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Abstract

This paper studies properties of the mixed spherical vector p-spin model. At zero temperature, we
establish and investigate a Parisi type formula for the ground state energy. At finite temperature, we
provide some properties of minimizers of the Crisanti-Sommers formula recently obtained in Ko (2018).
In particular, we extend some of the one-dimensional Parisi measure results of Auffinger and Chen (2015)
to the vector case.
© 2022 Elsevier B.V. All rights reserved.
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1. Introduction and main results

1.1. Introduction

Spherical spin glass models are one of the main sources of ideas and techniques in the
theoretical study of disordered complex systems. These models are simple enough to produce
explicit computations while retaining many of the intriguing phenomena of high-dimensional
random systems. Their energy landscape provides a metaphor to explain several phenomena in
other areas of science, including biology, chemistry, data science, and economy.

One of these explicit computations was the limiting free energy discovered by Crisanti and
Sommers in [9] for the spherical p-spin model with one dimensional spins. This formula is
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the analogue of the classical Parisi formula for the Sherrington—Kirkpatrick model [18] and it
was rigorously proven for even-p-spin models by Talagrand in [19] and extended to general
mixed p-spin models by Chen in [7]. These variational formulas and their minimizers have
deep importance to describe and classify the energy landscape of such systems. We refer the
readers to [1,2,4,6,10,11,14] and the references therein for results in this direction.

The rigorous study of spherical spin models with vector spins started with the work of
Panchenko and Talagrand [17] with the first non-trivial bounds for the free energy. Recently,
Ko [12] provided a proof of the limiting free energy for these models and its Crisanti-Sommers
analogue [13]. These results came after important contribution of Panchenko in the study of
vector p-spins on the hypercube [15-17]. As far as we know, there is no rigorous study on
the role and properties of the minimizers of such models. The goal of this paper is to provide
further properties of the model. Our main results are the following:

1. We provide a characterization of the minimizer of the Crisanti-Sommers formula, the
order parameter of the model, in Theorem 2.

2. We extend the results of [12] to zero temperature, proving an exact formula for the
ground state energy. These results are stated in Sections 5 and 6.

Let us now describe the spherical model with vector spins and state some of its fundamental
results. Fix m > 1 and for N > 1, let Sy be the sphere in R" of radius +/N. We denote a
configuration of the vector spin by

o =(51,...,0x) € S where Sy = {5 € RY)"|5(j) € Sy for j =1,...,m}.
Here the jth coordinate of ¢ is denoted by o (j) and the vector entries of & are denoted by
5 = Gi(1),....5:(m) €R", 1<i<N.
For p > 2, we denote the p-spin Hamiltonian of the jth copy by
o 1 > . o
Hy @)= — Y 8inip0iy ()51, (i),

N2 1<iyip=N

where g;, ;, are iid. standard Gaussians for all p > 2 and indices (ij,...,i,). The
corresponding mixed p-spin Hamiltonian for the jth copy at inverse temperatures (8,),>2,

where B, = (B,(j))i<j<m. can be expressed as
H{@) = Bo())Hy p@ (). )
p=2

Here we only consider mixed even p-spin models, i.e. B,(j) =0 forall 1 < j < m and odd
p > 3. Moreover, we assume that the inverse temperature of each jth copy satisfy

D 2B < o0,
p=2
so that (1) is well-defined.
We define the Hamiltonian of m copies mixed p-spin models of spherical spin glasses by

Hy(5) = ZHI{,(&).
j=1

If, for any 1 < k, £ < m, we introduce the function

& e(x) = Z By (k)Bp(O)x", ()
p=2
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then it is not difficult to check that, for two arbitrarily spin configurations ' and &2,
E[Hy(G' (k) Hy(5%(0)] = N&, g(Rk yforall 1 <k, ¢ <m,

where
N

l atm
== PICHOLHE)

1

is the overlap between the corresponding coordinates of the vector configurations &' and 2.

. . - - .
The overlap matrix between configurations 6* and ¢ is expressed as
R —R(_)K —»e)_(R ) , _ ®_.'[/
N 0,0 1<kk<m— 0

where ® is the outer product on vectors in ]R’”.

Let M be the space of m x m semi-symmetric positive definite matrices with entries in
[—1, 1] and diagonals entries equal to 1. We now describe the Crisanti-Sommers formula for
the free energy of a system of vector spins with constrained self-overlap QO € M. For any
positive semidefinite matrix A = (A; j)i<i,j<m, let

é(A) = Z(,Bp ® /Bp) O AP = (él ](Al j))1<l Jj<m
p=2

where &; ; are defined in (2) and A°P denotes the pth Hadamard power of the matrix A
(element-wise multiplication). Clearly, we have the matrices

()= pBy ®Bp) © APV and £"(A) = Y p(p — 1B, ® Bp) © A2,

p=2 p=2
Given any € > 0 and Q € M, denote the set of spins with constrained self overlaps by

Q;,:{&e

Sy| IR(@,0) — Qlleo < 6} :

where [|Alloc = Sup,; ;< |Aijl, for any m x m matrix A. For an external field h € R™ and
any B8 > 0, we define the free energy as

1
F;Qw):NElog/eexpﬁ HN<o>+Zh<J)Zo,(n dxy(©),

j=1 i=1

where the reference measure A’ )»‘X"" is the product of Haar measures Ay on Sy with
normalization Ay(Sy) = 1. Here the _parameter B is the so-called inverse temperature.
Moreover, denote &g = B%& and h g = ,Bh
For a measurable function f : S x Sy — R we also set
f(QeN)z f@', 67 exp(Hy(G") + Hy(62)dAy (G )d Ay (62)

Jige, 2 XPUHN G ) + Hy (62)d A (G dA ()

€0 = 3

For a matrix-valued function A(c!,5%) = (a;;(G",5%)1<i j<m, We let (A(G!, %)) o denote
the matrix ((a[j(51, &’2))5,Q)1§,',j§n. Observe that for any f continuous, the map

Q= (fleo “)

is continuous on (M, || - ||s0)-
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We will now recall the formula for the free energy obtained in [13]. Denote a right-
continuous non-decreasing function by

x(t) : [0, m] — [0, 1] such that x(0) = 0 and x(m) = 1 (®)]

and a 1-Lipschitz monotone matrix path in the space of m x m positive semidefinite matrices
by

¥(t): [0,m] — S such that Trace(¥(¢)) =t and ¥(0) =0 and ¥(m) = Q. (6)

where S is the space of m x m positive semidefinite matrices.
Set

te = x (1) = inf{t € [0, m]|x(¢) = 1}
and
sy = x~1(0) = sup{r € [0, m]|x(t) = 0}.

Assuming t, < m, then Vt, < T < m, we can define the quantity

1 m N A
Cpolx. 9) =3 [ /O x(O(EH(D() + hghl, ' (0))d1 +log | S(m) — &(T)]

T
+ / (o), ﬁ(z))dt} (7
0
where @(t) : [0, m] — R™*™ is a decreasing matrix path given by

() = / " x(s)®'(s)ds.

Furthermore, for any A € S7 satisfying A > [I" x(s)&{(D(s)) © @'(s)ds,we have a
continuous form of the Parisi formula as follows:

1 " ’
Ppox, A, @) = 5[ /0 (E5(D(q)) © ¥(q). (A — D (q) ")dg
+ (hghl, (A= D3 ,(0)7")
- /0 X(QEL(D(9)) © D(g), P'(q))dq + (A, Q) —m — log |A|] ®)

where D3 (q) = fqm x($)65(D(s)) © P'(s)ds.

Denote .#; the collection of all 1-Lipschitz monotone matrix paths that satisfy (6) and
denote by .4 the collection of all nonnegative nondecreasing and right-continuous functions
on [0, m) and .4 the collection of all nonnegative nondecreasing and right-continuous functions
on [0, m) satisfying the assumption that there exists 0 < ¢ < m such that «(¢) is constant for
all t € [c, m].

We will also need a discrete version of (7) and (8) that we describe now. Consider a discrete
monotone matrix path encoded by an increasing sequence of real numbers and a monotone
sequence of n X n symmetric positive semidefinite matrices,

O=xp<x1=...<x2=<x_1 =1,

0=00<01<...£0,2<0,.1<0,=0,
385



A. Auffinger and Y. Zhou Stochastic Processes and their Applications 146 (2022) 382—413

where r > 1. We denote x = (xk),'(;(') and Q = (Qy);—,- The discrete Crisanti-Sommers formula
is given by

1 D
% (x,Q) = [(hhT Dy)+ —1log|Q — Qr1| — Elfkg_z—log' ke
Xr_1 Xk | Dy |
<Q1, D) + Zicker 12 - SUm(E(Qpr1) — E(QO)], ©9)

where D, = X, i<, 1xk(Qr+1 — Qp) for 1 < p <r —1, and
Sum(A) = Y Ay

1<i,j<m

and the discrete Parisi formula is given by

6 (A, x,Q) = (hhT AN +(A, Q) —m —log |A]

A
+ Z tog 1) g0y, A7y

1<k<r—1 | Al
- ) x-Sum(B(Qqr) — H(Q))] (10)
1<k<r-—1

where A, = A, A, = A =3 i, X (E(Qr1) —§'(Qu) for 1 < p <r—1.
The limit of the free energy with self overlaps constrained to Q can be expressed as

Theorem 1 ([13], Theorems 1-3, Proposition 1). The limit of the free energy with self overlaps
constrained to Q is
. . €0 .
lim fim FYC() = inf 60.Q)= inf 6ol D
o (11
= inf P LA, D).
rvexay P00 4 9)
The last two infimums are over x(t) and D(t) defined in (5) and (6) such that |Q — d(t,)| > 0
and they are both attained.

1.2. Main results

Our first main result explains the role of the minimizers of the Crisanti-Sommers formula
in the case n > 2.

Theorem 2. Assume that the pair (x, @) is a minimizer of the Crisanti-Sommers formula
(11) and write up([0, g1) = x(q). For any F = (F; j)i<i, j<m : R — R™™ continuous and
bounded,

lim 11m E(F(Rl e, 0= /m Fo ®(t)dup(t).
0

N—00e—

Remark 1 (Uniqueness of the Parisi Pair (x, $)). By choosing F(X) = (trace(X))i<; j<m
and using the fact that Trace(®(¢)) = t, one can see that the minimizing measure wp is
unique. Similarly, for any 1 € suppup, the value of &@(¢) is also unique. However, for any
t ¢ supp up, we can modify &(¢) arbitrarily as @(¢) will not change the corresponding value
of €(x, P).
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Our second main result is a proof of a Parisi type formula for the ground state energy GSE
, Hy(o
GSE .= lim max ( ),
N—ooseSy)y" N
and the constrained GSE, defined as
Hy(0)

GSE =1lim lim max .
Q) >0 N—00 R(G,5)eQS, N

Set

HK(Q) = {(L,a,@)eSﬁx,/VxJ//:L

> / a(s)P'(s)ds and P constrained on Q} )
0

For any (L, a, @) € # (Q), define

¢, &) = %[(S’(Q) +hh", L) +/0 (L —/(; a(s)P'(s)ds)~t, &'(t))dt

m t
- / (E"(2() © (1), / a(S)QS/(S)dS)dt]-
0 0
We can now state the second main result of this paper. Parisi type formulas for the ground
state energy were obtained in the past for other models, see [5,8].

Theorem 3 (Parisi’s Formula for the Ground State Energy.). For any vector mixed p-spin
model and any constraint Q we have

GSE = inf €L, a, D).
(©) (L., P)eH (Q) ( )

Moreover, there exists a matrix Qo such that

GSE = inf C(L,a, b), (12)
(L,at, P)eA (Qoo)

and the minimizers (Lo, oy, Do) of (12) satisfy

oy = ﬂlim Bxp, 0., vaguely on [0, m),
-0

&y = lim Pg o, uniformly and ¥, := lim 95;3 0 Uniformly,
B—00 B—0o0 1 X0
Ly := lim x $) P, s)ds.
0 /3—>oo/0 ﬂ ﬂ,Qoo( ) ﬂ,Qoo( )

Remark 2. The matrix Q is “explicit” and it is derived as the limit as § — oo of minimizers
Qp of (11) as B — oo. This is explained in Section 5.1.

Remark 3. The vague convergence of (8 $g o, )g>0) on [0, m) means that limg_, o, Bxg 0, (5)
= ap(s) at all points of continuity of oy on [0, m).
2. Examples

Before turning into the proofs of the theorems we provide two examples where explicit
computations are amenable.
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2.1. A full replica symmetric breaking (FRSB) example

Let n = 2 and consider the constraint
1 0.1
Q= (0.1 1 ) '

For 8 > réz), define B = (B, B). For any matrix A, define chA : (ch(a; ;))i<i j<> and
shA : (sh(a; j)1<i,j<2. Moreover, define E = ¢ @ e, where ¢ = (1, 1). We now set the model
with 2 = 0 and

£(A) = (B ® B) O (chA - E).
Define a matrix path as &(q) = %Q and ¢(q) = (£"(D(q)), é/(q)02>—%.

1
?'(q) = 3 (£"(2(q), ¥(q)2) 3
[B3(E"(2(q)), 9'(q)7) — 2("(D(q)), D' (@)°*)E""(D(q)), D' (q)°)].

Since the copies are at the same temperature, the conclusion that ¢”(¢) < O can be deduced
by the fact that th*(1.1) < % and then 3sh’q < 2ch’q, for g < 1.1. Hence ¢(¢) is concave on
[0, 2].

Since ¢(0) < V2 and ¢(2) > 0, there exists a unique gy such that ¢(gg) = %(2 — qo).
Define a distribution function as follows:

(@) = {l—ﬁd;(c;)qo. 0<9q < qo,

Thus we claim that (x, @) is a minimizer of € for the model & and the proof is deferred to
Section 7.

(13)

2.2. A replica symmetric example

Consider the multi-dimensional SK model, i.e. for A € S%,£(A) = (,52 ® 52) o A2,
Formula (12) can be explicitly solved and we find that the multi-dimensional SK model is
replica symmetric at zero temperature.

Proposition 4. The multi-dimensional SK model is replica symmetric at zero temperature,
that is, the minimizer (Lo, &g, Do) is given by

- t
Lo= QX Q2 E(Q+hi"QH 207, ay=0 and &= —Q (14)
and the corresponding GSE is equal to
Lo Zopl 11
Sum ((Q2(§'(Q) + hh")Q7)2).
The proof of Proposition 4 follows from Proposition 22 stated in Section 7.

3. Further properties of the Crisanti-Sommers formula at positive temperature

In this section, we go back to the Crisanti-Sommers formula at positive temperature and
list a sequence of properties of their minimizers. The proof of these propositions will be given
in Section 6.

The first two facts concern the role of O in the support of 1 p.
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Proposition 5.  If the external field vanishes, i.e., h =0 and for p > 4, there exists ,5 p such
that B, # 0, then 0 € supp p.

The next result shows that O can only be isolated point of the Parisi measure if the model
does not have an SK component.

Proposition 6. I 2(f> ® fa, ®'(0)2) £ (D(0)~1&'(0), B(0)~' &'(0)) and O € supp yp, then
there exists ¢ > 0 such that up([0, g1) = wp({0}).

We say two points x, y are consecutive isolated points of the support of a measure w if x, y
are isolated points in supp p with x < y and p((x, y)) = 0. The next proposition is a weak
1-RSB criterion for the minimizer.

Proposition 7. If ¢t — (£§"(P(1)), ¢/(t)°2)’% is convex in an interval I, then supp up contains
at most 2 consecutive isolated points. In particular, if £(A) = (Bp ® Ep) O A°P, then supp [p
contains at most 2 consecutive isolated points.

The next proposition is the high-dimensional analogue of Theorem 3 from [3] and shows
that accumulation points in the support must be continuity points of the measure wp.

Proposition 8.  Suppose that there exist an increasing sequence (u; );>1 and a decreasing
sequence (u,+);21 of supp pwp such that imy_, o u; = ug = lim;_, u?‘. Moreover, ®'(ug) > 0.
Then wp is continuous at u.

The next criterion goes in the opposite direction and provides an example where a jump
discontinuity must be present.

Proposition 9. For any ug € supp wwp, if (€"(Q), &' (1)°%) < (Q~' D' (ug)Q~", ®'(up)), then
the Parisi measure jp has a jump discontinuity at . In particular, if Sum(E"(Q)©® Q°?) < m,
wp has a jump discontinuity at t,.

As in the one dimensional case, when an interval is in the support, pp has an explicit
formula.
Proposition 10. [f (a, b) C supp up with 0 <a < b < m, then
(" (D)), &'w)>)

up([0,u]) = 1 1.3
2Trace (( D'(w)2(E"(P(u)) © D'(u)) g15/(“)7)7)

for all u € (a, b).

Last, a property concerning the multidimensional SK model.

Proposition 11. If ¢'(t) > 0 for any t € [0, m], then the SK model is at most 1 replica
symmetric breaking (I1RSB).

4. Proof of Theorem 2

In this section we provide a proof of Theorem 2.
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Proof of Theorem 2. For each 1 < i < m, denote the ith unit vector in R” by ¢; =
©,...,0,1,0,...,0). Given a vector @, let & @; @ as & ® ¢ + ¢; ® a&. In this proof we
drop from our notation the dependencies on 8 and Q.

For any p > 2, we consider arbitrarily ¢, that also satisfies the requirement of the
inverse temperature, As the Crisanti-Sommers functional is differentiable at each (i), where
p>2,1<i <n,we consider B » —i—tEp as inverse temperature and compute the first derivative
of the Crisanti-Sommers functional at ¢t = 0.

d¢ 1

—| ==p f x(){B, ®Ep+E, ® By, B)°PV © &(1))dr
dt o 2" Jo

m t
: / / (Bp ®E,+E, ® By 81 &},()dpp(s)dt
0 0

s f / (Bp ®Cp+Ep @ By By &), (1))dtdpup(s)
0 s

1 - R . N
= 1By ® + 5, © By 07 - / B(s)Pdp(s))
0

= (B, ®&p. O —/O D(s)Pdpup(s)). 15)

On the hand, integration by parts implies

dHy(c - @A
E|: gt(a)HN(a)} = N{(c, ® Bp, Ri2)
and
dHy(c = o7 °
E< gt(0)> = N(Cp ® By, O°" — E(R"))c.0)- 1o
€0

Last, we note that the differential of F§,(Q) at ,(i) is given by %E(%)QQ, so by (16)

d - - o
EFE(Q) = (Cp ® Bp, O° —E(R{%)e.0)- 7

Moreover, by Holder’s inequality, F, is convex at B,(i), and this combined with the fact
that & is both convex and differentiable at 8,(i), we get
oFy . 0¢

lim lim = —.
N—ooe—0 Ot ot

A combination of (11), (15), and (17) yields

lim_lim(@, @ B, 0 — E(R)..0) = (B, © ). 0 — f () Pdpwp(s))
- 0

N—o0

which is equivalent to say that, for each 1 <i < m,
m
(B ®Ep, lim ImE(RY)e o — / &(5)°Pdup(s)) = 0.
N—o0oe—0 ? 0
As ¢, is chosen arbitrarily, we get the following relation,

lim lim E(R%)c.0 = / B1)°Pdpp(t).
N—>o00 e—>0 ’ ' 0

Since the even polynomials are dense on C[0, 1], we get the desired conclusion. [J
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5. Proof of Theorem 3

This section covers the proof of Theorem 3. A little of preparation is needed and the proof
requires two initial steps that we split in the following two subsections. The first subsection
is devoted to construct the matrix Q,, the second subsection provides a characterization for
points in the support of the minimizer ug and useful bounds for terms in the Crisanti-Sommers
functional, the proof of Theorem 3 is presented in the third and last subsection.

5.1. Construction of the matrix Q

We first modify the setting of Theorem 1 to achieve convergence of the minimizer for
the ground state energy. Let .# be the collection of all continuously differentiable Lipschitz
monotone matrix path with Lipschitz derivatives that satisfies (6) without satisfying the
assumption that Trace(®(t)) = ¢, but satisfying the assumption that for any ¢ € supp u,
Trace(P(t)) =t.

We first claim that any matrix path minimizer of € lies in .#. Moreover, we claim that any
discrete path corresponds to a matrix path in .#, hence
inf %,(x,Q) zx’q}elggx//fﬁ,g(x, P). (18)

rX, >,
We leave the proof of this claim to next section. Moreover, as

r,iy_?fQ%r(& Q= x’(is;/r‘l/()fx//{0 %©p,0(x, P) and x,‘PEiB;x/[%ﬂ’Q(X’ )

> inf %ﬁ,Q(x, D),

x, PeMyx My

we obtain that infr,xAQ 6 (%, Q) < infy ge v x.x €p,0(x, ) and therefore

GO b Gt D

Since any path @ in .# is continuously differentiable and ¢’ is Lipschitz and uniformly
bounded, then by Arzela—Ascoli theorem, for any 8 > 0, the minimizer @4 ¢ is also a con-
tinuously differentiable function with Lipschitz and uniformly bounded derivative. Similarly,
for any B > 0, we get a subsequence {f,},>0 such that {$g, o} converges to a continuously
differentiable path ®,. We will use this property from now on.

Fix B > 0. Let (xg,g, $5,0) be an optimizer of (11) in Ay x .#y. The following lemma
shows that there exists Qp € .# such that €5 0,(x.04, Pp.05) = SUPgec.z Cp.0(xp.05 Pp.0)-
For Q € ., let

C(Q) = inf Cp.0(x, ?) = Cp,0(xp.0, Pp.0)-

Lemma 12. For any B > 0, the map Q +> €(Q) is continuous. Furthermore, there exists
Qp € A such that

¢(Qp) = sup €(Q).
QeH
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Proof. We start by proving continuity of %. It suffices to show that for any sequence
{0,} € A converging to Q € #, {€¢(x,, ¥,)} converges to € (x, ¥), where (x,, ¥,) and
(x, @) are minimizers of (11) with constraints Q, and Q, respectively.
Let F = (F;j)i<ij<m : R™ — R"™™ be a continuous and bounded function. Since
0, — 0 as n — 00, we obtain from (4),
lim lim hm E(F(R12))e,0, = 11m l1m E(F(R12))e,0

n—->o00 N—o00 e—>

On the other hand, Theorem 2 implies

N—o00e—0

m
lim_1im E(F(R)2))e.0 = / F o &t)du(r)
0
and
lim lim E(F(Ry2))c.0, = / F o ®,(t)dua(t).
N—>o00 e—>0 ' 0

Combining the above displays we obtain

lim /m Fo &,(t)du,(t) = /m F o &(t)du(t). (19)
0 0

n—00

Now fix ) € supp p and set Ay := P(#). Applying (19), with F : R™" — R™ ™ given
by

F(X) = 1ix=4y) = (Lx=a0)1<i,j<m>

we obtain that

m

lim [ Lig,0=a0dHat) = (u({to})). (20)

n—0o0 0

Since #y € supp u we have Trace(P(ty)) = ty. Thus the indicator function above is only non-
zero in a subset of {r € [0, m] : Trace(®,(t)) = #p}. At the same time, for any ¢ € supp Wy,
Trace(®,(t)) = t. These two observations, combined with (20), imply that for n sufficiently
large, @,(10) = P(10) and w,({to}) — wn({to}) as n — oo.

Similarly, for any sy ¢ supp u, consider the function G(X) = Iigace x=5y) =
(Lgrrace x=50})1<i,j<m- Another application of (19) implies that

lim ]l{,:SO}d/,Ln(l‘) =0
0

n—00

which leads to w,({so}) — 0 as n — oo. Last, since sy ¢ supp u, the value of &(sp) will not
affect the value of €(x, @) (see Remark 1).

Looking back at (7), the facts that &,(r) — &(¢) for t € supp u, and w,({s}) — n({s})
Vs imply €3.0,(Xn, Pn) = p,0(x, ?) as n — oo and thus continuity of €' (Q) with respect
to Q in .#. The second assertion in the lemma now follows from continuity of % (Q) and
compactness of the space .#Z. [

Recall the definition of free energy with any constraint Q € S™,

Fyep) = —Elogfsexpﬂ HN(U)‘l‘Zh(])ZGz(]) d1y(3),

j=1 i=1
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and denote the free energy with no constraint by

1 _ m R N . _
Fy(B) =~ Elog f expB | Hy(G)+ Y h(j) Y 5:(j) | dr(3).

(Sn)™ j=1 i=1

The limiting free energy was obtained in [12]:

Theorem 13 ([/2], Theorem I). For any m > 1, the limit of the free energy is given by
lim Fy(B8) = sup 1nf @(xQ, g, Ap, Q) = sup 1nf %(xQ, Do, 0).
N—oa Qe 0 P0.A Qe Q-

Let {Qg}g~0 be a sequence given by Lemma 12. Since {Qg}g~0 is bounded, there exists a
subsequence {Qp, Jx>0 and O € # such that {Qpg, }x>0 converges to O as B — oo. Without
loss of generality, we will assume {Qg} converges to Q. By Lemma 12, Theorems 1, and 13
we have

. . . .0p
lim Fy(8) = lim lim F . 21
Ngnoo N('B) el—l;r(l) N1—r>noo N ('3) ( )
Moreover, since Qg — Qo as f — oo, then by dominated convergence theorem, we obtain
lim lim lim lFE gy = lim lim lim lFG’Q""(ﬁ) (22)
o0 e—0N—>oo B —00e—>0N—>oo B N ’

We now investigate the ground state energy

Ho(e
GSE = lim max N(g).
N—oooge(Syyr N

A standard computation (see [1, Section 5], for instance) implies that
1
GSE = ,31220 A}l_t)tloo EFN('B) almost surely,
and using (21) we obtain
1 7
GSE = hm hm hm E ’Q’S (B) almost surely.

B—00 e—0

Combining with (22) we obtain

Proposition 14. We have the following:

Hy(o 1
GSE = lim max () = lim lim hm ZF59=(B).
ﬁ N

N—00 R(6,0)€000 ﬁeoo e—>0N

5.2. Bounds on the minimizers and closed equations for points in the support of g

For any matrix A and X, satisfying the requirements in (1), we denote the corresponding
Hamiltonian by

X4G) =Y X, () Hy.pG ().
p=2
and the covariance by {(A) = X)>2(X, @ X,) © A°P.
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Lemma 15. There exists a constant C; depending only on { such that for any B > 0,

¢
Sum(¢(Q) — £(P5.0(q)))

Bxp.0(q) = Vg € [0, m]. (23)

Proof of Lemma 15. Note that for any N > 1, by Dudley’s entropy integral,
Xn(@) _

E max

pud m
ceSyY

C:. (24)

Here the constant C; > 0 depends only on ¢.
From Gaussian integration by parts, we obtain,

-1 = Xn(o
B(t(Q) —E(L(R@G',57))p) = E( 1;\;0)%3 (25)
where (-)g is the Gibbs average with respect to the Gibbs measure Gy g(o) defined by
. expBXy(o)
G = —
N1

From the differentiability of E », we also have

lim BC(RG 5= [ e(B06)p.0ds). 26)
— 00 0
By (24)—(26), we then obtain,
" Xy(o X
psunc(@) ~ [ e(Bp.06us0s) = BN < Emax A < €.
0 o€

Finally combining with the following two inequalities which can be derived from integration
by parts,

/0 Bxp.0()C(Pp0(s)) © Py o(s)ds = B(£(Q) —fo $(Dp.0(s))xp,0(ds))
and

/ Bxp.0()C(D(s)) © Py o(s)ds > Bxpg o(q)(C(Q) — £(Dp 0(9))), Vg € [0, m]

q

we then obtain that,

Bxp,0(q)Sum(Z(Q) — £(Pp.0(q)) = C;, Vg € [0, m],

as desired. [

Lemma 16. There exist a constant C é > 0 and a positive semidefinite matrix Ag depending
only on & such that

limsup B(m — qp) < C;

B—00
and

lim sup/ Bxp.o(s)®; (s)ds < Ag.
0

B—00
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Proof of Lemma 16. From Lemma 15, we have

¢
B = Bxp.o(gp) < (27)
PO Sum(£(0) — £(p.0(gp))
Thus the denominator on the right-side of (27) must go to 0 and we obtain
lim gg = m. (28)

B—00
On the other hand, as Sum(¢) is non-decreasing, by the mean value theorem,
BSum(z(Pg,0(qp)) © (Q — g o(qp))) < BSum(£(Q) — ¢(Pp0(gp))) < Cs.

Consequently,

Sum(¢'(Q) © 11/?1 sup B(Q — Dp.0(qp))) = C;.

By the arbitrariness of ¢, the inequality above implies that limsup,_, ., B(Q — Dp.0(qp)) is a
bounded matrix. Moreover, by integration by parts, we obtain,

C > /O Bxs,0()E (B5,0(5) © B} o(s)ds = / Bxs.0()L (B5,0(5) © By o(s)ds
2

> {(9.0(5) @ / Bxs.0(5) By o (s)ds.
2

Similarly, by the arbitrariness of ¢, the inequality above implies that limsupg_, o, f%" Bxg o(s)
@%,Q(s)ds is a bounded matrix.
Finally,

/ Bxp.o(s) Py o(s)ds = /2 ,Bxf;,Q(s)@g’Q(s)ds—i—/ Bxp.o(s) Py o(s)ds
0 0 %

2 CE /-m & .
5/o Sum(&(Q) — £(Pp.0(q))) dq + | = Bxe.o(s) Py o(s)ds

< C / Bxp.0(s) P ,(5)ds.
2 Sum(E(Q) — E(Pp 0(3)) re

As limg_, o Pp o(t) = Po(t) converges uniformly, we obtain that for § sufficiently large,
Iy Bxp.o(s) P} ,(s)ds is a uniformly bounded matrix. [

Combining the lemmas above, we can use the Helly’s selection theorem combined with
a diagonalization process to guarantee the vague convergence of (8,xg, 0)n>1. As for P(t)
satisfying (5), we can guarantee the existence of the following limit:

klirn BriXpu.0 € A vaguely on [0, m)
—00
Am B, (Q — p,,.0(4p,,);

hm f BriX . Q(S)‘pﬂn .0(8)ds.

Without loss of generality, we can assume all these convergences hold for the sequence (8,),>1
and denote

= lim B,xp, 0 € 4 vaguely on [0, m)
n—o00o
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QO = nll>nc;lo 'B”(Q - Spﬂan(qﬁﬂ))’ (29)

Lo := lim ﬂ”xﬁn,Q(s)@;;n.Q(s)ds.
A :

n—o00
Lemma 17. Let (xg,0, Ap 0, Pp.0) be a minimizer of (8) and ug([0,t]) = xg,o(t). For any
q in the support of pg, we have that
Bs.0(q) = (Ap.0 — D2 (0))'hh" (A0 — D" 2(0) !

X

q
+ / (Ag.0 — D2 () (€ (Dp.0(5) © By o()(Ap.0 — Dy ° () ds (30)
0
where D;ﬁ‘Q(q) = fqm x($)E5(P(5) © Py (s)ds.
Proof of Lemma 17. Consider arbitrarily probability measure p with distribution function

v, and set z(¢) = (1 — €)xg o(t) + €y(t). Then y(t) — xpo(t) = fot d(;e — pg)(s). By a
straight-forward computation, we obtain that,

T
0. Zg(Ap, 0. 2, Pp.0) = [0 (@) = x50 (L(1), §"(Dp (1) © QS,;,Q(I)) dt > 0,
e=0

where
I'(t) = (Ag.g — D20 ' hh" (Ag.o — D2 (0)™"
+ /O t(Aﬂ,Q — D)€ (Bp.0(5) © By ()
x (Ap.g — DS %) ds — B o(0).
By Fubini’s theorem,

/0 / (1), §"(Pp.0(1) © By (1)) dtdu(s)

2/0 / (@), &"(Pp,0(1)) © Gp:gyg(t))dtdy,ﬁ(s)

which implies that
|t = [ Fous
0 0

where I'(s) := fsm <F(t), E"(Pp, o) © @},’Q(t)> ds. Since the inequality holds for all w, this
is equivalent to say that

OE /0 F(s)dpup(s)

for all ¢ € [0, m] and equality holds for every point in supp ug. Note that if s € supp g N
(0, m), we obtain

d -
o [0 =T, £"(Pp.0(1) © P »(1)) = 0.

If ¢ is an isolated point in supp g, then @'(r) can be any positive semidefinite matrix
without changing the value of 4, which implies that I'(r) = 0 and thus (30) holds. Moreover,
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if ¢ is not an isolated point, then as &g () is a continuously differentiable matrix path, we
can derive the same conclusion that I'(#) = 0 by continuity. [

Lemma 18. For any q in the support of ug, we have that

-1

Aﬂ—D;ﬁ(q)z(/ x,g,Q(s)qﬁlg,Q(s)ds> : 31
q

Proof of Lemma 18. Recall the r step discretization of the Parisi functional given by (10). For
r > 1, denote by .#, the space of all step functions x € .4 with at most r jumps and by .#/
the space of all (x, A, Q) with x € ./, and A € S satisfying A > fom Bx($)65(D(s)O D' (s)ds.

Let (x,, A", Q,) be the minimizer of g restricted to .#,. Based on the critical point of the
Parisi formula, i.e., for the minimizer of the r step discretization, d¢p » Z. =0 and do p% =0,
we obtain the following equation:

1,7 , _ 1 B B
ATY (T + E QAT + Elfkqu;mkl - Ad) =0,

. 1 ,
—nh" + DO\ Dy + Z x—(ijil —-D;H=¢(Q,) for2<p<r—1 (32)
I<k<p—1

and for p =1,
ATV RRT + QAT = 01, £(Q1) = —hh" + D' Q1D
Moreover, based on the extremality over A¥ we obtain

I . . 1o -
—AT R +E QAT + 0 = U + Do — (U = 4, =0,
p

Combining with 5.2 for p = r — 1 and set Dy} = 5, <<, 1%(§'(Qir1) — §'(Q)) to be
the discrete form of Dy ,(q) in r-step discretization, then we get the following relation:

Ao =A=Dg™ =(Q -0,

Relation (32) also implies that x¢(§'(Qx41) — £'(Qu) = D}, — D' for 1 <k <7 — L.
Hence based on the equations above, we get

Aps1 = Ay = xp(E4(Qp+1) — £5(Q)))

-1 -1
= Dp+l — Dp

Since D,_1=Q—Q,_ 1 = A;_ll, we then get 4, = Dp‘1 forl <p<r-—1.

Then (x,, A", Q,) satisfies A" — A(g) = (fqm x,(s)®'(s)ds)~" for all g in the support of the
probability measure w, induced by x,. By the uniqueness of the minimizer (x,, A"), we may
pass to a subsequence of (x,, A”) such that its limit equals (xg, Ag, Qp). Thus we have the
desired conclusion. [J

Recall the constants defined in (29).

Lemma 19. We have 0 < {2y < o0 and for any @ satisfying (5), Lo > fom ag(s) Dy(s)ds.
397



A. Auffinger and Y. Zhou Stochastic Processes and their Applications 146 (2022) 382—413

Proof of Lemma 19. Assume by contradiction that {2y = 0. We first notice that Eq. (31) for
q = qp, reads as

Ag, = E'(Q) — &'(Dp,(qp)) + (Q — P, (qp,)) "
hence

A
lim =

= (20_1 = 00.
n—00 ,Bn

Combining with the fact that D;ﬁ "(q) is bounded for any g € [0, m], we obtain [,8,,_'(/1,3” —

D;f "(g))]~" converges to zero uniformly on [0, m].
By (30), we can reach a contradiction as follows,

Q = lim ,(qp,)
= lim [B,~"(Ag, — D" (ONI~' k" [B,~" (45, — D" O]
P .
4 / B2~ (g, — D DT €] (D1 () © B, o(5)
0
< [Ba " (Ap, — D" ()] ds.

Bn

In conclusion, 0 < (2. A similar argument shows that %) < oco.
Next, note that from (28),

lim gg, = m.
k— 00

Therefore, for any fixed g € (0, m)

m

m qull
/ ﬁ,,xﬁn,Q(s)élﬁ,mQ(s)ds = / ﬂnxﬂn,Q(s)@;mQ(s)ds +/ xﬂmQ(s)@;Sn’Q(s)ds
0 0 qpy,

> [ B 90206205 + £1(Q — 21,045
Then by the dominated convergence theorem, we obtain
Lo > /q ao(s) Py(s)ds + $2.
Since this hoi)ds for all g € (0, m), by letting g tend to m, we obtain,
Lo > /m ao(s) Py(s)ds + $2.
As (2 > 0, Woe get the desired conclusion. [

5.3. Proof of Theorem 3

We are finally ready to prove Theorem 3.
We rewrite the Crisanti-Sommers functional (7) as follows:

1 .- "
Cp.o(x, §) = 5[<s,;<¢<m>>+hﬁh§,i<m» - /0 (D(1), £5(D(1)) © (1))t
+ f (Bm) — D))", F (@)t + log | H(m) — @(txn]
0

where &(1) = [ x(s)®'(s)ds.
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Proof of Theorem 3. We will consider that case Q = (Q as the general case is similar.

We set (xg, $5) as the minimizer under the constraint Q = Q. Now we start with the lower
bound.

For any fixed & satisfying (5), based on the definition of Ly and «y, we obtain that
Ly = lim / Bnxp,(s) Py (s)ds = lim B, éﬂn(m)
B—< Jo n n— 00

. q
lim B, %g,(q) = / ao(s) Py(s)ds, q € [0, m).
n—0oQ 0
In addition, from Lemma 19,
1 - 1 - I
lim 0g|Q — 5,(qp)| _ lim 0g |8,(0 — Pg,(qp,)) o 0g By
n—00 ﬂn n—00 ,Bn :Bn
Hence by applying Fatou’s lemma and the bounded convergence theorem, we obtain

% , P
GSE = lim 0> D)

n—0o0

=0.

1 - .

=5 [ (€'(Q) + k", 1im B, g, (m)

_ / (lim &"(Dp,(1) © B}, (1), lim B, g, (1))dr
0 n—00 n—oo

- fo Tim Lpo.q,,1((Ba(Bp, (m) — b5, ()", @ (1)1
© qim 10210 = 25, }

n—00 ,Bn

= €(Lo, ap, Do)

which implies that

GSE > inf C(L,a, D).
(L,a, ®)eXH (Q)

We now move the matching upper bound for GSE. Consider any (L, o, ?) € Z(Q). As
o € A, there exists ¢ > 0 such that «(z) is constant for all t € [m — ¢, m]. Then for any
[m—c m], we can set &(t) = # Q+"=L &(m—c) without changing the value of €' (L, a, ).

As Q — &(m —c) is positive definite, then ¢(m —35) = %(Q + @(m — ¢)) is positive definite.
There exists € sufficiently small such that %(Q — &(m — ¢)) — €2 is still positive definite,
where 2 = L — [(" a(s)®'(s)ds > 0 and 2 = .

Take vg = m — %Trace(()) and without loss of generality we can assume vg > m — €
by choosing $ sufficiently large. Consider yg € .# defined by yg(s) = 1 on [vg, m] and
y4(s) = min(a(s)/B. 1) on [0, vp).

Next, for each vg, we customize ¢ by &g as follows,

D(1) for t € [0,m — ],
0 —(m—vg)- I for t = vg,

Ppt) = ] D(m — c) + =1EC p(vy) for t € [m — c, vg]
v/g—m+c vﬁ—m+¢- B » UB
Q—(m—1)-§ for t € [vg, m]

Notice that limg_, o, P(t) = P(¢) and limg_, o @l’g(t) = @'(¢) for t € [0, m].
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Based on the definition yg, we notice that (8yg) converges vaguely to a on [0, m) with
m Uﬂ
f Bys() Py(s)ds = B(Dy(m) — Bs(vg)) + / min(a(s), ) Py(s)ds — 2
0 0

+ /m a(s)P'(s)ds = L.
0

We claim that

G , P
lim ﬁvQ(yﬂ /3) — (L. D) o)
o0 B

If (33) is valid, from the Crisanti-Sommers formula, we have
€,0c0 < &
GSE = lim lim lim N—m — lim inf ﬁQoo(x’ )
p—00e—0N—o00 B f—oox, P B
K4, , P
< lim M =% (L,a, ).

p—o0

Since this is true for any «, Lemma 19 implies

GSE < inf €L, a, D).
(Lo, P)eA(Q)

Now it suffices for us to prove the claim (33).

Firstly,
log | §g(m) — Pg(vp)l _ log |B(Pg(m) — Ds(vp))] _mlogﬁ =0
B B B '
Secondly,

1 N . N m
E(%(Q) +hghly, Dp(m)) = (E'(Q)+ hh', /0 Bys(t) Dj(t)dt)
— (£'(Q)+ hh", L).

Thirdly, since ﬁ(ﬁﬂ(q) < fom ,By,;;(s)@},(s)ds for ¢ € [0, m], by bounded convergence
theorem and Lemma 19,

1 m . m t
3 /O (E"(Dp(1) © By(1), Dp(1))dt = /O (E"(Dp(1) © P(0), /0 Byp(s) By(s)ds)dt
- fo (E"(D(1) O D),

/ a(s)d'(s)ds)dt, as B — oo.
0

Finally,

vﬁ . o vﬁ t
fo ([B(Dp(m) — Dp(e)] ™", Dy(1))dr — /0 (L - fo als)®'(s)ds)™", &'(1))dt

t

v “ v
/0 ([B(by(m) — Bpp]™! — (L - fo o) P ()ds) ", Byt

=

t
0

- ‘/Uﬂ ((L —/ a(s)P'(s)ds)™", &'(t) — @%(t))dt
0
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As L — [ a(s)P'(s)ds > 2 and therefore (L — [, a(s)®'(s)ds)~! > 27!, we obtain that the
second term in the inequality above tends to 0 as 8 — oo.
Now it remains to deal with the first term. Since for ¢ € [0, m],

t
lim B(Pg(m) — Dp(t)) =L — / a(s)d'(s)ds,
B—00 0
for € > O sufficiently small, there exists B large enough, such that whenever g > B,
t
IB(Pp(m) — Dp() ™" — (L — / a($)P'(5)ds) ™ oo < €.
0
By the definition of §2, we also get L—fot a(s)?'(s)ds > {2 and then (L—fot a(s)P'(s)ds)”! >
271, for t € [0, m). Moreover, by the setting of P and P, they are uniformly bounded, i.e.

there exists M > 0 such that for all ¢ € [0, m], || P(t)]lcc < M.
Based on the relations above, we obtain

vg . . t
My = ‘ [ s = o = @~ [ aw s g
0 0
< / (Lo (OLB(Bp(m) — By (L — BBy(m)
0

x (L — / a(s)P'(s)ds) ™", Dy(n)dt
0

+ /0 (10,0 (DLB(B(m) — By(e)]™!

x ( / al(s) D' (s)ds — B ()L — / a(s) ' (s)ds)™", B(0))dr
0 0

Then by dominated convergence theorem, we get that Mg — 0 as B — oo. Theorem 3
immediately follows. [

We end this section with the proof of (18).

Proof of (18). It suffices to show that each discrete path corresponds to a matrix path in .#.
Consider a discrete monotone matrix path encoded by an increasing sequence of real numbers
and a monotone sequence of n X n symmetric positive semidefinite matrices,
O=xg<x;<--<x2=x_1=1,
0=00=01=-=02=0,.1=0,=0,
-1
where r > 1. As before, we denote x = (x;);_, and Q = (Qx)j_;-

Taking 1, := trace (Qy) we define a Lipschitz path @ by taking &(#,) = Oy at each point
t, and interpolate by sine functions:

(1) = Ok,
1 1
P(t) = z[é(tk) + (D] + 5[@(tk+l) — ()]

. 2t — by — tig1
- sin (n—+ for fp <t < fr41.
2t — 1)
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Thus,

&) = T D(trr) — P(1) - cos (ﬂ 2t —t — fk+1>

2 Tip1 — I 2(tey1 — 1)
and we set x(¢) = x; for ty <1 < try1.

It is not difficult to show from (9), that the Crisanti-Sommers functionals agree. From the
construction above, we obtain that the desired @ lies in .#, which means @ is a continuously
differentiable Lipschitz monotone matrix path with Lipschitz derivatives that satisfies (6)
satisfying the assumption that for any ¢ € supp u, Trace ¢(r) =¢. O

6. Proofs of Propositions 5-11

In this section, without confusion of notations, we absorb the B into the model & in this
section. Our starting point to prove all propositions is a critical point equation for points in the
support of the Parisi measure.

Lemma 20. Let (x, 9) be a minimizer of (7). For t € supp g, the following equation holds:

E(D(t)) + hh" =/ ()" ¥ (5)D(s) " ds.
0

Proof of Lemma 20. Let a(f) be any non-zero continuous function on [0, m] satisfying
0<rt+a() <mforall t € [0,m] and |a(t) —a(®')| < |t — | for all ¢,¢’ € [0, m]. Assume
that a(0) = 0 and a(t) = 0, for all ¢ € [T, m].

Set O(e,t) = (1 —€)P(¢t +a(t))+ € ¥(t +a(t)), where ¥ is an arbitrary matrix path in .Z.
Since (x, @) is a minimizer of the Crisanti—-Sommers functional

0 < 9:.€(x, O(e, 1)) (34)

e=0

T t

- f < / (s)" D' (5)D(s)'ds — hhT — E/(D(1)), U(t) — (1) + a(t)di’(t)> wp(dr).
0 0

Assume that the equality above holds (we provide the details of the computation of the
derivative below). We now claim that (34) implies

< / () P (5)D(s) " 'ds — hhT — E/((1)), U(t) — di(t)> (35)

0
must vanish for all + # 0 and ¢ € supp up. Indeed, if (35) does not vanish, we can always
modify ¥(¢t) — &(¢) and a(z) so that (34) is negative.

Now, we turn to the proof of (34). By setting O(e, t) := (1 —€) P(t +€a(t))+€ U(t +€a(t)),
we start by calculating the differential of € at € = 0:

d
&
7e ¢(x, 0)

drl " .
= g[ /0 x(t)(E'(O@t)) + hh', O'(t))dt
e=0

T
+ log|O(n) — O(T)| + f Clows 9/(r>>dr]
0 e=0

=T+ 11+ 111 (36)
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Next, we notice that

i@(t) = U(t)— (1) + at) D' (1)
de

e=0

and

=(¥@)— P(1)+a@®)P'(1)).
e=0

Thus, combining (36), (37), and (38), we obtain

d
EQ([)

T
I = / x((E"(D(1)) © P'(1), ¥(1) — P(t) + a(t) P'(1))dt
0

T
+ / X(O(E' (D) + hh", (W(t) — D(1) + a(t) ' (1)) ),
0

and

1 = <(€l5(m) — &))", Wm) — B(m) +a(m)€15’(m)>

-~ <(¢(m) — (1)), w(T) — &(T) +a<f)¢/<f)) =0,

and, by integration by parts,

o
I =— / / x(s)<és(¢)—‘ &) (1)", (W(s) — D(s) + a(s)@’(s))/) dsdt
0 t

T
+ / (éﬁ(t)—',(mt)—@(r)+a(r)¢’(r))/)dt
0

T t
= / x(t)<( T(t) — B(t) + a(t) P (1)), / éﬁ(z)lgb/(t)Eb(t)lds>dt
0 0

T
B f x(O( 1) = 00+ a P ), )™ ¥ (1) b)) d.
0

Here, we use the fact that ¥(r) = &(t) for t € [f”,m] and a(0) = 0 and a(t) = 0,

te[T,m].
By adding (39), (40), and (41), and using (36) we get

d
—%(x, O
de . ©)

e=0
W(r) — (1) + a(r)@(t)> dt

T
+/ x(r)<EET+$’(¢(t))
0

- / B(s) 1 () D(s) ds, (U(t) — D(t) + a(t) D (1))

0

2
— &)+ a(t)@(t)>)’dt }
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I ) A
=5 [ / x(t)(di/(t) QE" (1) — (1) &' (1) d(1) ",
0

T 1
= l |:/ X(t)(<ﬁﬁT + £'(D(1)) —/ @(5)71@/(”&5@),1&?’ ()
0 0

(37

(38)

(39)

(40)

(41)

for all
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1 Ty L .
=3 [/ <hhT + E'(D(1)) —/ O(s)" ' (s)P(s) 'ds, U(r)
0 0
— D)+ a(t) Q)’(t)> wp(dt) i| .
The critical point condition %‘K(x, O)|e=o = 0 combined with the above equation proves

34). O

We now turn to the proofs of the propositions stated in Section 3.

Proof of Proposition 5. We will prove by contradiction. Recall that
sy = x~1(0) = sup{r € [0, m]|x(t) = 0}
and assume that s, # 0. Then for all ¢ € [0, s,], @(r) = @(sx), and by Lemma 20 we have
(E"(2(s.)), $(5:)7) < (D)™ P (5:) D)™, D(s0)) 42)
and

E'(P(s,)) = / " (s) () B(s) s = B(s) Bls)Bls) 43)
0

Moreover, since s, # 0, we can modify @'(s,) a little bit and set &'(s,) = D(s,) without
the change of value of € (x, ®). Then combining (42) and (43) yields

(8"((s)). B5:)7) < (D(5:) 7 Pls) D)7, Bs) = (€'(D(s2)), Pls)),s
and thus

Sum(£"(P(s,)) © B(s,)* — E'(D(s,)) © (s,))

= (£"(2(51)) © D(s2) — §'(P(sx)), D(s1)) < 0.
However, straight-forward computation of the derivative implies

E'(D(5,)) © B(s:)°? — E'($(5:)) © D(s) = Y p(p — 2B, ® B) © B(s,)°”

p=2

(44)

and
Sum(,ép ® Bp) ® P(s,)°” > 0 for even p and s, = 0.
where the last inequality comes from the assumption that there exists p > 4 such that Bp # 0,

which leads to a contradiction. Thus s, = 0, which is equivalent to say that 0 € supp up. 0O

Proof of Proposition 6. Suppose 0 € supp pp and the existence of a sequence of u, | 0 such
that u,, € supp wp.
By considering the function f : [0, m] — R and g : [0, m] — R given respectively by

fu) = (€' (D)) + hh" — / B(s)~' @' (5)D(s) " ds, ' (u)
0
and
gu) = (E"(Bw) © &'(u) — D)™ &' (w)Bw)™", &'(u))

+ (E/(P(u)) + hhT — / ' ()" D' (5)D(s) " "ds, D ().
0
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Then f(u,) = 0 for all n > 1. By mean value theorem, there exists a sequence u/, | O such
that f'(u,) = 0. Notlce that f'(u,) = g(un). By the contmulty of g at 0, we obtain g(0) = 0,
which implies that 2( ,32 ® ﬁz, &'(0)°%) = (QB(O)_ 9'(0), 45(0)_ &'(0)). O

Proof of Proposition 7. As up is non-decreasing, it contains at most countably many atoms.
Now assume supp pp contains countably many isolated points, and we connect the points in
supp pp by linear interpolation. Then for two consecutive points s; < s, in supp pp, define
ap := pp([0, s1]).

Furthermore, we obtain that for u € (s1, 52), ?”(u) = 0 and therefore

gu) = (E"(d(w)) © &' (u) — )~ &' ) dw)™", &' ().

We also have
f(s1) = f(5) = 0 and / ® fqrdg =0
where !
fu) = (€' (Dw)) + hh" — /O ") @) Bs) ds, B w).)

Therefore g(u) = 0 has 2 solutions between s; and s,.
The relation g(u) = 0 is equivalent to say that

(E"(DW), ¥'w)?) = ()™ &' @) )™, '),

1

We then define y(u) = (£"(Bw)), &)™) 2 and z(u) = (Su)~' &' () Bu)~", &' () ~2
Thus
2w) = —ag (D) B (1), ) (1)1 - (Be) " () D(e) B (1), B(t) (1))
and
2wy = 3a2(B) " B (t), B) " B (1) () T )BT B (t), B(r) (1))
—3a3 (B B (@), By & ()2
(D) )BT (1), D) (1) D) P (1))
= 3a2(B(t) " B (1), DO B (1) - (D) B () B@) P (1), By D (1))
— (B D)D) D (1), D) B (1) D(1) B (1))
(D) (1), D) P (1)) <0,

where the last step uses the Cauchy inequality. Hence z(u) is a concave function of u, this

equation can have at most 2 roots in any interval where (£”((1)), ®'(t)°?)" 7 is convex.
Now to see that (§”( (1)), @(t)"z)_% is convex for £(A) = (B, @ B,) © A°P, we need to
modify ¢ without the change of €' (x, ®).
For any € > 0, set

!
b.(1) = {3 - @(sy) for t € (51 + €, 52)

some smooth curve that connects @(s;) and P(s; + €) for ¢ € (s1, 51 + €).

Here we set @, mild enough so that QSE is positive definite on [s;, s; + €]. Note that (x, &,) is
still a minimizer of .
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Therefore for u € [s; + €, 53],

1
y(u) = —5@”(@(@), O (u)2)"7 - (7 (D)), Bu)®)

and
1
i) = =5 {(§" (D)), O (u)2)3 - (E" (D)), D))
3 5
+ (& (@), ()72 - (£ (Dw)), P (u))?

(]

= %@”(@(u», P'(u)?)~
—2(&""(D(u)), D' W)**) - (E"(P(w)), @' ()?)]

= }1@“(@(»{», O'(u)*?) 72 - [BE" (D)), ¥ (u))?
—2(&""(D(u)), ' W)™*) - (E"(Dw)), &' ))]

[B(E"(P(w)), P (u))?

)
3

1
= 257 (P = (P = DE" (P, & ()23
2
1BP = OB, ® B Ds))’ = 2p = 60U, @ By (s2)")’]
1
= 157 (P = DX = DB, @ By Bs2)T) (B, © By P2)T) 2 0,
2

which means that y(«) is convex on [s; +¢€, s2]. We then let € tend to 0 and then get the desired
conclusion. O

Proof of Proposition 8. Since both (uf)lzl and (u; );>1 converges to ug and lies in supp wp,
by mean value theorem and continuity of g, we obtain

. &(ug + h) — g(uo)
0= lim
h—0F h

:< E"(B(ug)) © D' (uo)°2 + £"(D(u)) © D" (uo)
— 20p([0, uo]){ B(u0) ™" &' (o) D(u0) ™" &' (ug) D(uo) ™", &' (u)) >
+ (£'(D(ug)) + hh" — / " () () B(s) s, (o))
0

+ 2(8"(B(ug)) © (o) — D(ug)™" &' (uo) D(uo) ™", " (uo)).

. glug +h) — g(uo)
0= lim
h—0~ h

=< E"(B(ug)) © D' (uo)*? 4 £"(D(u)) © D" (uo)
— 20p([0, u0)){ B (1)~ & (1) D(uo) ™" &' (ug) D(uo) ™", &' (u)) >

+ (E'(D(ug)) + hh" — / " (s () B(s) s, (o))
0

+ 2(8"(D(ug)) © (o) — D(ug)™" &' (ug) D(up) ™", " (uo)).
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By comparing the two equations, we obtain wup([0, ug]) = wp([0, up)), which implies that wp
is continuous at uy. [

Proof of Proposition 9. If ug is an isolated point of supp wp, it must be a jump discontinuity
of wp. Now assume that ug is not isolated and wp is continuous at the point uy. Then by
Lemma 20 and the mean value theorem we obtain

(E"(D(up)), B (u)?) = (D(uo) ™" &' (up), D(uo)™" & (up)).
As D(ug) = Ji x(@)®'(1)d1, which implies that D(up)~! > (0 — D(up))~! > 0!, we have
(E"(D(Q)), D'(uo)*?) = (E"(D(uo)), ¥ (uo)**)
> ((Q — P(u)) ' @' (uo), (Q — P(u)) " &'(uo))
> (07 ¥ (ug), Q7 ¥/ (up))

which leads to a contradiction. [

Proof of Proposition 10. First note that as (a,b) € supp u, then by Lemma 20, for all
u € (a,b),

F(u) = &(dw)) + hi" — / B(s)" @' (5)D(s) " ds = 0,
and as @ is differentiable for all uoe (a, b), we can differentiate the equation above and obtain
that, for all u € (a, b)

G(u) = E"(Sw) © ') — du)™' &' W) dw)™" = 0. (45)

From (45) and the fact that ¢’ is positive semi-definite, we obtain

O'@)2 (" (D) © ') — D)™ &) D)) @'(u)? =0,
which implies that

(W) [E" (D) © P')] P ()? = ('(w)? ()™ &' ()?)’. (46)

As both sides of the equality in (46) are positive semi-definite matrices, their positive
semi-definite square root coincide. We thus get the relation

(1) (P ()2 (E"(BW)) © () D (u)?)? &' ()2 = B(u)™".
As we know that (a,b) € supp up and @ is twice differentiable in (a, b), therefore
G"(u) = 0. Consider the Frobenius inner product on G”(u) and &'(u),
0= (G"(w), &)
= (£"(du) © '), &' (u))
— 20 p ([0, ul)(S(w) ™" &' (o) D)™ &' () D) ™", &' (w))
+ E(DW) © &) — D)™ ¢ (W) D)™, ¥'(w))
= (&"(Bw)), D' @)>) — 20 p([0, ul){ D)™ &' () B(u) ™" &' () Su) ™", ' (w))
+ E(PW) © &' (u) — B~ &' w) )", ¢"(u))
(E" (D)), &' ()*) — 2pup([0, ul)(Pw) ™" &' () ()~ &' () D(w)~", &' (u))
(& (D)), ' w)°>) — 241p(0, ul)Trace( &' () (&" () © ') F'(u)?)3.

Therefore we get the desired conclusion. [
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Proof of Proposition 11. We will prove by contradiction and assume that the SK model is full
replica symmetric breaking (FRSB). By Proposition 8, we know that any accumulation point
uo in supp wp with @ (ug) > 0 must be of continuity at u = uy.

Assume that (a, b) C supp up. Consider the function F : [0, m] — S¥ and G : [0, n] —
S% given respectively by

F(u) = &' (D)) + hh' — / B(s)" ¥/ (5)D(s) " ds
0

and
Gu) = £"(D(u)) © &'(u) — d(u)™" &' (u)Bu)™".
First note by Lemma 20, for any u € (a, b),
Fu)=0,G(u) =0, f(u) =0, g(u) = 0.
Therefore we obtain g'(u) = 0 for any u € (a, b).
We also note that on (a, b)
(" (D)), &' W)y — 2x)( D) &' () D) B (1) (1), &' (1))
= —2x(u)( D) P () B(1) D (1) B(1) !, D (1))
<0,

g'(u)

which leads to a contradiction. Here we use the assumption &”

of the SK model.

Now we obtain that if ¢’ > 0 on [0, m], then the SK model is finitely atomic. Since by
Proposition 7, the SK model contains at most 2 consecutive isolated points, we get the desired
conclusion that the SK model is at most 1 replica symmetric breaking (IRSB). O

= 0 derived from the setting

7. Properties of the Crisanti-Sommers functional at zero temperature

In this section we provide some useful characterizations of minimizers of (12).
Theorem 21. Let (L, «, ) € H(Q). Define

g(®) :=/ g(s)ds
and

gt) = (9'(1), G(1))

where

t s s
G =@ - [ @~ [ a@@@io #oxL - [ atq@@d as
0 0 0
Then (L, «, D) is the minimizer of € if and only if the following equation holds,

£'(Q) + hh” =/m(L—/ a(s)ds/(s)ds)—lds/(t)(L—/ a(s)P'(s)ds) 'dt
0 0 0

and the function g satisfies minyepo,m &) > 0 and yo(S) = Y ([0, m)), where S = {u €
[0, m)|g(u) = O}
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Proof. The proof of this theorem is standard. Assume (Lo, &, Do) is minimizer of € (L, «, ®),
yo is the corresponding measure induced by «(s) and consider any (L,«, ) € ¥ . For
0<06 <1, (Lg, g, Py) also lies in %, where Ly = (1 —0)Lo + 0L, a9 = (1 — 0oy + b
and & = (1 —-6)Py+ 0.

As (Lg, ag, $p) minimizes €, we obtain

06 (Lo, g, Dp)
00

oo = %[(E’(Q) +hh", L — Lo)

+ - Lo - / (w(s) — ao(s) BYs)ds) ", By

-/ "€ (@000 © B0, / (@(s) — ao(s) Bs)dshr

+ [ - / () By(s)ds) !, B(0) — By

= /0 - /0 () By(5)ds) ™ (L /0 o) (s)ds) .

fo )P (5) — B(s)ds)ds

-/ "L (B0(1) © (B(1) — Bol1) © B + E(Bo(1) © (F(1) — B(1),

t
/ a(s)@é(s)ds)dt]
0
> 0.
Extra algebra leads to:

96 (Lo, o9, Dp)

90 |0=O
1 N m t
= _ |: (L — Lo, £'(Q)+ hh" — /0 (Lo — /0 ao(s)gﬁ(/)(s)ds)_l Py(1)

2
x (Lo — /O ’ao(s)qﬁ(g(s)ds)*ldw
4 /0 " /0 (@(s) — o) By(s)ds. (L — /O o) (s)ds) ! )
x (L — fo tao(s)%(s)ds)*l)dr
- / B / " (@) — aols) By(s)ds. £"(Bio) © Byt))dr
+ /0 (Lo - /0 o) By(s)ds) ! By Lo — /0 o B(s)ds) .
fo o)) — By(s)ds)dr

- /0 (E"(@o(t))@%(t),/o ao(s)(9'(s) — Py(s))ds)dt
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+ /0 ((Lo—/o ao(s) By(s)ds) ™", &'(r) — Py(1))dt

- /0 (" (Po(1)) © (P(t) — Po(1)) © /(1) + E"(Po(1)) O (P'(r) — Py(1)),
/ ao(s)éé(s)ds)dt] .
0

Based on the arbitrariness of «, L and &, we obtain the relations:

£(Q)+ hh' = /0 (Lo — f ao(s) B(s)ds) ™ By(t) (Lo — / ao(s) By(s)ds) " dt,

0 0
/ < / (als) — o) B(s)ds, (L — / wo(s) B (s)ds)™ B (1)
0 0 0
x(L—/ ao(s) By(s)ds) ™" )dt
0

- / < / (als) — () B(s)ds. & (Bot)) © By di = O,
0 0
and

/ "L - / o) By(s)ds) ! B(0) — By
- /O m(é’”(@o(t)) O (D(1) — Dop(1)) © D'(1) +E"(Do(1)) © (P'(r) — Dy(1)),
fo ' ao(5) Bys)ds)di
- /O " o B(0) — B0, (L /O o) By (s)ds) ! B Lo — /0 o) By (s)ds) )

- f ao(D( (1) — Po(1), §"(Do(1)) © P'(1))dt = 0
0
Hence, writing

Z(s) = (Lo — fo wo(@) By(@)dg)",

/0 (a(t) — ap())(P'(1), §'(2(1)) —/0 Z(s)Py(s)Z(s)ds)dt > 0.

If 7 is an isolated point in supp yp, then @'(¢) can be any symmetric matrix, which implies
that G(¢) = 0. If ¢ is not isolated, as @ is continuously differentiable and Lipschitz, we can get
the same conclusion based on approximation. Last, define g(¢) := ftm g(s)ds, then g(¢) satisfies
minyepo,m) &) > 0 and yo(S) = ([0, m)) where S = {u € [0, m)|g(u) = 0}. The converse
direction can be proved by the uniqueness of the minimizer. [

Proposition 22. The model is replica symmetric at zero temperature if and only if
§(Q)+hh" = £"(Q)0 0
In this case, the minimizer (Lo, oo, Do) is given by
- t
Lo=Q*(Q3('(Q)+hi")Q) 2 Q% ag =0 and & = —Q.
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Proof. Firstly, if the model is replica symmetric at zero temperature, then
E(Q)+hh" — Ly QLy =0.
Also as there is no point in supp ¥y, we can define @ by &(¢) = %Q, and hence ¢'(¢) = %Q.
We prove this proposition by contradiction. Assume &'(Q) + hhT < &"(Q) ® Q. Then,

g'(m) = (£"(Q) © ¥'(m) — Ly &' (m)Ly", &'(m))
1 N
= SE"(QO0Q0-§0Q)- hh', Q) > 0,

which implies that there exists sy € (0, m), such that g'(s) > O for all s € [sg, m]. Therefore
for all s € [sg, m),we obtain g(s) < 0 and g(s) < 0, which leads to a contradiction.
Conversely, if £(Q) +hh™ > £"(Q) © O, let

Lo = QH(QHE(Q) + 70N 0} ey =0 and = - 0.
Then [ (Lo — [y @0(q)®'(q)dq) ™" '(s)(Lo — [5 ao(q)®'(q)dq)~'ds = Ly' QLy" = &(Q) +
hh" . Furthermore,

g(1) = (§/(¢(l))—/0 (Lo—/o ao(q) P (q)dq) " '(s)

X (Lo — /0 wo(@) P (q)dq) "\ ds, (1)), 3(m)
=0
and

1 1
FN=—E"(@1)00- Ly'oL;', Q) < —E"(Qo0- Ly'oLy", 0)

1 -
= —({"(Q) 0 Q-§(Q)—hh', Q) <0,
m

which implies that g(u) > 0 for u € (0,m). Since § = ¥ and y(S) = 0 = y([0, m)), we
conclude that (Lg, g, Do) is minimizer which means that the model is replica symmetric at
zero temperature. [J

Proof of the FRSB example (13). Recall the constraint

1 0.1
Q= (O.l 1 >
and the matrix path as #(¢) = 10 and ¢(q) = (§"(P(q)), @/(q)"z)_%.

1
¢"(q) = Z(é”(@(q», B(q)?) 2BE" (D)), P(g)>)
—2(&"(D(q)), D'()°NE" (D(q)), P'(q)°)].

Also, since ¢(0) < +/2 and ¢(2) > 0, there exists a unique g such that ¢(go) = %2(2 —q0)-
Define a distribution function as follows:

*(g) = {;«%q(qz)qo- 0<q < q.
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Based on the definition of x and &, for 0 < g < g¢ we obtain

n 1 1
B(q) = 0 — B(qo) — fz«»(quQ + «/5¢(q)§Q

_ q0 1 V2
=0-70-52-1Q+¢)Q
= V2¢(q)¥'(9)

therefore

(B ' (q), D(q)' (@) = d(q) 2 = (£"(D(q)), P (@)

Recall the function
u
flu) = (E'(Pw) + hh" — / B(s)”' D'(s)D(s)"ds, D' ().
0
Since f(0) = 0, we then obtain that f(g) = 0 for 0 < g < go. Moreover, since

1
P(q) > 3(2 —q)= (0= &) ¥'(@), (Q - ¥(g) ¥ (@),

we obtain

(E"(D(@)). P(@)) = pg)2 < (Q — D)) P(q). (Q — D(g)~' ¥ (q).

Therefore if we define h(s) = fos f(g)dq, we get that h(s) = 0 for s < gp and f(s) < O for

s > qo.
Thus (x, ¢) minimizes the Crisanti—-Sommers functional % in this case. [
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