

1 Trophic level decoupling drives future changes in phytoplankton 2 bloom phenology (79 characters with space)

3 Ryohei Yamaguchi^{1,2} *, Keith B. Rodgers^{1,2}, Axel Timmermann^{1,2}, Karl J. Stein^{1,2}, Sarah
4 Schlunegger³, Daniele Bianchi⁴, John P. Dunne⁵, and Richard Slater³

¹ Center for Climate Physics, Institute for Basic Science, Busan, South Korea

6 *²Pusan National University, Busan, South Korea*

⁷ *³ AOS Program, Princeton University, Princeton, NJ, United States*

⁴ Department of Atmospheric and Oceanic Sciences, University of California Los Angeles,
Los Angeles, CA, United States

⁵ NOAA/OAR Geophysical Fluid Dynamics Laboratory, NJ, United States

* Corresponding author: Ryohei Yamaguchi (ryamaguchi@pusan.ac.kr)

13 In preparation for *Nature Climate Change*

14 February 21th, 2022

18 **Abstract**

19 Climate change can drive shifts in the seasonality of marine productivity, with consequences
20 for the marine food web. However, these alterations in phytoplankton bloom phenology
21 (initiation and peak timing), and the underlying drivers, are not well understood. Here using a
22 30-member Large Ensemble of climate change projections, we show earlier bloom initiation
23 in most ocean regions, yet changes in bloom peak timing vary widely by region. Shifts in both
24 initiation and peak timing are induced by a subtle decoupling between altered phytoplankton
25 growth and zooplankton predation, with increased zooplankton predation (top-down control)
26 playing an important role in altered bloom peak timing over much of the global ocean. Light
27 limitation is a primary control for bloom initiation changes only in limited regions. In the
28 extratropics, phenological changes will exceed background natural variability by the end of the
29 21st century, which may impact energy flow in the marine food webs.

30

31

32

33 **Main text**

34 Marine primary productivity forms the basis of the marine food web and regulates the ocean's
35 carbon cycle. The potential for climate change to have deleterious impacts on this productivity
36 has received significant attention¹, motivating coordinated efforts to project and understand the
37 long-term production capacity of marine ecosystems²⁻⁴. In addition to exploring future changes
38 in mean productivity, it is also important to assess how the seasonal cycle of productivity will
39 alter in response to anthropogenic forcing, as shifting phenology may have significant
40 implications for natural and human systems. For example, changes in the seasonal timing of
41 intense carbon fixation by primary producers at the base of the food web can affect predation,
42 growth, and reproduction in higher trophic levels^{5,6}. Such climate-driven mismatches can have
43 further major impacts on local ecosystems⁷ and fisheries⁸, and thus on food security. To
44 understand the adaptability of local ecosystems to climate change, and to develop sustainable
45 strategies for human food production, model projections of when phenological changes will
46 'emerge' (the point in time at which the new characteristic state can be attributed to climate
47 change) and what drives those changes are of tremendous utility.

48

49 There is less consensus regarding the drivers of future changes in the marine phenology of
50 productivity than in the terrestrial analogue⁹⁻¹³. Over most extra-tropical oceans, the seasonal
51 cycle is dominated by phytoplankton blooms, which are propelled by seasonal changes in
52 environmental drivers (temperature, light, nutrient availability, grazing pressure, among
53 others). Previous studies have suggested that onset of blooms and growing seasons have
54 already shifted earlier in phase^{7,14-17} and will continue to shift in the near future¹⁸⁻²¹, especially
55 at high latitudes. However, the mechanisms underlying such projected changes remain
56 unresolved.

57

58 The complexity and diversity of environmental drivers that trigger, sustain, and curtail
59 phytoplankton blooms^{22,23} complicate efforts to explore changing marine phenology.
60 Furthermore, there are also uncertainties in future projections of these drivers themselves²⁴.
61 Early efforts to explain climate-driven phenology shifts relied on the Sverdrup critical depth
62 paradigm²⁵, whereby the onset of blooms is mainly driven by increased light availability during
63 spring as the mixed layer shoals. Extending the critical depth hypothesis to anthropogenic
64 climate change, the early efforts argued that surface warming will lead spring stratification to
65 begin earlier, thereby modulating phytoplankton bloom timing as a “bottom-up” control^{18,19}.
66 On the other hand, recent studies have emphasized the importance of a more diverse set of
67 mechanisms that include reduced predation by zooplankton and a consequent increase in
68 phytoplankton accumulation^{22,26–29}, which constitute “top-down” controls. Given that these
69 abiotic and biotic environmental drivers tend to covary, simple correlation analysis cannot
70 deconvolve the underlying mechanisms.

71

72 In this study, we use the accumulation rate³⁰ of surface chlorophyll (Chl) to define the annual
73 phytoplankton bloom period as occurring from the beginning of Chl accumulation (bloom
74 initiation, [Fig. 1a](#)) to annual maximum of Chl (bloom peak timing, [Fig. 1b](#)). By further
75 assessing the budget for changes in the accumulation rate, we quantitatively attribute the
76 projected future change in bloom phenology (described in detail later and see also Methods).
77 This methodology disentangles bloom driver complexity and provides insights into the
78 underlying mechanisms as well as their responses to forced changes in the physical and
79 biological drivers^{3,4} that modulate phenology.

80

81 Despite strong anthropogenic changes in many ocean properties impacting primary production
82 (e.g. temperature, mixing), analyses of Earth system model (ESM) simulations have shown

83 that anthropogenic trends on biological variables are relatively subtle, taking multiple decades
84 to statistically emerge above background climate variability³¹. This underscores the value of a
85 Large Ensemble framework, where one uses multiple realizations of the same model with
86 identical forcing, but with different initial conditions, for isolating and attributing
87 anthropogenic trends in marine biological variables. Here, we investigate future changes in
88 phytoplankton bloom phenology via daily surface Chl, by far the most commonly observed
89 bloom phenology variable, as well as other environmental variables (temperature, nutrient
90 concentrations, light levels, among others) from a 30-member Large Ensemble simulation with
91 the Geophysical Fluid Dynamics Laboratory Earth System Model 2 (GFDL-ESM2M^{32–34},
92 Methods) under a high-emissions scenario (historical/RCP8.5). The simulation realistically
93 represents the main features of the seasonal cycle of sea surface Chl³⁵, i.e. phytoplankton bloom
94 timing, as documented by comparisons with satellite records (Fig. S1–S4, Supplementary Note
95 1 and [Extended Data Fig. 1](#)).

96

97 **Future projection of bloom phenology**

98 Projected future changes in bloom initiation and peak timing reveal a complex response pattern
99 (Fig. 1c and 1d). Overall, bloom initiation and peak timing trends are on the order of a few
100 days per decade, but at the model-grid scale can be greater than one month over the course of
101 the 21st century. Biome-averaged shifts provide insight into the broader-scale patterns of
102 phenological change (Fig. 1e). Bloom initiation is expected to occur earlier in almost all biomes.
103 Peak bloom is expected to be delayed in biomes across the Southern Ocean and Equatorial
104 regions but shift earlier for all biomes in the Northern extra-tropical oceans. If we define the
105 period from bloom initiation to bloom peak as the net growth period, the resulting changes in
106 period length indicate that in the future, the ocean's "spring" will be shortened north of 30°N

107 (Fig. 1e). Such bidirectionality the timing of changes in bloom phenology implies a variety of
108 drivers that vary by region and by season.

109

110 Future projected changes in bloom peak magnitude reveal more coherent spatial structures
111 showing both increased and decreased bloom magnitude (Extended Data Fig. 2). In a biome-
112 averaged perspective, bloom magnitude weakens in many Northern Hemisphere ocean regions
113 except the high-productivity oceans of the subarctic North Pacific. In contrast, bloom peak
114 magnitude increases for the Southern Ocean. This spatial pattern corresponds with the trend in
115 annual mean sea surface Chl, which has been evaluated previously with the same model
116 configuration³¹, indicating that changes in blooms, which occur intermittently over a limited
117 part of the annual cycle, play an important role in determining the mean state trend.

118

119 Many regional phenological changes are expected to emerge sometime prior to 2100 (indicated
120 by stars in Fig. 1e). The Time of Emergence (ToE) indicates the point in time at which the
121 forced change (ensemble mean) in bloom timing exceeds the trends that could be caused by
122 natural variability alone (see Methods). Given that prey (e.g., plankton) and predators (e.g.,
123 fish larvae) have co-evolved and thus have interdependent phenology^{6,36}, a phytoplankton
124 phenology shift occurring on the timescale of decades but exceeds historical year-to-year
125 natural variability represents a significant perturbation that could cause a mismatch between
126 prey and predator lifecycles^{8,18}, although predators may be able to adapt to such a shift, for
127 example by migrating. In the context of ecosystems, ToE may represent a threshold for when
128 phytoplankton phenology could induce phenological mismatch with consequences for the local
129 ecosystem. Our results document an elevated risk of such mismatch especially in the Northern
130 Hemisphere high latitudes, where ocean regions are characterized by high productivity and
131 significant effects of rapid climate change.

132

133 At present, the observed trend in biome-averaged bloom characteristics is within the natural
134 variability range estimated by the Large Ensemble ([Extended Data Fig. 1](#)), illustrating the
135 challenge in detecting phenological changes from localized observations over the satellite
136 ocean color record, as previously noted for bloom magnitude modulation^{19,37}. Thus, in the
137 coming decades, sustained observational efforts will be necessary, as will more refined
138 statistical methods such as optimal fingerprinting³⁸, which may be more adept at separating
139 anthropogenic change from natural variability. The phenological change's earliest expected
140 emergence will occur in the Northern Hemisphere ice biome (N_ICE, [Extended Data Fig. 1a](#)),
141 associated with the commonly projected rapid retreat of sea ice³⁹. In these areas, both bloom
142 initiation and bloom peak will shift earlier, emerging during the first half of the 21st century,
143 with relatively larger shifts in the bloom peak timing resulting in compression of the net growth
144 period.

145

146 **Mechanistic drivers of phenological change**

147 The time rate of change in the Chl accumulation rate (r , day⁻¹, the indicator of phytoplankton
148 bloom in this study) is determined by phytoplankton's growth rate (μ , day⁻¹) and loss rate (l ,
149 day⁻¹) (including cell division, predation by zooplankton, aggregation, mortality, etc.); changes
150 in the chlorophyll-carbon ratio (Chl:C, θ , photo-acclimation, the physiological response of
151 phytoplankton); and a dilution effect due to surface mixed layer (ML, h) deepening (See also
152 Methods):

$$r \equiv \frac{1}{Chl} \frac{d Chl}{dt} \approx \mu - l + \frac{d \ln(\theta)}{dt} - \frac{d \ln(h)}{dt}. \quad (1)$$

153 Phytoplankton variables (μ , l , and θ) are summed over the three phytoplankton groups (small,
154 large, and diazotrophic phytoplankton), after weighting by each group's abundance (Equation
155 M4 in Methods). Note that Equation 1 requires that, over the spatial and temporal scales this

156 study investigates, advection and diffusion play minor roles, as generally assumed^{23,28}. We
157 quantify future changes in bloom phenology by comparing present-day and future seasonal
158 cycles of r and by attributing the difference to the terms in Equation 1 (i.e., calculating the
159 budget).

160

161 For illustration, we focus on the subpolar North Atlantic, a region of intense spring blooms and
162 the subject of many observational studies assessing the phenology of primary productivity.
163 This region's typical seasonal cycle (Fig. 2a and 2b) entails increased surface Chl in late winter
164 (r becomes positive in January/February in Fig. 2b) and a peak in May (first r zero-crossing
165 after the initiation in Fig. 2b). Projected future shifts to earlier phytoplankton bloom initiation
166 are characterized by a positive accumulation rate change (Δr ; Δ indicates a change defined by
167 future minus present day, Equation M5) in late winter (first gray shading periods in Fig. 2b, c).
168 Conversely, at the bloom's peak, a lower accumulation rate under future conditions (negative
169 Δr) suggests a shift to an earlier phasing (second gray shaded periods in Fig. 2b, c). Budget
170 analysis for the accumulation rate change (Δr) reveals contributions from three terms: different
171 changes in growth and loss rates ($\Delta\mu - \Delta l$), changes in temporal variations of ML depth
172 ($-\Delta\text{dln}h/\text{dt}$), and changes in temporal variations of Chl:C ($\Delta\text{dln}\theta/\text{dt}$). The dominant terms
173 for the positive Δr at bloom initiation (first gray shading period in Fig. 2) are positive
174 anomalies of both $\Delta\mu - \Delta l$ caused by a higher growth rate ($\Delta\mu$) and temporal variations of ML
175 depth ($-\Delta\text{dln}h/\text{dt}$, i.e., more gradually deepening ML) in January/February (Fig. 2c). As for
176 peak bloom timing (second gray shading period), its earlier occurrence (i.e., negative Δr)
177 results from a negative anomaly of $\Delta\mu - \Delta l$ mainly due to the reduced growth rate ($\Delta\mu$) in May.

178

179 By further decomposing the growth rate changes ($\Delta\mu$) into contributions from temperature-,
180 nutrient-, and light-limitation (see Methods and [Supplementary Note 2](#) for complete

181 expressions), we can attribute shifts in bloom timing to changes in environmental drivers (Fig.
182 2d). The change in the January/February growth rate, which sustains the earlier bloom initiation,
183 is dominated by enhanced light availability due to the combination of shallower ML depth and
184 increased surface irradiance (Fig. S5). A negative change in May's growth rate, which is the
185 main cause of the earlier bloom peak, results from elevated nutrient- and temperature-limitation.
186 Note that future projections of temperature changes in the subpolar North Atlantic can be
187 negative, in contrast to other ocean domains ("warming hole")^{24,40}. These results from the
188 budget analysis of the subpolar North Atlantic are illustrated in the schematic in Figure 2e. At
189 bloom initiation in January/February, positive future change in growth rate ($\Delta\mu$) due to
190 improved light availability and reduced dilution by shallower winter ML ($-\Delta\text{dln}h/\text{dt}$) drive
191 increases in Chl accumulation rate (Δr). Thus, the future accumulation rate becomes positive
192 earlier than in the present-day climate, i.e., the bloom starts earlier. At peak bloom in May,
193 negative future change in growth rate ($\Delta\mu$), due to colder temperature and lower nutrient
194 concentrations, become the main cause of negative changes in the accumulation rate (Δr) in
195 the future climate, although the loss rate will also decrease. The future negative accumulation
196 rate anomaly indicates that the bloom peak (i.e., the timing of zero r) will occur earlier than
197 that in present-day.

198

199 **Regional drivers of changes in phenology**

200 The drivers of shifts in bloom initiation and bloom peak differ at the local (grid cell) scale and
201 across biomes. In the eastern subarctic North Pacific, for example, unlike the subpolar North
202 Atlantic, surface warming is the major driver for both earlier bloom initiation and earlier bloom
203 peak (Extended Data Fig. 3). Warming elevates growth rates during bloom initiation and boosts
204 predation pressure (loss rate) at bloom peak.

205

206 To understand the regional differences in processes that drive bloom phenological shifts, we
207 estimate these processes' relative contributions to phenological shifts and show the dominant
208 contributions within each biome (Fig. 3). The driving processes' relative contributions are
209 calculated as the ratio between the time-integrated RHSs of the accumulation budget equation
210 (Equation M5) and the time-integrated accumulation rate change, over the period between
211 future and present-day bloom initiation/peak timings (Equation M6). In almost all ocean
212 regions, contributions from changes in growth rates ($\Delta\mu$) and loss rates ($-\Delta l$) are the dominant
213 terms of the accumulation rate changes (Fig. S6 and S7). Either of these changes alone could
214 greatly alter bloom phenology. However, these two contributions nearly mirror each other,
215 reflecting the fact that phytoplankton growth and predation by zooplankton are tightly coupled
216 in this model. Previous studies have observed this tight coupling, and this mechanism plays an
217 important role in explaining climatological features of the phytoplankton bloom as well as its
218 interannual variability^{22,23,28}.

219
220 While phytoplankton growth and loss rates are tightly coupled, there are subtle differences
221 between future changes in growth rate and those in loss rate (i.e., $\Delta\mu - \Delta l \neq 0$). This trophic
222 level decoupling is the main mechanism for the peak bloom timing and initiation shifts in
223 almost all ocean regions (Fig. 3a and 3c). In the oligotrophic mid-latitude oceans, the
224 phytoplankton physiological response (temporal variations in Chl:C) is often the secondary,
225 and sometimes the primary, process sustaining alterations in bloom peak timing (Fig. 3c and
226 3d), in agreement with previous results from observational and modeling studies focused on
227 interannual time scales⁴¹. In parts of the Southern Ocean and the North Atlantic, changes in
228 temporal ML variations (the dilution effect) strongly alter bloom initiation, reflecting the large
229 projected forced ML depth changes (Fig. S5c). The anti-correlation of the contributions by
230 temporal changes in ML depth and Chl:C reflects the physiology of photo-acclimation, by

231 which light-limited phytoplankton (i.e., deepening ML) increase intracellular Chl (i.e.,
232 increasing Chl:C) to maximize photosynthetic efficiency⁴² ($R=-0.43, p<0.01$ for the initiation
233 in Fig. 3b, $R=-0.56, p<0.01$ for the peak timing in Fig. 3d; see also S6d, e and S7d, e).

234

235 Changing environmental drivers' contributions to future decoupling of phytoplankton growth
236 and loss ($\Delta\mu - \Delta l$) have distinct spatial footprints (Fig S8 and S9), with the dominant driver
237 varying among different ocean biomes (Fig. 4). Bloom initiation often occurs earlier due to
238 reduced light and temperature limitation of growth (Growth-L and Growth-T in Fig. 4a).
239 Elevated predation pressure arising from increased temperatures and biomass abundance cause
240 bloom peak timing to shift earlier (Loss-T and Loss-P in Fig. 4b, e.g., Northern Hemisphere
241 SPSS, STSS, ICE biomes). However, enhanced growth rates due to higher temperature
242 (Growth-T in Fig. 4b) can delay bloom peak (e.g., SA_STSS, SA_STPS, and SI_SPSS). In the
243 Arctic Ocean (N_ICE), where bloom phenology change emerges first, the main driver of earlier
244 initiation is enhanced light availability (Fig. 4a), as conceptually described in a previous study⁴³.
245 An earlier peak follows earlier initiation, as the bloom will experience stronger predation
246 pressure associated with abundant phytoplankton biomass and warmer temperatures in the
247 future (Fig. 4b).

248

249 **Discussion**

250 Warming operates as a major driver for future shifts in both bloom initiation and peak timing,
251 changing both growth and loss rates over most of the mid- to low latitudes and parts of the high
252 latitudes (Growth-T and Loss-T in Fig. 4). Notably, phytoplankton phenology shift drivers can
253 be distinct from general nutrient-limitation drivers of projected annual mean net primary
254 production changes within the same regions^{44,45}. While at high latitudes growth rate changes
255 largely drive phase shifts in bloom initiation, increased predation pressure by zooplankton (top-

256 down control) plays an important role in altered bloom peak timing over much of the global
257 ocean. It is important to note, particularly for observational studies, that identifying changes in
258 bottom-up controls is a necessary but not sufficient condition for understanding phenology
259 shifts, and that substantial roles for zooplankton, which are generally difficult to assess in
260 observational studies, are a complementary and oftentimes necessary component.

261
262 Driver interdependence (e.g., stratification changes are almost always concurrent with surface
263 warming and enhanced light availability) inherently limits correlation-based analysis for
264 quantitatively attributing changes in bloom phenology. Our results indicate that light limitation
265 is a primary control for future changes in bloom initiation only in limited regions (Growth-L
266 in [Fig. 4a](#)). As such, the Sverdrup hypothesis, originally applied to explain year-to-year
267 variability, cannot be generally extended to account for long-term shifts in bloom initiation.
268 Light limitation changes are mediated through not only ML alterations (enhanced stratification)
269 but also variable incident solar radiation at the sea surface, with regional dependence ([Fig. S5](#)).

270
271 Changes in phytoplankton bloom initiation and peak timing are spatially heterogenous ([Fig. 1c](#),
272 [d](#)), reflecting a delicate balance between the transient behavior of phytoplankton and individual
273 underlying abiotic drivers. It should be noted that this study results are based on a single ESM,
274 and that configurations and parameters of the biological component (e.g., the number of
275 functional plankton groups and their couplings) are selected and tuned to reproduce the present-
276 day climatological mean state of productivity based on representative field studies and
277 ecological theory. Recent research has suggested that plankton community numbers and
278 structures will respond to future climate change in spatially diverse ways^{46,47}. In addition to
279 more observational studies on the zooplankton-phytoplankton coupling, using more
280 sophisticated ecological models in the next generation of ESMs could further deepen and

281 improve our understanding of the plankton community's phenological response to climate
282 forcing.

283

284 Trophic level decoupling in response to anthropogenic forcing induces various future bloom
285 phenological changes that result in both expanded and compressed future changes in net growth
286 period length. Based on Northern Hemisphere high latitude oceans, our results diverge from
287 research on the terrestrial biosphere, where phenological changes are anticipated to shift more
288 uniformly to expanded growing seasons⁹⁻¹³ as a forced response to anthropogenic warming and
289 CO₂ fertilization. This remarkable contrast between land and sea reflects the fact that, in the
290 ocean, anthropogenic warming triggers a number of processes that encompass both bottom-up
291 and top-down drivers, with the balance between these drivers playing out quite differently in
292 distinct ocean regions. The emergence of marine phytoplankton phenological change in high-
293 productivity high-latitude ocean biomes indicates potential mismatches with the seasonal
294 phasing of spawning in higher trophic levels, posing a potential risk to local marine ecosystems
295 and ultimately the food security of populations dependent on marine resources.

296

297 **Acknowledgements**

298 R.Y., K.B.R., K.J.S., and A.T. were supported by the Institute for Basic Science (IBS),
299 Republic of Korea, under IBS-R028-D1. S.S. acknowledges support from NSF's Southern
300 Ocean Carbon and Climate Observations and Modeling (SOCCOM) Project under the NSF
301 Award PLR-1425989, with additional support from NOAA and NASA Award NNX17AI75G.
302 D.B. acknowledges support from NOAA under Ecosystem and Harmful Algal Bloom
303 (ECOHAB) Award NA18NOS4780174. R.S. acknowledges support from NOAA
304 (NA18OAR4320123). The authors thank Dr. Hyung-Gyu Lim for constructive suggestions on
305 the manuscript. The authors also recognize the four reviewers' efforts and constructive

306 comments regarding how to improve the manuscript. ESM2M output analysis was conducted
307 on the IBS/ICCP supercomputer “Aleph,” 1.43 peta flops high-performance Cray XC50-LC
308 Skylake computing system with 18,720 processor cores, 9.59 PB storage, and 43 PB tape
309 archive space. High Performance Computing resources for the ESM2M Large Ensemble
310 simulations themselves were provided by NOAA Oceanic and Atmospheric
311 Research/Geophysical Fluid Dynamics Laboratory.

312

313 **Author contributions**

314 R.Y. and K.B.R. conceptualized the scientific framing of this study. R. Y. conducted all the
315 analysis and wrote the initial draft of the manuscript. R.Y., K.B.R., A.T., K.J.S., S.S., D.B.,
316 and J.P.D. helped develop the scientific ideas and analytical methods, interpret the results, and
317 write the final draft of the manuscript. The ESM2M simulations were performed by S.S. and
318 R.S., and post-processing was provided by K.B.R.

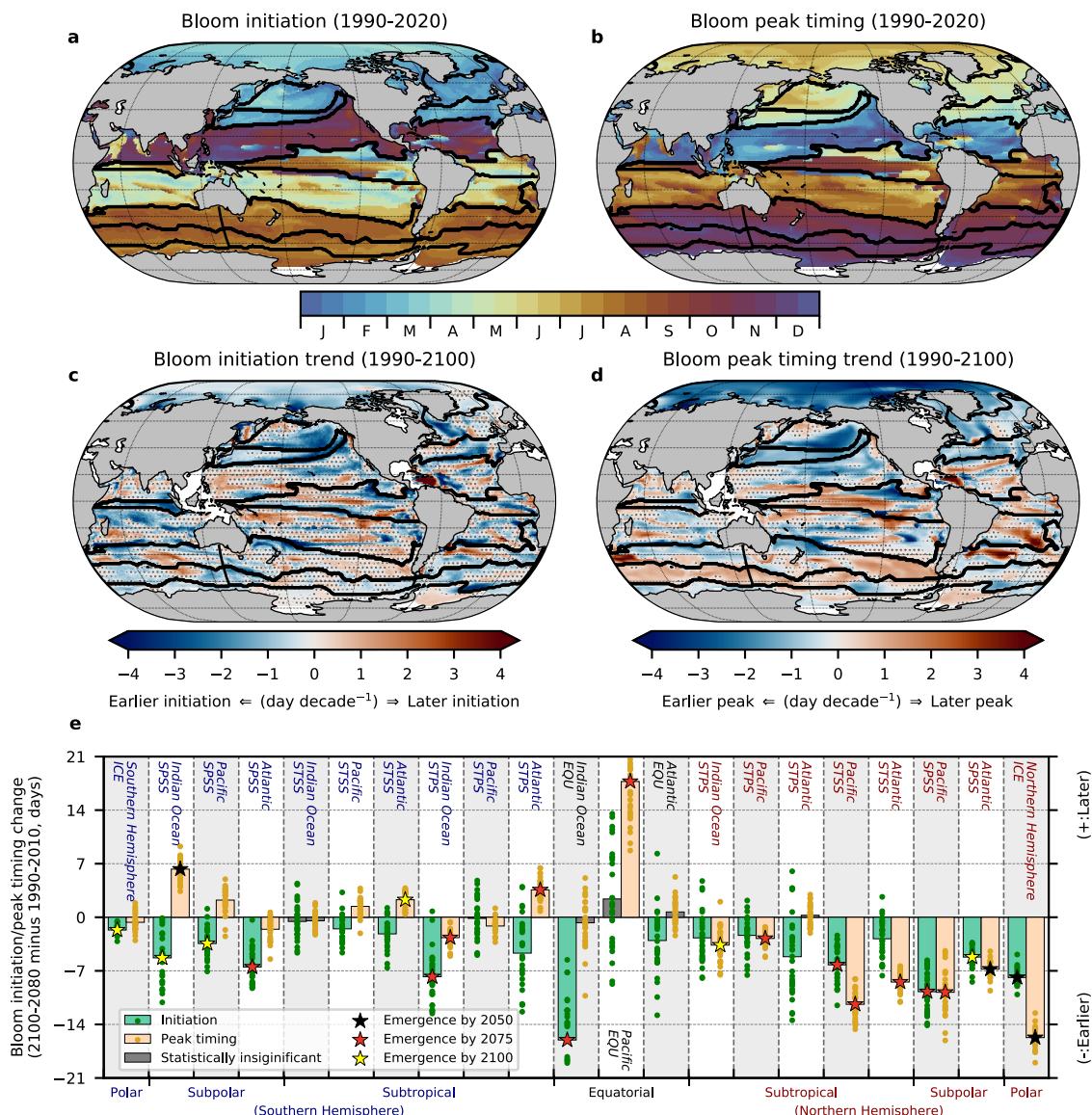
319

320 **Competing interests**

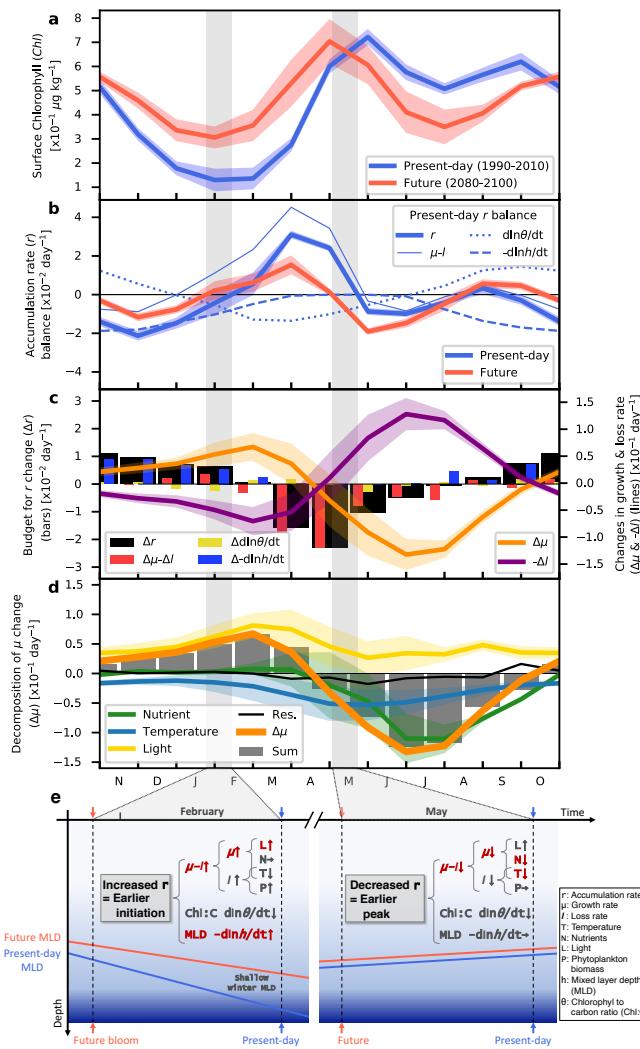
321 The authors declare no competing interests.

322

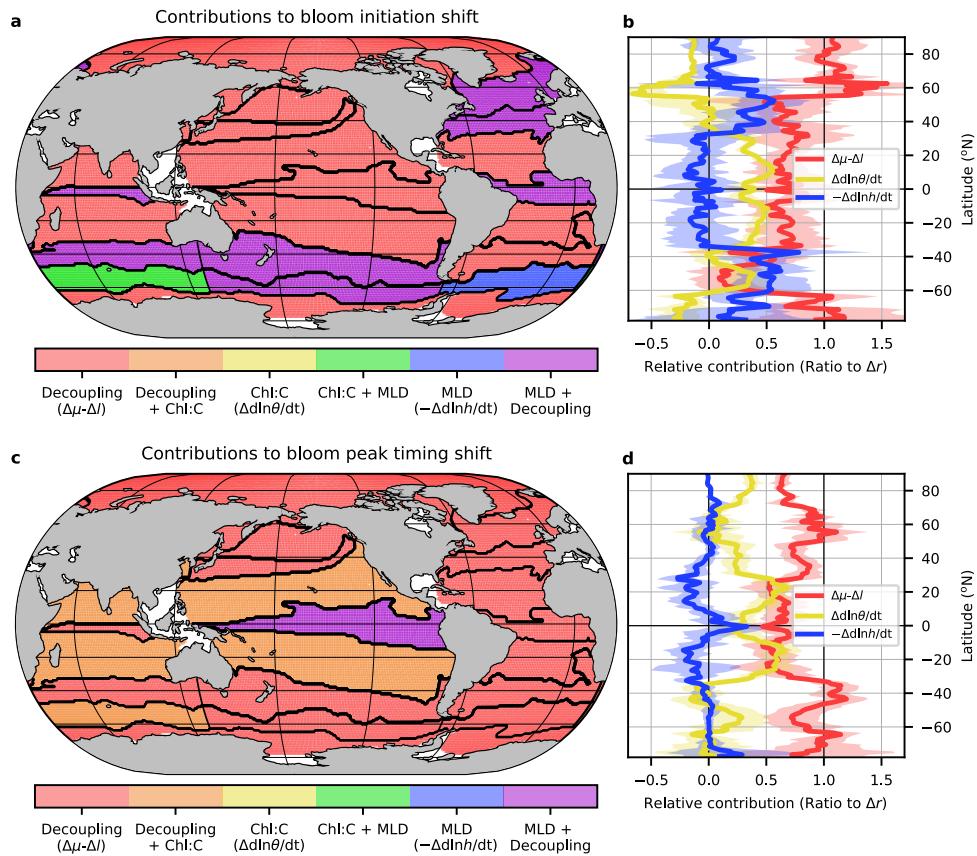
323 **Figure captions**



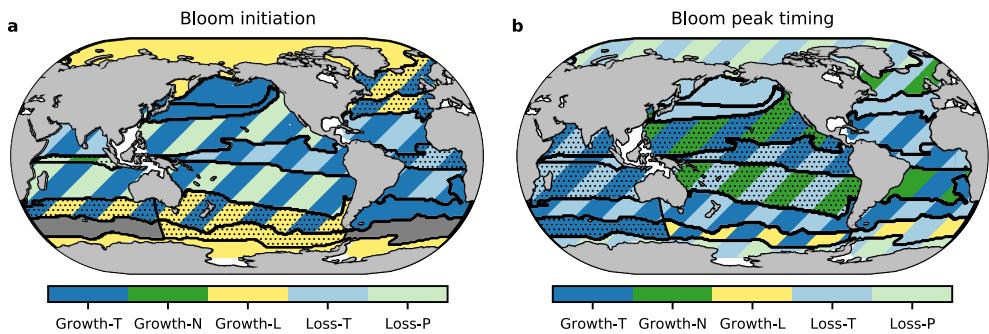
324
325 **Fig. 1 | Projected future changes in the phytoplankton bloom phenology, and emergence**
326 **timescales.** **a, b,** Ensemble mean climatology (1990–2020) of phytoplankton bloom initiation
327 and peak timing, simulated by the Geophysical Fluid Dynamics Laboratory Earth System
328 Model 2 (GFDL-ESM2M) (letters indicate calendar month). **c, d,** Ensemble mean trends
329 (1990–2100 under a Historical/RCP8.5 scenario) of bloom initiation and bloom peak timing.
330 Positive trends indicate delayed initiation and delayed peak timing. Regions where the trend is
331 statistically insignificant (at the 99% confidence level) are stippled. Black contours
332 superimposed on the maps indicate biome boundaries. **E,** Biome-averaged changes (2080–
333 2100 minus 1990–2010) in bloom initiation (green) and bloom peak timing (orange). In each
334 ocean basin, subtropical seasonally stratified (STSS), subtropical permanently stratified
335 (STPS), and equatorial (EQU) biomes are assigned in order from the pole (spatial map in
336 [Extend Data Figure 1](#)). Ensemble mean changes are shown as bars, and dots on each bar
337 represent the changes of 30 individual members. Stars at the end of a bar indicate that the
338 ensemble mean changes will ‘emerge’, whereby the forced change exceeds the background
339 internal variability by the end of 21st century (Methods). Base maps were made with Natural
340 Earth and Cartopy⁴⁸.

342 **Fig. 2 | Mechanistic attribution of the**

343 **bloom phenological changes for the subpolar North Atlantic (45°W, 55°N).** **a**, Future
 344 (2080-2100) and present-day (1990-2010) annual cycles of surface chlorophyll concentration
 345 (Chl , $g\ kg^{-1}$). **b**, chlorophyll accumulation rate ($r \equiv d\ln Chl/dt$, day^{-1}) and its present-day term
 346 balance. r is determined by phytoplankton growth (μ) and loss rate (I), and temporal changes
 347 in Chl to Carbon ratio (θ) and mixed layer depth (h) (Equation 1). **c**, Budget for the
 348 accumulation rate changes (Δr , future r minus present-day r). The bars with respect to the left
 349 axis are accumulation rate change and three changes that drives the Δr (Equation M5).
 350 Changes in the growth and loss rates are also shown separately as lines with shading (right
 351 axis). **d**, Decomposition of the growth rate changes into changes in environmental drivers. The
 352 phytoplankton growth rate change is decomposed into changes in Temperature-, Nutrient-,
 353 Light-limitation (Equation M7). The periods commonly shaded in light gray in **a-d** represent
 354 the periods between the present-day and future bloom initiation/peak timing determined from
 355 the annual cycle of r (**b**). All line-shadings are the range of two standard deviations across the
 356 30 ensemble members. **e**, Schematic figure for explaining the mechanisms for the bloom
 357 phenological shift. Dominant drivers of each change are highlighted by red.
 358



359
 360 **Fig. 3 | Dominant contribution(s) to shifts in bloom initiation and bloom peak timing.** a,
 361 c, Largest contribution(s) to shifts in the bloom initiation and peak timing among the three
 362 driving processes (decoupling between changes in growth and loss rate; $\Delta\mu - \Delta l$, change in
 363 temporal variation in mixed layer depth (MLD); $-\Delta dlnh/dt$, and change in Chl:C variation;
 364 $\Delta dln\theta/dt$) in each biome. The largest contributions are defined as the driving processes that
 365 dominantly support accumulation rate change (Δr) in more than 30 % of the biome area. b, d,
 366 Zonally averaged relative contributions of the three driving processes to the accumulation rate
 367 change. Line shadings indicate the range of two standard deviations across the 30 ensemble
 368 members. Base maps were made with Natural Earth and Cartopy⁴⁸.
 369



370
371 **Fig. 4 | Environmental drivers that cause the future trophic level decoupling.** Dominant
372 environmental drivers that cause the decoupling of the future changes in phytoplankton growth
373 ($\Delta\mu$) and loss rate ($-\Delta l$) **a**, at bloom initiation and **b**, at bloom peak. Growth-T, Growth-N, and
374 Growth-L indicate that growth rate changes due to shifts in temperature, nutrient, and light,
375 respectively, are the largest contributors to the decoupling in the biomes. Similarly, Loss-T and
376 Loss-P show that loss rate changes due to altered temperature and biomass abundance,
377 respectively, mainly contribute to the decoupling (i.e., $\Delta\mu - \Delta l \neq 0$). The dominant driver(s)
378 in each biome is defined as the driver with changes that dominate the decoupling term ($\Delta\mu -$
379 Δl) in more than 20 % of the biome area. If there are two dominant drivers, both are represented
380 in stripes. Dots superimposed on biomes indicate regions where processes other than the
381 decoupling (Chl:C variation changes or mixed layer variation change) are comparable to the
382 contribution from the decoupling term in the accumulation rate budget, and dominant drivers
383 in biomes where decoupling is not the main contributor to the phenological shift are gray
384 shaded (c.f., Fig. 3a and 3c). Base maps were made with Natural Earth and Cartopy⁴⁸.
385

386 **References**

387 1. Bindoff, N. L. *et al.* Changing Ocean, Marine Ecosystems, and Dependent Communities.

388 *IPCC Special Report on the Ocean and Cryosphere in a Changing Climate* 142 (2019).

389 2. Bopp, L. *et al.* Multiple stressors of ocean ecosystems in the 21st century: projections

390 with CMIP5 models. *Biogeosciences* **10**, 6225–6245 (2013).

391 3. Fu, W., Randerson, J. T. & Moore, J. K. Climate change impacts on net primary

392 production (NPP) and export production(EP) regulated by increasing stratification and

393 phytoplankton communitystructure in the CMIP5 models. *Biogeosciences* **13**, 5151–5170

394 (2016).

395 4. Kwiatkowski, L. *et al.* Twenty-first century ocean warming, acidification, deoxygenation,

396 and upper-ocean nutrient and primary production decline from CMIP6 model projections.

397 *Biogeosciences* **17**, 3439–3470 (2020).

398 5. Cushing, D. H. Plankton Production and Year-class Strength in Fish Populations: an

399 Update of the Match/Mismatch Hypothesis. In *Advances in Marine Biology* (eds. Blaxter,

400 J. H. S. & Southward, A. J.) vol. 26 249–293 (Academic Press, 1990).

401 6. Durant, J., Hjermann, D., Ottersen, G. & Stenseth, N. Climate and the match or mismatch

402 between predator requirements and resource availability. *Clim. Res.* **33**, 271–283 (2007).

403 7. Edwards, M. & Richardson, A. J. Impact of climate change on marine pelagic phenology

404 and trophic mismatch. *Nature* **430**, 881–884 (2004).

405 8. Durant, J. M. *et al.* Contrasting effects of rising temperatures on trophic interactions in

406 marine ecosystems. *Sci Rep* **9**, 15213 (2019).

407 9. Penuelas, J., Rutishauser, T. & Filella, I. Phenology Feedbacks on Climate Change.

408 *Science* **324**, 887–888 (2009).

409 10. Ruosteenoja, K., Markkanen, T. & Räisänen, J. Thermal seasons in northern Europe in

410 projected future climate. *Int J Climatol* **40**, 4444–4462 (2020).

411 11. Jeong, S.-J., Ho, C.-H., Gim, H.-J. & Brown, M. E. Phenology shifts at start vs. end of
412 growing season in temperate vegetation over the Northern Hemisphere for the period
413 1982-2008: PHENOLOGY SHIFTS AT START VS. END OF GROWING SEASON.
414 *Global Change Biology* **17**, 2385–2399 (2011).

415 12. Zhou, B., Zhai, P., Chen, Y. & Yu, R. Projected changes of thermal growing season over
416 Northern Eurasia in a 1.5 °C and 2 °C warming world. *Environ. Res. Lett.* **13**, 035004
417 (2018).

418 13. Chen, M., Melaas, E. K., Gray, J. M., Friedl, M. A. & Richardson, A. D. A new seasonal-
419 deciduous spring phenology submodel in the Community Land Model 4.5: impacts on
420 carbon and water cycling under future climate scenarios. *Glob Change Biol* **22**, 3675–
421 3688 (2016).

422 14. Kahru, M., Brotas, V., Manzano-Sarabia, M. & Mitchell, B. G. Are phytoplankton
423 blooms occurring earlier in the Arctic?: PHYTOPLANKTON BLOOMS IN THE
424 ARCTIC. *Global Change Biology* **17**, 1733–1739 (2011).

425 15. Marchese, C. *et al.* Changes in phytoplankton bloom phenology over the North Water
426 (NOW) polynya: a response to changing environmental conditions. *Polar Biol* **40**, 1721–
427 1737 (2017).

428 16. Friedland, K. D. *et al.* Phenology and time series trends of the dominant seasonal
429 phytoplankton bloom across global scales. *Global Ecol Biogeogr* **27**, 551–569 (2018).

430 17. Winder, M. & Sommer, U. Phytoplankton response to a changing climate. *Hydrobiologia*
431 **698**, 5–16 (2012).

432 18. Asch, R. G., Stock, C. A. & Sarmiento, J. L. Climate change impacts on mismatches
433 between phytoplankton blooms and fish spawning phenology. *Glob Change Biol* **25**,
434 2544–2559 (2019).

435 19. Henson, S., Cole, H., Beaulieu, C. & Yool, A. The impact of global warming on
436 seasonality of ocean primary production. *Biogeosciences* **10**, 4357–4369 (2013).

437 20. Henson, S. A., Cole, H. S., Hopkins, J., Martin, A. P. & Yool, A. Detection of climate
438 change-driven trends in phytoplankton phenology. *Glob Change Biol* **24**, e101–e111
439 (2018).

440 21. Hashioka, T., Sakamoto, T. T. & Yamanaka, Y. Potential impact of global warming on
441 North Pacific spring blooms projected by an eddy-permitting 3-D ocean ecosystem
442 model. *Geophysical Research Letters* **36**, (2009).

443 22. Behrenfeld, M. J. & Boss, E. S. Resurrecting the Ecological Underpinnings of Ocean
444 Plankton Blooms. *Annu. Rev. Mar. Sci.* **6**, 167–194 (2014).

445 23. Behrenfeld, M. J. Climate-mediated dance of the plankton. *Nature Clim Change* **4**, 880–
446 887 (2014).

447 24. Schlunegger, S. *et al.* Time of Emergence and Large Ensemble Intercomparison for
448 Ocean Biogeochemical Trends. *Global Biogeochem. Cycles* **34**, (2020).

449 25. Sverdrup, H. U. On Conditions for the Vernal Blooming of Phytoplankton. *ICES Journal*
450 *of Marine Science* **18**, 287–295 (1953).

451 26. Sommer, U. & Lewandowska, A. Climate change and the phytoplankton spring bloom:
452 warming and overwintering zooplankton have similar effects on phytoplankton. *Global*
453 *Change Biology* **17**, 154–162 (2011).

454 27. Behrenfeld, M. J. Abandoning Sverdrup’s Critical Depth Hypothesis on phytoplankton
455 blooms. *Ecology* **91**, 977–989 (2010).

456 28. Behrenfeld, M. J., Doney, S. C., Lima, I., Boss, E. S. & Siegel, D. A. Annual cycles of
457 ecological disturbance and recovery underlying the subarctic Atlantic spring plankton
458 bloom. *Global Biogeochem. Cycles* **27**, 526–540 (2013).

459 29. Arteaga, L. A., Boss, E., Behrenfeld, M. J., Westberry, T. K. & Sarmiento, J. L. Seasonal
460 modulation of phytoplankton biomass in the Southern Ocean. *Nat Commun* **11**, 5364
461 (2020).

462 30. Behrenfeld, M. J. & Boss, E. S. Student's tutorial on bloom hypotheses in the context of
463 phytoplankton annual cycles. *Glob Change Biol* **24**, 55–77 (2018).

464 31. Schlunegger, S. *et al.* Emergence of anthropogenic signals in the ocean carbon cycle. *Nat.*
465 *Clim. Chang.* **9**, 719–725 (2019).

466 32. Dunne, J. P. *et al.* GFDL's ESM2 Global Coupled Climate–Carbon Earth System
467 Models. Part II: Carbon System Formulation and Baseline Simulation Characteristics*.
468 *Journal of Climate* **26**, 2247–2267 (2013).

469 33. Dunne, J. P. *et al.* GFDL's ESM2 Global Coupled Climate–Carbon Earth System
470 Models. Part I: Physical Formulation and Baseline Simulation Characteristics. *Journal of*
471 *Climate* **25**, 6646–6665 (2012).

472 34. Rodgers, K. B., Lin, J. & Frölicher, T. L. Emergence of multiple ocean ecosystem drivers
473 in a large ensemble suite with an Earth system model. *Biogeosciences* **12**, 3301–3320
474 (2015).

475 35. Cabré, A., Shields, D., Marinov, I. & Kostadinov, T. S. Phenology of Size-Partitioned
476 Phytoplankton Carbon-Biomass from Ocean Color Remote Sensing and CMIP5 Models.
477 *Front. Mar. Sci.* **3**, (2016).

478 36. Ji, R., Edwards, M., Mackas, D. L., Runge, J. A. & Thomas, A. C. Marine plankton
479 phenology and life history in a changing climate: current research and future directions.
480 *Journal of Plankton Research* **32**, 1355–1368 (2010).

481 37. Henson, S. A., Beaulieu, C. & Lampitt, R. Observing climate change trends in ocean
482 biogeochemistry: when and where. *Glob Change Biol* **22**, 1561–1571 (2016).

483 38. Hegerl, G. C. *et al.* Detecting greenhouse-gas-induced climate change with an optimal
484 fingerprint method. *Journal of Climate* **9**, 2281–2306 (1996).

485 39. Massonnet, F. *et al.* Constraining projections of summer Arctic sea ice. *The Cryosphere*
486 **6**, 1383–1394 (2012).

487 40. Chemke, R., Zanna, L. & Polvani, L. M. Identifying a human signal in the North Atlantic
488 warming hole. *Nat Commun* **11**, 1540 (2020).

489 41. Behrenfeld, M. J. *et al.* Reevaluating ocean warming impacts on global phytoplankton.
490 *Nature Clim Change* **6**, 323–330 (2016).

491 42. Geider, R., MacIntyre, H. & Kana, T. Dynamic model of phytoplankton growth and
492 acclimation: responses of the balanced growth rate and the chlorophyll a:carbon ratio to
493 light, nutrient-limitation and temperature. *Mar. Ecol. Prog. Ser.* **148**, 187–200 (1997).

494 43. Wassmann, P. & Reigstad, M. Future Arctic Ocean Seasonal Ice Zones and Implications
495 for Pelagic-Benthic Coupling. *Oceanogr.* **24**, 220–231 (2011).

496 44. Laufkötter, C. *et al.* Drivers and uncertainties of future global marine primary production
497 in marine ecosystem models. *Biogeosciences* **12**, 6955–6984 (2015).

498 45. Nakamura, Y. & Oka, A. CMIP5 model analysis of future changes in ocean net primary
499 production focusing on differences among individual oceans and models. *J Oceanogr* **75**,
500 441–462 (2019).

501 46. Marinov, I., Doney, S. C. & Lima, I. D. Response of ocean phytoplankton community
502 structure to climate change over the 21st century: partitioning the effects of nutrients,
503 temperature and light. *Biogeosciences* **7**, 3941–3959 (2010).

504 47. Henson, S. A., Cael, B. B., Allen, S. R. & Dutkiewicz, S. Future phytoplankton diversity
505 in a changing climate. *Nat Commun* **12**, 5372 (2021).

506 48. Elson, P. *et al.* SciTools/cartopy: v0.20.2. *Zenodo* <https://doi.org/10.5281/zenodo.1182735>
507 (2022).

509 **Methods**

510 **Model and observational data**

511 The 30-member ensemble simulation used in this study applied the Geophysical Fluid
512 Dynamics Laboratory Earth System Model 2 (GFDL-ESM2M^{32,33}) to historical (1950–2005)
513 and RCP8.5 (2006–2010) pathways between 1950 and 2100. The initial conditions (the 1st
514 January 1950 conditions) for ensemble member 2–30 are the January 2nd–30th model states of
515 the first ensemble member. The model runs presented here share initial conditions, model
516 version, and forcing with a previous study³⁴ but differ in that they were performed on a separate
517 computing architecture (and with more extensive high-frequency ocean model output saved).
518 The members therefore differ from one another regarding variability mode phasing for a given
519 time-slice, but not in their mean state evolution or statistical characteristics. The ocean
520 biogeochemical component of ESM2M (Tracers of Ocean Phytoplankton with Allometric
521 Zooplankton code version 2; TOPAZ2) has three phytoplankton groups (“small,” “large,” and
522 diazotrophic phytoplankton) plus one implicit allometric zooplankton group and explicitly
523 calculates a chlorophyll-to-carbon ratio (Chl:C) from background light, nutrient, and
524 temperature conditions. ESM2M and other CMIP5 models, with ocean biogeochemistry
525 observations, have been compared using historical⁴⁹ and RCP8.5² simulations. We used daily
526 means of surface Chl concentrations (g kg⁻¹) to detect future changes in bloom timing and
527 monthly outputs of other ocean physical and biogeochemical fields for more extensive budget
528 calculations over the 1990–2100 time period.

529

530 We also used a satellite-derived daily sea surface Chl product⁵⁰ to validate the model
531 representations of phytoplankton bloom phenology. Data missing from the observational
532 record due to cloud cover are linearly interpolated along the time axis, except for data gaps that
533 last more than 14 days (mostly due to the polar night).

534

535 To ensure a fair comparison between the model output and the observations, after the original
536 model outputs were regridded to spatiotemporal resolution of the observations (daily, 1°
537 latitude $\times 1^{\circ}$ longitude), we created 30-member resampled model outputs by resampling only
538 the regridded model data where observations exist. All model-observation comparisons (Fig.
539 [S1–S3](#)) use the 30-member resampled model outputs, unless otherwise noted.

540

541 Comparisons of modeled and observed surface Chl concentrations' annual cycle for each
542 biome are shown in [Figure S1](#) and [S2](#). Biomes are defined partly by following a previously
543 published method⁵¹ that classifies ocean regions based on physical and biogeochemical
544 environmental factors. Here, in order for the biome classifications to reflect the phenological
545 characteristics of the phytoplankton bloom, bloom peak timing was used to determine biome
546 boundaries, as an additional constraint on the variables originally used (sea ice concentration,
547 surface Chl, mixed layer (ML) depth, and sea surface temperature). In order from the pole,
548 each basin except for the North Indian Ocean has ice (ICE), subpolar seasonally stratified
549 (SPSS), subtropical seasonally stratified (STSS), subtropical permanently stratified (STPS),
550 and equatorial (EQU) biomes (map in [Extended Data Fig. 1](#)). Biomes are defined using present-
551 day climatologies, and their boundaries are not time-varying.

552

553 **Phytoplankton bloom definition**

554 To calculate phytoplankton bloom initiation and peak timing, we apply the accumulation rate
555 (r)-based framework³⁰ to daily surface Chl concentration data (i.e., $r \equiv \frac{d \ln(\text{Chl})}{dt}$). We use the
556 surface Chl concentration values (g kg^{-1}) rather than depth-integrated values (g) in order to
557 compare a broadly observable and well-established quantity provided by satellite
558 measurements, and we further assume that surface concentrations are indicative of the entire

559 mixed layer. In our framework using surface/mixed layer concentrations, the temporal
560 variation in the mixed layer depth must be explicitly considered in quantifying its seasonal
561 variation (derived in a subsequent section of Methods). The total vertically-integrated
562 phytoplankton biomass has also been previously used as a metric of phytoplankton seasonality
563 to explain the drivers from observational data^{22,29,52}.

564

565 In an annual cycle, bloom initiation is defined as the day of the year when the accumulation
566 rate becomes positive, and the bloom peak is defined as the day of the year, after the initiation,
567 when the accumulation rate returns to negative. The difference between the peak and the
568 initiation is the net growth period length. In practice, to avoid artificial bloom timing jumps
569 due to discontinuities at the start of a 365-day calendar year, the annual cycle is defined as
570 twelve months centered around the maximum day of climatological surface Chl in the annual
571 calendar cycle at each grid point. We first obtain the bloom peak timing and bloom magnitude
572 (Chl value at the peak) within the annual cycle at each grid point. We then use the
573 corresponding accumulation rate (r) time series to back-search for consecutive 14-day intervals
574 with negative accumulation, representing non-bloom periods. We define the transition from a
575 bloom period (positive r) to a non-bloom period (negative r) as the bloom initiation. All daily
576 data from the model and observations were low-passed filtered by a Lanczos filter with a 21-
577 day half power period before we calculated bloom timings, to remove the phytoplankton's
578 transient spike response to atmospheric storm timescales (~a week) and ocean sub-mesoscale
579 perturbations (~ few weeks) that are not the targets of this study.

580

581 When there are more than two peaks of surface Chl in an annual cycle, we chose the “spring
582 bloom” as the grid point bloom, which generally starts after the winter convection and thus the
583 above assumption of identity between surface and ML-averaged Chl reasonably holds. To do

584 this, we imposed an additional condition in only the region with a pronounced seasonal cycle
585 in surface Chl the bloom should peak between January to July north of 40° and between July
586 and January south of 30°. As a result, the blooms identified are consistent between the model
587 and observations (Fig. S3).

588

589 **Time of Emergence calculation**

590 We invoke the “Time of Emergence (ToE)” concept to estimate when an anthropogenically
591 forced trend (signal) exceeds background internal variability (noise) using the large number of
592 realizations (30 members) available for the identical forcing climate trajectory from the Large
593 Ensemble simulation. For the yearly time series of bloom metrics (initiation, peak timing, and
594 magnitude), the signal is calculated as the ensemble mean of 30 trends and the noise as the
595 standard deviation of these trends. We follow the widespread assumption with Large Ensemble
596 simulations that modeled internal variability across all timescales is normally distributed about
597 the mean climate state. We used the standard two-sided *t*-test to evaluate whether a forced
598 signal is outside the range of internal variability. When the signal magnitude is twice that of
599 the noise, the null hypothesis (i.e. that the signal is due to internal variability) is rejected with
600 95% confidence; that is, the anthropogenically forced trend extends beyond the range of
601 background internal variability³¹. The signal-to-noise ratio is calculated iteratively with a fixed
602 starting reference year of 1990, and the ToE is defined as the first year when the ratio is larger
603 than 2. In this study, the ToE is estimated from biome-averaged yearly time series of bloom
604 metrics (Extended Data Fig. 1 and S4). The area aggregation of time series reduces noise and
605 thus promotes signal detection, as has been previously noted²⁰.

606

607 **Accumulation rate budget analysis**

608 Under the assumption that Chl advection and diffusion terms are negligible over spatial and
 609 temporal scales of ~ 100 km and ~ 1 month, respectively, we begin with the conservation
 610 equation for phytoplankton biomass (P_i , g C kg $^{-1}$) in the ML:

$$\frac{dP_i h}{dt} = (\mu_i - l_i) P_i h \quad (M1)$$

611 to derive an equation for computing the budget of Chl accumulation rate, where μ , l , and h
 612 indicate the phytoplankton growth rate (day $^{-1}$), loss rate (day $^{-1}$), and ML depth (m), respectively,
 613 and the subscript i represents phytoplankton groups in the model (small phytoplankton, large
 614 phytoplankton, and diazotrophic phytoplankton in TOPAZ2). Subsequently, the conservation
 615 equation is rewritten as a vertical one-dimensional phytoplankton biomass equation:

$$\frac{dP_i}{dt} = (\mu_i - l_i) P_i - \frac{P_i}{h} \frac{dh}{dt}. \quad (M2)$$

616 Assuming the water is well mixed within the ML, the surface biomass concentration is identical
 617 to that averaged throughout the ML. Under the assumption, sea surface biomass concentration
 618 can vary with growth (cell division) and loss (zooplankton grazing, aggregation, mortality, etc.)
 619 in the ML. Additionally, biomass-free water entraining from below, through ML deepening,
 620 can dilute surface/ML biomass concentration (dilution effect). Here, the effect is parameterized
 621 as follows:

$$\frac{dh}{dt} = \begin{cases} \frac{dh}{dt} & \left(\frac{dh}{dt} > 0; \text{deepening} \right) \\ 0 & \left(\frac{dh}{dt} \leq 0; \text{shoaling} \right) \end{cases}. \quad (M3)$$

622 It should be noted that, in ocean regions where phytoplankton accumulate below the mixed
 623 layer in the warming season (as with subsurface Chlorophyll maxima), this simplification
 624 might lead to large errors throughout the season when the mixed layer deepens (from autumn
 625 to winter). Using the chlorophyll to carbon ratio ($\theta_i = \frac{Chl_i}{P_i}$), the phytoplankton biomass
 626 equation can be rewritten as the equation for Chl accumulation rate (Equation 1 in the Main
 627 text),

$$\frac{d \ln(Chl)}{dt} \equiv r = \sum_{i=1}^3 \left((\mu_i - l_i) + \frac{d \ln(\theta_i)}{dt} \right) \gamma_i - \frac{d \ln(h)}{dt}, \quad (M4)$$

628 where Chl is the sum of the chlorophyll concentration of three groups ($chl = \sum_{i=1}^3 Chl_i$), and
 629 γ_i represents the concentration ratio of each group ($\gamma_i = Chl_i/Chl$). For convenience, in the
 630 main text, summations of growth and loss rate changes and Chl:C variations over the three
 631 phytoplankton groups are expressed without the subscript i .

632
 633 Based on this equation, accumulation rate changes from the present-day to the future (Δr) are
 634 described as the sum of three terms: the changes in growth rate and loss rate, the time rate of
 635 change in the Chl:C, and the time rate of change in the ML depth,

$$\begin{aligned} \Delta r &= \sum_{i=1}^3 \Delta(\gamma_i \mu_i) + \sum_{i=1}^3 \Delta(\gamma_i l_i) + \sum_{i=1}^3 \Delta \left(\gamma_i \frac{d \ln(\theta_i)}{dt} \right) - \Delta \frac{d \ln(h)}{dt} \\ &\equiv (\Delta \mu - \Delta l) + \Delta \frac{d \ln(\theta)}{dt} - \Delta \frac{d \ln(h)}{dt}. \end{aligned} \quad (M5)$$

636 All terms in the accumulation rate budget analysis are calculated at individual grid points
 637 before being aggregated across biomes.

638
 639 Equation M5 estimates relative contributions from processes that drive bloom phenological
 640 shifts (i.e., changing accumulation rates). The relative contributions of the driving processes
 641 are calculated as the ratio of the time-integrated RHSs of Equation M5 to the time-integrated
 642 accumulation rate change over the period between future and present-day bloom initiation/peak
 643 timing (gray shaded periods in Fig. 2a–d):

$$\frac{\int_{t_0}^{t_1} (\Delta \mu - \Delta l) dt}{\int_{t_0}^{t_1} \Delta r dt} + \frac{\int_{t_0}^{t_1} \left(\Delta \frac{d \ln(\theta)}{dt} \right) dt}{\int_{t_0}^{t_1} \Delta r dt} + \frac{\int_{t_0}^{t_1} \left(-\Delta \frac{d \ln(h)}{dt} \right) dt}{\int_{t_0}^{t_1} \Delta r dt} = 1, \quad (M6)$$

644 where t_0 and t_1 are the earlier and later days in the year, respectively, among future bloom
 645 initiation/peak and present-day bloom initiation/peak.

646

647 **Decomposition of growth/loss rate change**

648 In the TOPAZ2 biogeochemical component of ESM2M, the phytoplankton growth rate is a
649 function of temperature, nutrient, and light limitation terms (T^{lim} , N^{lim} , and L^{lim}), and the loss
650 rate is described as a function of temperature limitation and phytoplankton biomass abundance
651 (T^{lim} and P_i). Increases in water temperature, light levels, and nutrient concentrations promote
652 phytoplankton growth, and rising water temperature and phytoplankton biomass themselves
653 enhance phytoplankton loss, mainly by augmenting zooplankton predation pressure. Model
654 parameters are assigned to each phytoplankton group and then the limitation terms are
655 calculated separately. The Taylor expansions of the total growth rate ($\Delta\mu$) and loss rate (Δl)
656 are expressed as contributions from changes in temperature-, light-, and nutrients-limitation
657 (for $\Delta\mu$) and temperature-limitation and biomass (for Δl) (See also [Supplementary Note 2](#)):

$$\Delta\mu = \sum_{i=1}^3 \Delta(\gamma_i \mu_i) \approx \sum_{i=1}^3 \gamma_i \frac{\partial \mu_i}{\partial T^{lim}} \Delta T^{lim} + \sum_{i=1}^3 \gamma_i \frac{\partial \mu_i}{\partial N_i^{lim}} \Delta N_i^{lim} + \sum_{i=1}^3 \gamma_i \frac{\partial \mu_i}{\partial L_i^{lim}} \Delta L_i^{lim} + \text{Residual,} \quad (M7)$$

$$\Delta l = \sum_{i=1}^3 \Delta(\gamma_i l_i) \approx \sum_{i=1}^3 \gamma_i \frac{\partial l_i}{\partial T^{lim}} \Delta T^{lim} + \sum_{i=1}^3 \gamma_i \frac{\partial l_i}{\partial P_i} \Delta P_i + \text{Residual.} \quad (M8)$$

658 Residuals in the above equations include contributions from changes in the chlorophyll
659 concentration ratio (γ_i) and other higher-order terms, but these tend to be minor overall ([Fig.](#)
660 [S8](#) and [S9](#)). Partial derivatives of the growth rate with respect to temperature-, nutrients-, and
661 light-limitation, and of the loss rate with respect to temperature-limitations and biomass, are
662 computed analytically using model equations ([Supplementary Note 2](#)).

663

664 **Data availability**

665 The 30-member GFDL-ESM2M ensemble simulations⁵³ used in this study are available
666 through the data transfer service Globus (<https://www.globus.org>). In the server
667 (<http://poseidon.princeton.edu>), daily surface ocean variables are available under:

668 /GFDL_ESM2M/ENSEMBLE_RCP85/OCN/OCN_1D_1x1/ and monthly mean ocean fields
669 are under /GFDL_ESM2M/ENSEMBLE_RCP85/OCN/OCN_1M_1x1. The MODIS-Aqua
670 Level-3 Binned Chlorophyll Data⁵⁰ are available at <https://oceancolor.gsfc.nasa.gov>.

671

672 **Code availability**

673 The codes used to analyze data and generate all figures are based on Python with associated
674 standard Python packages (Xarray, NumPy, SciPy, Matplotlib, Cartopy, etc.). The codes⁵⁴ are
675 available from <https://doi.org/10.5281/zenodo.6301884>.

676

677

678 **References**

679 49. Frölicher, T. L. *et al.* Dominance of the Southern Ocean in Anthropogenic Carbon and
680 Heat Uptake in CMIP5 Models. *Journal of Climate* **28**, 862–886 (2015).

681 50. NASA Ocean Biology Processing Group. MODIS-Aqua Level 3 Binned Chlorophyll
682 Data Version R2018.0. (2017) doi:10.5067/AQUA/MODIS/L3B/CHL/2018.

683 51. Fay, A. R. & McKinley, G. A. Global open-ocean biomes: mean and temporal variability.
684 *Earth Syst. Sci. Data* **6**, 273–284 (2014).

685 52. Behrenfeld, M. J., Doney, S. C., Lima, I., Boss, E. S. & Siegel, D. A. Reply to a comment
686 by Stephen M. Chiswell on: “Annual cycles of ecological disturbance and recovery
687 underlying the subarctic Atlantic spring plankton bloom” by M. J. Behrenfeld et al.
688 (2013): REPLY. *Global Biogeochem. Cycles* **27**, 1294–1296 (2013).

689 53. Geophysical Fluid Dynamics Laboratory Earth System Model 2 (GFDL-ESM2M) 30-
690 member ensemble simulations, historical (1950–2005) and RCP8.5 (2006–2010)
691 scenario, <http://poseidon.princeton.edu> (2019).

692 54. Yamaguchi, R. Notebooks for "Trophic level decoupling drives future change in
693 phytoplankton bloom phenology" by Yamaguchi et al. (2022). Zenodo,
694 <https://doi.org/10.5281/zenodo.6301884> (2022).

695