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Abstract 18 

Climate change can drive shifts in the seasonality of marine productivity, with consequences 19 

for the marine food web. However, these alterations in phytoplankton bloom phenology 20 

(initiation and peak timing), and the underlying drivers, are not well understood. Here using a 21 

30-member Large Ensemble of climate change projections, we show earlier bloom initiation 22 

in most ocean regions, yet changes in bloom peak timing vary widely by region. Shifts in both 23 

initiation and peak timing are induced by a subtle decoupling between altered phytoplankton 24 

growth and zooplankton predation, with increased zooplankton predation (top-down control) 25 

playing an important role in altered bloom peak timing over much of the global ocean. Light 26 

limitation is a primary control for bloom initiation changes only in limited regions. In the 27 

extratropics, phenological changes will exceed background natural variability by the end of the 28 

21st century, which may impact energy flow in the marine food webs. 29 

 30 

 31 

  32 
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Main text 33 

Marine primary productivity forms the basis of the marine food web and regulates the ocean’s 34 

carbon cycle. The potential for climate change to have deleterious impacts on this productivity 35 

has received significant attention1, motivating coordinated efforts to project and understand the 36 

long-term production capacity of marine ecosystems2–4. In addition to exploring future changes 37 

in mean productivity, it is also important to assess how the seasonal cycle of productivity will 38 

alter in response to anthropogenic forcing, as shifting phenology may have significant 39 

implications for natural and human systems. For example, changes in the seasonal timing of 40 

intense carbon fixation by primary producers at the base of the food web can affect predation, 41 

growth, and reproduction in higher trophic levels5,6. Such climate-driven mismatches can have 42 

further major impacts on local ecosystems7 and fisheries8, and thus on food security. To 43 

understand the adaptability of local ecosystems to climate change, and to develop sustainable 44 

strategies for human food production, model projections of when phenological changes will 45 

‘emerge’ (the point in time at which the new characteristic state can be attributed to climate 46 

change) and what drives those changes are of tremendous utility. 47 

 48 

There is less consensus regarding the drivers of future changes in the marine phenology of 49 

productivity than in the terrestrial analogue9–13. Over most extra-tropical oceans, the seasonal 50 

cycle is dominated by phytoplankton blooms, which are propelled by seasonal changes in 51 

environmental drivers (temperature, light, nutrient availability, grazing pressure, among 52 

others). Previous studies have suggested that onset of blooms and growing seasons have 53 

already shifted earlier in phase7,14–17 and will continue to shift in the near future18–21, especially 54 

at high latitudes. However, the mechanisms underlying such projected changes remain 55 

unresolved. 56 

 57 
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The complexity and diversity of environmental drivers that trigger, sustain, and curtail 58 

phytoplankton blooms22,23 complicate efforts to explore changing marine phenology. 59 

Furthermore, there are also uncertainties in future projections of these drivers themselves24. 60 

Early efforts to explain climate-driven phenology shifts relied on the Sverdrup critical depth 61 

paradigm25, whereby the onset of blooms is mainly driven by increased light availability during 62 

spring as the mixed layer shoals. Extending the critical depth hypothesis to anthropogenic 63 

climate change, the early efforts argued that surface warming will lead spring stratification to 64 

begin earlier, thereby modulating phytoplankton bloom timing as a “bottom-up” control18,19. 65 

On the other hand, recent studies have emphasized the importance of a more diverse set of 66 

mechanisms that include reduced predation by zooplankton and a consequent increase in 67 

phytoplankton accumulation22,26–29, which constitute “top-down” controls. Given that these 68 

abiotic and biotic environmental drivers tend to covary, simple correlation analysis cannot 69 

deconvolve the underlying mechanisms. 70 

 71 

In this study, we use the accumulation rate30 of surface chlorophyll (Chl) to define the annual 72 

phytoplankton bloom period as occurring from the beginning of Chl accumulation (bloom 73 

initiation, Fig. 1a) to annual maximum of Chl (bloom peak timing, Fig. 1b). By further 74 

assessing the budget for changes in the accumulation rate, we quantitatively attribute the 75 

projected future change in bloom phenology (described in detail later and see also Methods). 76 

This methodology disentangles bloom driver complexity and provides insights into the 77 

underlying mechanisms as well as their responses to forced changes in the physical and 78 

biological drivers3,4 that modulate phenology.  79 

 80 

Despite strong anthropogenic changes in many ocean properties impacting primary production 81 

(e.g. temperature, mixing), analyses of Earth system model (ESM) simulations have shown 82 
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that anthropogenic trends on biological variables are relatively subtle, taking multiple decades 83 

to statistically emerge above background climate variability31. This underscores the value of a 84 

Large Ensemble framework, where one uses multiple realizations of the same model with 85 

identical forcing, but with different initial conditions, for isolating and attributing 86 

anthropogenic trends in marine biological variables. Here, we investigate future changes in 87 

phytoplankton bloom phenology via daily surface Chl, by far the most commonly observed 88 

bloom phenology variable, as well as other environmental variables (temperature, nutrient 89 

concentrations, light levels, among others) from a 30-member Large Ensemble simulation with 90 

the Geophysical Fluid Dynamics Laboratory Earth System Model 2 (GFDL-ESM2M32–34, 91 

Methods) under a high-emissions scenario (historical/RCP8.5). The simulation realistically 92 

represents the main features of the seasonal cycle of sea surface Chl35, i.e. phytoplankton bloom 93 

timing, as documented by comparisons with satellite records (Fig. S1–S4, Supplementary Note 94 

1 and Extended Data Fig. 1).  95 

 96 

Future projection of bloom phenology 97 

Projected future changes in bloom initiation and peak timing reveal a complex response pattern 98 

(Fig. 1c and 1d). Overall, bloom initiation and peak timing trends are on the order of a few 99 

days per decade, but at the model-grid scale can be greater than one month over the course of 100 

the 21st century. Biome-averaged shifts provide insight into the broader-scale patterns of 101 

phenological change (Fig. 1e). Bloom initiation is expected to occur earlier in almost all biomes. 102 

Peak bloom is expected to be delayed in biomes across the Southern Ocean and Equatorial 103 

regions but shift earlier for all biomes in the Northern extra-tropical oceans. If we define the 104 

period from bloom initiation to bloom peak as the net growth period, the resulting changes in 105 

period length indicate that in the future, the ocean’s "spring" will be shortened north of 30°N 106 
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(Fig. 1e). Such bidirectionality the timing of changes in bloom phenology implies a variety of 107 

drivers that vary by region and by season. 108 

 109 

Future projected changes in bloom peak magnitude reveal more coherent spatial structures 110 

showing both increased and decreased bloom magnitude (Extended Data Fig. 2). In a biome-111 

averaged perspective, bloom magnitude weakens in many Northern Hemisphere ocean regions 112 

except the high-productivity oceans of the subarctic North Pacific. In contrast, bloom peak 113 

magnitude increases for the Southern Ocean. This spatial pattern corresponds with the trend in 114 

annual mean sea surface Chl, which has been evaluated previously with the same model 115 

configuration31, indicating that changes in blooms, which occur intermittently over a limited 116 

part of the annual cycle, play an important role in determining the mean state trend.  117 

 118 

Many regional phenological changes are expected to emerge sometime prior to 2100 (indicated 119 

by stars in Fig. 1e). The Time of Emergence (ToE) indicates the point in time at which the 120 

forced change (ensemble mean) in bloom timing exceeds the trends that could be caused by 121 

natural variability alone (see Methods). Given that prey (e.g., plankton) and predators (e.g., 122 

fish larvae) have co-evolved and thus have interdependent phenology6,36, a phytoplankton 123 

phenology shift occurring on the timescale of decades but exceeds historical year-to-year 124 

natural variability represents a significant perturbation that could cause a mismatch between 125 

prey and predator lifecycles8,18, although predators may be able to adapt to such a shift, for 126 

example by migrating. In the context of ecosystems, ToE may represent a threshold for when 127 

phytoplankton phenology could induce phenological mismatch with consequences for the local 128 

ecosystem. Our results document an elevated risk of such mismatch especially in the Northern 129 

Hemisphere high latitudes, where ocean regions are characterized by high productivity and 130 

significant effects of rapid climate change. 131 
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 132 

At present, the observed trend in biome-averaged bloom characteristics is within the natural 133 

variability range estimated by the Large Ensemble (Extended Data Fig. 1), illustrating the 134 

challenge in detecting phenological changes from localized observations over the satellite 135 

ocean color record, as previously noted for bloom magnitude modulation19,37. Thus, in the 136 

coming decades, sustained observational efforts will be necessary, as will more refined 137 

statistical methods such as optimal fingerprinting38, which may be more adept at separating 138 

anthropogenic change from natural variability. The phenological change’s earliest expected 139 

emergence will occur in the Northern Hemisphere ice biome (N_ICE, Extended Data Fig. 1a), 140 

associated with the commonly projected rapid retreat of sea ice39. In these areas, both bloom 141 

initiation and bloom peak will shift earlier, emerging during the first half of the 21st century, 142 

with relatively larger shifts in the bloom peak timing resulting in compression of the net growth 143 

period. 144 

 145 

Mechanistic drivers of phenological change  146 

The time rate of change in the Chl accumulation rate (𝑟, day-1, the indicator of phytoplankton 147 

bloom in this study) is determined by phytoplankton’s growth rate (𝜇, day-1) and loss rate (𝑙, 148 

day-1) (including cell division, predation by zooplankton, aggregation, mortality, etc.); changes 149 

in the chlorophyll-carbon ratio (Chl:C, 𝜃, photo-acclimation, the physiological response of 150 

phytoplankton); and a dilution effect due to surface mixed layer (ML, ℎ) deepening (See also 151 

Methods): 152 

𝑟 ≡ !
"#$

%	"#$
%'

≈ 𝜇 − 𝑙 + % ()(+)
%'

− % ()(#)
%'
.  (1) 

Phytoplankton variables (𝜇, 𝑙, and 𝜃) are summed over the three phytoplankton groups (small, 153 

large, and diazotrophic phytoplankton), after weighting by each group’s abundance (Equation 154 

M4 in Methods). Note that Equation 1 requires that, over the spatial and temporal scales this 155 
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study investigates, advection and diffusion play minor roles, as generally assumed23,28. We 156 

quantify future changes in bloom phenology by comparing present-day and future seasonal 157 

cycles of 𝑟 and by attributing the difference to the terms in Equation 1 (i.e., calculating the 158 

budget). 159 

 160 

For illustration, we focus on the subpolar North Atlantic, a region of intense spring blooms and 161 

the subject of many observational studies assessing the phenology of primary productivity. 162 

This region’s typical seasonal cycle (Fig. 2a and 2b) entails increased surface Chl in late winter 163 

(𝑟 becomes positive in January/February in Fig. 2b) and a peak in May (first 𝑟 zero-crossing 164 

after the initiation in Fig. 2b). Projected future shifts to earlier phytoplankton bloom initiation 165 

are characterized by a positive accumulation rate change (∆𝑟; ∆ indicates a change defined by 166 

future minus present day, Equation M5) in late winter (first gray shading periods in Fig. 2b, c). 167 

Conversely, at the bloom’s peak, a lower accumulation rate under future conditions (negative 168 

∆𝑟) suggests a shift to an earlier phasing (second gray shaded periods in Fig. 2b, c). Budget 169 

analysis for the accumulation rate change (∆𝑟) reveals contributions from three terms: different 170 

changes in growth and loss rates (∆𝜇 − ∆𝑙), changes in temporal variations of ML depth 171 

(−∆dlnℎ/dt), and changes in temporal variations of Chl:C (∆dln𝜃/dt). The dominant terms 172 

for the positive ∆𝑟  at bloom initiation (first gray shading period in Fig. 2) are positive 173 

anomalies of both ∆𝜇 − ∆𝑙 caused by a higher growth rate (∆𝜇) and temporal variations of ML 174 

depth (−∆dlnℎ/dt, i.e., more gradually deepening ML) in January/February (Fig. 2c). As for 175 

peak bloom timing (second gray shading period), its earlier occurrence (i.e., negative ∆𝑟) 176 

results from a negative anomaly of ∆𝜇 − ∆𝑙 mainly due to the reduced growth rate (∆𝜇) in May.  177 

 178 

By further decomposing the growth rate changes (∆𝜇) into contributions from temperature-, 179 

nutrient-, and light-limitation (see Methods and Supplementary Note 2 for complete 180 
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expressions), we can attribute shifts in bloom timing to changes in environmental drivers (Fig. 181 

2d). The change in the January/February growth rate, which sustains the earlier bloom initiation, 182 

is dominated by enhanced light availability due to the combination of shallower ML depth and 183 

increased surface irradiance (Fig. S5). A negative change in May’s growth rate, which is the 184 

main cause of the earlier bloom peak, results from elevated nutrient- and temperature-limitation. 185 

Note that future projections of temperature changes in the subpolar North Atlantic can be 186 

negative, in contrast to other ocean domains (“warming hole”)24,40. These results from the 187 

budget analysis of the subpolar North Atlantic are illustrated in the schematic in Figure 2e. At 188 

bloom initiation in January/February, positive future change in growth rate (∆𝜇 ) due to 189 

improved light availability and reduced dilution by shallower winter ML (−∆dlnℎ/dt) drive 190 

increases in Chl accumulation rate (∆𝑟). Thus, the future accumulation rate becomes positive 191 

earlier than in the present-day climate, i.e., the bloom starts earlier. At peak bloom in May, 192 

negative future change in growth rate (∆𝜇), due to colder temperature and lower nutrient 193 

concentrations, become the main cause of negative changes in the accumulation rate (∆𝑟) in 194 

the future climate, although the loss rate will also decrease. The future negative accumulation 195 

rate anomaly indicates that the bloom peak (i.e., the timing of zero 𝑟) will occur earlier than 196 

that in preset-day. 197 

 198 

Regional drivers of changes in phenology 199 

The drivers of shifts in bloom initiation and bloom peak differ at the local (grid cell) scale and 200 

across biomes. In the eastern subarctic North Pacific, for example, unlike the subpolar North 201 

Atlantic, surface warming is the major driver for both earlier bloom initiation and earlier bloom 202 

peak (Extended Data Fig. 3). Warming elevates growth rates during bloom initiation and boosts 203 

predation pressure (loss rate) at bloom peak.  204 

 205 
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To understand the regional differences in processes that drive bloom phenological shifts, we 206 

estimate these processes’ relative contributions to phenological shifts and show the dominant 207 

contributions within each biome (Fig. 3). The driving processes’ relative contributions are 208 

calculated as the ratio between the time-integrated RHSs of the accumulation budget equation 209 

(Equation M5) and the time-integrated accumulation rate change, over the period between 210 

future and present-day bloom initiation/peak timings (Equation M6). In almost all ocean 211 

regions, contributions from changes in growth rates (∆𝜇) and loss rates (−∆𝑙) are the dominant 212 

terms of the accumulation rate changes (Fig. S6 and S7). Either of these changes alone could 213 

greatly alter bloom phenology. However, these two contributions nearly mirror each other, 214 

reflecting the fact that phytoplankton growth and predation by zooplankton are tightly coupled 215 

in this model. Previous studies have observed this tight coupling, and this mechanism plays an 216 

important role in explaining climatological features of the phytoplankton bloom as well as its 217 

interannual variability22,23,28.  218 

 219 

While phytoplankton growth and loss rates are tightly coupled, there are subtle differences 220 

between future changes in growth rate and those in loss rate (i.e., ∆𝜇 − ∆𝑙 ≠ 0). This trophic 221 

level decoupling is the main mechanism for the peak bloom timing and initiation shifts in 222 

almost all ocean regions (Fig. 3a and 3c). In the oligotrophic mid-latitude oceans, the 223 

phytoplankton physiological response (temporal variations in Chl:C) is often the secondary, 224 

and sometimes the primary, process sustaining alterations in bloom peak timing (Fig. 3c and 225 

3d), in agreement with previous results from observational and modeling studies focused on 226 

interannual time scales41. In parts of the Southern Ocean and the North Atlantic, changes in 227 

temporal ML variations (the dilution effect) strongly alter bloom initiation, reflecting the large 228 

projected forced ML depth changes (Fig. S5c). The anti-correlation of the contributions by 229 

temporal changes in ML depth and Chl:C reflects the physiology of photo-acclimation, by 230 
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which light-limited phytoplankton (i.e., deepening ML) increase intracellular Chl (i.e., 231 

increasing Chl:C) to maximize photosynthetic efficiency42 (R=-0.43, p<0.01 for the initiation 232 

in Fig. 3b, R=-0.56, p<0.01 for the peak timing in Fig. 3d; see also S6d, e and S7d, e). 233 

 234 

Changing environmental drivers’ contributions to future decoupling of phytoplankton growth 235 

and loss (∆𝜇 − ∆𝑙) have distinct spatial footprints (Fig S8 and S9), with the dominant driver 236 

varying among different ocean biomes (Fig. 4). Bloom initiation often occurs earlier due to 237 

reduced light and temperature limitation of growth (Growth-L and Growth-T in Fig. 4a). 238 

Elevated predation pressure arising from increased temperatures and biomass abundance cause 239 

bloom peak timing to shift earlier (Loss-T and Loss-P in Fig. 4b, e.g., Northern Hemisphere 240 

SPSS, STSS, ICE biomes). However, enhanced growth rates due to higher temperature 241 

(Growth-T in Fig. 4b) can delay bloom peak (e.g., SA_STSS, SA_STPS, and SI_SPSS). In the 242 

Arctic Ocean (N_ICE), where bloom phenology change emerges first, the main driver of earlier 243 

initiation is enhanced light availability (Fig. 4a), as conceptually described in a previous study43. 244 

An earlier peak follows earlier initiation, as the bloom will experience stronger predation 245 

pressure associated with abundant phytoplankton biomass and warmer temperatures in the 246 

future (Fig. 4b). 247 

 248 

Discussion 249 

Warming operates as a major driver for future shifts in both bloom initiation and peak timing, 250 

changing both growth and loss rates over most of the mid- to low latitudes and parts of the high 251 

latitudes (Growth-T and Loss-T in Fig. 4). Notably, phytoplankton phenology shift drivers can 252 

be distinct from general nutrient-limitation drivers of projected annual mean net primary 253 

production changes within the same regions44,45. While at high latitudes growth rate changes 254 

largely drive phase shifts in bloom initiation, increased predation pressure by zooplankton (top-255 
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down control) plays an important role in altered bloom peak timing over much of the global 256 

ocean. It is important to note, particularly for observational studies, that identifying changes in 257 

bottom-up controls is a necessary but not sufficient condition for understanding phenology 258 

shifts, and that substantial roles for zooplankton, which are generally difficult to assess in 259 

observational studies, are a complementary and oftentimes necessary component. 260 

 261 

Driver interdependence (e.g., stratification changes are almost always concurrent with surface 262 

warming and enhanced light availability) inherently limits correlation-based analysis for 263 

quantitatively attributing changes in bloom phenology. Our results indicate that light limitation 264 

is a primary control for future changes in bloom initiation only in limited regions (Growth-L 265 

in Fig. 4a). As such, the Sverdrup hypothesis, originally applied to explain year-to-year 266 

variability, cannot be generally extended to account for long-term shifts in bloom initiation. 267 

Light limitation changes are mediated through not only ML alterations (enhanced stratification) 268 

but also variable incident solar radiation at the sea surface, with regional dependence (Fig. S5).  269 

 270 

Changes in phytoplankton bloom initiation and peak timing are spatially heterogenous (Fig. 1c, 271 

d), reflecting a delicate balance between the transient behavior of phytoplankton and individual 272 

underlying abiotic drivers. It should be noted that this study results are based on a single ESM, 273 

and that configurations and parameters of the biological component (e.g., the number of 274 

functional plankton groups and their couplings) are selected and tuned to reproduce the present-275 

day climatological mean state of productivity based on representative field studies and 276 

ecological theory. Recent research has suggested that plankton community numbers and 277 

structures will respond to future climate change in spatially diverse ways46,47. In addition to 278 

more observational studies on the zooplankton-phytoplankton coupling, using more 279 

sophisticated ecological models in the next generation of ESMs could further deepen and 280 
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improve our understanding of the plankton community’s phenological response to climate 281 

forcing. 282 

 283 

Trophic level decoupling in response to anthropogenic forcing induces various future bloom 284 

phenological changes that result in both expanded and compressed future changes in net growth 285 

period length. Based on Northern Hemisphere high latitude oceans, our results diverge from 286 

research on the terrestrial biosphere, where phenological changes are anticipated to shift more 287 

uniformly to expanded growing seasons9–13 as a forced response to anthropogenic warming and 288 

CO2 fertilization. This remarkable contrast between land and sea reflects the fact that, in the 289 

ocean, anthropogenic warming triggers a number of processes that encompass both bottom-up 290 

and top-down drivers, with the balance between these drivers playing out quite differently in 291 

distinct ocean regions. The emergence of marine phytoplankton phenological change in high-292 

productivity high-latitude ocean biomes indicates potential mismatches with the seasonal 293 

phasing of spawning in higher trophic levels, posing a potential risk to local marine ecosystems 294 

and ultimately the food security of populations dependent on marine resources. 295 

 296 
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Figure captions 323 

324 
Fig. 1 | Projected future changes in the phytoplankton bloom phenology, and emergence 325 
timescales. a, b, Ensemble mean climatology (1990–2020) of phytoplankton bloom initiation 326 
and peak timing, simulated by the Geophysical Fluid Dynamics Laboratory Earth System 327 
Model 2 (GFDL-ESM2M) (letters indicate calendar month). c, d, Ensemble mean trends 328 
(1990–2100 under a Historical/RCP8.5 scenario) of bloom initiation and bloom peak timing. 329 
Positive trends indicate delayed initiation and delayed peak timing. Regions where the trend is 330 
statistically insignificant (at the 99% confidence level) are stippled. Black contours 331 
superimposed on the maps indicate biome boundaries. E, Biome-averaged changes (2080–332 
2100 minus 1990–2010) in bloom initiation (green) and bloom peak timing (orange). In each 333 
ocean basin, subtropical seasonally stratified (STSS), subtropical permanently stratified 334 
(STPS), and equatorial (EQU) biomes are assigned in order from the pole (spatial map in 335 
Extend Data Figure 1). Ensemble mean changes are shown as bars, and dots on each bar 336 
represent the changes of 30 individual members. Stars at the end of a bar indicate that the 337 
ensemble mean changes will ‘emerge’, whereby the forced change exceeds the background 338 
internal variability by the end of 21st century (Methods). Base maps were made with Natural 339 
Earth and Cartopy48. 340 
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 341 

Fig. 2 | Mechanistic attribution of the 342 
bloom phenological changes for the subpolar North Atlantic (45°W, 55°N). a, Future 343 
(2080-2100) and present-day (1990-2010) annual cycles of surface chlorophyll concentration 344 
(Chl, g kg-1), b, chlorophyll accumulation rate (r ≡ dlnChl/dt, day-1) and its present-day term 345 
balance. r is determined by phytoplankton growth (μ) and loss rate (l), and temporal changes 346 
in Chl to Carbon ratio (θ ) and mixed layer depth (h) (Equation 1). c, Budget for the 347 
accumulation rate changes (Δr, future r minus present-day r). The bars with respect to the left 348 
axis are accumulation rate change and three changes that drives the Δr (Equation M5). 349 
Changes in the growth and loss rates are also shown separately as lines with shading (right 350 
axis). d, Decomposition of the growth rate changes into changes in environmental drivers. The 351 
phytoplankton growth rate change is decomposed into changes in Temperature-, Nutrient-, 352 
Light-limitation (Equation M7). The periods commonly shaded in light gray in a-d represent 353 
the periods between the present-day and future bloom initiation/peak timing determined from 354 
the annual cycle of r (b). All line-shadings are the range of two standard deviations across the 355 
30 ensemble members. e, Schematic figure for explaining the mechanisms for the bloom 356 
phenological shift. Dominant drivers of each change are highlighted by red.  357 
 358 
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359 
Fig. 3 | Dominant contribution(s) to shifts in bloom initiation and bloom peak timing. a, 360 
c, Largest contribution(s) to shifts in the bloom initiation and peak timing among the three 361 
driving processes (decoupling between changes in growth and loss rate; ∆𝜇 − ∆𝑙, change in 362 
temporal variation in mixed layer depth (MLD); −∆	𝑑lnℎ/𝑑𝑡, and change in Chl:C variation; 363 
∆	𝑑ln𝜃/𝑑𝑡) in each biome. The largest contributions are defined as the driving processes that 364 
dominantly support accumulation rate change (∆𝑟) in more than 30 % of the biome area. b, d, 365 
Zonally averaged relative contributions of the three driving processes  to the accumulation rate 366 
change. Line shadings indicate the range of two standard deviations across the 30 ensemble 367 
members. Base maps were made with Natural Earth and Cartopy48. 368 
 369 
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370 
Fig. 4 | Environmental drivers that cause the future trophic level decoupling. Dominant 371 
environmental drivers that cause the decoupling of the future changes in phytoplankton growth 372 
(∆𝜇) and loss rate (−∆𝑙) a, at bloom initiation and b, at bloom peak. Growth-T, Growth-N, and 373 
Growth-L indicate that growth rate changes due to shifts in temperature, nutrient, and light, 374 
respectively, are the largest contributors to the decoupling in the biomes. Similarly, Loss-T and 375 
Loss-P show that loss rate changes due to altered temperature and biomass abundance, 376 
respectively, mainly contribute to the decoupling (i.e., ∆𝜇 − ∆𝑙 ≠ 0). The dominant driver(s) 377 
in each biome is defined as the driver with changes that dominate the decoupling term (∆𝜇 −378 
∆𝑙) in more than 20 % of the biome area. If there are two dominant drivers, both are represented 379 
in stripes. Dots superimposed on biomes indicate regions where processes other than the 380 
decoupling (Chl:C variation changes or mixed layer variation change) are comparable to the 381 
contribution from the decoupling term in the accumulation rate budget, and dominant drivers 382 
in biomes where decoupling is not the main contributor to the phenological shift are gray 383 
shaded (c.f., Fig. 3a and 3c). Base maps were made with Natural Earth and Cartopy48. 384 
  385 
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Methods 509 

Model and observational data 510 

The 30-member ensemble simulation used in this study applied the Geophysical Fluid 511 

Dynamics Laboratory Earth System Model 2 (GFDL-ESM2M32,33) to historical (1950–2005) 512 

and RCP8.5 (2006–2010) pathways between 1950 and 2100. The initial conditions (the 1st 513 

January 1950 conditions) for ensemble member 2–30 are the January 2nd–30th  model states of 514 

the first ensemble member. The model runs presented here share initial conditions, model 515 

version, and forcing with a previous study34 but differ in that they were performed on a separate 516 

computing architecture (and with more extensive high-frequency ocean model output saved). 517 

The members therefore differ from one another regarding variability mode phasing for a given 518 

time-slice, but not in their mean state evolution or statistical characteristics. The ocean 519 

biogeochemical component of ESM2M (Tracers of Ocean Phytoplankton with Allometric 520 

Zooplankton code version 2; TOPAZ2) has three phytoplankton groups (“small,” “large,” and 521 

diazotrophic phytoplankton) plus one implicit allometric zooplankton group and explicitly 522 

calculates a chlorophyll-to-carbon ratio (Chl:C) from background light, nutrient, and 523 

temperature conditions. ESM2M and other CMIP5 models, with ocean biogeochemistry 524 

observations, have been compared using historical49 and RCP8.52 simulations. We used daily 525 

means of surface Chl concentrations (g kg-1) to detect future changes in bloom timing and 526 

monthly outputs of other ocean physical and biogeochemical fields for more extensive budget 527 

calculations over the 1990–2100 time period.  528 

 529 

We also used a satellite-derived daily sea surface Chl product50 to validate the model 530 

representations of phytoplankton bloom phenology. Data missing from the observational 531 

record due to cloud cover are linearly interpolated along the time axis, except for data gaps that 532 

last more than 14 days (mostly due to the polar night).  533 
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 534 

To ensure a fair comparison between the model output and the observations, after the original 535 

model outputs were regridded to spatiotemporal resolution of the observations (daily, 1º 536 

latitude x 1º longitude), we created 30-member resampled model outputs by resampling only 537 

the regridded model data where observations exist. All model-observation comparisons (Fig. 538 

S1–S3) use the 30-member resampled model outputs, unless otherwise noted.  539 

 540 

Comparisons of modeled and observed surface Chl concentrations’ annual cycle for each 541 

biome are shown in Figure S1 and S2. Biomes are defined partly by following a previously 542 

published method51 that classifies ocean regions based on physical and biogeochemical 543 

environmental factors. Here, in order for the biome classifications to reflect the phenological 544 

characteristics of the phytoplankton bloom, bloom peak timing was used to determine biome 545 

boundaries, as an additional constraint on the variables originally used (sea ice concentration, 546 

surface Chl, mixed layer (ML) depth, and sea surface temperature). In order from the pole, 547 

each basin except for the North Indian Ocean has ice (ICE), subpolar seasonally stratified 548 

(SPSS), subtropical seasonally stratified (STSS), subtropical permanently stratified (STPS), 549 

and equatorial (EQU) biomes (map in Extended Data Fig. 1). Biomes are defined using present-550 

day climatologies, and their boundaries are not time-varying.  551 

 552 

Phytoplankton bloom definition 553 

To calculate phytoplankton bloom initiation and peak timing, we apply the accumulation rate 554 

(𝑟)-based framework30 to daily surface Chl concentration data (i.e., 𝑟 ≡ % ()("#$)
%'

). We use the 555 

surface Chl concentration values (g kg-1) rather than depth-integrated values (g) in order to 556 

compare a broadly observable and well-established quantity provided by satellite 557 

measurements, and we further assume that surface concentrations are indicative of the entire 558 



 27 

mixed layer. In our framework using surface/mixed layer concentrations, the temporal 559 

variation in the mixed layer depth must be explicitly considered in quantifying its seasonal 560 

variation (derived in a subsequent section of Methods). The total vertically-integrated 561 

phytoplankton biomass has also been previously used as a metric of phytoplankton seasonality 562 

to explain the drivers from observational datas 22,29,52.  563 

 564 

In an annual cycle, bloom initiation is defined as the day of the year when the accumulation 565 

rate becomes positive, and the bloom peak is defined as the day of the year, after the initiation, 566 

when the accumulation rate returns to negative. The difference between the peak and the 567 

initiation is the net growth period length. In practice, to avoid artificial bloom timing jumps 568 

due to discontinuities at the start of a 365-day calendar year, the annual cycle is defined as 569 

twelve months centered around the maximum day of climatological surface Chl in the annual 570 

calendar cycle at each grid point. We first obtain the bloom peak timing and bloom magnitude 571 

(Chl value at the peak) within the annual cycle at each grid point. We then use the 572 

corresponding accumulation rate (𝑟) time series to back-search for consecutive 14-day intervals 573 

with negative accumulation, representing non-bloom periods. We define the transition from a 574 

bloom period (positive 𝑟) to a non-bloom period (negative 𝑟) as the bloom initiation. All daily 575 

data from the model and observations were low-passed filtered by a Lanczos filter with a 21-576 

day half power period before we calculated bloom timings, to remove the phytoplankton’s 577 

transient spike response to atmospheric storm timescales (~a week) and ocean sub-mesoscale 578 

perturbations (~ few weeks) that are not the targets of this study.  579 

 580 

When there are more than two peaks of surface Chl in an annual cycle, we chose the “spring 581 

bloom” as the grid point bloom, which generally starts after the winter convection and thus the 582 

above assumption of identity between surface and ML-averaged Chl reasonably holds. To do 583 
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this, we imposed an additional condition in only the region with a pronounced seasonal cycle 584 

in surface Chl the bloom should peak between January to July north of 40° and between July 585 

and January south of 30º. As a result, the blooms identified are consistent between the model 586 

and observations (Fig. S3). 587 

 588 

Time of Emergence calculation 589 

We invoke the “Time of Emergence (ToE)” concept to estimate when an anthropogenically 590 

forced trend (signal) exceeds background internal variability (noise) using the large number of 591 

realizations (30 members) available for the identical forcing climate trajectory from the Large 592 

Ensemble simulation. For the yearly time series of bloom metrics (initiation, peak timing, and 593 

magnitude), the signal is calculated as the ensemble mean of 30 trends and the noise as the 594 

standard deviation of these trends. We follow the widespread assumption with Large Ensemble 595 

simulations that modeled internal variability across all timescales is normally distributed about 596 

the mean climate state. We used the standard two-sided t-test to evaluate whether a forced 597 

signal is outside the range of internal variability. When the signal magnitude is twice that of 598 

the noise, the null hypothesis (i.e. that the signal is due to internal variability) is rejected with 599 

95% confidence; that is, the anthropogenically forced trend extends beyond the range of 600 

background internal variability31. The signal-to-noise ratio is calculated iteratively with a fixed 601 

starting reference year of 1990, and the ToE is defined as the first year when the ratio is larger 602 

than 2. In this study, the ToE is estimated from biome-averaged yearly time series of bloom 603 

metrics (Extended Data Fig. 1 and S4). The area aggregation of time series reduces noise and 604 

thus promotes signal detection, as has been previously noted20. 605 

 606 

Accumulation rate budget analysis 607 
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Under the assumption that Chl advection and diffusion terms are negligible over spatial and 608 

temporal scales of ~100 km and ~1 month, respectively, we begin with the conservation 609 

equation for phytoplankton biomass (𝑃-, g C kg-1) in the ML:  610 

to derive an equation for computing the budget of Chl accumulation rate, where 𝜇, 𝑙, and ℎ 611 

indicate the phytoplankton growth rate (day-1), loss rate (day-1), and ML depth (m), respectively, 612 

and the subscript 𝑖	represents phytoplankton groups in the model (small phytoplankton, large 613 

phytoplankton, and diazotrophic phytoplankton in TOPAZ2). Subsequently, the conservation 614 

equation is rewritten as a vertical one-dimensional phytoplankton biomass equation:  615 

Assuming the water is well mixed within the ML, the surface biomass concentration is identical 616 

to that averaged throughout the ML. Under the assumption, sea surface biomass concentration 617 

can vary with growth (cell division) and loss (zooplankton grazing, aggregation, mortality, etc.) 618 

in the ML. Additionally, biomass-free water entraining from below, through ML deepening, 619 

can dilute surface/ML biomass concentration (dilution effect). Here, the effect is parameterized 620 

as follows: 621 

%#
%'
= 8		

%#
%'
			9%#

%'
> 0; 𝑑𝑒𝑒𝑝𝑒𝑛𝑖𝑛𝑔@

0			 9%#
%'
≤ 0; 𝑠ℎ𝑜𝑎𝑙𝑖𝑛𝑔@

. (M3) 

It should be noted that, in ocean regions where phytoplankton accumulate below the mixed 622 

layer in the warming season (as with subsurface Chlorophyll maxima), this simplification 623 

might lead to large errors throughout the season when the mixed layer deepens (from autumn 624 

to winter). Using the chlorophyll to carbon ratio (𝜃- =
"#$!
.!
), the phytoplankton biomass 625 

equation can be rewritten as the equation for Chl accumulation rate (Equation 1 in the Main 626 

text),  627 

𝑑𝑃-ℎ
𝑑𝑡 = (𝜇- − 𝑙-)	𝑃-ℎ (M1) 

%.!
%'
= (𝜇- − 𝑙-)	𝑃- −

.!
#
%#
%'
. (M2) 
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% ()("#$)
%'

≡ 𝑟 = ∑ H(𝜇- − 𝑙-) +
% ()(+!)
%'

I 𝛾-/
-0! − % ()(#)

%'
, (M4) 

where	𝐶ℎ𝑙 is the sum of the chlorophyll concentration of three groups (𝑐ℎ𝑙 = ∑ 𝐶ℎ𝑙-/
-0! ), and 628 

𝛾- represents the concentration ratio of each group (𝛾- = 𝐶ℎ𝑙-/𝐶ℎ𝑙). For convenience, in the 629 

main text, summations of growth and loss rate changes and Chl:C variations over the three 630 

phytoplankton groups are expressed without the subscript 𝑖.  631 

 632 

Based on this equation, accumulation rate changes from the present-day to the future (∆𝑟) are 633 

described as the sum of three terms: the changes in growth rate and loss rate, the time rate of 634 

change in the Chl:C, and the time rate of change in the ML depth,  635 

∆𝑟 = ∑ ∆(𝛾-𝜇-)/
-0! +∑ ∆(𝛾-𝑙-)/

-0! + ∑ ∆9𝛾-
% ()(+!)
%'

@/
-0! − ∆ % ()(#)

%'
  

≡ (∆𝜇 − ∆𝑙) + ∆ % ()(+)
%'

− ∆ % ()(#)
%'
. 

(M5) 

All terms in the accumulation rate budget analysis are calculated at individual grid points 636 

before being aggregated across biomes.  637 

 638 

Equation M5 estimates relative contributions from processes that drive bloom phenological 639 

shifts (i.e., changing accumulation rates). The relative contributions of the driving processes 640 

are calculated as the ratio of the time-integrated RHSs of Equation M5 to the time-integrated 641 

accumulation rate change over the period between future and present-day bloom initiation/peak 642 

timing (gray shaded periods in Fig. 2a–d):  643 

∫ (∆34∆$)	%'"#
"$

∫ ∆5	%'"#
"$

+
∫ 6∆% &'())%" 7	%'"#
"$

∫ ∆5	%'"#
"$

+
∫ 64∆% &'(+)%" 7	%'"#
"$

∫ ∆5	%'"#
"$

= 1, (M6) 

where 𝑡8and 𝑡! are the earlier and later days in the year, respectively, among future bloom 644 

initiation/peak and present-day bloom initiation/peak. 645 

 646 
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Decomposition of growth/loss rate change 647 

In the TOPAZ2 biogeochemical component of ESM2M, the phytoplankton growth rate is a 648 

function of temperature, nutrient, and light limitation terms (𝑇$-9, 𝑁$-9, and 𝐿$-9), and the loss 649 

rate is described as a function of temperature limitation and phytoplankton biomass abundance 650 

(𝑇$-9 and 𝑃-). Increases in water temperature, light levels, and nutrient concentrations promote 651 

phytoplankton growth, and rising water temperature and phytoplankton biomass themselves 652 

enhance phytoplankton loss, mainly by augmenting zooplankton predation pressure. Model 653 

parameters are assigned to each phytoplankton group and then the limitation terms are 654 

calculated separately. The Taylor expansions of the total growth rate (∆𝜇) and loss rate (∆𝑙) 655 

are expressed as contributions from changes in temperature-, light-, and nutrients-limitation 656 

(for ∆𝜇) and temperature-limitation and biomass (for ∆𝑙) (See also Supplementary Note 2): 657 

∆𝜇 = ∑ ∆(𝛾-𝜇-)/
-0! ≈ ∑ 𝛾-

:3!
:;,!-

∆𝑇$-9/
-0! + ∑ 𝛾-

:3!
:<!

,!- ∆𝑁-$-9/
-0! +

∑ 𝛾-
:3!
:=!

,!- ∆𝐿-$-9/
-0! + Residual, 

(M7) 

∆𝑙 = ∑ ∆(𝛾-𝑙-)/
-0! ≈ ∑ 𝛾-

:$!
:;,!-

∆𝑇$-9/
-0! +∑ 𝛾-

:$!
:.!

∆𝑃-/
-0! + Residual. (M8) 

Residuals in the above equations include contributions from changes in the chlorophyll 658 

concentration ratio (𝛾-) and other higher-order terms, but these tend to be minor overall (Fig. 659 

S8 and S9). Partial derivatives of the growth rate with respect to temperature-, nutrients-, and 660 

light-limitation, and of the loss rate with respect to temperature-limitations and biomass, are 661 

computed analytically using model equations (Supplementary Note 2).  662 

 663 

Data availability 664 

The 30-member GFDL-ESM2M ensemble simulations53 used in this study are available 665 

through the data transfer service Globus (https://www.globus.org). In the server 666 

(http://poseidon.princeton.edu), daily surface ocean variables are available under: 667 
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/GFDL_ESM2M/ENSEMBLE_RCP85/OCN/OCN_1D_1x1/ and monthly mean ocean fields 668 

are under /GFDL_ESM2M/ENSEMBLE_RCP85/OCN/OCN_1M_1x1. The MODIS-Aqua 669 

Level-3 Binned Chlorophyll Data50 are available at https://oceancolor.gsfc.nasa.gov. 670 

 671 

Code availability 672 

The codes used to analyze data and generate all figures are based on Python with associated 673 

standard Python packages (Xarray, NumPy, SciPy, Matplotlib, Cartopy, etc.). The codes54 are 674 

available from https://doi.org/10.5281/zenodo.6301884. 675 
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