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Abstract

We study first passage percolation (FPP) with stationary edge weights on Cayley graphs
of finitely generated virtually nilpotent groups. Previous works of Benjamini-Tessera [2] and
Cantrell-Furman [3] show that scaling limits of such FPP are given by Carnot-Carathéodory
metrics on the associated graded nilpotent Lie group. We show a converse, i.e. that for any
Cayley graph of a finitely generated nilpotent group, any Carnot-Carathéodory metric on the
associated graded nilpotent Lie group is the scaling limit of some FPP with stationary edge
weights on that graph. Moreover, for any Cayley graph of any finitely generated virtually
nilpotent group, any “conjugation-invariant” metric is the scaling limit of some FPP with sta-
tionary edge weights on that graph. We also show that the “conjugation-invariant” condition is
also a necessary condition in all cases where scaling limits are known to exist.

1 Introduction

1.1 Main result

First passage percolation (FPP) was introduced by Hammersley and Welsh [9] in 1965 as a model
for the spread of a fluid through a porous medium. It is a random perturbation of a given graph
distance, where random lengths are assigned to edges of a fixed graph. For a survey on this model,
the reader is invited to read [1, 12] and the references therein.

The most studied case is when the fixed graph is Z? and the edge weights are i.i.d. random
variables. Under suitable moment conditions on the weight distribution, one obtains the famous
shape theorem of Cox and Durrett (d = 2) [4] and Kesten (d > 2) [12]: there exists a norm u
on R? such that FPP on Z¢ has almost surely a deterministic scaling limit given by the normed
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vector space (R?, ). The limiting norm y depends on the distribution of the edge weights. It is
a famous open question to determine which possible metrics arise as FPP limits on Z¢ with i.i.d.
edge weights. In particular, it is expected that the limit unit ball should be strictly convex, ruling
out trivial metrics such as €; or {.

In 1995, Haggstrom and Meester [8] showed that if the assumption of i.i.d. edge weights on Z¢
is relaxed, some of the expected restrictions on the limit norm disappear. Precisely, they showed
that for any norm p on R? there exist stationary edge weights on Z¢ which give a FPP model whose
scaling limit is (R?, p). In this paper, we explore this direction for FPP in different (non-abelian)
graphs.

Benjamini and Tessera [2] explored i.i.d. FPP models on Cayley graphs of a finitely generated
virtually nilpotent groups. This class of groups is precisely the class of groups with polynomial
growth, due to a famous theorem of Gromov, and includes the classical example of Z¢. The ques-
tion of scaling limits of such groups was first answered in the deterministic setting by Pansu [14],
who proved that, for a large class of invariant metrics on such groups, the scaling limit is given by
a Carnot-Carathéodory metric on a certain nilpotent Lie group.

Benjamini and Tessera prove that, under mild conditions, an 1.i.d. FPP on a nilpotent Cayley
graph also has a deterministic scaling limit given by a Carnot-Carathéodory metric on a nilpo-
tent Lie group. Later Cantrell and Furman [3] proved an analogous theorem for stationary edge
weights. Again, in all these cases, the limit shape depends on the distribution of the edge weights,
and in the i.i.d. case, restrictions on realizable metrics are conjectured but largely unproven.

A natural question then arises, in the spirit of Haggstrom and Meester [8] : for stationary
FPP on virtually nilpotent groups, are all possible limit shapes realizable? What are the required
symmetries for the limit metric? More explicitly, given a Cayley graph of some finitely generated
virtually nilpotent group and a Carnot-Carathéodory metric on the associated nilpotent Lie group,
do there exist stationary edge weights which give a FPP with a scaling limit given by that Carnot-
Carathéodory metric? The goal of this paper is to provide an affirmative answer to this last question
in the nilpotent case and to obtain a similar characterization of all limit shapes of stationary FPPs
in the virtually nilpotent case. Our main theorem is the following.

Theorem 1. Let I be a finitely generated virtually nilpotent group with generating set S, and let
E be the edge set of the corresponding Cayley graph. Let dg be a Carnot-Carathéodory metric
on the associated graded Lie group G. If © is conjugation invariant, then there exist stationary
weights w : E — Ry such that the associated metric space (I', T') satisfies

1

(F, —T) — (G, dop)
n n—oo

in the sense of pointed Gromov-Hausdorff convergence.

To make the theorem more concrete, let us consider the example of the Heisenberg group, the
simplest nonabelian nilpotent group. The integer Heisenberg group H(Z) has presentation

XY Z|IX, Y] =Z[X,Z] = [\, Z] = 1),
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Figure 1: A portion of the Cayley graph of H(Z) with respect to the generating set {X, Y, Z}. Source:
Wikipedia; image by Gabor Pete. Colors are for visual contrast only.

1 a b
1 cl:a,b,ceZ
1

of GL3(R). It sits as a cocompact lattice inside the real Heisenberg group H(R), the group of real
upper triangular matrices with 1s on the diagonal. Given any norm @ on the subspace

a
V= cl:a,ceR

of the Lie algebra of H(R), there exists a metric called the Carnot-Carathéodory metric dg, on H(R)
associated to @ (see Appendix A). So in the special case of the Heisenberg group, our theorem is
as follows:

and can be realized as the subgroup

Theorem 2. Let ® be any norm on V, dy the associated Carnot-Carathéodory metric on H(R).
Then, given any Cayley graph of H(Z), there exist stationary edge weights w : E — Ry (E the
edge set of the Cayley graph) such that the resulting FPP metric T is such that

1
(H(Z), ZT) — 2 (HR), do)

in the sense of pointed Gromov-Hausdorff convergence.

1.2 Definitions, notations, and background

We now provide the definitions and the setup for Theorem 1. Let I be a finitely generated virtually
nilpotent group, and let S' be a finite generating set. The Cayley graph associated to (I', S) is the
graph with vertex set I and edge set E := {{g,gs} : g €', s € S}. For an element g € T, set

lg| ;= inf{n >0:3sy,...,5, €S US ' such that s, ---s, = g},
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and denote by d the word metric
d(x,y) =[xl

on I'. Note that d is a left-invariant metric on I'. If vy is an edge path in E, we will denote by |y| the
number of edges in y. Thus we have

d(x,y) = inf{|y| : v is a path from x to y}.

Let w be a random function w : E — [0,00). We call w(e) the weight of the edge e. The
collection of weights w is called stationary if the distribution is invariant under the left action of
I', that is, for every finite collection of edges fi, ..., fv € E and every g € I', the joint distributions
of W(f)),....w(fr)) and W(g™' f1),...,w(g~' fv)) are equal. The weights are called ergodic if the
underlying probability space is ergodic, that is, if all I'-invariant events have probability O or 1.

For an edge path y = (fi, ..., fx), we define

k
T(y):= ) w(f)
i=1
and for two x,y € I' we define the passage time from x to y to be
T(x,y) :=inf{T(y) : y is a path from x to y}.

T is a random pseudo-metric on I" and the pseudo-metric space (I', T') is called first passage perco-
lation or FPP on I'. Taking expectations we see that ET also gives a metric on I'; if w is stationary,
then this metric is left-invariant.

Let N be a finite index normal torsion-free nilpotent subgroup of I'. (Such a subgroup is
constructed in the course of Appendix B.) We denote the abelianization N/[N, N] of N by N¢.
This is a finitely generated abelian group, and so its torsion elements form a finite subgroup N%.
We define N := N /N;y).

There is a graded nilpotent Lie group G, associated to I' (via N), and a certain subalgebra of
its Lie algebra, which we denote by g“°, is equipped with a natural isomorphism N @ R = g,
Each norm ¥ on g* determines a metric dy on G, which is called the Carnot-Carathéodory metric
associated to ¥'; conversely, every Carnot-Carathéodory metric on G, comes from a unique norm
on g“. More explicit descriptions and constructions of these objects can be found in Appendix A,
as well as [3].

Lastly, there is a construction which plays a central role in our proof, which associates a norm
on g*’ to a metric on I'. Since | - | is a symmetric subadditive function on I (i.e. |ab| < |a| + |b| for
all a, b € I'), and hence a symmetric subadditive function on N, it induces a symmetric subadditive
function on N = 74 via the quotient map N — N% x> x% :

Sree free’ free*
W := inf x|,
xEN,xj‘,};ee:y
As a symmetric subadditive function on N?fee = Z% | - |, is asymptotically equivalent to a unique
seminorm on RY = N;ﬁfee ®R = N> @ R. That is, there is a unique seminorm || - || on N’ ® R such
that
IVl = Ylas = ()
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where the in the little-o notation we may take any norm on N° ® R to measure y. Similarly,
assuming our weights are integrable, ET (1, -) is also subadditive, and hence it induces a subadditive
fuction T on N}’.fee which is asymptotically equivalent to a unique seminorm ® on N> ® R.

The conjugation action of I" on N induces an action of I on N’ ® R, hence induces an action on
the set of norms on N**®R. We call a norm on N**®R conjugation-invariant if it is invariant under
this action. The conjugation action is discussed further in Section 4, but in the case that I itself is
already nilpotent, the action is trivial, and hence in this case all norms on N*’ ® R are conjugation
invariant. In the Section 4 we also show that conjugation-invariance is a necessary restriction, that
is, if ® is a norm associated to an invariant metric (such as ET when each 7T'(x,y) is integrable),
then @ is necessarily conjugation-invariant.

In the notations above, it is known that (G, dj)) is the scaling limit of (I', d) [14] and that (I', T")
almost surely has scaling limit (G, do) for many choices of edge weights [2,3]. Theorem 1 above
shows that any Carnot-Carathéodory dy as in (A.1) is the scaling limit of some stationary FPP
model on any Cayley graph of I, so long as ¥ is conjugation-invariant.

1.3 Proof strategy and organization of the paper
The following theorem of Cantrell and Furman [3] provides a starting point for us:

Theorem 3. ( [3]) Let w be ergodic stationary weights such that T is bi-Lipschitz to d, that is,
there exist 0 < k < K < oo such that

kd(x,y) < T(x,y) < Kd(x,y)

for all x,y € T almost surely. Let ® be the norm on g°° associated to the metric ET on T, and let
do be the Carnot-Carathéodory metric on G, associated to @, as above. Then almost surely

n—oo

(F, %T, 1) — (G, dop, 1) (1.1)

is the sense of pointed Gromov-Hausdorff convergence.

Remark 1. The fact that the norm ® we describe above is the same norm constructed in [3] is
perhaps not obvious except in the case that I' = N is torsion-free with torsion-free abelianization.
A proof that the two constructions do give the same answer is given in Appendix B.

Remark 2. Cantrell and Furman don’t require the random metric T to come from edge weights but
require it to be inner (see Appendix B) in addition to being bi-Lipschitz to d. On the other hand,
if T comes from edge weights which are uniformly bounded above (implied by the bi-Lipschitz
condition on T), then T is inner, so the above statement is implied by the main theorem of [3].
Thus our theorem shows that the collection of scaling limits of FPPs coming from stationary edge
weights on a fixed Cayley graph is no smaller than the collection of scaling limits of stationary
inner metrics which are bi-Lipschitz to d.

Remark 3. In Appendix C we provide a step that was omitted in the proof of Theorem 3 in [3]. It
guarantees that the convergence in (1.1) is indeed in Gromov-Hausdorff sense. See Remark 7 for
more details.



In view of Theorem 3 and the correspondence between Carnot-Carathéodory metrics and norms
on ¢, in order to prove Theorem 1, it suffices to prove:

Theorem 4. Let ' be a finitely generated virtually nilpotent group with generating set S, and
let E be the edge set of the corresponding Cayley graph. Let ¥ be a norm on N> ® R which is
conjugation-invariant. Then there exist ergodic stationary weights w : E — R such that T is bi-
Lipschitz to d, and such that the subadditive function on N;fee induced by ET (1, -) is asymptotically
equivalent to P.

Proof of Theorem 1 given Theorem 4. Let dg be a Carnot-Carathéodory metric on G, and suppose
that the associated norm ® on g*’ is conjugation-invariant. Given any Cayley graph of T, use
Theorem 4 to choose ergodic stationary weights w such that the resulting T is bi-Lipschitz to d and
such that the norm on g associated to the metric ET on I is equal to ®@. Applying Theorem 3 to
w then gives

n—oo

1
(F’ _T) — (Goo, d(D)
n
in the sense of pointed Gromov-Hausdorff convergence, as desired. O

Thus, our main theorem is reduced to the problem of constructing stationary weights which
induce a given norm ¥ on g%. Haggstrom and Meester [8] give a construction for inducing
the correct norms in the Z¢ case, and in the simplest case, the core of our work is “lifting” the
Haggstrom-Meester construction from the abelianization of the finitely generated nilpotent group
to the group itself, and then checking that everything goes through. Therefore, to give an idea
of the construction we start by proving Theorem 4 in this simplest case—namely, the case that
I' = N is a torsion-free nilpotent group with torsion-free abelianization, and the generating set
S projects to the standard generating set of Z¢ = N = I'“’, As mentioned above, in this case
conjugation-invariance does not play a role, and any norm ¥ is attainable. This is done in the next
two sections.

In Section 4, we discuss the restriction of conjugation-invariance and the nontrivial subtleties
that arise when treating the general virfually nilpotent case. The rest of the main body of the paper
is then dedicated to proving Theorem 4 in full generality. In particular, this involves understanding
a virtually abelian “almost-abelianization” of I', and then again “lifting” a construction from the
“almost-abelianization” to I'. In order to accommodate all possible Cayley graphs as well as the
slightly non-abelian nature of the “almost-abelianization”, the general construction has a “coarser”
flavor than the original construction and requires some non-trivial modifications.

Appendix A provides more background on the associated graded nilpotent Lie group and
Carnot-Carathéodory metrics. Appendix B shows that the construction at the end of Section 1.2
coincides with the construction in Cantrell-Furman’s theorem [3]. In Appendix C, we review the
notion of Gromov-Hausdorff convergence and we also provide a missing step in Cantrell-Furman’s
theorem so that it guarantees Gromov-Hausdorff convergence.



2 Construction of the edge weights when I' is nilpotent and
torsion-free with torsion free abelianization

Assume that I' = N is a finitely generated torsion-free nilpotent group with torsion-free abelian-
ization. Moreover, assume that S = {s, ..., 54} is such that the image of S under the quotient map
I' — I'“’ is a basis, and we choose an isomorphism I'* = Z< such that S maps to the standard
basis for Z¢. In this and the next section we prove the result of Theorem 4! under these extra
assumptions, which then implies the result of Theorem 1 under these extra assumptions, as shown
above.

First, let us note that since I' is nilpotent, we cannot have d = 0, and if d = 1 then in fact
I' = Z. (For this latter fact, let @ € I" be such that (a)[I',I'] = T’; then also (a) = I' by Theorem
16.2.5in [11]). Itis easy to induce any norm on Z no matter what the finite generating set is using
deterministic weights, so from here on we assume d > 2.

We are given a norm ® on I'*? @ R = RY. We want to find weights w : E — Ry for I such that
the subadditive function 7 on I’ = Z¢ induced by ET viaT" — I'*? is asymptotically equivalent to
®. Let B c RY = I'*®R be the unit ball of ®. Note that Bis a compact, convex, and symmetric (i.e.
x € Bimplies —x € B) subset of RY which contains an open neighborhood of 0. The construction
below is a “lift” of the construction of Haggstrom and Meester [8].

Let {b,} , be a countable dense subset of the boundary of B ¢ R?. For eachn > 1, let z, be a

n=1
point in Z¢ with minimum possible distance to 2"”;% e R4, where || - ||, is the standard Euclidean

norm on R?. We recall the result from [8] that we need in the proposition below.

Proposition 1. There is a constant Cy depending only on d such that, for any n > 1, u € RY, if z,
is a point in Z* with minimal Euclidean to 2"u, there exists a directed edge path vy, from 0 to z, in
the standard Cayley graph Z¢ with the following properties:

1. Any point on vy, is Euclidean distance at most C from some point on the line through 0 and
b, in R4

2. If a subpath of y, starts at x € R? and ends at y € R?, then (y — x, b,) > 0.

3. The number of edges in vy, is the least possible, i.e. Z?zl Im:(z,)l, where m; : R — R is
projection onto the i"* coordinate.

Next, we lift each vy, to an edge path ¥, in the Cayley graph of I'. The quotient map I' — I'* =
Z% induces a covering map of Cayley graphs, so just let ¥, be the unique lift of vy, starting at 1 € T".
Equivalently, paths in Cayley graphs starting at the identity are naturally in correspondence with
words in the generating sets. The path vy, then corresponds to a word in ey, ..., ¢4, which we lift to
a word in s, ..., S5, which corresponds to a path ¥, in our Cayley graph for I'.

For each n > 1, set E, C E to be the set of edges of the Cayley graph of I which share at least
one vertex in common with an edge of ¥,. Note that |E,| < 2", where the implied constant depends
on |S| but is independent of n.

ITechnically we prove a weaker version of Theorem 4 which still implies the conclusion of Theorem 1; see Remark
4 below.



Now we define a configuration of edge weights n,, : E, — R.,. First choose & > 0 sufficiently
small so that {x € R : ||x|l, < h} C B. Next, choose K < oo sufficiently large so that <h
and K > h™'. We then define

1
K-2h"1.Cy

|7ri(bn)| —
.(f) = { 16412 f € ¥u, f labeled by s;,

K, otherwise

where 7; is again the projection onto the i coordinate. If x € T, then we can also define the
translated configuration 7,1, : xE, — R, by T.17,(f) = n,(x"' f)

Let (Y,).r and (Z,).r be collections of i.i.d. random variables with distributions that satisfy
P(Y,=0) = %, P(Y, = n) = 37" forn > 1, and Z, is uniformly distributed on [0, 1]. We also assume
that the collections (Y,)cr, (Zy)xer are independent.

Finally, the weights w : E — R, are defined as follows: if Y, = n > 0, assign the edges in xE,
according to T,n,. If two configurations compete for the same edge, then the configuration with
the larger value of n wins; if both configurations have the same value of n, then the one with the
larger value of Z, wins. Any remaining edges with no assigned weight are given weight K.

More formally: for each f € E, let X; := {x € I' : f € xEy,} be the set of starting points
of configurations competing for the edge f. Let ny := max{Y, : x € X} be the largest value
of n among these competing configurations, and let x; € I'" be the element of X, which attains
the maximum (that is, Y,, = ny) and has the largest value of Z, among such elements, that is,
Z,, =max{Z, : x € Xy, Y, = ng}. Then

() = {Tx,fnn_xf) Xp#0
K otherwise.

Note that x/ is a.s. unique since all the Z, are uniform, and it exists since |Xy| < co a.s. by the

calculation

BIXl = Z P(f € xEy,) = i Z Lifexe, P(Yy = n) < i |E37" < [i 2" 3‘") < 0.
xel’ n=1 xel' n=1 =1

Here we used that I acts freely on E and so #{x € ' : x'f € E,} < |E,|. Hence the weights are
well-defined. They are also evidently stationary and a.s. bounded above by K < co. The weights
are also ergodic, since we can take our probability space Q to be (N x [0, 1])!, corresponding to the
outcomes of Y, and Z,, which is clearly ergodic as a direct product of probability spaces over I'.

Remark 4. These weights do not give a metric which is bi-Lipschitz to a word metric, since n;(b,)
will typically cluster around 0 and a uniform lower bound on the edge weights is not available.

By the remark above, this construction does not suffice to prove Theorem 4. There are two ways
around this. In Section 5, we provide a different construction in the general virtually nilpotent case
which is bi-Lipschitz to the word metric, and implies Theorem 4 as stated. Secondly, the weights
constructed above do satisfy a weaker condition which one might call “bi-Lipschitz away from the



diagonal.” That is, we have a uniform upper bound K on the edge weights, and there exists some
constants 0 < C < oo and k > 0 such that for any x,y € I" with d(x,y) > C, we have

T(x,y) > kd(x,y)

almost surely. This fact follows fairly easily from Lemma 6 proven in Section 7 below.

Under this weaker assumption, the proof of Theorem 3 given in [3] goes through unchanged.
Thus, although we prove a weaker version of Theorem 4 in the next section, namely Theorem 4
with the conclusion “T is bi-Lipschtiz to d” replaced by the conclusion “T is bi-Lipschitz to d
away from the diagonal”, we can then use the stronger version of Theorem 3 to still conclude the
result of Theorem 1 in this restricted setting.

3 Proof of Theorem 4 when I is nilpotent and torsion-free with
torsion free abelianization

Using the weights w defined in the previous section, let 7 be the metric associated to w as defined
in Section 1.2. Let T be the subadditive function on '’ induced by ET via the abelianization map
' — ' as above. In order to prove our version of Theorem 4, all that remains is to show that as
x € I'* tends to infinity,

T (x) = D(x) = o(x),

where in the little 0 notation we may use any norm on R¢ to measure x. We use the following
proposition which is used in [8] (where they take Q = [-1/2, +1/2]¢ c R, but the exact form that
0 takes does not matter):

Proposition 2. To show that T(x) — ®(x) = o(x), it suffices to show the following
1. Forally¢ B,y ¢ %B(t)for all sufficiently large t.
2. Forally in the interior of B, y € %B(t)for all sufficiently large t.

Here we define

B = U X+ 0,

{xeleb: T (x)<t}

where Q C g* is a compact connected neighborhood of O such that the quotient map Q — g /T
is surjective.

First, we prove (1). To do this, we must establish some facts about the relationship between the
T-lengths of paths in E and their “displacements” in ['*. In proving these we will repeatedly use
the following easily verifiable lemma from [8]:

Lemma 1. Let B be a convex subset of R and let xi, ..., X, € RY, @, ..., @, > 0 be such that each
a;'x; € B. Then 2*=*» ¢ B,

aj+-+ay



Let us call an edge f € E “slow” if w(f) = K and “fast” otherwise. Let us also call an edge
path in E “fast” if all its edges are fast and “slow” if all its edges are slow. For an edge path y in E
from x € I' to y € T denote by D(y) its “displacement” y** — x*% € R?. Note that displacement is
preserved by left translations:

D(zy) = @)™ = (20" = @ +y*) = @ + x*) = y** = x** = D(y).

Let us first consider fast paths y. Note that by construction of the weights, each fast path is a
subpath of xy, for some x € I',n > 1 (because of the “shell” of slow edges surrounding each fast
xy,). We can then decompose D(y) as

D(y) = Dy(y) + D.(y),

where D) is the orthogonal projection of D(y) onto the line passing through 0 and b, and D, (y) is
orthogonal to that line. Note that the construction of the edge weights guarantees precisely that if
f is a fast edge in x¥y, labeled by s; then

b, b,
Dy(f) _ <iei’ m> Toullz

= = +b, € B.
T |7t (b))l n
) [1612
Then by Lemma 1 we have
D) _ Ly DD _ o

Th) Sy T
We also know by Proposition 1 that
DLWz < 2C,

and hence i)
1y d.
1o, € WERT b < h) B,
So again by Lemma 1,
D(y) _ D»+Di(y)

€ B.

T(y)+2h7'Cy T(y)+h'-2C,
On the other hand, if f is a slow edge, then by our choice of K
D(f)
T(f)-2h"'Cy
and so for a slow path y, by Lemma 1 we have
D(y)
T(y) = 2lylh~'Cy

Now, a general path in E is an alternating concatenation of fast and slow paths. That is, y =
7?7; +++¥y¥}, where the ¥/, are fast, the y{ are slow, and we may take y? or ¥ to be empty, but all

e{xeR?: x|, <h}cB,

the y! consist of at least one edge. Then by our previous arguments and Lemma 1 we have

Yo DY)+ XL, D)) .
Sro(T ) +2h71Co) + S0 (T(y?) = 2lySIh1Co)

10



The numerator in the above expression is D(y), and the denominator is at most 7'(y) + 2h~'Cy, so
we have
D(y) cB
T(y)+2h1Cy
for any path y in E.

Finally, let y ¢ B. Since B is closed, there is some € > 0 such that for any ¢ > 0, cB(y,e)NB #
implies that % > 1 + €. Now for any ¢ > 0 let z € I' be such that ty € z** + Q, where Q is the fixed
compact set in Proposition 2. If we choose y to be a T-minimal path from 1 to z in I', by our above
arguments we have that

z My =@ = 1y)]
T() +2hCy  T(1,2)+ 2k 'Cy

diam(Q)

Therefore, whenever p

< €, we have 1]|z*” — 1y|l, < € and hence

T(1 2h7!
(1,2) +2h C0>

1+e¢
t

2 -1
and so whenever also @ < €/2, we have

T(1
Lo € ,
t 2
and then taking expectation gives
ET(1,z2) €
>1+—;
t 2

since this argument did not depend on our choice of z, we conclude that, for all ¢ sufficiently large,
T(z) > t(1 + %) whenever ty € z*” + Q, and hence

B(1)
YETT

Now we prove (2).
It is sufficient to prove that for every € > 0, for all but finitely many 7,

161127 (z0)
—<

o 1 +e€

Fix € > 0. We give an upper bound on the T-distance from 0 to z, by constructing a path y
from 1 to a lift of z, in I'. The lift we choose is the endpoint of the path ¥,, which we denote by Z,.
Note that although the path we construct is random, the endpoints 1 and Z,, are not.

Denote by Z the center of I', and fix a total ordering < on Z such that if d(1, x) < d(1, x;), then
Xo < x1 (recall that here d denotes the word metric on I' with respect to S'). Then choose x to be the
least element of Z with respect to this ordering such that Y, = n. Note that x is then a well-defined
Z-valued random variable with minimal distance from 1, and that

(x=x0) © (Yy, =nand Y,, # nforall x; < xp).

11



That is, x is the nearest central starting point of a “highway” in the b, direction.

Now, to construct our path v, first, take a path of minimal d-length from 1 to x in I'. Then,
travel along xy, (even if some of the edges are overwritten by slow edges) to xZ,. Finally, travel
back to xZ,x~! = Z, by traveling backwards along a translate of the path you took from 1 to x. Note
that we have used the fact that x is central to conclude that xZ,x~! = Z, and in particular that the
d-distance from xZ, to Z, is no larger than the d-distance from 1 to x.

If xy, was not overwritten by any slow edges, the passage time of the path would be equal to

_ 0 DUb) _ (D) b _ (b
2.0 = T

SE€m J€n

(Here we have used the fact that, by construction, all edges f in y have positive inner product with

Nd n_by
5 from 2 Tk

b,.) Since z, is less than distance the above is bounded above by

<2n|u€2||’b"> # Abull, 2" vd
5 + 5 = 1+ ok
[154ll3 lIball5 16, 2n+

Taking into account the travel from 1 to x and from xZ, to Z,, as well as the fact that some of the
edges of xy, may be overwritten by slow edges, we have

2" d
ET(y) < K[2Ed(1, x) + E#{e € xy, : e is slow}] + T (1 + 2:/;] (3.1)

To bound the first term, we calculate
Ed(1,x) = ) P(d(1,x)>i)= Y B(Y; # nforall £ € By(i) N Z).
i=0 i=0

Since we have assumed that I' # Z, the growth of the center is at least 2-dimensional, that is, we
have some C > 0 depending only on I" and § such that

|B,(i)N Z| > Ci?

for all i > 0. This is proved in Lemma 3 below, but for now we take it for granted.
Then, since the Y; are iid, we continue the above computation to get

sl € D1 =3 < 1 [ -3 s
i=0 0

ln(173’”)]1/2
In(1-3-1)

~ _nn Cs? _ ]n(1_3—n) —1/2f00 -1 Co?
fo(l 37 ds_[—ln(l—S—l)] (=37 do,
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which is to say that
Ed(l,x) < 1+ C'[-In(1 = 377"

for some C’ > 0 independent of n. By convexity, —In(1 — s) > s forall s < 1, and so
[—1n(1 3 )] 1/2 < (3 ) 1/2 _ 3n/2
thus
Ed(1, x) < 32, (3.2)

the implied constant of course independent of n.
Now, we bound
E#{e € xy, : eis slow } = Z P(xe is slow);
€Y
since xe will only be slow if another T,Ey, with Y, > n competes for it, the above quantity is
bounded above by

Z P(xe € zEy, and Y, > n for some x # z € I)

ee?ﬂ

SZZ Z iP(x:xo,xoe€zE,-,YZ:i)

ecy, xo€l’ zel\xy i=n

SYNST N s =i

e€y, xo€l’ i=n zel":xalzeEE,'

we claim that for i > n and xy # z, P(x = x¢, Y, = i) < P(x = xo)P(Y, = i), and hence we continue

E#{e € x3, : e is slow } Z Z Z Z —P(x = xo)P(Y, = i)

e€yy xo€l' i=n e x’lzeEE

=59 S ERFG= x)(Y. = ) = 5 S BB, = )

eEy,l xo€l’ i=n eey,, i=n
<Y Y2 37 = 32n—3- 2y
S Z Z : = Z 3] = [l 3
egyy, i=n €EYn
4 n
<sl=] . 3.3
3) 63

To prove the claim, note that for xy # z,i > n,
P(x = x0, Y, =1) =P(Y,, # nforall x; < xo,Y,, =n,Y, =i);

if xy < z, then all these events are independent, and hence P(x = x¢, Y, = i) = P(x = xo)P(Y; = i).
Otherwise z < xp, and then

P(x = x, Y, = i) = [ ]—[ P(Y,, # n)] P(Y,, = n)P(Y. £ n, Y. = i).

X1<X0,X1#2

13



If i = n, then this is equal to 0. Otherwise, i > n, and
. L P(Y;=1) 3 .
P(Yz * n, Yz = l) = P(Yz = l) = P(Y:—;'&I’Z)P(YZ * I’l) < EP(YZ = Z)P(Yz * I’l),

where we used that P(Y, # n) =1 -37" > % Hence

P(x = x0, Y, = i) < %[ [] P, = n)] P(Y,, = nB(Y, # n)B(Y, = i)

X1<X0,X1#2

= %P(x = x0)P(Y; = i),

as desired.
Hence, applying (3.1), (3.2), and (3.3),

1Ball2T (z) _ 11BAllET () 312Y! 2’
= ez sl o 5))

Vk

+1+W’

which is less than 1 + € for sufficiently large n, as desired.

To tie up the final loose end, we prove that the volume growth of the center of I' is at least
2-dimensional. This is a simple corollary of the following lemma from the notes of Drutu and
Kapovich [5]:

Lemma 2 (Lemma 14.15 from [5]). Let I" be a finitely generated nilpotent group of class k and
let C'T be the last nontrivial term in its lower central series. If S is a generating set for T', and
g € C'T, then there exists a constant A = A(S, g) such that for all m > 0,

ds(1,8™) < am'/*,

Lemma 3. Let I be a nontrivial finitely generated torsion-free nilpotent group which is not iso-
morphic to Z, S a finite generating set for I'. Denote the center of I' by Z. Then, there exists a
constant C > 0 depending only on I" and S such that

#HzeZ:d(l,2) <i)>Ci
foralli> 0.

Proof. We know that Z is a nontrivial finitely generated free abelian group. First, assume that
Z # Z. Then Z = Z* for some k > 2. Then the lemma follows, since the quantity in question grows
at least as fast as Z does as a finitely generated group. More explicitly, if S’ is a finite generating
set for Z = Z¥, we know that there exists C’ > 0 depending only on S’ such that

#HzeZ:dy(1,2) <i}>Ci

Take m = max,g- d(1, s) < oo. Then forall z € Z, d(1,z) < mds (1, z), and hence

’

i C
#zeZ:d(,z) < i) Z#{zeZ  dg(1,7) < i} > =
m m

14



Now, suppose Z = Z. Then I is not abelian (otherwise we would have I' = Z = Z, contradicting
our assumption). So I' is nilpotent of step k for some k > 2, and C*T is a nontrivial subgroup of Z.
Take a generator g for C*T. By Lemma 2, we get 1 = A(g,S) > 0 such that d(1, g™) < Am'/* for all
m > 0. Therefore

(zeZ:d(l,2)<i}y>{m>0:d(1,g")<i}y>{m>0:am'"* <i}>

1
ﬁik| > Cif

for some C > 0. O

4 Restrictions in the virtually nilpotent case

Any finitely generated virtually nilpotent group I' will contain a finite index subgroup H which is
finitely generated, nilpotent, torsion free, and which has torsion-free abelianization (see Appendix
B). We often think of the H and I as having the same coarse geometry; indeed:

Proposition 3. Let I" be a group endowed with a metric T, let H be a finite index subgroup, and
let (X, D) be a metric space. If T < d (d the word metric) and (H, %(TlH)) ﬁ’i (X, D), then also

@11y 5 (x, D).

Proof. Since (H, %Tl #) 1s a metric subspace of (T, %T), the Gromov-Hausdorff distance between
the two spaces is bounded—up to an absolute constant—by

infle >0:T(g,H) <eforall gel},

which is itself bounded up to a constant by

%[F : H] = O(1/1).
Thus (T, 17) and (H, +T) must tend to the same limit. O

Thus, it might seem trivial to pass from the simplified case we just proved to the general case.
However, perhaps surprisingly, the answer to the question we consider is not the same for I' and
H. In general, there may be some limit shapes for stationary FPPs on H which are not attained by
stationary FPPs on I'. Consider the following example.

Let I' := (p) < Z[i], the semidirect product of the Gaussian integers with a cyclic group of order
four, the generator of the cyclic group acting by multiplication by i. I" contains the abelian (hence
nilpotent) group Z[i] = Z? =: H as a subgroup of index 4. We know from our work above (and
from [8]) that any norm on R? is attainable as a limit shape for H. However, we claim that the
scaling limit of any invariant metric on I" which is < d (such as ET for a stationary FPP T with

integrable weights) must be a norm on R? which has 7 rotational symmetry. Take any (x+iy) € Z[i].
Then

ET(1,i(x +iy)) = ET(1,p™ ' (x + iy)p)

<ET(L,p )+ ET(p ", p ' (x+iy) + ET (0" (x + iy),p”' (x + iy)p)
=ET(1,p") + ET(, (x + iy)) + ET(1,p) < ET(1, (x + iy)) + 2(const.).

15



Figure 2: A portion of the Cayley graph of (o) < Z[i] with respect to the generating set {p, 1 + 0i}.
Edges labeled by p are red, while edges labeled by 1 + 0i are blue.

Iterating this inequality four times and taking a scaling limit gives

. ET(,n(x+1iy))
lim

n—oo n
. ET(,ni(x + iy)) . ET(,—-n(x+iy)) . ET(, —ni(x + iy))
= lim = lim = lim ,
n—oco n n—oo n n—o0 n

which is precisely the statement that the limit norm has quarter-turn symmetry.

A similar restriction arises in any virtually nilpotent group. As in Section 1.2, letI" be a finitely
generated virtually nilpotent group, and let N be a torsion-free nilpotent normal subgroup of finite
index (for the construction of such a subgroup see Appendix B). The conjugation action of I' on N
induces an action of I'/N =: Q on N"fee. It will be convenient later to phrase things in terms of the

right conjugation action, and so we think of the action as a homomorphism ¢ : Q — Aut(N;i’r’ee)”P.
This further induces a right action of Q on N* @R = N @R = g*, which, by abuse of notation,

free
we also denote by ¢ : Q — Aut(g*?)°?. We say that a norm on ® on g is conjugation-invariant if

it is ¢-invariant, that is,
q)(x¢(q)) = ®(x)

forallxeN”"tX)R,qe 0.

Proposition 4. Let I', N, ¢ be as above. If T is a stationary integrable FPP on I such that the
scaling limit of ET is a Carnot-Carathéodory metric on a nilpotent Lie group G, then the norm
on g associated to this metric is ¢-invariant.

Proof. The proof is very similar to our example. First, let O be a finite set of coset representatives
of N, that is, a finite subset O C I' such that the quotient map I' — Q induces a bijection Q < Q;
we may assume without loss of generality that Q is symmetric (if § € O, then 5! € Q). Since Q is
finite and the FPP is integrable, there exists some constant C < oo such that E(7(1,§) < C for all

16



G € Q. Then, for any x € N and any g € O,
ET(1,x7) <ET(1,§ ")+ ET(1,x) + ET(1,§) < ET(1,x) + 2C
where we have used the fact that ET is left-invariant. Similarly, we have
ET(1,x) = ET(1,x)7") < ET(1,x7) + 2C,

and thus
IET(1,x) — ET(1, x9)| < 2C.

Since ¢ respects the quotient map N — N}"r’ee, taking infima over x € N such that x%> = z for some

fixed z € N¢, gives
IT(z) - T"") < 2C = o(2);

that is, 7" is asymptotically equivalent to 7% for all ¢ € Q, and hence the norm ® it induces on
g% is ¢(g)-invariant. Pansu’s theorem [14] tells us that ® is the norm in the Carnot-Carathéodory
construction of the scaling limit of (I', ET’), so we are done. m]

Although there is certainly more work to be done in exploring necessary conditions for the
existence of a limit shape, in all cases which we know how to prove ( [2], [3]), the scaling limit
of the random space (I', T') coincides with the scaling limit of its mean (I', ET), so this tells us that
conjugation invariance is a necessary feature of a limit shape at least in all cases in which we can
prove there is a scaling limit.

Theorem 1 then states that this is the only obstruction to a Carnot-Carathéodory metric on
G being the limit shape of a stationary FPP on T'; that is, as long as the Carnot-Carathéodory
metric comes from a norm which is conjugation-invariant, it is the scaling limit of some FPP with
stationary weights.

S Construction of the edge weights in the virtually nilpotent
case

Transferring our theorem to the general case is far from automatic, essentially since our Cayley
graph may not be nice with respect to the the finite index subgroups we wish to pass to. Moreover,
instead of keeping track of “displacements” of paths by looking at the projection to I'*, we want
to instead look at V' j‘fr’“, and there is typically no nice homomorphism from I" to N J‘i’r’ee. Nor is there
a nice embedding N* — T'%; the natural map can have very large kernel (e.g. in our example
I := {p)=Z[i] above, ['** is finite, while N = N* = Z[i]). Ultimately, we resolve this by looking at
a slightly nonabelian notion of “displacement” via the projection I' — I'/ [N, N1, where we define
[WN ] to be the kernel of the projection N — N ‘f’fee. Note that I'/ [N/,\ZJV ] contains N/ ;ifee as a subgroup
of finite index.

In spite of these complications, the spirit of the proof exactly the same. Heuristically, we want
to ensure that every direction has the correct “speed” at large scales, and we do this by sprinkling

17



long “fast” paths throughout the graph which travel at a certain speed in a certain direction; the
rest of the edges are “slow” so that any long geodesic must largely avoid them.

It is clear from our above proof that the weight K of the slow edges can be as large as we
like, as long as it is finite. We use the slowness of the edges to account for any error in the fast
paths—that is, to guard against the fact that a subpath of a fast path might not go in exactly the right
direction or exactly at the right speed.

In our first proof, we used the existence of nice paths (Proposition 1) which had the property
that they (1) stayed close to the straight line through b,, and (2) traveled “monotonically forward”
along b,. In the general case, we will want to find nice paths in I'/ []f\f,\]V] which satisfy these
properties in a certain “coarse” sense to be described below.

Let us now go into more detail understanding the group I'/ [N, N, especially considering it

as a finite extension of Nj‘ifee. First, take a finite set of coset representatives 0 crT/ [W] for

N/[N, N]; we assume for convenience that O is symmetric and contains the identity. The quotient
map F/[W] - Q= (F/[]/\?]/V])/(N/[W]) = ['/N induces a bijection 0 — 0, and we denote
its inverse by s : Q — Q. If s were a homomorphism, we would have a semidirect product, but
this is not always possible in general. In general, define a functionn : Q X Q — N]‘ifee satisfying

s(q1)s(q2) = s(q192)n1(q1, q2)-

This then allows us to understand I'/ [N,\ZV ] more explicitly thus: note that Q x N}‘ifee -1/ [WV ],
(g,n) — s(g)n is a bijection. Pulling back the multiplication from F/[WV ] to the set Q x N4

free
then gives the multiplication

) — O x N

free

) X (Q X N

free

(Q X Nab

free

(q1,m1) - (@25 12) = (q1G2, 1(q1, g2) + 1 + my).

Thus, T'/[N, N] looks like a semidirect product up to the “finite error” introduced by 7.

Remark 5. n is in fact a cocycle; the cocycle condition comes precisely from the associativity of
the above multiplication. However, we will not use this fact. Rather, we will repeatedly use the
simple fact that n is a map from the finite set Q X Q, and thus has finite image and hence uniformly
bounded image.

Remark 6. The cocycle i of course depends on our choice of Q, and the choice is very non-unique.

We will now introduce two modified notions of displacement which will be convenient for us.
Let y be a path in E (the Cayley graph of I') starting at x € I" and ending at y € I'. We define

D(y) := '3 e T/[N, N,

where X, y are the images of x, y under the projection I’ — I'/ [N, N]. Note that D is invariant with
respect to the action of I' on paths in E by left multiplication. Note also that for concatenations of
paths ¥ = a * 8 we have

D(y) = D(@)D(B).
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It will also be helpful for us to have a notion of displacement which lives in N]‘i’r’ee rather than
/[N, N]; for this, we take a particular choice of point in N}"r’ee nearby (in the Cayley graph of
I'/[N,N)) to D(y):

D(y) := D(y)g(y)™" € N,

where () is the image of D(y) under the composition I'/ [N,N] - Q 5 0; put another way,
using the identification I'/[N, N] & QO X N}‘fee, if D(y) = (g, n), then D(y) = (¢,n)(g"",0) = n#@"".
Note also that if D(y) € Njifee, then D(y) = D(y).

D(y) is convenient because it always lands in N”b the space we are trying to induce the correct
norm on; however, instead of being additive on paths using the definition and the concatenation

property for D, we instead get the slightly more complicated equation
D(@p) = D(@) + DB + n(@,p)" ", (5.1)

where in an abuse of notation, we define n(a, 8) := n(g(a), g(B)), (@) := ¢(g(a)), where g(a) is
the image of D(«) under the quotient map I'/[N, N] — Q. Iterating the above fact easily gives the
following by induction:

Proposition 5. For any paths ay, ..., ay in E, we have

N-1

Diay -+~ ay) = D) + ) (D(@i) + m(an - e, @)
i=1

-1 )ll’(dl“'di)fl

Thus, although the displacements do not add, besides the twisting of ¢ we only accumulated
at most one uniformly bounded error term per path concatenated, which will end up being enough
later.

From now on we fix an isomorphism ¢* = R? such that N{”, is identified with Z* c R’ via the
map N{, — N ®R = g® = R?. We will often thus identify D(y) with its image in R”.

We are now ready to state the properties we want for our “nice” paths in £ (which will become
“fast” paths).

Lemma 4. There exists a constant C|, > 0 depending only onT', §, N, and Q such that, for any
vector u € RY and any n € 7 there exists a simple path y in E such that

1. ystarts at 1 € T and ||D(y) — 2"ull, < C}.

2. I s IDW)I < 2% lull,.

3. vy stays near the line through u: If a is a subpath of y starting at 1, then ||D(a)—proj, D(a)|, <
Cy.

4. vy is a finite concatenation of paths B; where for each i, |B;| < C;, ID(B)*P|l, < C} for all
q € Q and every subpath 8’ of B, and

1

<D(,30"'ﬁi+1)—D(,30 ‘B, I ”2>Z o
0

that is, y is “coarsely monotone.”
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We also assume that max,, 4, 4.0 |1M(q1,¢2)"“>|l» < Cj.

This lemma will be proven in Section 7.

For now, we define the edge weights, very similarly to the first construction. First, given a
Carnot-Carathéodory metric with associated norm ® on g, let B C g** = R? be the unit ball of ®.
Let {b,},>0 be a countable dense subset of the boundary of B. For each n, let y, be the path given
in Lemma 4 associated to the vector b, and the natural number n. Let E, be the set of edges in E
which share at least one vertex with the path v,,.

Pick & > 0 small enough so that B,(0, &) C B and then choose K > 0 large enough so that

IDU* Pl + ling1, )"l _

< h.
1€5.4,91,92,q3€Q K - SC(')h_l

Then define 7, : E, — R, by

<D(ﬁ0"':3i)—D(ﬁ0"',3i71 )”,,b#b>
ma(f) = Ton o151 f €Bi

K, otherwise.

where the g; are the subpaths of y = 7, alluded to in Lemma 4 (the dependence of §; on n is
suppressed in the notation).

Lastly, we superimpose randomly sprinkled translated copies of the 7, exactly as in the first
construction; that is, define {Z,}er, {Y«}rer, Xr, Xy, and ny exactly as above and then define w :
En - IR+

K otherwise.

w(f) = {Txfn”f(f) Xr#0

By the same arguments as above, these weights are well-defined, ergodic, and uniformly bounded
above. Moreover, the monotonicity condition in Lemma 4 implies that each edge has weight at

least
1

Clbll2

which is to say that 7 is bi-Lipschitz to the word metric, and we can apply Theorem 3.

min > 0,
beB

6 Proof of Theorem 4 in the general case

Once again, the proof that the correct norm is induced on g> can be reduced to showing the
conditions in Proposition 2. The proof of the second condition is the same argument as in the
simplified case. (We construct the desired paths by traveling along the center of N until we reach
the first fast path that goes in the correct direction, and then we travel back along the center of
N. We have the same volume growth estimates that we used above as long as we assume I is not
virtually Z. In the virtually Z case, our limit shapes are norms on R, and since all norms on R are
scalar multiples of each other, we can achieve any desired norm we like by appropriately scaling
the weights of, say, the deterministic FPP which assigns weight 1 to each edge and gives T = d.)

20



For the first condition of Proposition 2, the spirit of the proof is the same, but we have to deal
with more error terms.

First, we consider a fast subpath y of E (that is, a path which does not contain any edges
of length K), and again we note that it is (up to translation) a subpath of some vy,. We further
decompose the path into

Yy =ap;- - piw,
where the f; are the subpaths alluded to in Lemma 4 and « and w are subpaths of 5;_; and S,
respectively.

Now, by Equation (5.1), we know that

D(B;+++ BP0 = [D(By -+ ;) — DB+ B = 1B+ Bj-1. B - - Bi) o

We can further decompose [D(By - - - ;) — D(Bo - - - §;)] into its components parallel to b, and per-
pendicular to b,:

[DBo---Bi) =DBo--- B = [DBo---Bi) = DBo--- By + [DBo - Bi) = DPBo - B

Now, by our definition of 7, we have

TB;---p) =+ < Bo---B)—DPBo---Bj-1), >
16212

[1Dall2

where we have used coarse monotonicity of y. The possible minus sign comes from the fact that
we may be traveling forward or backward along y (one may check that, since we chose O to be
symmetric, if § is any path in E and 3 is 8 with its orientation reversed, D(5) = —D(8)). Thus, we
have
[DBo---Bi) — DPBo--- )]
T;---p)

Moreover, since vy stays near to the line through b, we have

[DBo---Bi) —DBo---Bj)]L

= +b, € B.

€ B,(0,h) C B,
2C) ! 2(0.h)
and by assumptions on C; we have
—NBo - Bj-1.8;" - Bi)
€ B,(0,h) C B.
i 2(0,h) C

Hence by Lemma 1
D(ﬁj .. .Igl.)fl’(ﬂO"'ﬂj—l)
€
T(ﬁj . ﬁl) + 3C6h_1
and then by conjugation-invariance of B we have
D(B;---B)
T(ﬁ, . ﬁ[) + 3C6h_1
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Now, since « and w are subpaths of 5;_; and ;,,, we have

D(a) D(w)
el Ol © B>(0,h) C B,
0 0
and hence by Lemma 1
D(aB; - Biw) _ D(a) + DB; - - ',Bi)¢(') +n(, )0 4+ D(w)?O + n(-, )P0)

€ B,

T@B;---Bi) +7Coh! B Coh '+ T(B;---B) +3Ch™ + Coh~! + Cyh™! + Coh!
where we have again used conjugation-invariance of B. Moreover, for slow edges f, by choice of

K we have
D(f) + (-, )*"
T(f)—8Cyh™!
Writing an arbitrary path y as a concatenation of fast paths and slow edges and using Propositon
5 gives

€ B,(0,h) C B.

D)= ), DE+nEYO0+ (D)l
7 slow edges y fast paths

and so using the above and Lemma 1 gives

D(y)
€
2 slow edges(T(f) = 8Ch™) + 2, fast paths (T (") + 8Coh™h)

B,

and since there is at most one more fast path than there are slow edges, we conclude

D(y)

W .
T + 8CyhT

The rest of the proof is just as in the above argument.

7 Proof of Lemma 4

To prove the existence of “nice paths” we want to approximate the nice paths in Z¢ = N]?fee from
Proposition 1 and prove that our approximation retains the nice properties “coarsely”.
First, we prove a lemma which will help control error terms:

Lemma 5. There exists a constant K’ such that for any paths a,f in E, we have
I1D(aB) — D(@)ll: < K'|B.
Proof. By Equation (5.1), we know that

D(aB) - D(@) = DB)*® + n(a, p*P".
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First, since the image of Q in Aut(NJ‘i’r’ee) = §SL3(Z) is a finite family of bounded operators on RY,
there is some constant M < oo such that

VNl < Ml

for all g € Q,v € R?. Thus we have ||D(8)*?|l, < M|IDB)l,.

Next, since N;‘Zfee is finite index in F/[TV,\N], it is undistorted, which is to say that any word
metric on Nji‘.fee is bi-Lipschitz to the restriction to N;‘.fee of any word metric on I'/ [N,\N/ ]. (This can
be seen using Schreier generators for N?fee,

means that the Euclidean norm || - ||, on N;‘Zfee is bi-Lipschitz to the metric induced by the Cayley
graph on I’/ [N, N]. Hence

DB, < K”ID@B)| = K" |DB)GB)"'| < K" (18] + max 1g1).
ge

see e.g. Theorem 14.3.1 in [11]). In particular, this

Lastly, since Q is finite, we have a uniform bound on the norm of the second term, that is,

max 0 7(q1, g2)" ||, < o0.

q1-92,93€

Putting everything together gives
ID(aB) — D(a)ll, < MK"|B| + const.,

and since every nonempty S has |8| > 1 we can easily adjust to get a finite K’ which satisfies the
desired inequality. O

Now, we construct the paths. Given u and n, first consider the path vy, in Z¢ = N?fee
the standard generators e; of Z¢ given by Proposition 1. Next, for each edge e of the path in the
standard generators, choose a path 8 in the Cayley graph for I'/[N, N] induced by the image of S

which starts one vertex of e and ends at the other; pick these paths to satisfy

using

Bl < max d'(1,e)=: C (7.1)

where d’ is the word metricon I/ [WV ] induced by the image of §. We then lift to a path Bf) . -,3;\,_1
in E. Note that by the properties guaranteed by Proposition 1 we have that:

Vd

D5 -+ By-) = 2"l < —=, (7.2)
By - Byl S 2" lull2, (7.3)

and
DBy - - - B7) — proj, DBy - - Bl < Co (7.4)

for all i. If  is a general subpath of BE) e B}\,_l starting at 1, it is of the form a = Bé e Bl’.a’ where
@' is a subpath of g’ |, and hence combining Lemma 5 together with Equations (7.1) and (7.4)
gives

ID(@) — proj,D(a)|l, < Cy + K’'C. (7.5)
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Br

Figure 3: Construction of “nice paths”. (The “lifting” step is omitted here to aid visualization).

Thus, Bé e B;\/—l satisfies many of the properties we desire. However, it may contain loops,
and it may not satisfy coarse monotonicity. So first erase loops to get a simple path By - - - Byr_;.
The particular manner in which loops are erased does not matter, so long as the resulting path is
a simple path with the same starting and ending point which is obtained from the original path by
deleting subpaths. If entire segments [3; are deleted, the number N’ of new segments 3y, ..., Byr—
need not be the same as N the number of original segments, and some reindexing may be required
so that we don’t skip indices; however, every j3; is composed of subpaths of a single ﬁ;, Jj depending
on i. Thus, each segment J; of the new path still consists of at most C edges.

Moreover, since the set of displacements of subpaths of the loop-erased path is a subset of the
set of displacements of subpaths of the original path, Equation (7.5) holds for the new path as well.
Equations (7.2) and (7.3) also clearly pass to the loop-erased path as well.

Now we obtain coarse monotonicity. First we prove the following version of coarse mono-
tonicity for the original Euclidean paths:

Lemma 6. There exists some k' > 0 and M < oo such that for any n, any subpath y of v, (v, the
path in the standard Cayley graph of Z¢ from Proposition 1 associated to n and u) of length at least
M satisfies

<D<y), L> > K.

lJull2

Proof. First, we claim that there is a constant C depending only on d such that for any subpath of
any vy, of edge-length at least C, at least one edge f of the path satisfies

u 1
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Heuristically, this is because the path cannot travel too long in directions perpendicular to # while
staying close to the line through 0 and u. More rigorously, for some coordinate iy € {1,...,d} we

have

u
] 2 2.

Vd

For notational convenience, let’s replace some of the standard basis vectors with their opposites
to ensure that (u, e;) = |m;(u)| > O for all i, and further, let’s reindex so that ey, ..., ¢; satisfy ¢; :=
U L i o> L
<e,-, ”u”2> <7 and ey, 1, ..., €4 satisfy ¢; > 7 forsome 0 </ <d.
Now let y be a subpath of y, starting at x € Z¢ and ending at y € Z¢, and assume that for every

edge f in vy,
u 1
D — —
< 0 ||u||2>< Vi

By Proposition 1, x and y must be within Euclidean distance Cj, of the line L passing through
0 and b, in R". Moreover, since we only travel in directions with low weights, we have y =
X+ nye; + - - - + ne; for some positive integers n;. Now, the distance from y to L is

. u u
dist(y,L) = ||x + nje; + -+ + nje; — <x+n161 +--~+n1e1,—>—
lleellz [ Mlull2 ],
u u .
> ||mer + "'+l’11€[—<n1€1 + "'+n1€[,—>— —dlSt()C,L),

llullz / Mleell

2

so, since both distances are less than C,, we have

2C) >

u u
l’llel+"'+n1€[—<n1€1+"'+n[€1,m>w
2 2

d
niey + - mep = (nicy + - micy) (Z cie,-]

i=1

2

2

/

2
> Z (n; — (nycy + -+ + nyey)c;)

i=1

l
>’ Z (n; — (nycy + -+ + nyey)c;)
P

! !

1 l
ZC'Z(n,-—(nl+---+n1)3):C’(1—E)Zn,-
i=1 i=1
l

C’ C’
2 gznl = g|7|-

i=1

To go from the third to the fourth line, we used that the Euclidean norm is equivalent to the £; norm
on RY, to go from the fourth to the fifth line, we used that 0 < ¢; < x/LE fori = 1,.../, and to get to
the final line we used that / < d — 1.
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2C0d

Thus, any subpath of , which consists of at least C := [ =5=] + 1 edges contains at least one

edge with displacement at least 1/ Vd in the u direction.
Finally, this implies that, for any subpath y of y,, with length at least 2C we have

|y_|

That is, we have the lemma with M = 2C and k' = =%
O

Now take M’ = max(M, [ZK C“b We then define a new segmentation Sy, ..., B /-1 of the
path by

Bi= ,éM'i,éM'm e 'BM'H(M’—])
ifi <|N'/M'|-1and
ﬁi = ﬁM'i e ',BN'—l

ifi = [N'/M’] — 1. Note that we have
IBil <2M'C.

To show that this segmentation of the path gives coarse monotonicity, we have to compare with the
original path before erasing loops. To this end, for a giveni < [N'/M’]—1, let I be such that B( M+
is a subpath of ﬁ}, that is, the index such that the next edge in §; - - - By, mr)-1 after the segment B,
lies in B} Fori=|N'/M’'] -1, wesetl = N. We also set J to be such that the last edge in the path
Bi-1 lies in B); that is, B_1yw-1 is a subpath of 3). If i = 0, we set J = 0.

Now note that there exists some (possibly empty) subpath « of B’J such that

DBy Bia) = DBy - )

and there exists some subpath w of 3, such that

D(By---Biw) = DBy -+ By).

Hence, by Lemma 5 and Equation (7.1), we have that

IDBo -+ B:) = DBy - Bllas IDBo - - - Bi—1) — DBy -+ Bl < K'C, (7.6)

which then implies that

<D(:80"',5’i)—D(ﬁo Bi-1); [Ju |I> < By~ B = DBy B lJu ||2> e

Now, by construction each D(B} - - - B;) € N , and hence we have

free’

D(:glo o 'E/l) - D(Bo ﬁj) - D(ﬁjn ,81
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and then since D(B’J R B1) is the displacement of a subpath of the path y, (in the standard Cayley
graph of Z%) with edge length at least I — (J + 1) > M’ > M, Lemma 6 then gives

u

<D(,36---B})—D(B€)---B}), Tl >2k’M’ >2K'C + 1,
ullz

and so combining with Equation (7.6) gives

<D(ﬁ0' ~-B:)—DBoy- - Bi-1), “—Z”> >2K'C+1-2K'C =1.

Thus, taking

C; := max ( Vd/2,Cy + K'C,2M’C,1, max Qn(ql, q,)?4»

q1,92-93€

and y := By - - - Bivmr -1 gives the Lemma as desired. O

Appendices

A Carnot-Carathéodory metrics and the associated graded Lie
group

In this section we explain the construction needed to describe continuum limits of nilpotent groups,
i.e. the associated graded nilpotent Lie group associated to a finitely generated virtually nilpotent
group, and Carnot-Carathéodory metrics on this group. As above, let I' be a finitely generated
virtually nilpotent group, and let N be a torsion-free nilpotent group of finite index. A theorem of
Mal’cev ( [13], see also Theorem 2.18 in [15]) says that there exists a simply connected nilpotent
Lie group G such that N is (isomorphic to) a cocompact lattice in G. Let g be the Lie algebra of G.
Let g., be the associated graded nilpotent Lie algebra, that is

0 = P a'/0™,

i>1

where g' := g, ¢! := [d', g] is the descending central series for g. Let G, be the unique simply
connected Lie group which has g, as its Lie algebra. We will refer to G, as the graded nilpotent
Lie group associated to I'.
The map
N = G - G/IG,G] = g/[g,a] =: ¢*

induces an inclusion N,‘Z’r’ee — ¢ and an isomorphism N ® R — g**. Now consider a norm ¥ on

N ® R = g*. Note that g¢*> = g/[g,a] = a'/a? is a vector subspace of g.,. By left translation in
G+, the subspace g* C g., gives a left-invariant distribution on TG, and we can extend the norm
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to any vector in the distribution. Let us call a path € : [a, b] — G, admissible if it is differentiable
a.e. and a.e. & belongs to the support of the distribution. We can then define the P-length of ¢ to
be

b
Y = f Y& (n)dt,
and this gives a metric on G, by
dy(x,y) ;= Inf{¥(£) : £ is an admissible path from x to y}. (A.1)

The metric dy is called the Carnot-Carathéodory metric on G, associated to ¥. Since g*” generates
0o as a Lie algebra, by Chow’s theorem [6], the topology induced on G, by dy coincides with the
usual topology on G,.

The above information is sufficient to understand the statement of the main theorem. The fol-
lowing further data is required to understand Appendix C. The Lie algebra g., has a one-parameter
family of automorphisms ; : g., — §e,? > 0 given by setting

5,(X) =1'X

if X € ¢'/g'*! and extending by linearity. This of course integrates to a 1-parameter family of
automorphisms of G, which we also denote by ¢,. We refer to ¢, as dilations.

Note that dy is homogeneous in the sense that dy(5,(x), 6:(y)) = tdy. In the abelian case, I' = Z,
G. = RY, the dilations are scalar multiplication by ¢, and dy is the usual metric induced by the
norm ¥ on R,

We now describe a sequence of maps I' — G, which will be Gromov-Hausdorff approxima-
tions (see Appendix C) when I" and G, are endowed with the appropriate metrics. First, choose a
collection of linear subspaces V1, ..., V; of g such that for each i

g=V,®---aV,®gt.

i+1

Note that for each i, V; C g’ and the natural map V; — g'/g
Let

is in isomorphism of vector spaces.

L:g=Vi®--oV, > & d/s"" =g
be the associated linear isomorphism. Then we define a family of maps

I oy
scl,:F%GigigwﬁgwﬁGm-

(Here log is the inverse of exp : g — G, which is a diffeomorphism, since G is a simply connected
nilpotent Lie group).

B Understanding the limit norm O via N ]?’r’ee

Our description of the construction of the limit norm ® on g differs slightly from the description
in [3]. The two descriptions certainly coincide in the case that I' = N is a torsion-free finitely
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generated nilpotent group with torsion-free abelianization. However, it’s not immediately obvious
that their description matches ours in the general virtually nilpotent case. This section is primarily
intended to show how our statement of Theorem 3 follows from the following:

Theorem S. [3] Let H be a finitely generated nilpotent group which is torsion-free and has torsion-
free abelianization. Let T be a stationary random metric on H which is inner (see below) and
bi-Lipschitz to a word metric on H. Let dg be the Carnot-Carathéodory metric on G, associated
to the metric ET, as in Section 1.2 (withl' = N = H). Then almost surely

1
(H,-T,1) — (G, dop, 1)
n n—oo

is the sense of pointed Gromov-Hausdorf{f convergence.

First let us construct relevant finite-index subgroups. Let I be a finitely generated virtually
nilpotent group. Then by definition, it contains a nilpotent subgroup I"” of finite index, and this is
also finitely generated by Schreier’s lemma (see e.g. [11] Theorem 14.3.1). Then I"” contains a
torsion-free subgroup I'” of finite index (see [11], Theorem 17.2.2). Take N to be the kernel of
the map I' = Sym(I'/I"’) given by the action of I" on the cosets of I’ by left multiplication. Since
N < T, N is nilpotent and torsion free, and since N is the kernel of a map to a finite subgroup, it
is a finite index normal subgroup of I'.

Now we want to extract a finite index subgroup H of I which is nilpotent, torsion-free, and
has torsion-free abelianization. One explicit construction is given by Yves Cornulier in the Math-
Overflow post [10]; this construction also has the advantage that that the natural map H*> — N
induced by the inclusion H < N is itself an inclusion (also of finite index).

Here is the construction: recall that we have a projection map N — N — N/N;) =: N’ .

Take a basis of d generators ey, ..., e; for 7¢ = N}‘ifee, and lift them to s, ..., s; € N; then we claim
that H := (s1, ..., s4) < N is a finite index subgroup with torsion free abelianization.
To see that H® has torsion-free abelianization, consider the natural map H* — Nj‘j.’r’ee induced

by the map H < N — N% . We claim this is an injection. For if n;5; + --- + ny5, is in the

free*
kernel of this map, by the choice of sy, ..., s; this means that nje; + - - - + nze; = 0, which implies
that ny, ...,n; = 0, since ey, ..., ;4 is a basis. The map is also clearly surjective by construction, so
H® = N and so H has torsion-free abelianization.

free
To see that H is finite index, first note that, from the above, H® < N is finite index. We then

use the following lemma; the proof is taken from Cornulier’s argument in [10]:

Lemma 7. Let N be a finitely generated nilpotent group, and let H be subgroup of N such that
HIN, N is finite index in N (equivalently, H* — N has finite-index image in N**). Then H is
finite index in N.

Proof. We proceed by induction on the nilpotency degree of N. If N is abelian, then the statement
is immediate.

Suppose the statement holds for all nilpotent groups of degree k — 1, and suppose N is degree
k. Let N* be the k™ subgroup in the descending central series for N. By our inductive hypothesis
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applied to N/N*, HN* is a finite index subgroup of N. So all that remains is to show that H is finite
index in HN*.

For this, first note that since all (k + 1)-fold commutators vanish, the k-fold commutator map
N X ---x N — N¥is “multilinear” in the sense that

[al’.'. 9~xy’.'. 9ak]:[a1"“ s Xyt oo 9ak]'[al"" 9y"" ’ak];

we also see that the output only depends on the abelianizations of ay, ..., a;, and thus the k-fold
commutator map induces a surjective homomorphism N @ --- ® N — N We claim that
the map Q" H* — X" N induced by the finite index inclusion H — N has image which is
finite index in ®k N“. Once we know this, since H* is precisely the composition of the map
R H® - Q"N — N*, HF is finite index in N*, and hence H is finite index in HN.

Now, to see that the image of ®k HY® — ®k N is finite index, we use the following general
fact: If A is a finitely generated abelian group and B < A is a subgroup of finite index, then for any
i>1, ®i B < ®iA is finite index. For i = 1, this is immediate. Now, inductively assume 7" is a
finite set such that 7" + Q' B = (' A, and let S” be a finite generating set for ' B. Also let T be
a finite set such that 7 + B = A and let S be a finite generating set for B. We claim that the set

{szmz[mﬁzs@t;r] by €T L € r}
oes’ Tel’ seS

) ) TR i+1
forms a finite set of coset representatives for (X' Bin X" A.
To see this, first consider a general element of ®’+1 A. It is a sum of elements of the form

(Z mes+1)® (Z mys +1)

seS s'eS’

wheret € T, € T', my,my € Z, and hence, by expansion, equal to

Z(Z My S +1,) @0 + Z(Z MpgS+1)QT

geS’ seS§ Tel’ seS

for some my.;, m.s € Z, t,,t. € T. Since every s ® o € ®*!B, the element

ZtU®O'+Z(IT®T+Zs®mmT]
eSS’ Tel’ seS

represents the same coset of ®*!B. For each s, 7, by the inductive hypothesis, we have

s®mmT:s®[Z

Ny .8 +1, T}
s’eS’

for some ny . € Z and 7. € T", and this is equivalent modulo & B to

Z S®F .

s'eS’

That is, an arbitrary element is equivalent to one in the set provided, as desired. O

30



In sum, we have H < N <I finite index inclusions, where N is torsion-free and H is torsion-free
with torsion-free abelianization.

Now, let T be a stationary random metric on I" which is almost surely inner and bi-Lipschitz to
a word metric on I'. Recall that a metric space is called inner if for all € > 0, there exists 0 < R < oo
such that for any x,y € I, there exists an (€, R)-coarse geodesic from x to y, that is, a sequence
X = po, P1, .- pu =y in I" such that each d(x;_, x;) < R and

M
D d(pi, p) < (1+Od(x.y).

i=1

(Note that, in the main body of the paper, we consider 7" an FPP with edge weights w uniformly
bounded above; such T is automatically inner). We want to show that

1
[T, -T) > (G, do).
n
By Proposition 3, it suffices to show that
1
(H, ;lTlH) - (Goo, d(j[))-

Thus, we want to apply Theorem 3 to H, so first we must check that the hypotheses are satisfied.

Proposition 6. Let ', H, T be as above. Then T\ is bi-Lipschitz to a word metric on H and Ty is
inner.

Proof. T|y is bi-Lipschitz to d|y, and since H < T is finite index, any word metric on H is bi-
Lipschitz to d|y (this can be seen using Schreier generators for H, see e.g. Theorem 14.3.1 in
[11]), so we have the first claim.

Next, we show innerness. Let € > 0. First, using the innerness of 7" on I', choose r > 0 so that
any x,y € I' can be joined by an (5, r)-coarse geodesic. Next, note that since H < I' is finite index
and T < Kd a.s. for some K < oo, we have

max T(g, H) < Kmaxd(g,H) =: C
gell gel

for some non-random constant 0 < C < oo. Now choose 0 < R < oo sufficiently large so that
0< % < 5. We claim that any h, i’ € H can be joined by an (€, R + 2C)-coarse geodesic in H.
To construct such a coarse geodesic, first take an (5, r)-coarse geodesic h = pg, pi, ..., pj, = W

in I'. By deleting points, we can construct a (5, R)-coarse geodesic h = po, ..., py = I’ with

M <

T(h,h) < 2T (h,h")
R-r |~ R-r "~

where the last inequality only holds for T'(h,h’) > R—r,butif T(h,h’) < R+2C then py = h,p = I’
trivially gives an (€, R + 2C)-coarse geodesic, so we may assume this inequality holds.
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Lastly, for each p;, choose g; € H with T'(p;, g¢;) < C (and of course gy = po = h,qu = py = I').
Then each T(g;_1,q;) < T(pi_1, pi) + 2C < R+ 2C and

M M
D T(@1.0) < Y T(pit, p) + 2CM < (1+ )T (h ) +2CM
i=1 i=1

<+ %)T(h, W)+ 2C -
< (1 + T 1),

2T (h,h")

-r

SO qo, ..., g 18 an (€, R + 2C)-coarse geodesic in H, as desired. O

Now, note that the Malcev completions of H and N coincide; if N is a cocompact lattice in G,
then as a finite-index subgroup of N, H is also cocompact in G. Therefore H and N have the same
associated graded nilpotent Lie group G, as well. Thus, Theorem 3 tells us that

1
(H, ’;T|H) — (G, dqny),

where we define @y to be the unique norm on g* asymptotically equivalent to the subadditive
function
Ty(h):= inf ET(1,7)
teH:1%=h
on H. (Recall that we can relate functions on H* and g“°, since we have a map H* — g and
an isomorphism H* ® R = g* induced by the composition

H— G - G/[G,G] = g/[g, 8] =: ¢*.)

Thus, to deduce our statement of Theorem 3, it only remains to show that ®5 = ®, where recall
that we define @ to be the unique norm on g“” which is asymptotically equivalent to the subadditive
function

T(n):= inf E(l,1)

N1 =p
free

on N .
free

Proposition 7. @5 = .

Proof. Note that H*’ and N;fee are identified with the same subgroup of g since the inclusion
H® — g% is exactly equal to the composition of the isomorphism H® = N%

free and the inclusion

N, — g*. Using the isomorphism H*” = N4’ to consider T as a subadditive function on N{” ,
we have

Ty(n)= inf ET(1,7).

teH:t".’f =n
free

From this it is clear that 7 < T.
To show a lower bound, first note that since H is finite index in N, H N [N, N] is finite-index
in [N, N]. Let R be a finite set of right coset representatives for H N [N, N] in [N, N], that is,
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NN [WV] = U, HN [W]r. Set C := max,c |r|, where | - | = d(1,-) is, as always, the word
length in I with respect to the generating set S. Then we have

T(n)y= inf ET(,tr)> inf  ET(,f) —-ET(,r) > dy(n) — KC,

teH,reR:1%t =n teH,reR:1%’ =n
free free

where we have used that T < Kd. Thus |T(n) — Ty(n)| < KC = o(n) and ® = @y, as desired. O

C Gromov-Hausdorff convergence to the limit shape

Recall the notion of pointed Gromov-Hausdorff convergence ( [7]). There are many equivalent con-
ditions for this convergence, but here we use a particular sufficient condition. Let (X, d,,, 0,), (X0, do, 00)
be metric spaces with distinguished basepoints o0, 0y. A sequence of maps f, : X, = Xy is called

a sequence of of pointed Gromov-Hausdorff approximations if for every € > 0, for all sufficiently
large n we have

1. do(fu(0n,00)) <€,

2. every point of B(oy, 1/¢€) is within distance € of f,(B(0,, 1/€)),

3. (1 —e)d,(x,y) — € < do(f(%), [,(y)) < (1 + e)d,(x,y) for all x,y € B(o,,1/€).

If £, :+ X, = Xy is a sequence of pointed Gromov-Hausdorff approximations, then X, pointed
Gromov-Hausdorff converges to Xj. Here, our metric spaces are groups with various metrics, and
the basepoint will always be the identity element.

In [3], Section 4.4, Cantrell and Furman prove the following: for any fixed g, g’ € G*, almost
surely

. . 1 ’ ’ ’ ’
lim lim sup sup {;IT(%y ) —do(g. &)l 1 v,y € L. dyy(scliy, 8), djy(scliy’, g) < 6} =0, (C.D)

€= t—00

where I', Gwo, T', do, dyy are all as defined in Section 1.2, and the maps scli : N — G, are as defined
in Appendix A. In particular, (G, dj) is the scaling limit of I' endowed with the word metric as
given by Pansu’s theorem:

Theorem 6. (Pansu, [14])
1
scly + (I —d) = (G, diy)
is a sequence of Gromov-Hausdor{f approximations.

To prove that scl L (T, %T) — (G, dg) 1s a sequence of Gromov-Hausdorff approximations,
by homogeneity of the norm dy, it suffices to show that, for any € > 0, there exists R > 0 such that
for any [yl ly'| > R,

IT(y,y") — do(scli(y), scli(y))] < e max(lyl, Iy']).
The rest of this appendix is devoted to proving this fact.
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Remark 7. In [3], it is shown that the event of failure of Gromov-Hausdorf{f convergence is con-
tained in an uncountable union of null-sets. More specifically, they show that failure of Gromov-
Hausdorff convergence entails the existence of some pair g,8" € G for which Equation (C.1)
fails, but a priori (g,g’) ranges over the uncountable set G, X G. It is necessary to show that it
is contained in a countable union of null-sets.

Now, let {(g., g,,)} be a countable dense subset of G, X G,. With probability 1, Equation (C.1)
holds for all (g,, g;,) simultaneously. We show that on this probability 1 subset Gromov-Hausdorff
convergence holds.

Suppose that Gromov-Hausdorft convergence fails, that is, there exists ¢ > 0 and some se-
quence (y,,y,) € I' X I with min(|y,|, |y,|) — oo such that

1 ,
t—|T(% Y') = do(scli(y), scli(¥Y)| > e,

where we define t, := max(|y,|, |y,|). By homogeneity of dy, this is equivalent to

1
t—T(y, v - d(b(sclriyn, scl%y;l) > €. (C.2)

n

Since the sequence (scl.iy,,scliy,) lies in the product of the unit dj, balls of G, by compactness
we may pass to a subsequence and assume that

(sclLyn, scliy,) = (g0, &)

for some (go, g,) € G X G. Convergence holds in the dj metric as well as the dg metric.
Now choose N sufficiently large so that

€
lda(sel 1y, scl1y,) = do(0. 89| < = (C.3)

for all n > N. Combining Equations (C.2) and (C.3) gives

1 , , €
=T ¥,) = dal8o. 80)l 2 5‘). (C.4)

Fix ¢’ > 0 (to be chosen later). Now choose (g, &,,,) from our countable dense set such that
max(djj(gmy» £0)> A1 (&g > 80)» A0 (8imy» £0)> A (&)» 80)) S 6.
For each k > 1 define y,’j,o to be the y € I such that scl 1 has minimal distance to g,,,, and similarly

define y;,’l‘o. Then by Equation (C.1) we have

— 0
k—o0

b

1 /7 ’
LT Ok V) = dolm 8
and so we can choose N also sufficiently large that for alln > N,

1 ’ ’ ’
t_T(’}/ItT’;()’ ’)/n{l:;) - d(])(gmo, gmo) < 5 °
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By Theorem 6 we can also choose N so that foralln > N,

1 ,
t—d(%z,?’fﬁo) — dy(80s &my)| < 0,

n

<.

1 /7 /7 4 ’
t—d(%w Vo) = A11(80> &)

n

Thus we have (again taking k£ = max(ly,/, [y.]))

T yl) = T (Vi v
I,

<

1 ’/ 4
I—T(Vn, Y,) — do(8o, 8;)

n

—+

1 / ’
t—T(?’fﬁo’ Vo) = do(8my» &my)
+1do(8my» &my) — da(80» 80)I-

By our choice of (g, &,,)» We have that the last term is bounded by 26. If n > N, we have that
the second term is bounded by 6. To bound the first term, recall that by assumption, 7 < Kd and
hence

Ity 7

T V) = TWyos Yl S T Vs Vi) + T Vi) < Kl vi) + Ay Vi),

and so

IA

In

! 1 ro
K (t—d(')/na ')/:ZO) + t—d(’yn, ’yn;’(;))
< K(dHH(gO’ gmo) +0+ d||'||(g6’g1/no) + 6) < 4K6.

All in all we have
< 4K6 + 36,

1 /7 4
t—T(vm Y,) — do(go, &)

n

and for a sufficiently small choice of ¢, this contradicts Equation (C.4), and so we are done.
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