + ε2D + εh

⎞

⎠ = exp

⎛

⎝ εβ√
N

∑

i≤N−1

giNσi + ε2D + εh

⎞

⎠ .
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By Proposition 3, we have

〈σN 〉 = 〈AvεE〉−
〈AvE〉− .

Next, applying (44) to the (N − 1)-spin system and the sequence yi = giN , we obtain

E

⎛

⎜⎜⎝〈σN 〉−
∑S

γ=1 γ · 2sh
[
γ
(

β√
N

∑
i≤N giN 〈σi 〉−+h

)]
exp

(
γ 2

[
D+ β2−

2 (p− − q−)

])

1+∑S
γ=1 2ch

[
γ
(

β√
N

∑
i≤N giN 〈σi 〉− + h

)]
exp

(
γ 2

[
D + β2−

2 (p− − q−)

])

⎞

⎟⎟⎠

2k

≤ K

Nk
.

Now to show (6), it suffices to show that

E

( ∑S
γ=1 γ · 2sh

[
γ
(

β√
N

∑
i≤N giN 〈σi 〉 + h

)]
exp

(
γ 2

[
D + β2

2 (p − q)
])

1 + ∑S
γ=1 2ch

[
γ
(

β√
N

∑
i≤N giN 〈σi 〉 + h

)]
exp

(
γ 2

[
D + β2

2 (p − q)
])

−
∑S

γ=1 γ · 2sh
[
γ
(

β√
N

∑
i≤N giN 〈σi 〉− + h

)]
exp

(
γ 2

[
D + β2−

2 (p− − q−)

])

1 + ∑S
γ=1 2ch

[
γ
(

β√
N

∑
i≤N giN 〈σi 〉− + h

)]
exp

(
γ 2

[
D + β2−

2 (p− − q−)

])
)2k

≤ K

Nk
.

Let

f (x, y) =
∑S

γ=1 γ · 2sh(γ y)eγ 2x

1 + ∑S
γ=1 2ch(γ y)eγ 2x

,

x1 = D + β2

2
(p − q), y1 = β√

N

∑

i≤N−1

giN 〈σi 〉 − β2(p − q)〈σN 〉 + h,

and

x2 = D + β2−
2

(p− − q−), y2 = β√
N

∑

i≤N−1

giN 〈σi 〉− + h.

We claim

E [ f (x1, y1) − f (x2, y2)]
2k ≤ K

Nk
.

By taking the partial derivatives of f (x, y), it is straight-forward to show that f (x, y) is a
Lipschitz function with respect to both x and y. There exists a positive number L such that

| f (x1, y) − f (x2, y)| ≤ L|x1 − x2|,
and

| f (x, y1) − f (x, y2)| ≤ L|y1 − y2|.

123



22 Page 22 of 25 A. Auffinger, C. Xi

Thus using the fact that for any A and B, (A + B)2k ≤ 22k(A2k + B2k), we obtain

E [ f (x1, y1) − f (x2, y2)]
2k ≤ 22k L2k

[
E (x1 − x2)

2k + E (y1 − y2)
2k
]
.

By Lemmas 5 and 6, it follows that

|x1 − x2| =
∣∣∣∣∣
β2

2
(p − q) − β2−

2
(p− − q−)

∣∣∣∣∣

≤
∣∣∣∣
p − q

2

(
β2 − β2−

)∣∣∣∣ +
∣∣∣∣∣
β2−
2

(p − p−)

∣∣∣∣∣ +
∣∣∣∣∣
β2−
2

(q − q−)

∣∣∣∣∣ ≤ K

N
,

i.e.

E (x1 − x2)
2k ≤ K

Nk
.

Now applying (46) to the (N − 1)-spin system, we get

E

⎛

⎝ 1√
N − 1

∑

i≤N−1

giN 〈σi 〉 − β−(p− − q−) 〈σi 〉 − 1√
N − 1

∑

i≤N−1

giN 〈σi 〉−
⎞

⎠
2k

≤ K

Nk
.

If we multiply both sides by β2k− , using
∣∣β2 − β2−

∣∣ ≤ K
N and Lemma 6 again, we have

E

⎛

⎝ β√
N

∑

i≤N−1

giN 〈σi 〉 − β2(p − q) 〈σi 〉 − β√
N

∑

i≤N−1

giN 〈σi 〉−
⎞

⎠
2k

≤ K

Nk
,

i.e.

E (y1 − y2)
2k ≤ K

Nk
.

Therefore, we have

E [ f (x1, y1) − f (x2, y2)]
k ≤ 22k L2k

[
E (x1 − x2)

2k + E (y1 − y2)
2k
]

≤ K

Nk
.

Similarly, we can show (7) using the same method. ��

4 Proof of Proposition 1

In this proof, we use the same notation as in the proof of Lemma 6.

Proof Recall that

φ(X) =
∑S

γ=1 γ 2 · 2ch [γ (√
qβX + h

)]
exp

(
γ 2

[
D + β2

2 (p − q)
])

1 + ∑S
γ=1 2ch

[
γ
(√

qβX + h
)]
exp

(
γ 2

[
D + β2

2 (p − q)
]) ,

and

ψ(X) =
∑S

γ=1 γ · 2sh [γ (√
qβX + h

)]
exp

(
γ 2

[
D + β2

2 (p − q)
])

1 + ∑S
γ=1 2ch

[
γ
(√

qβX + h
)]
exp

(
γ 2

[
D + β2

2 (p − q)
]) .
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We define functions G (β, p, q) = E [φ(X)] and F (β, p, q) = E [ψ(X)]2, and hence the
Eqs. (4) and (5) become

p = G (β, p, q) , and q = F (β, p, q) .

Define a self-mapping T : [0, S2] × [
0, S2

] → [
0, S2

] × [
0, S2

]
by

T (p, q) := (G (β, p, q) , F (β, p, q)) .

By the contraction mapping theorem, it suffices to show that there exists a β̃ > 0 such that
for all 0 ≤ β < β̃, h ≥ 0, and D ∈ R, T is a contraction.

We have

φ(X) =
S∑

γ=1

γ 2 · κch(X) f (X) ≤ S2, ψ(X) =
S∑

γ=1

γ · κsh(X) f (X) ≤ S, (50)

θ(X) =
S∑

γ=1

γ 4 · κch(X) f (X) ≤ S4, and η(X) =
S∑

γ=1

γ 3 · κsh(X) f (X) ≤ S3, (51)

where f , κsh and κch are given by (36), (37), and (38). Calculating the derivatives of the
above functions, we obtain

φ′(X) = √
qβ (η(X) − φ(X)ψ(X)) ≤ 2

√
qβS3, ψ ′(X) = √

qβ
(
φ(X) − ψ2(X)

)

≤ 2
√
qβS2, (52)

and

η′(X) = √
qβ (θ(X) − η(X)ψ(X)) ≤ 2

√
qβS4. (53)

Therefore, we have the following:

∂G

∂ p
= E

[
β2

2

(
θ(X) − φ2(X)

)] ≤ S4β2 := L1,

∂G

∂q
=E

[
β

2
√
q

(
η′(X)−ψ ′(X)φ(X) − ψ(X)φ′(X)

)+ β2

2

(
φ2(X)−θ(X)

)]≤4S4β2 := L2,

∂F

∂ p
= E

[
β2ψ(X) (η(X) − ψ(X)φ(X))

] ≤ 2S4β2 := L3,

∂F

∂q
= E

[
β√
q

(
ψ ′(X)φ(X) + ψ(X)φ′(X) − 3ψ2(X)ψ ′(X)

)

+β2 (ψ2(X)φ(X) − ψ(X)η(X)
) ] ≤ 12S4β2 := L4.

By Cauchy’s inequality, we have

|G (p1, q1) − G (p2, q2)|
≤ L1|p1 − p2| + L2|q1 − q2| ≤

√
L2
1 + L2

2

√
|p1 − p2|2 + |q1 − q2|2,

and similarly,

|F (p1, q1) − F (p2, q2)|
≤ L3|p1 − p2| + L4|q1 − q2| ≤

√
L2
3 + L2

4

√
|p1 − p2|2 + |q1 − q2|2.
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Hence,

|T (p1, q1) − T (p2, q2)|
=
√
[G (p1, q1) − G (p2, q2)]2 + [F (p1, q1) − F (p2, q2)]2

≤
√√√√

4∑

i=1

L2
i ·

√
|p1 − p2|2 + |q1 − q2|2 = √

165S4β2
√

|p1 − p2|2 + |q1 − q2|2.

To make this map a contraction map, we need
√
165S4β2 < 1. Let β̃ = 1

4√165S2
. Thus, for

all 0 ≤ β < β̃, h ≥ 0, and D ∈ R, T is a contraction mapping.
��
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