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Abstract

This paper studies properties of the mixed spherical vector p-spin model. At zero temperature, we
stablish and investigate a Parisi type formula for the ground state energy. At finite temperature, we
rovide some properties of minimizers of the Crisanti–Sommers formula recently obtained in Ko (2018).
n particular, we extend some of the one-dimensional Parisi measure results of Auffinger and Chen (2015)
o the vector case.
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1. Introduction and main results

1.1. Introduction

Spherical spin glass models are one of the main sources of ideas and techniques in the
heoretical study of disordered complex systems. These models are simple enough to produce
xplicit computations while retaining many of the intriguing phenomena of high-dimensional
andom systems. Their energy landscape provides a metaphor to explain several phenomena in
ther areas of science, including biology, chemistry, data science, and economy.

One of these explicit computations was the limiting free energy discovered by Crisanti and
ommers in [9] for the spherical p-spin model with one dimensional spins. This formula is
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he analogue of the classical Parisi formula for the Sherrington–Kirkpatrick model [18] and it
as rigorously proven for even-p-spin models by Talagrand in [19] and extended to general
ixed p-spin models by Chen in [7]. These variational formulas and their minimizers have

eep importance to describe and classify the energy landscape of such systems. We refer the
eaders to [1,2,4,6,10,11,14] and the references therein for results in this direction.

The rigorous study of spherical spin models with vector spins started with the work of
anchenko and Talagrand [17] with the first non-trivial bounds for the free energy. Recently,
o [12] provided a proof of the limiting free energy for these models and its Crisanti–Sommers
nalogue [13]. These results came after important contribution of Panchenko in the study of
ector p-spins on the hypercube [15–17]. As far as we know, there is no rigorous study on

the role and properties of the minimizers of such models. The goal of this paper is to provide
further properties of the model. Our main results are the following:

1. We provide a characterization of the minimizer of the Crisanti–Sommers formula, the
order parameter of the model, in Theorem 2.

2. We extend the results of [12] to zero temperature, proving an exact formula for the
ground state energy. These results are stated in Sections 5 and 6.

Let us now describe the spherical model with vector spins and state some of its fundamental
results. Fix m ≥ 1 and for N ≥ 1, let SN be the sphere in RN of radius

√
N . We denote a

onfiguration of the vector spin by

σ⃗ = (σ⃗1, . . . , σ⃗N ) ∈ Sm
N where Sm

N = {σ⃗ ∈ (RN )m
|σ⃗ ( j) ∈ SN for j = 1, . . . , m}.

ere the j th coordinate of σ⃗ is denoted by σ⃗ ( j) and the vector entries of σ⃗ are denoted by

σ⃗i = (σ⃗i (1), . . . , σ⃗i (m)) ∈ Rm, 1 ≤ i ≤ N .

For p ≥ 2, we denote the p-spin Hamiltonian of the j th copy by

HN ,p(σ⃗ ( j)) =
1

N
p−1

2

∑
1≤i1,...,i p≤N

gi1,...,i p σ⃗i1 ( j) · · · σ⃗i p ( j),

where gi1,...,i p are i.i.d. standard Gaussians for all p ≥ 2 and indices (i1, . . . , i p). The
corresponding mixed p-spin Hamiltonian for the j th copy at inverse temperatures (β⃗p)p≥2,
where β⃗p = (β⃗p( j))1≤ j≤m , can be expressed as

H j
N (σ⃗ ) =

∑
p≥2

β⃗p( j)HN ,p(σ⃗ ( j)). (1)

Here we only consider mixed even p-spin models, i.e. βp( j) = 0 for all 1 ≤ j ≤ m and odd
p ≥ 3. Moreover, we assume that the inverse temperature of each j th copy satisfy∑

p≥2

2pβ⃗2
p( j) < ∞,

so that (1) is well-defined.
We define the Hamiltonian of m copies mixed p-spin models of spherical spin glasses by

HN (σ⃗ ) =
m∑

j=1

H j
N (σ⃗ ).

If, for any 1 ≤ k, ℓ ≤ m, we introduce the function

ξk,ℓ(x) =
∑

βp(k)βp(ℓ)x p, (2)

p≥2
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hen it is not difficult to check that, for two arbitrarily spin configurations σ⃗ 1 and σ⃗ 2,

E
[
H k

N (σ⃗ 1(k))H ℓ
N (σ⃗ 2(ℓ))

]
= Nξk,ℓ(Rk,ℓ

1,2) for all 1 ≤ k, ℓ ≤ m,

here

Rk,ℓ
1,2 =

1
N

N∑
j=1

σ⃗ 1
j (k)σ⃗ 2

j (ℓ)

is the overlap between the corresponding coordinates of the vector configurations σ⃗ 1 and σ⃗ 2.
he overlap matrix between configurations σ⃗ ℓ and σ⃗ ℓ′ is expressed as

Rℓ,ℓ′ = R(σ⃗ ℓ, σ⃗ ℓ′ ) = (Rkk′
ℓ,ℓ′ )1≤k,k′≤m =

1
N

N∑
i=1

σ⃗i
ℓ
⊗ σ⃗i

ℓ′

where ⊗ is the outer product on vectors in Rm .
Let M be the space of m × m semi-symmetric positive definite matrices with entries in

[−1, 1] and diagonals entries equal to 1. We now describe the Crisanti–Sommers formula for
the free energy of a system of vector spins with constrained self-overlap Q ∈ M. For any
positive semidefinite matrix A = (Ai, j )1≤i, j≤m , let

ξ (A) :=
∑
p≥2

(β⃗p ⊗ β⃗p) ⊙ A◦p
= (ξi, j (Ai, j ))1≤i, j≤m

here ξi, j are defined in (2) and A◦p denotes the pth Hadamard power of the matrix A
element-wise multiplication). Clearly, we have the matrices

ξ ′(A) =
∑
p≥2

p(β⃗p ⊗ β⃗p) ⊙ A◦(p−1) and ξ ′′(A) =
∑
p≥2

p(p − 1)(β⃗p ⊗ β⃗p) ⊙ A◦(p−2).

Given any ϵ > 0 and Q ∈ M, denote the set of spins with constrained self overlaps by

Qϵ
N =

{
σ⃗ ∈ Sm

N

⏐⏐⏐⏐ ∥R(σ⃗ , σ⃗ ) − Q∥∞ ≤ ϵ

}
,

where ∥A∥∞ = sup1≤i, j≤m |Ai j |, for any m × m matrix A. For an external field h⃗ ∈ Rm and
any β > 0, we define the free energy as

Fϵ,Q
N (β) =

1
N
E log

∫
Qϵ

N

exp β

⎛⎝HN (σ⃗ ) +
m∑

j=1

h⃗( j)
N∑

i=1

σ⃗i ( j)

⎞⎠ dλn
N (σ⃗ ),

here the reference measure λm
N = λ⊗m

N is the product of Haar measures λN on SN with
ormalization λN (SN ) = 1. Here the parameter β is the so-called inverse temperature.
oreover, denote ξβ = β2ξ and h⃗β = βh⃗.
For a measurable function f : Sm

N × Sm
N → R we also set

⟨ f ⟩ϵ,Q =

∫
(Qϵ

N )2 f (σ⃗ 1, σ⃗ 2) exp(HN (σ⃗ 1) + HN (σ⃗ 2))dλm
N (σ⃗ 1)dλm

N (σ⃗ 2)∫
(Qϵ

N )2 exp(HN (σ⃗ 1) + HN (σ⃗ 2))dλm
N (σ⃗ 1)dλm

N (σ⃗ 2)
. (3)

or a matrix-valued function A(σ⃗ 1, σ⃗ 2) = (ai j (σ⃗ 1, σ⃗ 2))1≤i, j≤m , we let ⟨A(σ⃗ 1, σ⃗ 2)⟩ϵ,Q denote
he matrix (⟨ai j (σ⃗ 1, σ⃗ 2)⟩ϵ,Q)1≤i, j≤n . Observe that for any f continuous, the map

Q ↦→ ⟨ f ⟩ϵ,Q (4)

s continuous on (M, ∥ · ∥ ).
∞
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We will now recall the formula for the free energy obtained in [13]. Denote a right-
ontinuous non-decreasing function by

x(t) : [0, m] → [0, 1] such that x(0) = 0 and x(m) = 1 (5)

nd a 1-Lipschitz monotone matrix path in the space of m × m positive semidefinite matrices
y

Ψ (t) : [0, m] → Sm
+

such that Trace(Ψ (t)) = t and Ψ (0) = 0 and Ψ (m) = Q. (6)

here Sm
+

is the space of m × m positive semidefinite matrices.
Set

tx := x−1(1) = inf{t ∈ [0, m]|x(t) = 1}

nd

sx := x−1(0) = sup{t ∈ [0, m]|x(t) = 0}.

Assuming tx < m, then ∀tx < T̂ < m, we can define the quantity

Cβ,Q(x,Φ) =
1
2

[ ∫ m

0
x(t)

⟨
ξ ′

β(Φ(t)) + h⃗β h⃗T
β ,Φ ′(t)

⟩
dt + log |Φ(m) − Φ(T̂ )|

+

∫ T̂

0

⟨
Φ̂(t)−1,Φ ′(t)

⟩
dt

]
(7)

here Φ̂(t) : [0, m] → Rm×m is a decreasing matrix path given by

Φ̂(t) =
∫ m

t
x(s)Φ ′(s)ds.

Furthermore, for any Λ ∈ Sm
+

satisfying Λ >
∫ m

0 x(s)ξ ′′

β (Φ(s)) ⊙ Φ ′(s)ds,we have a
ontinuous form of the Parisi formula as follows:

Pβ,Q(x,Λ,Φ) =
1
2

[∫ m

0
⟨ξ ′′

β (Φ(q)) ⊙ Φ ′(q), (Λ− Dx
β,Q(q))−1

⟩dq

+ ⟨h⃗β h⃗T
β , (Λ− Dx

β,Q(0))−1
⟩

−

∫ m

0
x(q)⟨ξ ′′

β (Φ(q)) ⊙ Φ(q),Φ ′(q)⟩dq + ⟨Λ, Q⟩ − m − log |Λ|
]

(8)

where Dx
β,Q(q) :=

∫ m
q x(s)ξ ′′

β (Φ(s)) ⊙ Φ ′(s)ds.
Denote M0 the collection of all 1-Lipschitz monotone matrix paths that satisfy (6) and

denote by N0 the collection of all nonnegative nondecreasing and right-continuous functions
on [0, m) and N the collection of all nonnegative nondecreasing and right-continuous functions
on [0, m) satisfying the assumption that there exists 0 < c < m such that α(t) is constant for
all t ∈ [c, m].

We will also need a discrete version of (7) and (8) that we describe now. Consider a discrete
monotone matrix path encoded by an increasing sequence of real numbers and a monotone
sequence of n × n symmetric positive semidefinite matrices,

0 = x0 ≤ x1 ≤ . . . ≤ xr−2 ≤ xr−1 ≤ 1,
0 = Q0 ≤ Q1 ≤ . . . ≤ Qr−2 ≤ Qr−1 ≤ Qr = Q,
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here r ≥ 1. We denote x
¯
= (xk)r−1

k=0 and Q
¯
= (Qk)r

k=1. The discrete Crisanti–Sommers formula
s given by

Cr (x
¯
, Q

¯
) =

1
2

[⟨h⃗h⃗T , D1⟩ +
1

xr−1
log |Q − Qr−1| − Σ1≤k≤r−2

1
xk

log
|Dk+1|

|Dk |

+ ⟨Q1, D−1
1 ⟩ + Σ1≤k≤r−1xk · Sum(ξ (Qk+1) − ξ (Qk))], (9)

here Dp = Σp≤k≤r−1xk(Qk+1 − Qk) for 1 ≤ p ≤ r − 1, and

Sum(A) =
∑

1≤i, j≤m

Ai j .

nd the discrete Parisi formula is given by

Cr (Λ, x
¯
, Q

¯
) =

1
2

[⟨h⃗h⃗T ,Λ−1
⟩ + ⟨Λ, Q⟩ − m − log |Λ|

+

∑
1≤k≤r−1

log
|Λk+1|

|Λk |
+ ⟨ξ ′(Q1),Λ−1

1 ⟩

−

∑
1≤k≤r−1

xk · Sum(θ (Qk+1) − θ (Qk))] (10)

here Λr = Λ,Λp = Λ−
∑

p≤k≤r−1 xk(ξ ′(Qk+1) − ξ ′(Qk)) for 1 ≤ p ≤ r − 1.
The limit of the free energy with self overlaps constrained to Q can be expressed as

heorem 1 ([13], Theorems 1–3, Proposition 1). The limit of the free energy with self overlaps
onstrained to Q is

lim
ϵ→0

lim
N→∞

Fϵ,Q
N (β) = inf

r,x
¯

,Q
¯

Cr (x
¯
, Q

¯
) = inf

x,Φ∈N0×M0
Cβ,Q(x,Φ)

= inf
x,Φ∈N0×M0

Pβ,Q(x,Λ,Φ).
(11)

he last two infimums are over x(t) and Φ(t) defined in (5) and (6) such that |Q − Φ(tx )| > 0
nd they are both attained.

.2. Main results

Our first main result explains the role of the minimizers of the Crisanti–Sommers formula
n the case n ≥ 2.

heorem 2. Assume that the pair (x,Φ) is a minimizer of the Crisanti–Sommers formula
11) and write µP ([0, q]) = x(q). For any F = (Fi, j )1≤i, j≤m : Rm×m

→ Rm×m continuous and
ounded,

lim
N→∞

lim
ϵ→0

E⟨F(R1,2)⟩ϵ,Q =

∫ m

0
F ◦ Φ(t)dµP (t).

emark 1 (Uniqueness of the Parisi Pair (x,Φ)). By choosing F(X ) = (trace(X ))1≤i, j≤m

nd using the fact that Trace(Φ(t)) = t , one can see that the minimizing measure µP is
nique. Similarly, for any t ∈ suppµP , the value of Φ(t) is also unique. However, for any
/∈ supp µP , we can modify Φ(t) arbitrarily as Φ(t) will not change the corresponding value
f C (x,Φ).
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Our second main result is a proof of a Parisi type formula for the ground state energy GSE

GSE := lim
N→∞

max
σ⃗∈(SN )m

HN (σ⃗ )
N

,

nd the constrained GSE , defined as

GSE(Q) = lim
ϵ→0

lim
N→∞

max
R(σ⃗ ,σ⃗ )∈Qϵ

N

HN (σ⃗ )
N

.

Set

K (Q) :=
{

(L , α,Φ) ∈ Sm
+
× N × M : L

>

∫ m

0
α(s)Φ ′(s)ds and Φ constrained on Q

}
.

or any (L , α,Φ) ∈ K (Q), define

C (L , α,Φ) =
1
2

[
⟨ξ ′(Q) + h⃗h⃗T , L⟩ +

∫ m

0
⟨(L −

∫ t

0
α(s)Φ ′(s)ds)−1,Φ ′(t)⟩dt

−

∫ m

0
⟨ξ ′′(Φ(t)) ⊙ Φ ′(t),

∫ t

0
α(s)Φ ′(s)ds⟩dt

]
.

We can now state the second main result of this paper. Parisi type formulas for the ground
state energy were obtained in the past for other models, see [5,8].

Theorem 3 (Parisi’s Formula for the Ground State Energy.). For any vector mixed p-spin
model and any constraint Q we have

GSE(Q) = inf
(L ,α,Φ)∈K (Q)

C (L , α,Φ).

Moreover, there exists a matrix Q∞ such that

GSE = inf
(L ,α,Φ)∈K (Q∞)

C (L , α,Φ), (12)

nd the minimizers (L0, α0,Φ0) of (12) satisfy

α0 := lim
β→∞

βxβ,Q∞
vaguely on [0, m),

Φ0 := lim
β→∞

Φβ,Q∞
uniformly and Φ ′

0 := lim
β→∞

Φ ′

β,Q∞
uniformly,

L0 := lim
β→∞

∫ m

0
βxβ,Q∞

(s)Φ ′

β,Q∞
(s)ds.

Remark 2. The matrix Q∞ is “explicit” and it is derived as the limit as β → ∞ of minimizers
Qβ of (11) as β → ∞. This is explained in Section 5.1.

emark 3. The vague convergence of (βΦβ,Q∞
)(β>0) on [0, m) means that limβ→∞ βxβ,Q∞

(s)
α0(s) at all points of continuity of α0 on [0, m).

. Examples

Before turning into the proofs of the theorems we provide two examples where explicit

omputations are amenable.
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.1. A full replica symmetric breaking (FRSB) example

Let n = 2 and consider the constraint

Q =

(
1 0.1

0.1 1

)
.

or β >
√

2
tr(Q2)

, define β⃗ := (β, β). For any matrix A, define ch A : (ch(ai, j ))1≤i, j≤2 and
sh A : (sh(ai, j ))1≤i, j≤2. Moreover, define E = e⃗ ⊗ e⃗, where e⃗ = (1, 1). We now set the model

ith h⃗ = 0 and

ξ (A) = (β⃗ ⊗ β⃗) ⊙ (ch A − E).

Define a matrix path as Φ(q) = q
2 Q and φ(q) = ⟨ξ ′′(Φ(q)),Φ ′(q)◦2

⟩
−

1
2 .

φ′′(q) =
1
4
⟨ξ ′′(Φ(q)),Φ ′(q)◦2

⟩
−

5
2

[3⟨ξ ′′′(Φ(q)),Φ ′(q)◦3
⟩

2
− 2⟨ξ ′′(Φ(q)),Φ ′(q)◦2

⟩⟨ξ ′′′′(Φ(q)),Φ ′(q)◦4
⟩].

ince the copies are at the same temperature, the conclusion that φ′′(q) < 0 can be deduced
y the fact that th2(1.1) < 2

3 and then 3sh2q < 2ch2q , for q < 1.1. Hence φ(q) is concave on
[0, 2].

Since φ(0) <
√

2 and φ(2) > 0, there exists a unique q0 such that φ(q0) =
1
√

2
(2 − q0).

efine a distribution function as follows:

x(q) =
{
−
√

2φ′(q) 0 ≤ q ≤ q0,

1 q ≥ q0.
(13)

hus we claim that (x,Φ) is a minimizer of C for the model ξ and the proof is deferred to
ection 7.

.2. A replica symmetric example

Consider the multi-dimensional SK model, i.e. for A ∈ Sm
+
, ξ (A) = (β⃗2 ⊗ β⃗2) ◦ A◦2.

Formula (12) can be explicitly solved and we find that the multi-dimensional SK model is
replica symmetric at zero temperature.

Proposition 4. The multi-dimensional SK model is replica symmetric at zero temperature,
that is, the minimizer (L0, α0,Φ0) is given by

L0 = Q
1
2 (Q

1
2 (ξ ′(Q) + h⃗h⃗T )Q

1
2 )−

1
2 Q

1
2 , α0 = 0 and Φ0 =

t
m

Q (14)

nd the corresponding GSE is equal to

Sum ((Q
1
2 (ξ ′(Q) + h⃗h⃗T )Q

1
2 )

1
2 ).

The proof of Proposition 4 follows from Proposition 22 stated in Section 7.

. Further properties of the Crisanti–Sommers formula at positive temperature

In this section, we go back to the Crisanti–Sommers formula at positive temperature and
ist a sequence of properties of their minimizers. The proof of these propositions will be given
n Section 6.

The first two facts concern the role of 0 in the support of µ .
P
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roposition 5. If the external field vanishes, i.e., h⃗ = 0 and for p ≥ 4, there exists β⃗p such
that β⃗p ̸= 0, then 0 ∈ supp µP .

The next result shows that 0 can only be isolated point of the Parisi measure if the model
does not have an SK component.

Proposition 6. If 2⟨β⃗2 ⊗ β⃗2,Φ
′(0)◦2

⟩ ̸= ⟨Φ̂(0)−1Φ ′(0), Φ̂(0)−1Φ ′(0)⟩ and 0 ∈ supp µP , then
there exists q̂ > 0 such that µP ([0, q̂]) = µP ({0}).

We say two points x, y are consecutive isolated points of the support of a measure µ if x, y
are isolated points in supp µ with x < y and µ((x, y)) = 0. The next proposition is a weak
1-RSB criterion for the minimizer.

Proposition 7. If t ↦→ ⟨ξ ′′(Φ(t)),Φ ′(t)◦2
⟩
−

1
2 is convex in an interval I, then supp µP contains

t most 2 consecutive isolated points. In particular, if ξ (A) = (β⃗p ⊗ β⃗p) ⊙ A◦p, then supp µP

ontains at most 2 consecutive isolated points.

The next proposition is the high-dimensional analogue of Theorem 3 from [3] and shows
hat accumulation points in the support must be continuity points of the measure µP .

roposition 8. Suppose that there exist an increasing sequence (u−

l )l≥1 and a decreasing
equence (u+

l )l≥1 of supp µP such that liml→∞ u−

l = u0 = liml→∞ u+

l . Moreover, Φ ′(u0) > 0.
hen µP is continuous at u0.

The next criterion goes in the opposite direction and provides an example where a jump
iscontinuity must be present.

roposition 9. For any u0 ∈ supp µP , if ⟨ξ ′′(Q),Φ ′(u0)◦2
⟩ < ⟨Q−1Φ ′(u0)Q−1,Φ ′(u0)⟩, then

he Parisi measure µP has a jump discontinuity at u0. In particular, if Sum(ξ ′′(Q)⊙Q◦2) ≤ m,
P has a jump discontinuity at tx .

As in the one dimensional case, when an interval is in the support, µP has an explicit
ormula.

roposition 10. If (a, b) ⊆ supp µP with 0 ≤ a < b < m, then

µP ([0, u]) =
⟨ξ ′′′(Φ(u)),Φ ′(u)◦3

⟩

2Trace
(

(Φ ′(u)
1
2 (ξ ′′(Φ(u)) ⊙ Φ ′(u))Φ ′(u)

1
2 )

3
2

)
for all u ∈ (a, b).

Last, a property concerning the multidimensional SK model.

Proposition 11. If Φ ′(t) > 0 for any t ∈ [0, m], then the SK model is at most 1 replica
symmetric breaking (1RSB).

4. Proof of Theorem 2
In this section we provide a proof of Theorem 2.
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roof of Theorem 2. For each 1 ≤ i ≤ m, denote the i th unit vector in Rm by e⃗i =

(0, . . . , 0, 1, 0, . . . , 0). Given a vector α⃗, let α⃗ ⊕i α⃗ as α⃗ ⊗ e⃗i + e⃗i ⊗ α⃗. In this proof we
drop from our notation the dependencies on β and Q.

For any p ≥ 2, we consider arbitrarily c⃗p that also satisfies the requirement of the
inverse temperature, As the Crisanti–Sommers functional is differentiable at each β⃗p(i), where
p ≥ 2, 1 ≤ i ≤ n, we consider β⃗p + t c⃗p as inverse temperature and compute the first derivative
of the Crisanti–Sommers functional at t = 0.

dC

dt

⏐⏐⏐⏐
t=0

=
1
2

p
∫ m

0
x(t)⟨β⃗p ⊗ c⃗p + c⃗p ⊗ β⃗p,Φ(t)◦(p−1)

⊙ Φ ′(t)⟩dt

=
p
2

∫ m

0

∫ t

0
⟨β⃗p ⊗ c⃗p + c⃗p ⊗ β⃗p,Φi j (t)p−1Φ ′

i j (t)⟩dµP (s)dt

=
p
2

∫ m

0

∫ m

s
⟨β⃗p ⊗ c⃗p + c⃗p ⊗ β⃗p,Φi j (t)p−1Φ ′

i j (t)⟩dtdµP (s)

=
1
2
⟨β⃗p ⊗ c⃗p + c⃗p ⊗ β⃗p, Q◦p

−

∫ m

0
Φ(s)◦pdµP (s)⟩

= ⟨β⃗p ⊗ c⃗p, Q◦p
−

∫ m

0
Φ(s)◦pdµP (s)⟩. (15)

On the hand, integration by parts implies

E
[
∂ HN (σ⃗ )

∂t
HN (σ⃗ )

]
= N ⟨c⃗p ⊗ β⃗p, R1,2⟩

nd

E
⟨
∂ HN (σ⃗ )

∂t

⟩
ϵ,Q

= N ⟨c⃗p ⊗ β⃗p, Q◦p
− E⟨R◦p

1,2⟩ϵ,Q⟩. (16)

ast, we note that the differential of Fϵ
N (Q) at βp(i) is given by 1

N E⟨
∂ HN (σ⃗ )

∂t ⟩ϵ,Q , so by (16)

d
dt

Fϵ
N (Q) = ⟨c⃗p ⊗ β⃗p, Q◦p

− E⟨R◦p
1,2⟩ϵ,Q⟩. (17)

Moreover, by Hölder’s inequality, Fϵ
N is convex at βp(i), and this combined with the fact

hat C is both convex and differentiable at βp(i), we get

lim
N→∞

lim
ϵ→0

∂ Fϵ
N

∂t
=

∂C

∂t
.

A combination of (11), (15), and (17) yields

lim
N→∞

lim
ϵ→0

⟨c⃗p ⊗ β⃗p, Q◦p
− E⟨R◦p

1,2⟩ϵ,Q⟩ = ⟨β⃗p ⊗ c⃗p, Q◦p
−

∫ m

0
Φ(s)◦pdµP (s)⟩

hich is equivalent to say that, for each 1 ≤ i ≤ m,

⟨β⃗p ⊗ c⃗p, lim
N→∞

lim
ϵ→0

E⟨R◦p
1,2⟩ϵ,Q −

∫ m

0
Φ(s)◦pdµP (s)⟩ = 0.

As cp is chosen arbitrarily, we get the following relation,

lim
N→∞

lim
ϵ→0

E⟨R◦p
1,2⟩ϵ,Q =

∫ m

0
Φ(t)◦pdµP (t).

ince the even polynomials are dense on C[0, 1], we get the desired conclusion. □
390



A. Auffinger and Y. Zhou Stochastic Processes and their Applications 146 (2022) 382–413

5

r
i
p
f

5

t
m
a
T

d

W

w

b
t
f
d

s
F

L

. Proof of Theorem 3

This section covers the proof of Theorem 3. A little of preparation is needed and the proof
equires two initial steps that we split in the following two subsections. The first subsection
s devoted to construct the matrix Q∞, the second subsection provides a characterization for
oints in the support of the minimizer µβ and useful bounds for terms in the Crisanti–Sommers
unctional, the proof of Theorem 3 is presented in the third and last subsection.

.1. Construction of the matrix Q∞

We first modify the setting of Theorem 1 to achieve convergence of the minimizer for
he ground state energy. Let M be the collection of all continuously differentiable Lipschitz
onotone matrix path with Lipschitz derivatives that satisfies (6) without satisfying the

ssumption that Trace(Φ(t)) = t , but satisfying the assumption that for any t ∈ supp µ,
race(Φ(t)) = t .

We first claim that any matrix path minimizer of C lies in M . Moreover, we claim that any
iscrete path corresponds to a matrix path in M , hence

inf
r,x

¯
,Q
¯

Cr (x
¯
, Q

¯
) ≥ inf

x,Φ∈N×M
Cβ,Q(x,Φ). (18)

e leave the proof of this claim to next section. Moreover, as

inf
r,x

¯
,Q
¯

Cr (x
¯
, Q

¯
) ≤ inf

x,Φ∈N0×M0
Cβ,Q(x,Φ) and inf

x,Φ∈N ×M
Cβ,Q(x,Φ)

≥ inf
x,Φ∈N0×M0

Cβ,Q(x,Φ),

e obtain that infr,x
¯
,Q
¯

Cr (x
¯
, Q

¯
) ≤ infx,Φ∈N ×M Cβ,Q(x,Φ) and therefore

inf
r,x

¯
,Q
¯

Cr (x
¯
, Q

¯
) = inf

x,Φ∈N ×M
Cβ,Q(x,Φ).

Since any path Φ in M is continuously differentiable and Φ ′ is Lipschitz and uniformly
ounded, then by Arzela–Ascoli theorem, for any β ≥ 0, the minimizer Φβ,Q is also a con-
inuously differentiable function with Lipschitz and uniformly bounded derivative. Similarly,
or any β > 0, we get a subsequence {βn}n≥0 such that {Φβn ,Q} converges to a continuously
ifferentiable path Φ0. We will use this property from now on.

Fix β > 0. Let (xβ,Q,Φβ,Q) be an optimizer of (11) in N0 × M0. The following lemma
hows that there exists Qβ ∈ M such that Cβ,Qβ

(xβ,Qβ
,Φβ,Qβ

) = supQ∈M Cβ,Q(xβ,Q,Φβ,Q).
or Q ∈ M , let

C (Q) = inf
x,Φ

Cβ,Q(x,Φ) = Cβ,Q(xβ,Q,Φβ,Q).

emma 12. For any β > 0, the map Q ↦→ C (Q) is continuous. Furthermore, there exists
Qβ ∈ M such that

C (Qβ) = sup
Q∈M

C (Q).
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P
roof. We start by proving continuity of C . It suffices to show that for any sequence
{Qn} ∈ M converging to Q ∈ M , {C (xn,Φn)} converges to C (x,Φ), where (xn,Φn) and
(x,Φ) are minimizers of (11) with constraints Qn and Q, respectively.

Let F = (Fi, j )1≤i, j≤m : Rm×m
→ Rm×m be a continuous and bounded function. Since

Qn → Q as n → ∞, we obtain from (4),

lim
n→∞

lim
N→∞

lim
ϵ→0

E⟨F(R1,2)⟩ϵ,Qn = lim
N→∞

lim
ϵ→0

E⟨F(R1,2)⟩ϵ,Q .

On the other hand, Theorem 2 implies

lim
N→∞

lim
ϵ→0

E⟨F(R1,2)⟩ϵ,Q =

∫ m

0
F ◦ Φ(t)dµ(t)

and

lim
N→∞

lim
ϵ→0

E⟨F(R1,2)⟩ϵ,Qn =

∫ m

0
F ◦ Φn(t)dµn(t).

Combining the above displays we obtain

lim
n→∞

∫ m

0
F ◦ Φn(t)dµn(t) =

∫ m

0
F ◦ Φ(t)dµ(t). (19)

Now fix t0 ∈ supp µ and set A0 := Φ(t0). Applying (19), with F : Rm×m
→ Rm×m given

by

F(X ) = 1{X=A0} := (1{X=A0})1≤i, j≤m,

we obtain that

lim
n→∞

∫ m

0
1{Φn (t)=Φ(t0)}dµn(t) = (µ({t0})). (20)

Since t0 ∈ supp µ we have Trace(Φ(t0)) = t0. Thus the indicator function above is only non-
zero in a subset of {t ∈ [0, m] : Trace(Φn(t)) = t0}. At the same time, for any t ∈ supp µn ,
Trace(Φn(t)) = t . These two observations, combined with (20), imply that for n sufficiently
large, Φn(t0) = Φ(t0) and µn({t0}) → µ({t0}) as n → ∞.

Similarly, for any s0 /∈ supp µ, consider the function G(X ) = 1{trace X=s0} :=

(1{trace X=s0})1≤i, j≤m . Another application of (19) implies that

lim
n→∞

∫ m

0
1{t=s0}dµn(t) = 0,

which leads to µn({s0}) → 0 as n → ∞. Last, since s0 /∈ supp µ, the value of Φ(s0) will not
affect the value of C (x,Φ) (see Remark 1).

Looking back at (7), the facts that Φn(t) → Φ(t) for t ∈ supp µ, and µn({s}) → µ({s})
∀s imply Cβ,Qn (xn,Φn) → Cβ,Q(x,Φ) as n → ∞ and thus continuity of C (Q) with respect
to Q in M . The second assertion in the lemma now follows from continuity of C (Q) and
compactness of the space M . □

Recall the definition of free energy with any constraint Q ∈ Sm
+

,

Fϵ,Q
N (β) =

1
N
E log

∫
Qϵ

exp β

⎛⎝HN (σ⃗ ) +
m∑

h⃗( j)
N∑

σ⃗i ( j)

⎞⎠ dλm
N (σ⃗ ),
N j=1 i=1
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H

nd denote the free energy with no constraint by

FN (β) =
1
N
E log

∫
(SN )m

exp β

⎛⎝HN (σ⃗ ) +
m∑

j=1

h⃗( j)
N∑

i=1

σ⃗i ( j)

⎞⎠ dλm
N (σ⃗ ).

he limiting free energy was obtained in [12]:

heorem 13 ([12], Theorem 1). For any m ≥ 1, the limit of the free energy is given by

lim
N→∞

FN (β) = sup
Q∈M

inf
xQ ,ΦQ ,ΛQ

P(xQ,ΦQ,ΛQ, Q) = sup
Q∈M

inf
xQ ,ΦQ

C (xQ,ΦQ, Q).

Let {Qβ}β>0 be a sequence given by Lemma 12. Since {Qβ}β>0 is bounded, there exists a
subsequence {Qβk }k≥0 and Q∞ ∈ M such that {Qβk }k≥0 converges to Q∞ as βk → ∞. Without
loss of generality, we will assume {Qβ} converges to Q∞. By Lemma 12, Theorems 1, and 13
we have

lim
N→∞

FN (β) = lim
ϵ→0

lim
N→∞

F
ϵ,Qβ

N (β). (21)

Moreover, since Qβ → Q∞ as β → ∞, then by dominated convergence theorem, we obtain

lim
β→∞

lim
ϵ→0

lim
N→∞

1
β

F
ϵ,Qβ

N (β) = lim
β→∞

lim
ϵ→0

lim
N→∞

1
β

Fϵ,Q∞

N (β). (22)

We now investigate the ground state energy

GSE := lim
N→∞

max
σ⃗∈(SN )m

HN (σ⃗ )
N

.

A standard computation (see [1, Section 5], for instance) implies that

GSE = lim
β→∞

lim
N→∞

1
β

FN (β) almost surely,

nd using (21) we obtain

GSE = lim
β→∞

lim
ϵ→0

lim
N→∞

1
β

F
ϵ,Qβ

N (β) almost surely.

Combining with (22) we obtain

Proposition 14. We have the following:

GSE = lim
N→∞

max
R(σ⃗ ,σ⃗ )∈Q∞

HN (σ⃗ )
N

= lim
β→∞

lim
ϵ→0

lim
N→∞

1
β

Fϵ,Q∞

N (β).

.2. Bounds on the minimizers and closed equations for points in the support of µβ

For any matrix A and x⃗ p satisfying the requirements in (1), we denote the corresponding
amiltonian by

X j
N (σ⃗ ) =

∑
p≥2

x⃗ p( j)HN ,p(σ⃗ ( j)).

and the covariance by ζ (A) = Σ (x⃗ ⊗ x⃗ ) ⊙ A◦p.
p≥2 p p
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emma 15. There exists a constant Cζ depending only on ζ such that for any β > 0,

βxβ,Q(q) ≤
Cζ

Sum(ζ (Q) − ζ (Φβ,Q(q)))
,∀q ∈ [0, m]. (23)

roof of Lemma 15. Note that for any N ≥ 1, by Dudley’s entropy integral,

E max
σ⃗∈Sm

N

X N (σ⃗ )
N

≤ Cζ . (24)

Here the constant Cζ > 0 depends only on ζ .
From Gaussian integration by parts, we obtain,

β(ζ (Q) − E⟨ζ (R(σ⃗ 1, σ⃗ 2))⟩β) = E⟨
X N (σ⃗ )

N
⟩β (25)

here ⟨·⟩β is the Gibbs average with respect to the Gibbs measure G N ,β(σ ) defined by

G N ,β(σ⃗ ) =
exp β X N (σ⃗ )

Z N (β)
.

rom the differentiability of β⃗p, we also have

lim
N→∞

E⟨ζ (R(σ⃗ 1, σ⃗ 2))⟩β =

∫ m

0
ζ (Φβ,Q(s))xβ,Q(ds). (26)

y (24)–(26), we then obtain,

βSum(ζ (Q) −
∫ m

0
ζ (Φβ,Q(s))xβ,Q(ds)) = E⟨

X N (σ⃗ )
N

⟩β ≤ E max
σ∈SN

X N (σ )
N

≤ Cζ .

inally combining with the following two inequalities which can be derived from integration
y parts,∫ m

0
βxβ,Q(s)ζ (Φβ,Q(s))′ ⊙ Φ ′

β,Q(s)ds = β(ζ (Q) −
∫ m

0
ζ (Φβ,Q(s))xβ,Q(ds))

nd ∫ m

q
βxβ,Q(s)ζ (Φ(s))′ ⊙ Φ ′

β,Q(s)ds ≥ βxβ,Q(q)(ζ (Q) − ζ (Φβ,Q(q))),∀q ∈ [0, m]

we then obtain that,

βxβ,Q(q)Sum(ζ (Q) − ζ (Φβ,Q(q))) ≤ Cζ ,∀q ∈ [0, m],

as desired. □

Lemma 16. There exist a constant C ′

ξ > 0 and a positive semidefinite matrix Aξ depending
only on ξ such that

lim sup
β→∞

β(m − qβ) ≤ C ′

ξ

and

lim sup
∫ m

βxβ,Q(s)Φ ′

i, j (s)ds ≤ Aξ .

β→∞ 0
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roof of Lemma 16. From Lemma 15, we have

β = βxβ,Q(qβ) ≤
Cζ

Sum(ζ (Q) − ζ (Φβ,Q(qβ)))
. (27)

hus the denominator on the right-side of (27) must go to 0 and we obtain

lim
β→∞

qβ = m. (28)

On the other hand, as Sum(ζ ) is non-decreasing, by the mean value theorem,

βSum(ζ (Φβ,Q(qβ))′ ⊙ (Q − Φβ,Q(qβ))) ≤ βSum(ζ (Q) − ζ (Φβ,Q(qβ))) ≤ Cξ .

Consequently,

Sum(ζ ′(Q) ⊙ lim sup
β→∞

β(Q − Φβ,Q(qβ))) ≤ Cζ .

By the arbitrariness of ζ , the inequality above implies that lim supβ→∞ β(Q − Φβ,Q(qβ)) is a
ounded matrix. Moreover, by integration by parts, we obtain,

Cζ ≥

∫ m

0
βxβ,Q(s)ζ ′(Φβ,Q(s)) ⊙ Φ ′

β,Q(s)ds ≥

∫ m

m
2

βxβ,Q(s)ζ ′(Φβ,Q(s)) ⊙ Φ ′

β,Q(s)ds

≥ ζ ′(Φβ,Q(
m
2

)) ⊙
∫ m

m
2

βxβ,Q(s)Φ ′

β,Q(s)ds.

imilarly, by the arbitrariness of ζ , the inequality above implies that lim supβ→∞

∫ m
m
2

βxβ,Q(s)
′

β,Q(s)ds is a bounded matrix.
Finally,∫ m

0
βxβ,Q(s)Φ ′

β,Q(s)ds =

∫ m
2

0
βxβ,Q(s)Φ ′

β,Q(s)ds +
∫ m

m
2

βxβ,Q(s)Φ ′

β,Q(s)ds

≤

∫ m
2

0

Cξ

Sum(ξ (Q) − ξ (Φβ,Q(q)))
dq +

∫ m

m
2

βxβ,Q(s)Φ ′

β,Q(s)ds

≤
m
2

Cξ

Sum(ξ (Q) − ξ (Φβ,Q( m
2 )))

+

∫ m

m
2

βxβ,Q(s)Φ ′

β,Q(s)ds.

s limβ→∞ Φβ,Q(t) = Φ0(t) converges uniformly, we obtain that for β sufficiently large,
m

0 βxβ,Q(s)Φ ′

β,Q(s)ds is a uniformly bounded matrix. □

Combining the lemmas above, we can use the Helly’s selection theorem combined with
diagonalization process to guarantee the vague convergence of (βn xβn ,Q)n≥1. As for Φ0(t)

atisfying (5), we can guarantee the existence of the following limit:

lim
k→∞

βnk xβnk ,Q ∈ N vaguely on [0, m)

lim
k→∞

βnk (Q − Φβnk ,Q(qβnk
)),

lim
k→∞

∫ m

0
βnk xβnk ,Q(s)Φ ′

βnk ,Q(s)ds.

Without loss of generality, we can assume all these convergences hold for the sequence (βn)n≥1
and denote

α0 := lim βn xβ ,Q ∈ N vaguely on [0, m)

n→∞

n
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Ω0 := lim
n→∞

βn(Q − Φβn ,Q(qβn )), (29)

L0 := lim
n→∞

∫ m

0
βn xβn ,Q(s)Φ ′

βn ,Q(s)ds.

emma 17. Let (xβ,Q,Λβ,Q,Φβ,Q) be a minimizer of (8) and µβ([0, t]) = xβ,Q(t). For any
in the support of µβ , we have that

Φβ,Q(q) = (Λβ,Q − D
xβ,Q
β (0))−1h⃗h⃗T (Λβ,Q − D

xβ,Q
β (0))−1

+

∫ q

0
(Λβ,Q − D

xβ,Q
β (s))−1(ξ ′′

β (Φβ,Q(s)) ⊙ Φ ′

β,Q(s))(Λβ,Q − D
xβ,Q
β (s))−1ds (30)

where D
xβ,Q
β (q) =

∫ m
q x(s)ξ ′′

β (Φ(s)) ⊙ Φ ′

β,Q(s)ds.

Proof of Lemma 17. Consider arbitrarily probability measure µ with distribution function
y, and set z(t) := (1 − ϵ)xβ,Q(t) + ϵy(t). Then y(t) − xβ,Q(t) =

∫ t
0 d(µ − µβ)(s). By a

straight-forward computation, we obtain that,

∂ϵPβ(Λβ,Q, z,Φβ,Q)
⏐⏐⏐⏐
ϵ=0

=

∫ T̂

0
(y(t) − xβ,Q(t))

⟨
Γ (t), ξ ′′(Φβ,Q(t)) ⊙ Φ ′

β,Q(t)
⟩
dt ≥ 0,

where

Γ (t) = (Λβ,Q − D
xβ,Q
β (0))−1h⃗h⃗T (Λβ,Q − D

xβ,Q
β (0))−1

+

∫ t

0
(Λβ,Q − D

xβ,Q
β (s))−1(ξ ′′

β (Φβ,Q(s)) ⊙ Φ ′

β,Q(s))

× (Λβ,Q − D
xβ,Q
β (s))−1ds − Φβ,Q(t).

By Fubini’s theorem,∫ m

0

∫ m

s

⟨
Γ (t), ξ ′′(Φβ,Q(t)) ⊙ Φ ′

β,Q(t)
⟩
dtdµ(s)

≥

∫ m

0

∫ m

s

⟨
Γ (t), ξ ′′(Φβ,Q(t)) ⊙ Φ ′

β,Q(t)
⟩
dtdµβ(s)

hich implies that∫ m

0
Γ̄ (s)dµ(s) ≥

∫ m

0
Γ̄ (s)dµβ(s)

here Γ̄ (s) :=
∫ m

s

⟨
Γ (t), ξ ′′(Φβ,Q(t)) ⊙ Φ ′

β,Q(t)
⟩

ds. Since the inequality holds for all µ, this
s equivalent to say that

Γ̄ (t) ≥
∫ m

0
Γ̄ (s)dµβ(s)

or all t ∈ [0, m] and equality holds for every point in supp µβ . Note that if s ∈ supp µβ ∩

0, m), we obtain
d
dt

Γ̄ (t) = −⟨Γ (t), ξ ′′(Φβ,Q(t)) ⊙ Φ ′

β,Q(t)⟩ = 0.

If t is an isolated point in supp µβ , then Φ ′(t) can be any positive semidefinite matrix
without changing the value of C , which implies that Γ (t) = 0 and thus (30) holds. Moreover,
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f t is not an isolated point, then as Φβ,Q(t) is a continuously differentiable matrix path, we
an derive the same conclusion that Γ (t) = 0 by continuity. □

emma 18. For any q in the support of µβ , we have that

Λβ − D
xβ

β (q) =
(∫ m

q
xβ,Q(s)Φ ′

β,Q(s)ds
)−1

. (31)

roof of Lemma 18. Recall the r step discretization of the Parisi functional given by (10). For
≥ 1, denote by Mr the space of all step functions x ∈ N with at most r jumps and by M ′

r
he space of all (x,Λ, Q) with x ∈ Mr and Λ ∈ Sm

+
satisfying Λ >

∫ m
0 βx(s)ξ ′′

β (Φ(s))⊙Φ ′(s)ds.
Let (xr ,Λ

r , Qr ) be the minimizer of Pβ restricted to Mr . Based on the critical point of the
arisi formula, i.e., for the minimizer of the r step discretization, ∂Q pPr = 0 and ∂Q pCr = 0,
e obtain the following equation:

Λ−1
1 (h⃗h⃗T

+ ξ ′(Q1))Λ−1
1 + Σ1≤k≤p−1

1
xk

(Λ−1
k − Λ−1

k+1) = Q p

− h⃗h⃗T
+ D−1

1 Q1 D−1
1 +

∑
1≤k≤p−1

1
xk

(D−1
k+1 − D−1

k ) = ξ ′(Q p) for 2 ≤ p ≤ r − 1 (32)

nd for p = 1,

Λ−1
1 (h⃗h⃗T

+ ξ ′(Q1))Λ−1
1 = Q1, ξ ′(Q1) = −h⃗h⃗T

+ D−1
1 Q1 D−1

1 .

oreover, based on the extremality over Λk , we obtain

−Λ−1
1 (h⃗h⃗T

+ ξ ′(Q1))Λ−1
1 + Q − (Λk)−1

+ Σ1≤p≤r−1
1
x p

(Λ−1
p+1 − Λ−1

p ) = 0.

Combining with 5.2 for p = r − 1 and set Dx,p
β,r = Σp≤k≤r−1xk(ξ ′(Qk+1) − ξ ′(Qk)) to be

he discrete form of Dx
β,Q(q) in r -step discretization, then we get the following relation:

Λr−1 = Λ− Dx,r−1
β,r = (Q − Qr−1)−1.

Relation (32) also implies that xk(ξ ′(Qk+1) − ξ ′(Qk)) = D−1
k+1 − D−1

k for 1 ≤ k < r − 1.
ence based on the equations above, we get

Λp+1 − Λp = x p(ξ ′

β(Q p+1) − ξ ′

β(Q p))

= D−1
p+1 − D−1

p

ince Dr−1 = Q − Qr−1 = Λ−1
r−1, we then get Λp = D−1

p for 1 ≤ p ≤ r − 1.
Then (xr ,Λ

r , Qr ) satisfies Λn
−Λ(q) = (

∫ m
q xr (s)Φ ′(s)ds)−1 for all q in the support of the

robability measure µr induced by xr . By the uniqueness of the minimizer (xr ,Λ
r ), we may

ass to a subsequence of (xr ,Λ
r ) such that its limit equals (xβ,Λβ, Qβ). Thus we have the

esired conclusion. □

Recall the constants defined in (29). ∫ m ′
emma 19. We have 0 < Ω0 < ∞ and for any Φ satisfying (5), L0 > 0 α0(s)Φ0(s)ds.
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P
q

h

roof of Lemma 19. Assume by contradiction that Ω0 = 0. We first notice that Eq. (31) for
= qβn reads as

Λβn = ξ ′(Q) − ξ ′(Φβn (qβn )) + (Q − Φβn (qβn ))−1,

ence

lim
n→∞

Λβn

βn
= Ω−1

0 = ∞.

Combining with the fact that D
xβn
βn

(q) is bounded for any q ∈ [0, m], we obtain [βn
−1(Λβn −

D
xβn
βn

(q))]−1 converges to zero uniformly on [0, m].
By (30), we can reach a contradiction as follows,

Q = lim
n→∞

Φβn (qβn )

= lim
n→∞

[βn
−1(Λβn − D

xβn
βn

(0))]−1h⃗h⃗T [βn
−1(Λβn − D

xβn
βn

(0))]−1

+

∫ qβn

0
[βn

−1(Λβn − D
xβn
βn

(s))]−1(ξ ′′

βn
(Φβn ,Q(s)) ⊙ Φ ′

βn ,Q(s))

× [βn
−1(Λβn − D

xβn
βn

(s))]−1ds.

In conclusion, 0 < Ω0. A similar argument shows that Ω0 < ∞.
Next, note that from (28),

lim
k→∞

qβk = m.

Therefore, for any fixed q ∈ (0, m)∫ m

0
βn xβn ,Q(s)Φ ′

βn ,Q(s)ds =

∫ qβn

0
βn xβn ,Q(s)Φ ′

βn ,Q(s)ds +
∫ m

qβn

xβn ,Q(s)Φ ′

βn ,Q(s)ds

≥

∫ qβn

0
βn xβn (s)Φ ′

0(s)ds + βn(Q − Φβn (qβn ))

Then by the dominated convergence theorem, we obtain

L0 ≥

∫ q

0
α0(s)Φ ′

0(s)ds + Ω0.

Since this holds for all q ∈ (0, m), by letting q tend to m, we obtain,

L0 ≥

∫ m

0
α0(s)Φ ′

0(s)ds + Ω0.

As Ω0 > 0, we get the desired conclusion. □

5.3. Proof of Theorem 3

We are finally ready to prove Theorem 3.
We rewrite the Crisanti–Sommers functional (7) as follows:

Cβ,Q(x,Φ) =
1
2

[
⟨ξ ′

β(Φ(m)) + h⃗β h⃗T
β , x̌(m)⟩ −

∫ m

0
⟨Φ̌(t), ξ ′′

β (Φ(t)) ⊙ Φ ′(t)⟩dt

+

∫ tx

0
⟨(Φ̌(m) − Φ̌(t))−1,Φ ′(t)⟩dt + log |Φ(m) − Φ(tx )|

]
where Φ̌(t) :=

∫ t x(s)Φ ′(s)ds.
0
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N

roof of Theorem 3. We will consider that case Q = Q∞ as the general case is similar.
We set (xβ,Φβ) as the minimizer under the constraint Q = Q∞. Now we start with the lower
bound.

For any fixed Φ satisfying (5), based on the definition of L0 and α0, we obtain that

L0 = lim
β→∞

∫ m

0
βn xβn (s)Φ ′

βn
(s)ds = lim

n→∞
βnΦ̌βn (m)

lim
n→∞

βnΦ̌βn (q) =
∫ q

0
α0(s)Φ ′

0(s)ds, q ∈ [0, m).

In addition, from Lemma 19,

lim
n→∞

log |Q − Φβn (qβn )|
βn

= lim
n→∞

log |βn(Q − Φβn (qβn ))|
βn

− m
log βn

βn
= 0.

ence by applying Fatou’s lemma and the bounded convergence theorem, we obtain

GSE = lim
n→∞

Cβn (xβn ,Φβn )
βn

≥
1
2

[
⟨ξ ′(Q) + h⃗h⃗T , lim

n→∞
βnΦ̌βn (m)⟩

−

∫ m

0
⟨ lim

n→∞
ξ ′′(Φβn (t)) ⊙ Φ ′

βn
(t), lim

n→∞
βnΦ̌βn (t)⟩dt

+

∫ m

0
lim

n→∞
1[0,qβn ]⟨(βn(Φ̌βn (m) − Φ̌βn (t)))−1,Φ ′

βn
(t)⟩dt

+ lim
n→∞

log |Q − Φβn (qβn )|
βn

]
= C (L0, α0,Φ0)

hich implies that

GSE ≥ inf
(L ,α,Φ)∈K (Q)

C (L , α,Φ).

We now move the matching upper bound for GSE . Consider any (L , α,Φ) ∈ K (Q). As
∈ N0, there exists c > 0 such that α(t) is constant for all t ∈ [m − c, m]. Then for any

[m−c,m], we can set Φ(t) = t−m+c
c Q+

m−t
c Φ(m−c) without changing the value of C (L , α,Φ).

As Q−Φ(m−c) is positive definite, then Φ(m−
c
2 ) = 1

2 (Q+Φ(m−c)) is positive definite.
There exists ϵ sufficiently small such that 1

2 (Q − Φ(m − c)) − ϵΩ1 is still positive definite,
where Ω = L −

∫ m
0 α(s)Φ ′(s)ds > 0 and Ω1 =

Ω
Trace(Ω) .

Take vβ = m −
1
β

Trace(Ω ) and without loss of generality we can assume vβ > m − ϵ

y choosing β sufficiently large. Consider yβ ∈ M defined by yβ(s) = 1 on [vβ, m] and
yβ(s) = min(α(s)/β, 1) on [0, vβ).

Next, for each vβ , we customize Φ by Φβ as follows,

Φβ(t) =

⎧⎪⎪⎨⎪⎪⎩
Φ(t) for t ∈ [0, m − c],
Q − (m − vβ) · Ω1 for t = vβ,

vβ−t
vβ−m+cΦ(m − c) + t−m+c

vβ−m+cΦ(vβ) for t ∈ [m − c, vβ]
Q − (m − t) · Ω1 for t ∈ [vβ, m]

otice that lim Φ (t) = Φ(t) and lim Φ ′ (t) = Φ ′(t) for t ∈ [0, m].
β→∞ β β→∞ β
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Based on the definition yβ , we notice that (βyβ) converges vaguely to α on [0, m) with∫ m

0
βyβ(s)Φ ′

β(s)ds = β(Φβ(m) − Φβ(vβ)) +
∫ vβ

0
min(α(s), β)Φ ′

β(s)ds → Ω

+

∫ m

0
α(s)Φ ′(s)ds = L .

We claim that

lim
β→∞

Cβ,Q(yβ,Φβ)
β

= C (L , α,Φ). (33)

f (33) is valid, from the Crisanti–Sommers formula, we have

GSE = lim
β→∞

lim
ϵ→0

lim
N→∞

Fϵ,Q∞

N (β)
β

= lim
β→∞

inf
x,Φ

Cβ,Q∞
(x,Φ)

β

≤ lim
β→∞

Cβ,Q∞
(yβ,Φβ)
β

= C (L , α,Φ).

Since this is true for any α, Lemma 19 implies

GSE ≤ inf
(L ,α,Φ)∈K (Q)

C (L , α,Φ).

ow it suffices for us to prove the claim (33).
Firstly,

log |Φβ(m) − Φβ(vβ)|
β

=
log |β(Φβ(m) − Φβ(vβ))|

β
− m

log β

β
→ 0.

Secondly,

1
β
⟨ξ ′

β(Q) + h⃗β h⃗T
β , Φ̌β(m)⟩ = ⟨ξ ′(Q) + h⃗h⃗T ,

∫ m

0
βyβ(t)Φ ′

β(t)dt⟩

→ ⟨ξ ′(Q) + h⃗h⃗T , L⟩.

Thirdly, since βΦ̌β(q) ≤
∫ m

0 βyβ(s)Φ ′

β(s)ds for q ∈ [0, m], by bounded convergence
theorem and Lemma 19,

1
β

∫ m

0
⟨ξ ′′(Φβ(t)) ⊙ Φ ′

β(t), Φ̌β(t)⟩dt =
∫ m

0
⟨ξ ′′(Φβ(t)) ⊙ Φ ′

β(t),
∫ t

0
βyβ(s)Φ ′

β(s)ds⟩dt

→

∫ m

0
⟨ξ ′′(Φ(t)) ⊙ Φ ′(t),∫ t

0
α(s)Φ ′(s)ds⟩dt, as β → ∞.

Finally,⏐⏐⏐⏐∫ vβ

0
⟨[β(Φ̌β(m) − Φ̌β(t))]−1,Φ ′

β(t)⟩dt −
∫ vβ

0
⟨(L −

∫ t

0
α(s)Φ ′(s)ds)−1,Φ ′(t)⟩dt

⏐⏐⏐⏐
≤

⏐⏐⏐⏐∫ vβ

0
⟨[β(Φ̌β(m) − Φ̌β(t))]−1

− (L −

∫ t

0
α(s)Φ ′(s)ds)−1,Φ ′

β(t)⟩dt
⏐⏐⏐⏐

−

⏐⏐⏐⏐∫ vβ

0
⟨(L −

∫ t

0
α(s)Φ ′(s)ds)−1,Φ ′(t) − Φ ′

β(t)⟩dt
⏐⏐⏐⏐ .
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s L −
∫ t

0 α(s)Φ ′(s)ds > Ω and therefore (L −
∫ t

0 α(s)Φ ′(s)ds)−1 > Ω−1, we obtain that the
econd term in the inequality above tends to 0 as β → ∞.

Now it remains to deal with the first term. Since for t ∈ [0, m],

lim
β→∞

β(Φ̌β(m) − Φ̌β(t)) = L −

∫ t

0
α(s)Φ ′(s)ds,

or ϵ > 0 sufficiently small, there exists β0 large enough, such that whenever β > β0,

∥(β(Φ̌β(m) − Φ̌β(t)))−1
− (L −

∫ t

0
α(s)Φ ′(s)ds)−1

∥∞ < ϵ.

y the definition of Ω , we also get L−
∫ t

0 α(s)Φ ′(s)ds > Ω and then (L−
∫ t

0 α(s)Φ ′(s)ds)−1 >
−1, for t ∈ [0, m). Moreover, by the setting of Φβ and Φ, they are uniformly bounded, i.e.

here exists M > 0 such that for all t ∈ [0, m], ∥Φ(t)∥∞ < M .
Based on the relations above, we obtain

Mβ :=

⏐⏐⏐⏐∫ vβ

0
⟨[β(Φ̌β(m) − Φ̌β(t))]−1

− (L −

∫ t

0
α(s)Φ ′(s)ds)−1,Φ ′

β(t)⟩dt
⏐⏐⏐⏐

≤

⏐⏐⏐⏐∫ m

0
⟨1[0,vβ ](t)[β(Φ̌β(m) − Φ̌β(t))]−1(L − βΦ̌β(m))

× (L −

∫ t

0
α(s)Φ ′(s)ds)−1,Φ ′

β(t)⟩dt
⏐⏐⏐⏐

+

⏐⏐⏐⏐ ∫ m

0
⟨1[0,vβ ](t)[β(Φ̌β(m) − Φ̌β(t))]−1

× (
∫ t

0
α(s)Φ ′(s)ds − βΦ̌β(t))(L −

∫ t

0
α(s)Φ ′(s)ds)−1,Φ ′

β(t)⟩dt
⏐⏐⏐⏐

hen by dominated convergence theorem, we get that Mβ → 0 as β → ∞. Theorem 3
mmediately follows. □

We end this section with the proof of (18).

roof of (18). It suffices to show that each discrete path corresponds to a matrix path in M .
onsider a discrete monotone matrix path encoded by an increasing sequence of real numbers
nd a monotone sequence of n × n symmetric positive semidefinite matrices,

0 = x0 ≤ x1 ≤ · · · ≤ xr−2 ≤ xr−1 ≤ 1,

0 = Q0 ≤ Q1 ≤ · · · ≤ Qr−2 ≤ Qr−1 ≤ Qr = Q,

here r ≥ 1. As before, we denote x
¯
= (xk)r−1

k=0 and Q
¯
= (Qk)r

k=1.
Taking tk := trace (Qk) we define a Lipschitz path Φ by taking Φ(tk) = Qk at each point

k and interpolate by sine functions:

Φ(tk) = Qk,

Φ(t) =
1
2

[Φ(tk) + Φ(tk+1)] +
1
2

[Φ(tk+1) − Φ(tk)]

· sin
(

π
2t − tk − tk+1

)
for tk ≤ t ≤ tk+1.
2(tk+1 − tk)
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m
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hus,

Φ ′(t) =
π

2
·
Φ(tk+1) − Φ(tk)

tk+1 − tk
· cos

(
π

2t − tk − tk+1

2(tk+1 − tk)

)
nd we set x(t) = xk for tk ≤ t < tk+1.

It is not difficult to show from (9), that the Crisanti–Sommers functionals agree. From the
onstruction above, we obtain that the desired Φ lies in M , which means Φ is a continuously
ifferentiable Lipschitz monotone matrix path with Lipschitz derivatives that satisfies (6)
atisfying the assumption that for any t ∈ supp µ, Trace Φ(t) = t . □

. Proofs of Propositions 5–11

In this section, without confusion of notations, we absorb the β into the model ξ in this
ection. Our starting point to prove all propositions is a critical point equation for points in the
upport of the Parisi measure.

emma 20. Let (x,Φ) be a minimizer of (7). For t ∈ supp µβ , the following equation holds:

ξ ′(Φ(t)) + h⃗h⃗T
=

∫ t

0
Φ̂(s)−1Φ ′(s)Φ̂(s)−1ds.

roof of Lemma 20. Let a(t) be any non-zero continuous function on [0, m] satisfying
≤ t + a(t) ≤ m for all t ∈ [0, m] and |a(t) − a(t ′)| ≤ |t − t ′| for all t, t ′ ∈ [0, m]. Assume

hat a(0) = 0 and a(t) = 0, for all t ∈ [T̂ , m].
Set Θ(ϵ, t) = (1− ϵ)Φ(t + a(t))+ ϵΨ (t + a(t)), where Ψ is an arbitrary matrix path in M .

ince (x,Φ) is a minimizer of the Crisanti–Sommers functional

0 ≤ ∂ϵC (x,Θ(ϵ, t))
⏐⏐⏐⏐
ϵ=0

(34)

=

∫ T̂

0

⟨∫ t

0
Φ̂(s)−1Φ ′(s)Φ̂(s)−1ds − h⃗h⃗T

− ξ ′(Φ(t)),Ψ (t) − Φ(t) + a(t)Φ ′(t)
⟩
µP (dt).

Assume that the equality above holds (we provide the details of the computation of the
erivative below). We now claim that (34) implies⟨∫ t

0
Φ̂(s)−1Φ ′(s)Φ̂(s)−1ds − h⃗h⃗T

− ξ ′(Φ(t)),Ψ (t) − Φ(t)
⟩

(35)

ust vanish for all t ̸= 0 and t ∈ supp µP . Indeed, if (35) does not vanish, we can always
odify Ψ (t) − Φ(t) and a(t) so that (34) is negative.
Now, we turn to the proof of (34). By setting Θ(ϵ, t) := (1−ϵ)Φ(t +ϵa(t))+ϵΨ (t +ϵa(t)),

e start by calculating the differential of C at ϵ = 0:

2
d
dϵ

C (x,Θ)
⏐⏐⏐⏐
ϵ=0

=
d
dϵ

[∫ n

0
x(t)⟨ξ ′(Θ(t)) + h⃗h⃗T ,Θ ′(t)⟩dt

+ log |Θ(n) −Θ(T̂ )| +
∫ T̂

0
⟨Θ̂(t)−1,Θ ′(t)⟩dt

]⏐⏐⏐⏐
ϵ=0

:= I + I I + I I I. (36)
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ext, we notice that
d
dϵ

Θ(t)
⏐⏐⏐⏐
ϵ=0

= Ψ (t) − Φ(t) + a(t)Φ ′(t) (37)

nd
d
dϵ

Θ ′(t)
⏐⏐⏐⏐
ϵ=0

= (Ψ (t) − Φ(t) + a(t)Φ ′(t))′. (38)

Thus, combining (36), (37), and (38), we obtain

I =

∫ T̂

0
x(t)⟨ξ ′′(Φ(t)) ⊙ Φ ′(t),Ψ (t) − Φ(t) + a(t)Φ ′(t)⟩dt

+

∫ T̂

0
x(t)⟨ξ ′(Φ(t)) + h⃗h⃗T , (Ψ (t) − Φ(t) + a(t)Φ ′(t))′⟩dt, (39)

and

I I =

⟨
(Φ(m) − Φ(T̂ ))−1,Ψ (m) − Φ(m) + a(m)Φ ′(m)

⟩
−

⟨
(Φ(m) − Φ(T̂ ))−1,Ψ (T̂ ) − Φ(T̂ ) + a(T̂ )Φ ′(T̂ )

⟩
= 0, (40)

and, by integration by parts,

I I I = −

∫ T̂

0

∫ m

t
x(s)

⟨
Φ̂(t)−1Φ ′(t)Φ̂(t)−1, (Ψ (s) − Φ(s) + a(s)Φ ′(s))′

⟩
dsdt

+

∫ T̂

0

⟨
Φ̂(t)−1, (Ψ (t) − Φ(t) + a(t)Φ ′(t))′

⟩
dt

= −

∫ T̂

0
x(t)

⟨
(Ψ (t) − Φ(t) + a(t)Φ ′(t))′,

∫ t

0
Φ̂(t)−1Φ ′(t)Φ̂(t)−1ds

⟩
dt

−

∫ T̂

0
x(t)

⟨
Ψ (t) − Φ(t) + a(t)Φ ′(t), Φ̂(t)−1Φ ′(t)Φ̂(t)−1

⟩
dt. (41)

Here, we use the fact that Ψ (t) = Φ(t) for t ∈ [T̂ , m] and a(0) = 0 and a(t) = 0, for all
t ∈ [T̂ , m].

By adding (39), (40), and (41), and using (36) we get

d
dϵ

C (x,Θ)
⏐⏐⏐⏐
ϵ=0

=
1
2

[ ∫ T̂

0
x(t)

⟨
Φ ′(t) ⊙ ξ ′′(Φ(t)) − Φ̂(t)−1Φ ′(t)Φ̂(t)−1,

Ψ (t) − Φ(t) + a(t)Φ(t)
⟩

dt

+

∫ T̂

0
x(t)

⟨
h⃗h⃗T

+ ξ ′(Φ(t))

−

∫ t

0
Φ̂(s)−1Φ ′(s)Φ̂(s)−1ds, (Ψ (t) − Φ(t) + a(t)Φ ′(t))′

⟩
dt

]
=

1
2

[ ∫ T̂

0
x(t)(

⟨
h⃗h⃗T

+ ξ ′(Φ(t)) −
∫ t

0
Φ̂(s)−1Φ ′(s)Φ̂(s)−1ds,Ψ (t)

−Φ(t) + a(t)Φ(t)
⟩
)′dt

]
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=
1
2

[ ∫ T̂

0

⟨
h⃗h⃗T

+ ξ ′(Φ(t)) −
∫ t

0
Φ̂(s)−1Φ ′(s)Φ̂(s)−1ds,Ψ (t)

−Φ(t) + a(t)Φ ′(t)
⟩
µP (dt)

]
.

The critical point condition d
dϵ

C (x,Θ)|ϵ=0 ≥ 0 combined with the above equation proves
(34). □

We now turn to the proofs of the propositions stated in Section 3.

Proof of Proposition 5. We will prove by contradiction. Recall that

sx := x−1(0) = sup{t ∈ [0, m]|x(t) = 0}

and assume that sx ̸= 0. Then for all t ∈ [0, sx ], Φ̂(t) = Φ̂(sx ), and by Lemma 20 we have

⟨ξ ′′(Φ(sx )),Φ ′(sx )◦2
⟩ ≤ ⟨Φ̂(sx )−1Φ ′(sx )Φ̂(sx )−1,Φ ′(sx )⟩ (42)

nd

ξ ′(Φ(sx )) =
∫ sx

0
Φ̂(s)−1Φ ′(s)Φ̂(s)−1ds = Φ̂(sx )−1Φ(sx )Φ̂(sx )−1. (43)

Moreover, since sx ̸= 0, we can modify Φ ′(sx ) a little bit and set Φ ′(sx ) = Φ(sx ) without
he change of value of C (x,Φ). Then combining (42) and (43) yields⟨

ξ ′′(Φ(sx )),Φ(sx )◦2⟩
≤ ⟨Φ̂(sx )−1Φ(sx )Φ̂(sx )−1,Φ(sx )⟩ = ⟨ξ ′(Φ(sx )),Φ(sx )⟩,

nd thus
Sum(ξ ′′(Φ(sx )) ⊙ Φ(sx )◦2

− ξ ′(Φ(sx )) ⊙ Φ(sx ))
= ⟨ξ ′′(Φ(sx )) ⊙ Φ(sx ) − ξ ′(Φ(sx )),Φ(sx )⟩ ≤ 0.

(44)

owever, straight-forward computation of the derivative implies

ξ ′′(Φ(sx )) ⊙ Φ(sx )◦2
− ξ ′(Φ(sx )) ⊙ Φ(sx ) =

∑
p≥2

p(p − 2)(β⃗p ⊗ β⃗p) ⊙ Φ(sx )◦p

nd

Sum(β⃗p ⊗ β⃗p) ⊙ Φ(sx )◦p > 0 for even p and sx = 0.

here the last inequality comes from the assumption that there exists p ≥ 4 such that β⃗p ̸= 0,
hich leads to a contradiction. Thus sx = 0, which is equivalent to say that 0 ∈ supp µP . □

roof of Proposition 6. Suppose 0 ∈ supp µP and the existence of a sequence of un ↓ 0 such
hat un ∈ supp µP .

By considering the function f : [0, m] → R and g : [0, m] → R given respectively by

f (u) = ⟨ξ ′(Φ(u)) + h⃗h⃗T
−

∫ u

0
Φ̂(s)−1Φ ′(s)Φ̂(s)−1ds,Φ ′(u)⟩

nd

g(u) = ⟨ξ ′′(Φ(u)) ⊙ Φ ′(u) − Φ̂(u)−1Φ ′(u)Φ̂(u)−1,Φ ′(u)⟩

+ ⟨ξ ′(Φ(u)) + h⃗h⃗T
−

∫ u

0
Φ̂(s)−1Φ ′(s)Φ̂(s)−1ds,Φ ′′(u)⟩.
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hen f (un) = 0 for all n ≥ 1. By mean value theorem, there exists a sequence u′
n ↓ 0 such

that f ′(un) = 0. Notice that f ′(un) = g(un). By the continuity of g at 0, we obtain g(0) = 0,
hich implies that 2⟨β⃗2 ⊗ β⃗2,Φ

′(0)◦2
⟩ = ⟨Φ̂(0)−1Φ ′(0), Φ̂(0)−1Φ ′(0)⟩. □

Proof of Proposition 7. As µP is non-decreasing, it contains at most countably many atoms.
Now assume supp µP contains countably many isolated points, and we connect the points in
supp µP by linear interpolation. Then for two consecutive points s1 < s2 in supp µP , define

0 := µP ([0, s1]).
Furthermore, we obtain that for u ∈ (s1, s2), Φ ′′(u) = 0 and therefore

g(u) = ⟨ξ ′′(Φ(u)) ⊙ Φ ′(u) − Φ̂(u)−1Φ ′(u)Φ̂(u)−1,Φ ′(u)⟩.

e also have

f (s1) = f (s2) = 0 and
∫ s2

s1

f (q)dq = 0

here

f (u) = ⟨ξ ′(Φ(u)) + h⃗h⃗T
−

∫ u

0
Φ̂(s)−1Φ ′(s)Φ̂(s)−1ds,Φ ′(u).⟩

herefore g(u) = 0 has 2 solutions between s1 and s2.
The relation g(u) = 0 is equivalent to say that

⟨ξ ′′(Φ(u)),Φ ′(u)◦2
⟩ = ⟨Φ̂(u)−1Φ ′(u)Φ̂(u)−1,Φ ′(u)⟩.

We then define y(u) = ⟨ξ ′′(Φ(u)),Φ ′(u)◦2
⟩
−

1
2 and z(u) = ⟨Φ̂(u)−1Φ ′(u)Φ̂(u)−1,Φ ′(u)⟩−

1
2 .

Thus

z′(u) = −a0⟨Φ̂(t)−1Φ ′(t), Φ̂(t)−1Φ ′(t)⟩−
3
2 · ⟨Φ̂(t)−1Φ ′(t)Φ̂(t)−1Φ ′(t), Φ̂(t)−1Φ ′(t)⟩

and

z′′(u) = 3a2
0⟨Φ̂(t)−1Φ ′(t), Φ̂(t)−1Φ ′(t)⟩−

5
2 · ⟨Φ̂(t)−1Φ ′(t)Φ̂(t)−1Φ ′(t), Φ̂(t)−1Φ ′(t)⟩2

− 3a2
0⟨Φ̂(t)−1Φ ′(t), Φ̂(t)−1Φ ′(t)⟩−

3
2

·⟨Φ̂(t)−1Φ ′(t)Φ̂(t)−1Φ ′(t), Φ̂(t)−1Φ ′(t)Φ̂(t)−1Φ ′(t)⟩

= 3a2
0⟨Φ̂(t)−1Φ ′(t), Φ̂(t)−1Φ ′(t)⟩−

5
2 · (⟨Φ̂(t)−1Φ ′(t)Φ̂(t)−1Φ ′(t), Φ̂(t)−1Φ ′(t)⟩2

−⟨Φ̂(t)−1Φ ′(t)Φ̂(t)−1Φ ′(t), Φ̂(t)−1Φ ′(t)Φ̂(t)−1Φ ′(t)⟩

·⟨Φ̂(t)−1Φ ′(t), Φ̂(t)−1Φ ′(t)⟩) ≤ 0,

where the last step uses the Cauchy inequality. Hence z(u) is a concave function of u, this
equation can have at most 2 roots in any interval where ⟨ξ ′′(Φ(t)),Φ ′(t)◦2

⟩
−

1
2 is convex.

Now to see that ⟨ξ ′′(Φ(t)),Φ ′(t)◦2
⟩
−

1
2 is convex for ξ (A) = (βp ⊗ βp) ⊙ A◦p, we need to

odify Φ without the change of C (x,Φ).
For any ϵ > 0, set

Φϵ(t) =
{ t

s2
· Φ(s2) for t ∈ (s1 + ϵ, s2)

some smooth curve that connects Φ(s1) and Φ(s1 + ϵ) for t ∈ (s1, s1 + ϵ).

Here we set Φϵ mild enough so that Φ̂ϵ is positive definite on [s1, s1 + ϵ]. Note that (x,Φϵ) is
till a minimizer of C .
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Therefore for u ∈ [s1 + ϵ, s2],

y′(u) = −
1
2
⟨ξ ′′(Φ(u)),Φ ′(u)◦2

⟩
−

3
2 · ⟨ξ ′′′(Φ(u)),Φ ′(u)◦3

⟩

nd

y′′(u) = −
1
2
⟨ξ ′′(Φ(u)),Φ ′(u)◦2

⟩
−

3
2 · ⟨ξ ′′′′(Φ(u)),Φ ′(u)◦4

⟩

+
3
4
⟨ξ ′′(Φ(u)),Φ ′(u)◦2

⟩
−

5
2 · ⟨ξ ′′′(Φ(u)),Φ ′(u)◦3

⟩
2

=
1
4
⟨ξ ′′(Φ(u)),Φ ′(u)◦2

⟩
−

5
2 · [3⟨ξ ′′′(Φ(u)),Φ ′(u)◦3

⟩
2

− 2⟨ξ ′′′′(Φ(u)),Φ ′(u)◦4
⟩ · ⟨ξ ′′(Φ(u)),Φ ′(u)◦2

⟩]

=
1
4
⟨ξ ′′(Φ(u)),Φ ′(u)◦2

⟩
−

5
2 · [3⟨ξ ′′′(Φ(u)),Φ ′(u)◦3

⟩
2

− 2⟨ξ ′′′′(Φ(u)),Φ ′(u)◦4
⟩ · ⟨ξ ′′(Φ(u)),Φ ′(u)◦2

⟩]

=
1

4s6
2

p2(p − 1)2(p − 2)⟨ξ ′′(Φ(u)),Φ ′(u)◦2
⟩
−

5
2

· [(3p − 6)t2p−6
⟨βp ⊗ βp,Φ(s2)◦p

⟩
2
− (2p − 6)t2p−6

⟨βp ⊗ βp,Φ(s2)◦p
⟩

2]

=
1

4s6
2

p3(p − 1)2(p − 2)t3p−8
⟨βp ⊗ βp,Φ(s2)◦p

⟩
−

5
2 · ⟨βp ⊗ βp,Φ(s2)◦p

⟩
2
≥ 0,

hich means that y(u) is convex on [s1+ϵ, s2]. We then let ϵ tend to 0 and then get the desired
onclusion. □

roof of Proposition 8. Since both (u+

l )l≥1 and (u−

l )l≥1 converges to u0 and lies in supp µP ,
y mean value theorem and continuity of g, we obtain

0 = lim
h→0+

g(u0 + h) − g(u0)
h

=

⟨
ξ ′′′(Φ(u0)) ⊙ Φ ′(u0)◦2

+ ξ ′′(Φ(u)) ⊙ Φ ′′(u0)

− 2µP ([0, u0])⟨Φ̂(u0)−1Φ ′(u0)Φ̂(u0)−1Φ ′(u0)Φ̂(u0)−1,Φ ′(u0)⟩
⟩

+ ⟨ξ ′(Φ(u0)) + h⃗h⃗T
−

∫ u0

0
Φ̂(s)−1Φ ′(s)Φ̂(s)−1ds,Φ ′′′(u0)⟩

+ 2⟨ξ ′′(Φ(u0)) ⊙ Φ ′(u0) − Φ̂(u0)−1Φ ′(u0)Φ̂(u0)−1,Φ ′′(u0)⟩.

0 = lim
h→0−

g(u0 + h) − g(u0)
h

=

⟨
ξ ′′′(Φ(u0)) ⊙ Φ ′(u0)◦2

+ ξ ′′(Φ(u)) ⊙ Φ ′′(u0)

− 2µP ([0, u0))⟨Φ̂(u0)−1Φ ′(u0)Φ̂(u0)−1Φ ′(u0)Φ̂(u0)−1,Φ ′(u0)⟩
⟩

+ ⟨ξ ′(Φ(u0)) + h⃗h⃗T
−

∫ u0

0
Φ̂(s)−1Φ ′(s)Φ̂(s)−1ds,Φ ′′′(u0)⟩

+ 2⟨ξ ′′(Φ(u )) ⊙ Φ ′(u ) − Φ̂(u )−1Φ ′(u )Φ̂(u )−1,Φ ′′(u )⟩.
0 0 0 0 0 0
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y comparing the two equations, we obtain µP ([0, u0]) = µP ([0, u0)), which implies that µP
s continuous at u0. □

Proof of Proposition 9. If u0 is an isolated point of supp µP , it must be a jump discontinuity
f µP . Now assume that u0 is not isolated and µP is continuous at the point u0. Then by
emma 20 and the mean value theorem we obtain

⟨ξ ′′(Φ(u0)),Φ ′(u0)◦2
⟩ = ⟨Φ̂(u0)−1Φ ′(u0), Φ̂(u0)−1Φ ′(u0)⟩.

As Φ̂(u0) =
∫ m

u0
x(t)Φ ′(t)dt , which implies that Φ̂(u0)−1

≥ (Q −Φ(u0))−1
≥ Q−1, we have

⟨ξ ′′(Φ(Q)),Φ ′(u0)◦2
⟩ ≥ ⟨ξ ′′(Φ(u0)),Φ ′(u0)◦2

⟩

≥ ⟨(Q − Φ(u0))−1Φ ′(u0), (Q − Φ(u0))−1Φ ′(u0)⟩
≥ ⟨Q−1Φ ′(u0), Q−1Φ ′(u0)⟩

hich leads to a contradiction. □

roof of Proposition 10. First note that as (a, b) ∈ supp µ, then by Lemma 20, for all
∈ (a, b),

F(u) := ξ ′(Φ(u)) + h⃗h⃗T
−

∫ u

0
Φ̂(s)−1Φ ′(s)Φ̂(s)−1ds = 0,

nd as Φ is differentiable for all u ∈ (a, b), we can differentiate the equation above and obtain
hat, for all u ∈ (a, b)

G(u) := ξ ′′(Φ(u)) ⊙ Φ ′(u) − Φ̂(u)−1Φ ′(u)Φ̂(u)−1
= 0. (45)

From (45) and the fact that Φ ′ is positive semi-definite, we obtain

Φ ′(u)
1
2 (ξ ′′(Φ(u)) ⊙ Φ ′(u) − Φ̂(u)−1Φ ′(u)Φ̂(u)−1)Φ ′(u)

1
2 = 0,

hich implies that

Φ ′(u)
1
2 [ξ ′′(Φ(u)) ⊙ Φ ′(u)]Φ ′(u)

1
2 = (Φ ′(u)

1
2 Φ̂(u)−1Φ ′(u)

1
2 )2. (46)

s both sides of the equality in (46) are positive semi-definite matrices, their positive
emi-definite square root coincide. We thus get the relation

Φ ′(u)−
1
2 (Φ ′(u)

1
2 (ξ ′′(Φ(u)) ⊙ Φ ′(u))Φ ′(u)

1
2 )

1
2 Φ ′(u)−

1
2 = Φ̂(u)−1.

As we know that (a, b) ∈ supp µP and Φ is twice differentiable in (a, b), therefore
G ′′(u) = 0. Consider the Frobenius inner product on G ′′(u) and Φ ′(u),

0 = ⟨G ′′(u),Φ ′(u)⟩

= ⟨ξ ′′′(Φ(u)) ⊙ Φ ′(u)◦2,Φ ′(u)⟩

− 2µP ([0, u])⟨Φ̂(u)−1Φ ′(u0)Φ̂(u)−1Φ ′(u)Φ̂(u)−1,Φ ′(u)⟩

+ ⟨ξ ′′(Φ(u)) ⊙ Φ ′′(u) − Φ̂(u)−1Φ ′′(u)Φ̂(u)−1,Φ ′(u)⟩

= ⟨ξ ′′′(Φ(u)),Φ ′(u)◦3
⟩ − 2µP ([0, u])⟨Φ̂(u)−1Φ ′(u)Φ̂(u)−1Φ ′(u)Φ̂(u)−1,Φ ′(u)⟩

+ ⟨ξ ′′(Φ(u)) ⊙ Φ ′(u) − Φ̂(u)−1Φ ′(u)Φ̂(u)−1,Φ ′′(u)⟩

= ⟨ξ ′′′(Φ(u)),Φ ′(u)◦3
⟩ − 2µP ([0, u])⟨Φ̂(u)−1Φ ′(u)Φ̂(u)−1Φ ′(u)Φ̂(u)−1,Φ ′(u)⟩

= ⟨ξ ′′′(Φ(u)),Φ ′(u)◦3
⟩ − 2µP ([0, u])Trace(Φ ′(u)

1
2 (ξ ′′(Φ(u)) ⊙ Φ ′(u))Φ ′(u)

1
2 )

3
2 .

Therefore we get the desired conclusion. □
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roof of Proposition 11. We will prove by contradiction and assume that the SK model is full
eplica symmetric breaking (FRSB). By Proposition 8, we know that any accumulation point
0 in supp µP with Φ ′(u0) > 0 must be of continuity at u = u0.

Assume that (a, b) ⊂ supp µP . Consider the function F : [0, m] → Sm
+

and G : [0, n] →
m
+

given respectively by

F(u) = ξ ′(Φ(u)) + h⃗h⃗T
−

∫ u

0
Φ̂(s)−1Φ ′(s)Φ̂(s)−1ds

nd

G(u) = ξ ′′(Φ(u)) ⊙ Φ ′(u) − Φ̂(u)−1Φ ′(u)Φ̂(u)−1.

irst note by Lemma 20, for any u ∈ (a, b),

F(u) = 0, G(u) = 0, f (u) = 0, g(u) = 0.

herefore we obtain g′(u) = 0 for any u ∈ (a, b).
We also note that on (a, b)

g′(u) = ⟨ξ ′′′(Φ(u)),Φ ′(u)◦3
⟩ − 2x(u)⟨Φ̂(t)−1Φ ′(t)Φ̂(t)−1Φ ′(t)Φ̂(t)−1,Φ ′(t)⟩

= −2x(u)⟨Φ̂(t)−1Φ ′(t)Φ̂(t)−1Φ ′(t)Φ̂(t)−1,Φ ′(t)⟩

< 0,

which leads to a contradiction. Here we use the assumption ξ ′′′
= 0 derived from the setting

f the SK model.
Now we obtain that if Φ ′ > 0 on [0, m], then the SK model is finitely atomic. Since by

roposition 7, the SK model contains at most 2 consecutive isolated points, we get the desired
onclusion that the SK model is at most 1 replica symmetric breaking (1RSB). □

. Properties of the Crisanti–Sommers functional at zero temperature

In this section we provide some useful characterizations of minimizers of (12).

heorem 21. Let (L , α,Φ) ∈ K (Q). Define

g(t) :=
∫ m

t
ḡ(s)ds

nd

ḡ(t) = ⟨Φ ′(t), Ḡ(t)⟩

here

Ḡ(t) = ξ ′(Φ(t)) −
∫ t

0
(L −

∫ s

0
α(q)Φ ′(q)dq)−1Φ ′(s)(L −

∫ s

0
α(q)Φ ′(q)dq)−1ds.

Then (L , α,Φ) is the minimizer of C if and only if the following equation holds,

ξ ′(Q) + h⃗h⃗T
=

∫ m

0
(L −

∫ t

0
α(s)Φ ′(s)ds)−1Φ ′(t)(L −

∫ t

0
α(s)Φ ′(s)ds)−1dt

nd the function g satisfies minu∈[0,m] g(u) ≥ 0 and γ0(S) = γ0([0, m)), where S := {u ∈

0, m)|g(u) = 0}.
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roof. The proof of this theorem is standard. Assume (L0, α0,Φ0) is minimizer of C (L , α,Φ),
0 is the corresponding measure induced by α(s) and consider any (L , α,Φ) ∈ K . For
≤ θ ≤ 1, (Lθ , αθ ,Φθ ) also lies in K , where Lθ = (1 − θ )L0 + θ L , αθ = (1 − θ)α0 + θα

nd Φθ = (1 − θ )Φ0 + θΦ.
As (L0, α0,Φ0) minimizes C , we obtain

∂C (Lθ , αθ ,Φθ )
∂θ

⏐⏐
θ=0 =

1
2

[
⟨ξ ′(Q) + h⃗h⃗T , L − L0⟩

+

∫ m

0
⟨(L − L0 −

∫ t

0
(α(s) − α0(s))Φ ′

0(s)ds)−1,Φ ′

0(t)⟩dt

−

∫ m

0
⟨ξ ′′(Φ0(t)) ⊙ Φ ′

0(t),
∫ t

0
(α(s) − α0(s))Φ ′

0(s)ds⟩dt

+

∫ m

0
⟨(L −

∫ t

0
α(s)Φ ′

0(s)ds)−1,Φ ′(t) − Φ ′

0(t)⟩dt

−

∫ m

0
⟨(L −

∫ t

0
α(s)Φ ′

0(s)ds)−1Φ ′(t)(L −

∫ t

0
α0(s)Φ ′(s)ds)−1,∫ t

0
α(s)(Φ ′(s) − Φ ′

0(s))ds⟩dt

−

∫ m

0
⟨ξ ′′′(Φ0(t)) ⊙ (Φ(t) − Φ0(t)) ⊙ Φ ′

0(t) + ξ ′′(Φ0(t)) ⊙ (Φ ′(t) − Φ ′

0(t)),∫ t

0
α(s)Φ ′

0(s)ds⟩dt
]

≥ 0.

xtra algebra leads to:

∂C (Lθ , αθ ,Φθ )
∂θ

⏐⏐
θ=0

=
1
2

[
⟨L − L0, ξ

′(Q) + h⃗h⃗T
−

∫ m

0
(L0 −

∫ t

0
α0(s)Φ ′

0(s)ds)−1Φ ′

0(t)

× (L0 −

∫ t

0
α0(s)Φ ′

0(s)ds)−1dt⟩

+

∫ m

0
⟨

∫ t

0
(α(s) − α0(s))Φ ′

0(s)ds, (L −

∫ t

0
α0(s)Φ ′(s)ds)−1Φ ′

0(t)

× (L −

∫ t

0
α0(s)Φ ′

0(s)ds)−1
⟩dt

−

∫ m0

⟨

∫ t0
(α(s) − α0(s))Φ ′

0(s)ds, ξ ′′(Φ0(t) ⊙ Φ ′

0(t))⟩dt

+

∫ m

0
⟨(L0 −

∫ t

0
α0(s)Φ ′

0(s)ds)−1Φ ′

0(t)(L0 −

∫ t

0
α0Φ

′

0(s)ds)−1,∫ t

0
α0(s)(Φ ′(s) − Φ ′

0(s))ds⟩dt

−

∫ m

⟨ξ ′′(Φ0(t)) ⊙ Φ ′

0(t),
∫ t

α0(s)(Φ ′(s) − Φ ′

0(s))ds⟩dt

0 0
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a

H

t
t
m
d

P

I

+

∫ m

0
⟨(L0 −

∫ t

0
α0(s)Φ ′

0(s)ds)−1,Φ ′(t) − Φ ′

0(t)⟩dt

−

∫ m

0
⟨ξ ′′′(Φ0(t)) ⊙ (Φ(t) − Φ0(t)) ⊙ Φ ′(t) + ξ ′′(Φ0(t)) ⊙ (Φ ′(t) − Φ ′

0(t)),∫ t

0
α0(s)Φ ′

0(s)ds⟩dt
]

.

Based on the arbitrariness of α, L and Φ, we obtain the relations:

ξ ′(Q) + h⃗h⃗T
=

∫ m

0
(L0 −

∫ t

0
α0(s)Φ ′

0(s)ds)−1Φ ′

0(t)(L0 −

∫ t

0
α0(s)Φ ′

0(s)ds)−1dt,

∫ m

0
⟨

∫ t

0
(α(s) − α0(s))Φ ′

0(s)ds, (L −

∫ t

0
α0(s)Φ ′(s)ds)−1Φ ′

0(t)

× (L −

∫ t

0
α0(s)Φ ′

0(s)ds)−1
⟩dt

−

∫ m

0
⟨

∫ t

0
(α(s) − α0(s))Φ ′

0(s)ds, ξ ′′(Φ0(t)) ⊙ Φ ′

0(t)⟩dt ≥ 0,

nd ∫ m

0
⟨(L0 −

∫ t

0
α0(s)Φ ′

0(s)ds)−1,Φ ′(t) − Φ ′

0(t)⟩dt

−

∫ m

0
⟨ξ ′′′(Φ0(t)) ⊙ (Φ(t) − Φ0(t)) ⊙ Φ ′(t) + ξ ′′(Φ0(t)) ⊙ (Φ ′(t) − Φ ′

0(t)),∫ t

0
α0(s)Φ ′

0(s)ds⟩dt

=

∫ m

0
α0(t)⟨Φ(t) − Φ0(t), (L0 −

∫ t

0
α0(s)Φ ′

0(s)ds)−1Φ ′

0(t)(L0 −

∫ t

0
α0(s)Φ ′

0(s)ds)−1dt⟩

−

∫ m

0
α0(t)⟨Φ(t) − Φ0(t), ξ ′′(Φ0(t)) ⊙ Φ ′(t)⟩dt ≥ 0

ence, writing

Z(s) = (L0 −

∫ s

0
α0(q)Φ ′

0(q)dq)−1,∫ m

0
(α(t) − α0(t))⟨Φ ′(t), ξ ′(Φ(t)) −

∫ t

0
Z(s)Φ ′

0(s)Z(s)ds⟩dt ≥ 0.

If t is an isolated point in supp γ0, then Φ ′(t) can be any symmetric matrix, which implies
hat Ḡ(t) = 0. If t is not isolated, as Φ is continuously differentiable and Lipschitz, we can get
he same conclusion based on approximation. Last, define g(t) :=

∫ m
t ḡ(s)ds, then g(t) satisfies

inu∈[0,m] g(u) ≥ 0 and γ0(S) = γ0([0, m)) where S := {u ∈ [0, m)|g(u) = 0}. The converse
irection can be proved by the uniqueness of the minimizer. □

roposition 22. The model is replica symmetric at zero temperature if and only if

ξ ′(Q) + h⃗h⃗T
≥ ξ ′′(Q) ⊙ Q

n this case, the minimizer (L0, α0,Φ0) is given by

L0 = Q
1
2 (Q

1
2 (ξ ′(Q) + h⃗h⃗T )Q

1
2 )−

1
2 Q

1
2 , α0 = 0 and Φ0 =

t
Q.
m
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c
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P

a

roof. Firstly, if the model is replica symmetric at zero temperature, then

ξ ′(Q) + h⃗h⃗T
− L−1

0 QL−1
0 = 0.

lso as there is no point in supp γ0, we can define Φ by Φ(t) = t
m Q, and hence Φ ′(t) = 1

m Q.

We prove this proposition by contradiction. Assume ξ ′(Q) + h⃗h⃗T < ξ ′′(Q) ⊙ Q. Then,

ḡ′(m) = ⟨ξ ′′(Q) ⊙ Φ ′(m) − L−1
0 Φ ′(m)L−1

0 ,Φ ′(m)⟩

=
1

m2 ⟨ξ
′′(Q) ⊙ Q − ξ ′(Q) − h⃗h⃗T , Q⟩ > 0,

hich implies that there exists s0 ∈ (0, m), such that ḡ′(s) > 0 for all s ∈ [s0, m]. Therefore
or all s ∈ [s0, m),we obtain ḡ(s) < 0 and g(s) < 0, which leads to a contradiction.

Conversely, if ξ ′(Q) + h⃗h⃗T
≥ ξ ′′(Q) ⊙ Q, let

L0 = Q
1
2 (Q

1
2 (ξ ′(Q) + h⃗h⃗T )Q

1
2 )−

1
2 Q

1
2 , α0 = 0 and Φ0 =

t
m

Q.

hen
∫ m

0 (L0 −
∫ s

0 α0(q)Φ ′(q)dq)−1Φ ′(s)(L0 −
∫ s

0 α0(q)Φ ′(q)dq)−1ds = L−1
0 QL−1

0 = ξ ′(Q) +
h⃗h⃗T . Furthermore,

ḡ(t) = ⟨ξ ′(Φ(t)) −
∫ t

0
(L0 −

∫ s

0
α0(q)Φ ′(q)dq)−1Φ ′(s)

× (L0 −

∫ s

0
α0(q)Φ ′(q)dq)−1ds,Φ ′(t)⟩, ḡ(m)

= 0

nd

ḡ′(t) =
1

m2 ⟨ξ
′′(Φ(t)) ⊙ Q − L−1

0 QL−1
0 , Q⟩ ≤

1
m2 ⟨ξ

′′(Q) ⊙ Q − L−1
0 QL−1

0 , Q⟩

=
1

m2 ⟨ξ
′′(Q) ⊙ Q − ξ ′(Q) − h⃗h⃗T , Q⟩ ≤ 0,

hich implies that g(u) > 0 for u ∈ (0, m). Since S = ∅ and γ0(S) = 0 = γ ([0, m)), we
onclude that (L0, α0,Φ0) is minimizer which means that the model is replica symmetric at
ero temperature. □

roof of the FRSB example (13). Recall the constraint

Q =

(
1 0.1

0.1 1

)
.

nd the matrix path as Φ(q) = q
2 Q and φ(q) = ⟨ξ ′′(Φ(q)),Φ ′(q)◦2

⟩
−

1
2 .

φ′′(q) =
1
4
⟨ξ ′′(Φ(q)),Φ ′(q)◦2

⟩
−

5
2 [3⟨ξ ′′′(Φ(q)),Φ ′(q)◦3

⟩
2

− 2⟨ξ ′′(Φ(q)),Φ ′(q)◦2
⟩⟨ξ ′′′′(Φ(q)),Φ ′(q)◦4

⟩].

Also, since φ(0) <
√

2 and φ(2) > 0, there exists a unique q0 such that φ(q0) = 1
√

2
(2−q0).

Define a distribution function as follows:

x(q) =
{
−
√

2φ′(q) 0 ≤ q ≤ q0,
1 q ≥ q0.
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Based on the definition of x and Φ, for 0 ≤ q ≤ q0 we obtain

Φ̂(q) = Q − Φ(q0) −
√

2φ(q0)
1
2

Q +
√

2φ(q)
1
2

Q

= Q −
q0

2
Q −

1
2

(2 − q0)Q +

√
2

2
φ(q)Q

=
√

2φ(q)Φ ′(q)

herefore

⟨Φ̂(q)−1Φ ′(q), Φ̂(q)−1Φ ′(q)⟩ = φ(q)−2
= ⟨ξ ′′(Φ(q)),Φ ′(q)◦2

⟩.

Recall the function

f (u) = ⟨ξ ′(Φ(u)) + h⃗h⃗T
−

∫ u

0
Φ̂(s)−1Φ ′(s)Φ̂(s)−1ds,Φ ′(u)⟩.

ince f (0) = 0, we then obtain that f (q) = 0 for 0 ≤ q ≤ q0. Moreover, since

φ(q) >
1
√

2
(2 − q) = ⟨(Q − Φ(q))−1Φ ′(q), (Q − Φ(q))−1Φ ′(q)⟩,

we obtain

⟨ξ ′′(Φ(q)),Φ ′(q)◦2
⟩ = φ(q)−

1
2 < ⟨(Q − Φ(q))−1Φ ′(q), (Q − Φ(q))−1Φ ′(q)⟩.

Therefore if we define h(s) =
∫ s

0 f (q)dq, we get that h(s) = 0 for s < q0 and f (s) < 0 for
> q0.
Thus (x,Φ) minimizes the Crisanti–Sommers functional C in this case. □
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