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Abstract

Climate change can drive shifts in the seasonality of marine productivity, with consequences
for the marine food web. However, these alterations in phytoplankton bloom phenology
(initiation and peak timing), and the underlying drivers, are not well understood. Here using a
30-member Large Ensemble of climate change projections, we show earlier bloom initiation
in most ocean regions, yet changes in bloom peak timing vary widely by region. Shifts in both
initiation and peak timing are induced by a subtle decoupling between altered phytoplankton
growth and zooplankton predation, with increased zooplankton predation (top-down control)
playing an important role in altered bloom peak timing over much of the global ocean. Light
limitation is a primary control for bloom initiation changes only in limited regions. In the
extratropics, phenological changes will exceed background natural variability by the end of the

21% century, which may impact energy flow in the marine food webs.
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Main text

Marine primary productivity forms the basis of the marine food web and regulates the ocean’s
carbon cycle. The potential for climate change to have deleterious impacts on this productivity
has received significant attention!, motivating coordinated efforts to project and understand the
long-term production capacity of marine ecosystems® . In addition to exploring future changes
in mean productivity, it is also important to assess how the seasonal cycle of productivity will
alter in response to anthropogenic forcing, as shifting phenology may have significant
implications for natural and human systems. For example, changes in the seasonal timing of
intense carbon fixation by primary producers at the base of the food web can affect predation,
growth, and reproduction in higher trophic levels>¢. Such climate-driven mismatches can have
further major impacts on local ecosystems’ and fisheries®, and thus on food security. To
understand the adaptability of local ecosystems to climate change, and to develop sustainable
strategies for human food production, model projections of when phenological changes will
‘emerge’ (the point in time at which the new characteristic state can be attributed to climate

change) and what drives those changes are of tremendous utility.

There is less consensus regarding the drivers of future changes in the marine phenology of
productivity than in the terrestrial analogue® 3. Over most extra-tropical oceans, the seasonal
cycle is dominated by phytoplankton blooms, which are propelled by seasonal changes in
environmental drivers (temperature, light, nutrient availability, grazing pressure, among

others). Previous studies have suggested that onset of blooms and growing seasons have

7,14-17 18-21

already shifted earlier in phase and will continue to shift in the near future'® ', especially
at high latitudes. However, the mechanisms underlying such projected changes remain

unresolved.
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The complexity and diversity of environmental drivers that trigger, sustain, and curtail

22,23

phytoplankton blooms complicate efforts to explore changing marine phenology.
Furthermore, there are also uncertainties in future projections of these drivers themselves?.
Early efforts to explain climate-driven phenology shifts relied on the Sverdrup critical depth
paradigm?’, whereby the onset of blooms is mainly driven by increased light availability during
spring as the mixed layer shoals. Extending the critical depth hypothesis to anthropogenic
climate change, the early efforts argued that surface warming will lead spring stratification to
begin earlier, thereby modulating phytoplankton bloom timing as a “bottom-up” control!!°,
On the other hand, recent studies have emphasized the importance of a more diverse set of
mechanisms that include reduced predation by zooplankton and a consequent increase in

phytoplankton accumulation?26-2?

, which constitute “top-down” controls. Given that these
abiotic and biotic environmental drivers tend to covary, simple correlation analysis cannot

deconvolve the underlying mechanisms.

In this study, we use the accumulation rate*® of surface chlorophyll (Chl) to define the annual
phytoplankton bloom period as occurring from the beginning of Chl accumulation (bloom
initiation, Fig. la) to annual maximum of Chl (bloom peak timing, Fig. 1b). By further
assessing the budget for changes in the accumulation rate, we quantitatively attribute the
projected future change in bloom phenology (described in detail later and see also Methods).
This methodology disentangles bloom driver complexity and provides insights into the
underlying mechanisms as well as their responses to forced changes in the physical and

biological drivers®#* that modulate phenology.

Despite strong anthropogenic changes in many ocean properties impacting primary production

(e.g. temperature, mixing), analyses of Earth system model (ESM) simulations have shown
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that anthropogenic trends on biological variables are relatively subtle, taking multiple decades
to statistically emerge above background climate variability?!. This underscores the value of a
Large Ensemble framework, where one uses multiple realizations of the same model with
identical forcing, but with different initial conditions, for isolating and attributing
anthropogenic trends in marine biological variables. Here, we investigate future changes in
phytoplankton bloom phenology via daily surface Chl, by far the most commonly observed
bloom phenology variable, as well as other environmental variables (temperature, nutrient
concentrations, light levels, among others) from a 30-member Large Ensemble simulation with
the Geophysical Fluid Dynamics Laboratory Earth System Model 2 (GFDL-ESM2M3234,
Methods) under a high-emissions scenario (historical/RCP8.5). The simulation realistically

represents the main features of the seasonal cycle of sea surface Chl*?

, 1.e. phytoplankton bloom
timing, as documented by comparisons with satellite records (Fig. S1-S4, Supplementary Note

| and Extended Data Fig. 1).

Future projection of bloom phenology

Projected future changes in bloom initiation and peak timing reveal a complex response pattern
(Fig. 1c and 1d). Overall, bloom initiation and peak timing trends are on the order of a few
days per decade, but at the model-grid scale can be greater than one month over the course of
the 21% century. Biome-averaged shifts provide insight into the broader-scale patterns of
phenological change (Fig. 1¢). Bloom initiation is expected to occur earlier in almost all biomes.
Peak bloom is expected to be delayed in biomes across the Southern Ocean and Equatorial
regions but shift earlier for all biomes in the Northern extra-tropical oceans. If we define the
period from bloom initiation to bloom peak as the net growth period, the resulting changes in

period length indicate that in the future, the ocean’s "spring" will be shortened north of 30°N
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(Fig. le). Such bidirectionality the timing of changes in bloom phenology implies a variety of

drivers that vary by region and by season.

Future projected changes in bloom peak magnitude reveal more coherent spatial structures
showing both increased and decreased bloom magnitude (Extended Data Fig. 2). In a biome-
averaged perspective, bloom magnitude weakens in many Northern Hemisphere ocean regions
except the high-productivity oceans of the subarctic North Pacific. In contrast, bloom peak
magnitude increases for the Southern Ocean. This spatial pattern corresponds with the trend in
annual mean sea surface Chl, which has been evaluated previously with the same model
configuration’!, indicating that changes in blooms, which occur intermittently over a limited

part of the annual cycle, play an important role in determining the mean state trend.

Many regional phenological changes are expected to emerge sometime prior to 2100 (indicated
by stars in Fig. le). The Time of Emergence (ToE) indicates the point in time at which the
forced change (ensemble mean) in bloom timing exceeds the trends that could be caused by
natural variability alone (see Methods). Given that prey (e.g., plankton) and predators (e.g.,

fish larvae) have co-evolved and thus have interdependent phenology®3¢

, a phytoplankton
phenology shift occurring on the timescale of decades but exceeds historical year-to-year
natural variability represents a significant perturbation that could cause a mismatch between
prey and predator lifecycles®!®, although predators may be able to adapt to such a shift, for
example by migrating. In the context of ecosystems, ToE may represent a threshold for when
phytoplankton phenology could induce phenological mismatch with consequences for the local
ecosystem. Our results document an elevated risk of such mismatch especially in the Northern

Hemisphere high latitudes, where ocean regions are characterized by high productivity and

significant effects of rapid climate change.
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At present, the observed trend in biome-averaged bloom characteristics is within the natural
variability range estimated by the Large Ensemble (Extended Data Fig. 1), illustrating the
challenge in detecting phenological changes from localized observations over the satellite
ocean color record, as previously noted for bloom magnitude modulation'®*’. Thus, in the
coming decades, sustained observational efforts will be necessary, as will more refined
statistical methods such as optimal fingerprinting*®, which may be more adept at separating
anthropogenic change from natural variability. The phenological change’s earliest expected
emergence will occur in the Northern Hemisphere ice biome (N_ICE, Extended Data Fig. 1a),
associated with the commonly projected rapid retreat of sea ice*®. In these areas, both bloom
initiation and bloom peak will shift earlier, emerging during the first half of the 21 century,
with relatively larger shifts in the bloom peak timing resulting in compression of the net growth

period.

Mechanistic drivers of phenological change

The time rate of change in the Chl accumulation rate (r, day™!, the indicator of phytoplankton
bloom in this study) is determined by phytoplankton’s growth rate (u, day™') and loss rate (I,
day™!) (including cell division, predation by zooplankton, aggregation, mortality, etc.); changes
in the chlorophyll-carbon ratio (Chl:C, 6, photo-acclimation, the physiological response of
phytoplankton); and a dilution effect due to surface mixed layer (ML, h) deepening (See also

Methods):

1 dcu u—1 +dln(9) _din(b)

Chl dt dt dt

r

(1)
Phytoplankton variables (u, [, and 8) are summed over the three phytoplankton groups (small,
large, and diazotrophic phytoplankton), after weighting by each group’s abundance (Equation

M4 in Methods). Note that Equation 1 requires that, over the spatial and temporal scales this
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study investigates, advection and diffusion play minor roles, as generally assumed®-8. We
quantify future changes in bloom phenology by comparing present-day and future seasonal
cycles of r and by attributing the difference to the terms in Equation 1 (i.e., calculating the

budget).

For illustration, we focus on the subpolar North Atlantic, a region of intense spring blooms and
the subject of many observational studies assessing the phenology of primary productivity.
This region’s typical seasonal cycle (Fig. 2a and 2b) entails increased surface Chl in late winter
(r becomes positive in January/February in Fig. 2b) and a peak in May (first r zero-crossing
after the initiation in Fig. 2b). Projected future shifts to earlier phytoplankton bloom initiation
are characterized by a positive accumulation rate change (Ar; A indicates a change defined by
future minus present day, Equation M5) in late winter (first gray shading periods in Fig. 2b, c).
Conversely, at the bloom’s peak, a lower accumulation rate under future conditions (negative
Ar) suggests a shift to an earlier phasing (second gray shaded periods in Fig. 2b, c). Budget
analysis for the accumulation rate change (Ar) reveals contributions from three terms: different
changes in growth and loss rates (Au — Al), changes in temporal variations of ML depth
(—Adlnh/dt), and changes in temporal variations of Chl:C (AdIn@/dt). The dominant terms
for the positive Ar at bloom initiation (first gray shading period in Fig. 2) are positive
anomalies of both Ay — Al caused by a higher growth rate (Au) and temporal variations of ML
depth (—AdInh/dt, i.e., more gradually deepening ML) in January/February (Fig. 2¢). As for
peak bloom timing (second gray shading period), its earlier occurrence (i.e., negative Ar)

results from a negative anomaly of Ay — Al mainly due to the reduced growth rate (Ay) in May.

By further decomposing the growth rate changes (Au) into contributions from temperature-,

nutrient-, and light-limitation (see Methods and Supplementary Note 2 for complete
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expressions), we can attribute shifts in bloom timing to changes in environmental drivers (Fig.
2d). The change in the January/February growth rate, which sustains the earlier bloom initiation,
is dominated by enhanced light availability due to the combination of shallower ML depth and
increased surface irradiance (Fig. S5). A negative change in May’s growth rate, which is the
main cause of the earlier bloom peak, results from elevated nutrient- and temperature-limitation.
Note that future projections of temperature changes in the subpolar North Atlantic can be
negative, in contrast to other ocean domains (“warming hole”)***°, These results from the
budget analysis of the subpolar North Atlantic are illustrated in the schematic in Figure 2e. At
bloom initiation in January/February, positive future change in growth rate (Ap) due to
improved light availability and reduced dilution by shallower winter ML (—Adlnh/dt) drive
increases in Chl accumulation rate (Ar). Thus, the future accumulation rate becomes positive
earlier than in the present-day climate, i.e., the bloom starts earlier. At peak bloom in May,
negative future change in growth rate (Au), due to colder temperature and lower nutrient
concentrations, become the main cause of negative changes in the accumulation rate (Ar) in
the future climate, although the loss rate will also decrease. The future negative accumulation
rate anomaly indicates that the bloom peak (i.e., the timing of zero r) will occur earlier than

that in preset-day.

Regional drivers of changes in phenology

The drivers of shifts in bloom initiation and bloom peak differ at the local (grid cell) scale and
across biomes. In the eastern subarctic North Pacific, for example, unlike the subpolar North
Atlantic, surface warming is the major driver for both earlier bloom initiation and earlier bloom
peak (Extended Data Fig. 3). Warming elevates growth rates during bloom initiation and boosts

predation pressure (loss rate) at bloom peak.
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To understand the regional differences in processes that drive bloom phenological shifts, we
estimate these processes’ relative contributions to phenological shifts and show the dominant
contributions within each biome (Fig. 3). The driving processes’ relative contributions are
calculated as the ratio between the time-integrated RHSs of the accumulation budget equation
(Equation M5) and the time-integrated accumulation rate change, over the period between
future and present-day bloom initiation/peak timings (Equation M6). In almost all ocean
regions, contributions from changes in growth rates (Au) and loss rates (—Al) are the dominant
terms of the accumulation rate changes (Fig. S6 and S7). Either of these changes alone could
greatly alter bloom phenology. However, these two contributions nearly mirror each other,
reflecting the fact that phytoplankton growth and predation by zooplankton are tightly coupled
in this model. Previous studies have observed this tight coupling, and this mechanism plays an
important role in explaining climatological features of the phytoplankton bloom as well as its

interannual variability?>23-28,

While phytoplankton growth and loss rates are tightly coupled, there are subtle differences
between future changes in growth rate and those in loss rate (i.e., Ay — Al # 0). This trophic
level decoupling is the main mechanism for the peak bloom timing and initiation shifts in
almost all ocean regions (Fig. 3a and 3c). In the oligotrophic mid-latitude oceans, the
phytoplankton physiological response (temporal variations in Chl:C) is often the secondary,
and sometimes the primary, process sustaining alterations in bloom peak timing (Fig. 3¢ and
3d), in agreement with previous results from observational and modeling studies focused on
interannual time scales*!. In parts of the Southern Ocean and the North Atlantic, changes in
temporal ML variations (the dilution effect) strongly alter bloom initiation, reflecting the large
projected forced ML depth changes (Fig. S5¢). The anti-correlation of the contributions by

temporal changes in ML depth and Chl:C reflects the physiology of photo-acclimation, by

10
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which light-limited phytoplankton (i.e., deepening ML) increase intracellular Chl (i.e.,
increasing Chl:C) to maximize photosynthetic efficiency*? (R=-0.43, p<0.01 for the initiation

in Fig. 3b, R=-0.56, p<0.01 for the peak timing in Fig. 3d; see also S6d, e and S7d, ¢).

Changing environmental drivers’ contributions to future decoupling of phytoplankton growth
and loss (Au — Al) have distinct spatial footprints (Fig S8 and S9), with the dominant driver
varying among different ocean biomes (Fig. 4). Bloom initiation often occurs earlier due to
reduced light and temperature limitation of growth (Growth-L and Growth-T in Fig. 4a).
Elevated predation pressure arising from increased temperatures and biomass abundance cause
bloom peak timing to shift earlier (Loss-T and Loss-P in Fig. 4b, e.g., Northern Hemisphere
SPSS, STSS, ICE biomes). However, enhanced growth rates due to higher temperature
(Growth-T in Fig. 4b) can delay bloom peak (e.g., SA_STSS, SA_STPS, and SI_SPSS). In the
Arctic Ocean (N_ICE), where bloom phenology change emerges first, the main driver of earlier
initiation is enhanced light availability (Fig. 4a), as conceptually described in a previous study**.
An earlier peak follows earlier initiation, as the bloom will experience stronger predation
pressure associated with abundant phytoplankton biomass and warmer temperatures in the

future (Fig. 4b).

Discussion

Warming operates as a major driver for future shifts in both bloom initiation and peak timing,
changing both growth and loss rates over most of the mid- to low latitudes and parts of the high
latitudes (Growth-T and Loss-T in Fig. 4). Notably, phytoplankton phenology shift drivers can
be distinct from general nutrient-limitation drivers of projected annual mean net primary
production changes within the same regions***>. While at high latitudes growth rate changes

largely drive phase shifts in bloom initiation, increased predation pressure by zooplankton (top-
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down control) plays an important role in altered bloom peak timing over much of the global
ocean. It is important to note, particularly for observational studies, that identifying changes in
bottom-up controls is a necessary but not sufficient condition for understanding phenology
shifts, and that substantial roles for zooplankton, which are generally difficult to assess in

observational studies, are a complementary and oftentimes necessary component.

Driver interdependence (e.g., stratification changes are almost always concurrent with surface
warming and enhanced light availability) inherently limits correlation-based analysis for
quantitatively attributing changes in bloom phenology. Our results indicate that light limitation
is a primary control for future changes in bloom initiation only in limited regions (Growth-L
in Fig. 4a). As such, the Sverdrup hypothesis, originally applied to explain year-to-year
variability, cannot be generally extended to account for long-term shifts in bloom initiation.
Light limitation changes are mediated through not only ML alterations (enhanced stratification)

but also variable incident solar radiation at the sea surface, with regional dependence (Fig. S5).

Changes in phytoplankton bloom initiation and peak timing are spatially heterogenous (Fig. Ic,
d), reflecting a delicate balance between the transient behavior of phytoplankton and individual
underlying abiotic drivers. It should be noted that this study results are based on a single ESM,
and that configurations and parameters of the biological component (e.g., the number of
functional plankton groups and their couplings) are selected and tuned to reproduce the present-
day climatological mean state of productivity based on representative field studies and
ecological theory. Recent research has suggested that plankton community numbers and
structures will respond to future climate change in spatially diverse ways***’. In addition to
more observational studies on the zooplankton-phytoplankton coupling, using more

sophisticated ecological models in the next generation of ESMs could further deepen and
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improve our understanding of the plankton community’s phenological response to climate

forcing.

Trophic level decoupling in response to anthropogenic forcing induces various future bloom
phenological changes that result in both expanded and compressed future changes in net growth
period length. Based on Northern Hemisphere high latitude oceans, our results diverge from
research on the terrestrial biosphere, where phenological changes are anticipated to shift more
uniformly to expanded growing seasons’!® as a forced response to anthropogenic warming and
CO, fertilization. This remarkable contrast between land and sea reflects the fact that, in the
ocean, anthropogenic warming triggers a number of processes that encompass both bottom-up
and top-down drivers, with the balance between these drivers playing out quite differently in
distinct ocean regions. The emergence of marine phytoplankton phenological change in high-
productivity high-latitude ocean biomes indicates potential mismatches with the seasonal
phasing of spawning in higher trophic levels, posing a potential risk to local marine ecosystems

and ultimately the food security of populations dependent on marine resources.
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Figure captions
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Fig. 1 | Projected future changes in the phytoplankton bloom phenology, and emergence
timescales. a, b, Ensemble mean climatology (1990-2020) of phytoplankton bloom initiation
and peak timing, simulated by the Geophysical Fluid Dynamics Laboratory Earth System
Model 2 (GFDL-ESM2M) (letters indicate calendar month). ¢, d, Ensemble mean trends
(1990-2100 under a Historical/ RCP8.5 scenario) of bloom initiation and bloom peak timing.
Positive trends indicate delayed initiation and delayed peak timing. Regions where the trend is
statistically insignificant (at the 99% confidence level) are stippled. Black contours
superimposed on the maps indicate biome boundaries. E, Biome-averaged changes (2080—
2100 minus 1990-2010) in bloom initiation (green) and bloom peak timing (orange). In each
ocean basin, subtropical seasonally stratified (STSS), subtropical permanently stratified
(STPS), and equatorial (EQU) biomes are assigned in order from the pole (spatial map in
Extend Data Figure 1). Ensemble mean changes are shown as bars, and dots on each bar
represent the changes of 30 individual members. Stars at the end of a bar indicate that the
ensemble mean changes will ‘emerge’, whereby the forced change exceeds the background
internal variability by the end of 21% century (Methods). Base maps were made with Natural
Earth and Cartopy*®.
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(Chl, g kg"), b, chlorophyll accumulation rate (» = dInChl/dt, day™') and its present-day term
balance. r is determined by phytoplankton growth (1 ) and loss rate (/), and temporal changes
in Chl to Carbon ratio ( 0 ) and mixed layer depth (%) (Equation 1). ¢, Budget for the
accumulation rate changes ( 4r, future » minus present-day r). The bars with respect to the left

axis are accumulation rate change and three changes that drives the 4r (Equation M5).
Changes in the growth and loss rates are also shown separately as lines with shading (right
axis). d, Decomposition of the growth rate changes into changes in environmental drivers. The
phytoplankton growth rate change is decomposed into changes in Temperature-, Nutrient-,
Light-limitation (Equation M7). The periods commonly shaded in light gray in a-d represent
the periods between the present-day and future bloom initiation/peak timing determined from
the annual cycle of 7 (b). All line-shadings are the range of two standard deviations across the
30 ensemble members. e, Schematic figure for explaining the mechanisms for the bloom
phenological shift. Dominant drivers of each change are highlighted by red.
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Fig. 3 | Dominant contribution(s) to shifts in bloom initiation and bloom peak timing. a,
¢, Largest contribution(s) to shifts in the bloom initiation and peak timing among the three
driving processes (decoupling between changes in growth and loss rate; Au — Al, change in
temporal variation in mixed layer depth (MLD); —A dlnh/dt, and change in Chl:C variation;
A dIn@/dt) in each biome. The largest contributions are defined as the driving processes that
dominantly support accumulation rate change (Ar) in more than 30 % of the biome area. b, d,
Zonally averaged relative contributions of the three driving processes to the accumulation rate
change. Line shadings indicate the range of two standard deviations across the 30 ensemble
members. Base maps were made with Natural Earth and Cartopy*®
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Fig. 4 | Environmental drivers that cause the future trophic level decoupling. Dominant
environmental drivers that cause the decoupling of the future changes in phytoplankton growth
(Ap) and loss rate (—Al) a, at bloom initiation and b, at bloom peak. Growth-T, Growth-N, and
Growth-L indicate that growth rate changes due to shifts in temperature, nutrient, and light,
respectively, are the largest contributors to the decoupling in the biomes. Similarly, Loss-T and
Loss-P show that loss rate changes due to altered temperature and biomass abundance,
respectively, mainly contribute to the decoupling (i.e., Au — Al # 0). The dominant driver(s)
in each biome is defined as the driver with changes that dominate the decoupling term (Au —
Al) in more than 20 % of the biome area. If there are two dominant drivers, both are represented
in stripes. Dots superimposed on biomes indicate regions where processes other than the
decoupling (Chl:C variation changes or mixed layer variation change) are comparable to the
contribution from the decoupling term in the accumulation rate budget, and dominant drivers
in biomes where decoupling is not the main contributor to the phenological shift are gray
shaded (c.f., Fig. 3a and 3c). Base maps were made with Natural Earth and Cartopy*®,
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Methods

Model and observational data

The 30-member ensemble simulation used in this study applied the Geophysical Fluid
Dynamics Laboratory Earth System Model 2 (GFDL-ESM2M?*2-%) to historical (1950-2005)
and RCP8.5 (2006-2010) pathways between 1950 and 2100. The initial conditions (the 1st
January 1950 conditions) for ensemble member 2-30 are the January 2"-30" model states of
the first ensemble member. The model runs presented here share initial conditions, model
version, and forcing with a previous study>* but differ in that they were performed on a separate
computing architecture (and with more extensive high-frequency ocean model output saved).
The members therefore differ from one another regarding variability mode phasing for a given
time-slice, but not in their mean state evolution or statistical characteristics. The ocean
biogeochemical component of ESM2M (Tracers of Ocean Phytoplankton with Allometric
Zooplankton code version 2; TOPAZ?2) has three phytoplankton groups (“small,” “large,” and
diazotrophic phytoplankton) plus one implicit allometric zooplankton group and explicitly
calculates a chlorophyll-to-carbon ratio (Chl:C) from background light, nutrient, and
temperature conditions. ESM2M and other CMIP5 models, with ocean biogeochemistry
observations, have been compared using historical*® and RCP8.5% simulations. We used daily
means of surface Chl concentrations (g kg™') to detect future changes in bloom timing and
monthly outputs of other ocean physical and biogeochemical fields for more extensive budget

calculations over the 1990-2100 time period.

We also used a satellite-derived daily sea surface Chl product®® to validate the model
representations of phytoplankton bloom phenology. Data missing from the observational
record due to cloud cover are linearly interpolated along the time axis, except for data gaps that

last more than 14 days (mostly due to the polar night).
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To ensure a fair comparison between the model output and the observations, after the original
model outputs were regridded to spatiotemporal resolution of the observations (daily, 1°
latitude x 1° longitude), we created 30-member resampled model outputs by resampling only
the regridded model data where observations exist. All model-observation comparisons (Fig.

S1-S3) use the 30-member resampled model outputs, unless otherwise noted.

Comparisons of modeled and observed surface Chl concentrations’ annual cycle for each
biome are shown in Figure S1 and S2. Biomes are defined partly by following a previously
published method’! that classifies ocean regions based on physical and biogeochemical
environmental factors. Here, in order for the biome classifications to reflect the phenological
characteristics of the phytoplankton bloom, bloom peak timing was used to determine biome
boundaries, as an additional constraint on the variables originally used (sea ice concentration,
surface Chl, mixed layer (ML) depth, and sea surface temperature). In order from the pole,
each basin except for the North Indian Ocean has ice (ICE), subpolar seasonally stratified
(SPSS), subtropical seasonally stratified (STSS), subtropical permanently stratified (STPS),
and equatorial (EQU) biomes (map in Extended Data Fig. 1). Biomes are defined using present-

day climatologies, and their boundaries are not time-varying.

Phytoplankton bloom definition

To calculate phytoplankton bloom initiation and peak timing, we apply the accumulation rate

dIn(chl)

(r)-based framework?® to daily surface Chl concentration data (i.e., r = 0

). We use the

surface Chl concentration values (g kg!) rather than depth-integrated values (g) in order to
compare a broadly observable and well-established quantity provided by satellite

measurements, and we further assume that surface concentrations are indicative of the entire
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mixed layer. In our framework using surface/mixed layer concentrations, the temporal
variation in the mixed layer depth must be explicitly considered in quantifying its seasonal
variation (derived in a subsequent section of Methods). The total vertically-integrated
phytoplankton biomass has also been previously used as a metric of phytoplankton seasonality

to explain the drivers from observational datas 2%2%-2,

In an annual cycle, bloom initiation is defined as the day of the year when the accumulation
rate becomes positive, and the bloom peak is defined as the day of the year, after the initiation,
when the accumulation rate returns to negative. The difference between the peak and the
initiation is the net growth period length. In practice, to avoid artificial bloom timing jumps
due to discontinuities at the start of a 365-day calendar year, the annual cycle is defined as
twelve months centered around the maximum day of climatological surface Chl in the annual
calendar cycle at each grid point. We first obtain the bloom peak timing and bloom magnitude
(Chl value at the peak) within the annual cycle at each grid point. We then use the
corresponding accumulation rate () time series to back-search for consecutive 14-day intervals
with negative accumulation, representing non-bloom periods. We define the transition from a
bloom period (positive r) to a non-bloom period (negative r) as the bloom initiation. All daily
data from the model and observations were low-passed filtered by a Lanczos filter with a 21-
day half power period before we calculated bloom timings, to remove the phytoplankton’s
transient spike response to atmospheric storm timescales (~a week) and ocean sub-mesoscale

perturbations (~ few weeks) that are not the targets of this study.

When there are more than two peaks of surface Chl in an annual cycle, we chose the “spring

bloom” as the grid point bloom, which generally starts after the winter convection and thus the

above assumption of identity between surface and ML-averaged Chl reasonably holds. To do
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this, we imposed an additional condition in only the region with a pronounced seasonal cycle
in surface Chl the bloom should peak between January to July north of 40° and between July
and January south of 30°. As a result, the blooms identified are consistent between the model

and observations (Fig. S3).

Time of Emergence calculation

We invoke the “Time of Emergence (ToE)” concept to estimate when an anthropogenically
forced trend (signal) exceeds background internal variability (noise) using the large number of
realizations (30 members) available for the identical forcing climate trajectory from the Large
Ensemble simulation. For the yearly time series of bloom metrics (initiation, peak timing, and
magnitude), the signal is calculated as the ensemble mean of 30 trends and the noise as the
standard deviation of these trends. We follow the widespread assumption with Large Ensemble
simulations that modeled internal variability across all timescales is normally distributed about
the mean climate state. We used the standard two-sided #-test to evaluate whether a forced
signal is outside the range of internal variability. When the signal magnitude is twice that of
the noise, the null hypothesis (i.e. that the signal is due to internal variability) is rejected with
95% confidence; that is, the anthropogenically forced trend extends beyond the range of
background internal variability?!. The signal-to-noise ratio is calculated iteratively with a fixed
starting reference year of 1990, and the ToE is defined as the first year when the ratio is larger
than 2. In this study, the ToE is estimated from biome-averaged yearly time series of bloom
metrics (Extended Data Fig. 1 and S4). The area aggregation of time series reduces noise and

thus promotes signal detection, as has been previously noted®.

Accumulation rate budget analysis
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Under the assumption that Chl advection and diffusion terms are negligible over spatial and
temporal scales of ~100 km and ~1 month, respectively, we begin with the conservation

equation for phytoplankton biomass (P;, g C kg'!) in the ML:

dP;h
dt

= (u; — ;) P;h (ML)

to derive an equation for computing the budget of Chl accumulation rate, where u, [, and h
indicate the phytoplankton growth rate (day!), loss rate (day™!), and ML depth (m), respectively,
and the subscript i represents phytoplankton groups in the model (small phytoplankton, large
phytoplankton, and diazotrophic phytoplankton in TOPAZ2). Subsequently, the conservation
equation is rewritten as a vertical one-dimensional phytoplankton biomass equation:

dP;
dt

P;dh

=W — 1) P — P (M2)

Assuming the water is well mixed within the ML, the surface biomass concentration is identical
to that averaged throughout the ML. Under the assumption, sea surface biomass concentration
can vary with growth (cell division) and loss (zooplankton grazing, aggregation, mortality, etc.)
in the ML. Additionally, biomass-free water entraining from below, through ML deepening,

can dilute surface/ML biomass concentration (dilution effect). Here, the effect is parameterized

as follows:
dh (dh .
an _ ) a (E > 0; deepemng) .
dt dh _ . ‘
0 (E < 0; shoalmg)

It should be noted that, in ocean regions where phytoplankton accumulate below the mixed
layer in the warming season (as with subsurface Chlorophyll maxima), this simplification

might lead to large errors throughout the season when the mixed layer deepens (from autumn

to winter). Using the chlorophyll to carbon ratio (6; = %), the phytoplankton biomass

equation can be rewritten as the equation for Chl accumulation rate (Equation 1 in the Main

text),
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dln(Cchl) __ dIn(6;) dln(h)
L =T = i <(#i — ) +— )Vi - (M4)

where Chl is the sum of the chlorophyll concentration of three groups (chl = Y3_, Chl;), and
y; represents the concentration ratio of each group (y; = Chl;/Chl). For convenience, in the
main text, summations of growth and loss rate changes and Chl:C variations over the three

phytoplankton groups are expressed without the subscript i.

Based on this equation, accumulation rate changes from the present-day to the future (Ar) are
described as the sum of three terms: the changes in growth rate and loss rate, the time rate of

change in the Chl:C, and the time rate of change in the ML depth,

dIn(6;) dln(h)
Ar =37 A(yip) + X Arily) + X, A (Vi I;t ) —A Zt

(M5)
d1n(6) . Adln(h)

= (Au—AD)+A ” ”

All terms in the accumulation rate budget analysis are calculated at individual grid points

before being aggregated across biomes.

Equation M5 estimates relative contributions from processes that drive bloom phenological
shifts (i.e., changing accumulation rates). The relative contributions of the driving processes
are calculated as the ratio of the time-integrated RHSs of Equation M5 to the time-integrated
accumulation rate change over the period between future and present-day bloom initiation/peak

timing (gray shaded periods in Fig. 2a—d):

t1 t1( ,dIn(6) t1(_,dIn

g Gumtae [ (6Tgm)ae | (A ar (M6)
2] t1 1 v
o Ardt Ar dt Ar dt
0 to to

where tyand t; are the earlier and later days in the year, respectively, among future bloom

initiation/peak and present-day bloom initiation/peak.
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Decomposition of growth/loss rate change

In the TOPAZ2 biogeochemical component of ESM2M, the phytoplankton growth rate is a
function of temperature, nutrient, and light limitation terms (T*™, N%™ and L%™), and the loss
rate is described as a function of temperature limitation and phytoplankton biomass abundance
(T"™ and P;). Increases in water temperature, light levels, and nutrient concentrations promote
phytoplankton growth, and rising water temperature and phytoplankton biomass themselves
enhance phytoplankton loss, mainly by augmenting zooplankton predation pressure. Model
parameters are assigned to each phytoplankton group and then the limitation terms are
calculated separately. The Taylor expansions of the total growth rate (Au) and loss rate (Al)
are expressed as contributions from changes in temperature-, light-, and nutrients-limitation

(for Ap) and temperature-limitation and biomass (for Al) (See also Supplementary Note 2):

ou; ;: ou; i
Ap =7 Ayit) = Y31 v ﬂm ATH™ 4+ 33y —Z ANF™ +

Tl P Nilim
(M?7)
31 Vi g ALI™ + Residual,
Al = "3=1 Alyili) = ?=1 Yi agzliim ATH™ + Z?=1 Yi %APL- + Residual. (M3)

Residuals in the above equations include contributions from changes in the chlorophyll
concentration ratio (y;) and other higher-order terms, but these tend to be minor overall (Fig.
S8 and S9). Partial derivatives of the growth rate with respect to temperature-, nutrients-, and
light-limitation, and of the loss rate with respect to temperature-limitations and biomass, are

computed analytically using model equations (Supplementary Note 2).

Data availability

The 30-member GFDL-ESM2M ensemble simulations®® used in this study are available

through the data transfer service Globus (https:/www.globus.org). In the server

(http://poseidon.princeton.edu), daily surface ocean variables are available under:
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/GFDL_ESM2M/ENSEMBLE RCP85/OCN/OCN_1D _1x1/ and monthly mean ocean fields

are under /GFDL_ESM2M/ENSEMBLE RCP85/0CN/OCN_IM_1x1. The MODIS-Aqua

Level-3 Binned Chlorophyll Data®® are available at https://oceancolor.gsfc.nasa.gov.

Code availability

The codes used to analyze data and generate all figures are based on Python with associated

standard Python packages (Xarray, NumPy, SciPy, Matplotlib, Cartopy, etc.). The codes>* are

available from https://doi.org/10.5281/zenodo.6301884.
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