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Evaluating Sensitivity to the Stick-Breaking

Prior in Bayesian Nonparametrics (with

Discussion)∗
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Abstract. Bayesian models based on the Dirichlet process and other stick-breaking
priors have been proposed as core ingredients for clustering, topic modeling, and
other unsupervised learning tasks. However, due to the flexibility of these models,
the consequences of prior choices can be opaque. And so prior specification can
be relatively difficult. At the same time, prior choice can have a substantial effect
on posterior inferences. Thus, considerations of robustness need to go hand in
hand with nonparametric modeling. In the current paper, we tackle this challenge
by exploiting the fact that variational Bayesian methods, in addition to having
computational advantages in fitting complex nonparametric models, also yield
sensitivities with respect to parametric and nonparametric aspects of Bayesian
models. In particular, we demonstrate how to assess the sensitivity of conclusions
to the choice of concentration parameter and stick-breaking distribution for infer-
ences under Dirichlet process mixtures and related mixture models. We provide
both theoretical and empirical support for our variational approach to Bayesian
sensitivity analysis.

Keywords: Dirichlet process, stick breaking, local robustness, variational Bayes,
Fréchet differentiability, fastSTRUCTURE.

1 Introduction

Scientists and engineers working in a wide range of fields are often interested in infer-
ring the number of clusters in a given data set, as well as inferring which data points
belong together. Such inferential questions can be posed naturally within a Bayesian
nonparametric (BNP) framework, building on tools such as the Dirichlet process (Fer-
guson, 1973; Sethuraman, 1994). The Dirichlet process has two useful attributes that
have made it be suggested as a natural model of clustering phenomena. First, it is a
combinatorial stochastic process, exhibiting discrete structure that allows multiple data
points to be associated with the same underlying value of a parameter. Second, its non-
parametric nature means that the number of unique parameter values generally grows
with the size of the data set, accommodating growth in the number of inferred clusters
as data accrue. Such growth is appropriate in many real-world settings; for example, we
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might expect to keep discovering new species as we examine more individual organisms,
and we might expect to discover more topics as we read more articles in a scientific
literature. Finally, the overall Bayesian framework in which the Dirichlet process is em-
bedded allows clustering to be treated as one aspect of a larger inferential problem. In
particular, the Dirichlet process can be flexibly incorporated into more complex mod-
els that exhibit other forms of structure, including hierarchical, spatio-temporal, and
topological structure.

Although the BNP framework offers flexibility, it is important to recognize that it is
not a black-box method. As with any Bayesian methodology, the deployment of a BNP
model involves choices of hyperparameters. Often, these choices are made for reasons
of mathematical or computational convenience. Indeed, the nonparametric nature of
BNP models can make it particularly difficult to express prior belief subjectively. For
example, the latent frequencies of clusters provided by the Dirichlet process are obtained
by recursively removing beta-distributed fractions of probability mass from the unit
interval. The use of the beta distribution is motivated by its mathematical tractability
under recursion and by the fact that it yields a form of conditional conjugacy that can
be exploited by Gibbs sampling. These are appealing properties, but it is difficult to
imagine justifying this specific choice subjectively, particularly given that observable
consequences of the choice are indirect. Even having accepted the beta distribution
as a choice of convenience, there remains the problem of choosing the parameter α
associated with this distribution. The implications of this choice are again difficult to
assess subjectively. In practice the choice is often made based on previous applications
or by simply employing a heuristic (Teh et al., 2006; Gelman et al., 2013, Chapter 23).

In summary, it is important to recognize that there will exist many possible values
of α, and many possible forms of stick-breaking prior, that might correspond to one’s
prior beliefs, but which the Dirichlet process framework and other complex BNP models
bundle in a way that makes it difficult to understand and to specify a priori. Choices
of convenience are therefore made, and, unfortunately, these choices can change the
results of a data analysis. For instance, α has a direct, proportional relationship to the
number of clusters obtained asymptotically in draws from the Dirichlet process. Thus
the number of clusters inferred at any particular data size may depend strongly on α.
If our scientific conclusions varied substantially because of such dependence, we might
worry that these conclusions were driven not by the data and meaningful prior beliefs
but instead by our arbitrary or default choices. It behooves us, then, to check how
sensitive our conclusions are to these choices.

The outputs of Bayesian inference arise not just from a model and collection of
data but also via the use of some posterior approximation. Accordingly, when we assess
sensitivity, we should assess the sensitivity of this full procedure to our model choices.
In the current paper we focus on Dirichlet process mixture (DPM) models and Varia-
tional Bayesian (VB) posterior approximations based on reverse Kullback-Leibler (KL)
divergence. VB methods have several favorable properties that motivate their use in
the DPM setting. First, they exhibit fast computational scaling due to their use of
gradient-based optimization. Second, they avoid the label-switching problem exhibited
by Markov Chain Monte Carlo (MCMC) in the mixture-model setting (Jasra et al.,
2005). Third, their implementation has become increasingly straightforward due to au-
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tomatic differentiation tools (Ranganath et al., 2014; Kucukelbir et al., 2017). Finally,
and of particular interest in the current paper, the variational formulation makes it
possible to compute closed-form derivative-based expansions of posterior distributions
as a function of model hyperparameters (Giordano et al., 2018). Thus VB provides a
natural pathway to quantifying the robustness of Bayesian inference.

Concretely, with a fully specified model and inference procedure in hand in the
setting of DPM models, we can ask how sensitive some quantity of interest is to the
choices of α and the stick-breaking distributions. One option is to propose a number of
potential α values, compute the variational approximation at each α value, and report
our quantity of interest for each α value. We might similarly assess sensitivity to the
stick-breaking distribution over a range of distributional choices. There are at least two
major issues with this proposal: (1) while VB is a relatively fast form of approximate
Bayesian inference in general, it may still be prohibitively expensive to have to re-run
it many times, and (2) it is unclear how best to choose a collection of α and (especially)
the stick-breaking distribution values—and how many to choose.

In this work, we address these challenges by making full use of the variational na-
ture of VB methodology. We show how to approximate the nonlinear dependence of the
VB optimum on prior choices using a first-order Taylor series expansion. We build on
the local robustness tools developed by Giordano et al. (2018) for VB and Gustafson
(1996b) for the exact posterior and MCMC approximations. To enable their applica-
tion to DPM models, we solve a number of open problems: (1) we establish that the
optimal VB parameters are a continuously differentiable function of α and a particular
parameterization of the stick-breaking form; (2) we show that the sensitivity of the VB
approximation to functional prior perturbations takes the form of an integral against a
computationally tractable influence function—and illustrate how the influence function
can provide an interpretable summary of the effect of arbitrary changes to the prior
density; (3) to justify using linear approximations over a ball describing different stick-
breaking densities, we show that our method is a uniformly good approximation by
establishing Fréchet differentiability; (4) we show how to compute our approximation
efficiently in high-dimensional problems; and (5) we establish the accuracy, practicality,
and computational efficiency of our approximation for a variety of models that use stick-
breaking, and for various quantities of interest in both clustering and topic modeling.

Our ambition is not to draw conclusions concerning the robustness of BNP proce-
dures in general, nor even of the DPM model in particular. Rather, we offer an easy-
to-use computational tool to quickly and automatically assess the sensitivity to prior
specification of VB approximations in a particular problem at hand. Though we focus
on demonstrating the effectiveness of our methods on the canonical DPM model, our
methods apply immediately to any discrete BNP model that admits a truncated stick-
breaking approximation. Our ambition, then, is to encourage and empower researchers
to explore the robustness of a wide array of datasets and models, including the DPM,
but also other stick-breaking variants.

Even further, despite the present paper’s focus on BNP, we develop theory that
applies directly to all VB approximations based on reverse KL divergence. Indeed, the
formation and analysis of our approximation depends only on the implicit function theo-
rem, and so could be readily extended to VB approximations based on other divergence
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measures. Thus, though our discussion and experiments will focus on BNP applications,
we hope that the present work can serve as a template for the development and analysis
of similar local robustness tools in other popular applications of VB.

The remainder of the paper is organized as follows. We briefly review related work in
Section 2. In Section 3, we review the stick-breaking construction of the Dirichlet process
and our chosen variational approximation. In Section 4, we derive the form of local prior
robustness measures for VB approximations. We consider functional perturbations to
the stick-breaking density in Section 5, and define the influence function from which
we can construct influential and worst-case perturbations. In Section 6, we address
scalability and other computational considerations for computing local sensitivity on
real applications. In Section 7, we apply our tools to assess the sensitivity of BNP
models in several data analysis problems.

2 Related Work

Evaluating sensitivity to prior choices is typically a desirable step of applied Bayesian
data analysis (Gelman et al., 2013, Chapter 6), and a central aim of Bayesian robustness
is to provide methods and metrics to measure sensitivity of posterior quantities to varia-
tions in the model (Insua and Ruggeri, 2000). Our approach to robustness quantification
falls in the category of “local robustness” techniques, which are based on differential
approximations to model sensitivity (Gustafson, 2000). The contrasting set of “global
robustness” techniques avoid differential approximation, but are computationally ex-
pensive or infeasible in all but special cases (Sivaganesan, 2000).

In the present work, we study the robustness of a user’s problem-specific poste-
rior quantities of interest, such as the expected number of distinct clusters, or the
membership of a particular cluster (as in, e.g., Gustafson (1996b)). In contrast, other
work attempts to measure the sensitivity of the entire posterior using, for example,
the Wasserstein distance or the largest change within an expressive class of posterior
expectations (e.g., Roos et al. (2015); Ghaderinezhad and Ley (2019)). In other words,
we study the robustness of particular posterior conclusions rather than attempting to
measure the robustness, in some sense, of the entire posterior.

Our focus on VB contrasts with much of the previous Bayesian local robustness liter-
ature. For posteriors that are approximated via MCMC, the derivatives of local robust-
ness must be approximated with potentially noisy sample covariances (e.g., Gustafson
(1996a)). In contrast, the VB optima that we study admit closed-form derivatives via
the implicit function theorem. As an optimization procedure, the evaluation of the sen-
sitivity of VB estimates inherits a long tradition of robustness methods in frequentist
statistics (e.g. (Jaeckel, 1972; Cook, 1986; Hampel et al., 2011)), a connection which is
explored in Giordano et al. (2018). Our work extends Giordano et al. (2018) by provid-
ing more easily verifiable sufficient conditions for Theorem 2 of Giordano et al. (2018)
and proving results for nonparametric perturbations to the functional form of the prior,
including continuous Fréchet differentiability (and non-differentiability). Our theoretical
improvements on Giordano et al. (2018) apply to any VB approximation based on re-
verse KL divergence, not only BNP models. Ultimately, our theoretical work amounts to
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an application of the implicit function theorem (Krantz and Parks, 2012), and a similar
approach to ours could yield comparable results for VB approximations based on other
divergences (e.g., Li and Turner (2016); Liu and Wang (2016); Ambrogioni et al. (2018)).

Many authors have considered the potential sensitivity of discrete BNP posterior
quantities to prior specification. Typically, such work relies either on the existence of
closed-form solutions or on running multiple MCMC chains with different prior choices
(e.g., Nieto-Barajas and Prünster (2009); Saha and Kurtek (2019)). This work has shown
that alternatives to the DPMmay exhibit improved robustness properties (Barrios et al.,
2013; Lijoi et al., 2007; Canale et al., 2017). In the present work, we take the DPM
as our starting point only in order to demonstrate our robustness methodology on a
well-known and canonical choice of BNP prior. We hope that our methods could act
as a supplement to the computationally or analytically intensive techniques employed
by the aforementioned papers to quantify robustness. Indeed, our techniques should
apply directly to VB approximations of any discrete BNP prior that admits a truncated
approximation (Doshi et al., 2009; Roychowdhury and Kulis, 2015; Campbell et al.,
2019).

A final distinction between our work and much of the prior Bayesian local robustness
literature is underscored by comparison with Basu (2000), a work that also employs local
robustness (applied to MCMC) to measure sensitivity to the concentration parameter
of a DPM prior specification. Unlike Basu (2000), who considers the norm of the deriva-
tive to be a measure of robustness per se (following, for example, Basu et al. (1996);
Gustafson (1996b)), we focus on the ability of our linear approximation to extrapolate
to alternative priors. In this spirit, we hope that our work provides tools for quickly and
interactively exploring the space of subjectively reasonable prior alternatives, without
committing researchers to a single robustness measure chosen more for mathematical
convenience than intuitive validity.

3 The Model and Variational Approximation

3.1 A Stick-Breaking Model for Clustering

Consider a standard Bayesian nonparametric generative model for clustering, with ob-
served data x = (xn)

N
n=1. We assume a countable infinity of latent components, with

frequencies π = (π1, π2, . . .), such that πk ∈ [0, 1] for all k ∈ {1, 2, . . .}, and
∑

k πk = 1.
For the nth data point, the vector zn = (zn1, zn2, . . .) is an indicator vector; znk = 1
represents the assignment of the nth data point to the kth component, with all other
vector elements set equal to zero. We generate znk = 1 with probability πk, i.i.d. across
n. To generate the xn, we assume the kth component is characterized by a component-
specific parameter, βk ∈ Ωβ ⊆ R

Dβ , and that a data point arising from component k
is generated as P(xn|βk). Then P(xn|zn, β) =

∏∞
k=1 P(xn|βk)

znk . The βk in turn are
generated i.i.d. from a prior Pbase(βk). For instance, in a Gaussian mixture model, βk

could be a vector representing the mean and covariance of a Gaussian distribution.

It remains to place a prior on the component frequencies π. We will focus on stick-
breaking priors for π, so we first replace π with a stick-breaking representation. Let
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ν = (ν1, ν2, . . .) represent proportions: νk ∈ [0, 1]. Take

πk := νk
∏

k′<k

(1− νk′). (1)

We then define a stick-breaking prior by placing a prior on the νk. Fix a density, Pstick(·),

with respect to the Lebesgue measure on [0, 1] and let νk
iid
∼ Pstick(νk) for k ∈ {1, 2, . . .}.

A common choice of Pstick is Beta(1, α), with concentration parameter α > 0. With this
choice, the π are distributed according to the size-biased weights associated with the
atoms of a draw from a Dirichlet process. This particular beta stick-breaking prior is
often favored due to its convenient mathematical properties and ease of use in inference.

Posterior quantities of interest. In theory, with our generative model and observed
data in hand, we can find the Bayesian posterior P(β, z, ν|x) and report any posterior
summaries of interest. For instance, the posterior P(β, z, ν|x) induces a posterior dis-
tribution on the number of clusters Gcl(z), where clusters are components to which at
least one data point has been assigned:

Gcl(z) :=
∞
∑

k=1

I

((

N
∑

n=1

znk

)

> 0

)

,

where I (·) is the indicator function taking value 1 when the argument is true and 0
otherwise.

In practice, though, neither the posterior nor the posterior summary is readily ac-
cessed. An approximation must be used instead.

3.2 Variational Approximation

To assess the sensitivity of a procedure in practice, we need to consider the approxi-
mate Bayesian inference algorithm used as well. Here we focus on a variational Bayes
approximation due to Blei and Jordan (2006).

Variational Bayes (VB) posits a class of tractable distributions over the model pa-
rameters and chooses the element of this class that minimizes the reverse Kullback-
Leibler (KL) divergence to the exact posterior. One approach to apply VB to Dirichlet
process stick-breaking models assumes νKmax

= 1 for all distributions in the variational
class and some truncation level Kmax. Let ζ collect the first Kmax−1 elements of ν, the
first Kmax elements of β, and the first Kmax elements of zn across n. In what follows,
then, we effectively consider the reverse KL divergence to the posterior marginal P(ζ|x).
By setting Kmax sufficiently large, one can make this truncation as accurate as desired.

Mean-field VB is a particularly popular VB variant where the tractable approxi-
mating distributions Q factorize over the parameters. In our case, then, we consider
approximations of the form

Q(ζ|η) =

(

Kmax−1
∏

k=1

Q(νk|η)

)(

Kmax
∏

k=1

Q(βk|η)

)(

N
∏

n=1

Q(zn|η)

)

, (2)
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where η ∈ Ωη ⊆ R
Dη represents variational parameters that determine the factors of

the Q distribution. When the observation likelihood P(xn|βk) is conditionally conjugate
with the component-parameter prior Pbase(βk), no further assumptions are needed on
the form of Q(βk|η); one can show that it will take the form of the conjugate exponential
family after the KL optimization (Blei et al., 2017). Similarly, when Pstick is a beta
distribution, no further assumptions are needed on Q(νk|η); it will take a beta form.
However, since we will consider non-beta forms of Pstick, we must specify a more generic
approximation—one that will work even when conditional conjugacy does not hold. To
that end, we first transform the νk to a value that is unbounded and then use a Gaussian
approximation. Define the logit-transformed stick-breaking proportions ν̃k:

ν̃k := log(νk)− log(1− νk) ⇔ νk =
exp(ν̃k)

1 + exp(ν̃k)
.

We take Q(ν̃k|η) to be a normal distribution, which induces a logit-normal distribution
on νk. We approximate all resulting integrals over Q(ν̃k|η), as in the KL objective for
VB or in our later sensitivity calculations, with Gauss-Hermite (GH) quadrature; see
Supplement D.4 (Giordano et al., 2022).

GH quadrature yields an approximation, which we call KL (η), to the full KL,
KL (Q(ζ|η)||P(ζ|x)). We minimize that approximation to perform approximate pos-
terior inference:

KL (Q(ζ|η)||P(ζ|x)) = E
Q(ζ|η)

[logQ(ζ|η)− logP(x, ζ)] + logP(x) (3)

η̂ := argmin
η∈Ωη

KL (η) where KL (η) ≈ KL (Q(ζ|η)||P(ζ|x)) . (4)

Our final approximation to the marginal posterior P(ζ|x) is Q(ζ|η̂).

Posterior quantities of interest. To approximate any functional of the exact poste-
rior, we apply the equivalent functional to Q(ζ|η̂). For instance, the approximation to
the posterior expected number of clusters among the N observed data points is

E
Q(ζ|η̂)

[Gcl(z)] = E
Q(z|η̂)

[Gcl(z)] =

Kmax−1
∑

k=1

(

1−
N
∏

n=1

(1− E
Q(zn|η̂z)

[znk])

)

. (5)

We will see examples in Section 7 where our quantity of interest is (a) the expected
posterior number of clusters in the observed data, (b) the expected posterior number
of clusters in a new set of (as yet unobserved) data, (c) some aspect of a co-clustering
matrix, or (d) the topic assignments of certain data points. In all of these cases, as
in (5), we are able to express our (approximate) posterior quantity of interest as a
smooth function g of the optimized variational parameters η̂: g(η̂). Indeed, as we will
discuss in Section 4, our methods and results apply to any quantity of interest that can
be written as a smooth function of η̂.

Once we have an (approximate) posterior quantity of interest, we can ask how
this quantity would change—and whether our substantive scientific conclusions would
change—if we had made reasonably different prior choices.
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4 A Local Approximation for Sensitivity

We would like to understand how our quantity of interest g(η̂) changes when the con-
centration parameter or, more generally, the stick-breaking density Pstick changes. To
efficiently compute these changes, we use a first-order Taylor series approximation in
the optimal VB parameters. In this section, we first present the Taylor series and then
show how to compute its terms.

Sensitivity to the concentration parameter. First, we show how to approximate
the sensitivity of g(η̂) to the choice of concentration parameter α. Let η̂(α) represent
the value of η̂ for a particular choice of α. For our approximation, we choose some initial
value α0 of the concentration parameter and solve the optimization problem to compute
η̂(α0). We then approximate η̂(α) with the linear approximation η̂lin(α), and in turn
approximate g(η̂(α)) with g(η̂lin(α)):

η̂lin(α) := η̂(α0) +
dη̂(α)

dα

∣

∣

∣

∣

α0

(α− α0) and g(η̂(α)) ≈ g(η̂lin(α)). (6)

If α �→ η̂(α) is continuously differentiable, and g is sufficiently smooth, then we expect
g(η̂(α)) ≈ g(η̂lin(α)) when |α− α0| is small. We will show in Theorem 1 below that the
map α �→ η̂(α) is continuously differentiable for our chosen VB approximation.

Sensitivity to the stick-breaking density. Next, we show how to approximate the
sensitivity of g(η̂) to the choice of concentration stick distribution Pstick. Technically,
perturbations of α are perturbations of Pstick. But here we consider more general per-
turbations of the form of Pstick, potentially outside the beta class. To define our per-
turbations, let P̃ represent a potentially unnormalized (but normalizable) density with
respect to Lebesgue measure; the same notation without the tilde will give the normal-
ized density. Now start from an initial setting of Pstick at P0; we will typically start
from Dirichlet-process stick-breaking; i.e., P0 = Beta (1, α0) for some α0. Then take
any Lebesgue-measurable function φ(·) on [0, 1]. We consider a range of alternative
(potentially unnormalized) stick-breaking forms P̃(·|t) defined on [0, 1] by

log P̃(·|t) = logP0(·) + tφ(·). (7)

Note that the perturbation applies equally to every stick break νk. This style of multi-
plicative functional perturbation was proposed by Gustafson (1996b); we deviate from
Gustafson (1996b) by considering VB (rather than MCMC) approximations and by
allowing φ to take on negative values.

If we now let η̂(t) represent the value of η̂ for a particular choice of P̃(·|t), we can
form an approximation analogous to (6):

η̂lin(t) := η̂(0) +
dη̂(t)

dt

∣

∣

∣

∣

t=0

(t− 0) and g(η̂(t)) ≈ g(η̂lin(t)). (8)

As in the case of expansions with respect to α, (8) is useful only if the map t �→ η̂(t)
is continuously differentiable for the chosen φ. As we will show in Theorem 1 below, a
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sufficient condition for differentiability is given in terms of the following norm on the
perturbation φ.

Define ‖φ‖∞ := esssup
ν0∼P0

|φ(ν0)| and Bφ(δ) := {φ : ‖φ‖∞ < δ} . (9)

The set of priors that arise by considering functional perturbations φ ∈ Bφ(δ) live in
a multiplicative band around the original prior, P0, as shown in Figure 1. Theorem 1
below states that t �→ η̂(t) is continuously differentiable whenever ‖φ‖∞ < ∞. So, for
sufficiently smooth g, we expect the approximation (8) to be good for small t, given a
particular choice of φ with ‖φ‖∞ < ∞.

The functional perturbation given in (7) is useful because, if we consider any other
distribution P1 for Pstick, we can continuously warp P0 to P1 by setting φ(·) = log(P1(·)/
P0(·)) so long as P1 � P0; i.e., P1 is absolutely continuous with respect to P0. We will
see in Section 5 that we can compute an influence function to provide an interpretable
summary of the effect of arbitrary changes φ. Using the influence function and the ‖·‖∞
norm, we are able to find a worst-case choice of φ in Bφ(δ).

However, we note that restricting to ‖φ‖∞ < ∞ limits the kinds of alternative priors
P1 that can be formed using (7). Although we show in Lemma 1 of Supplement A.3
that functional perturbations with ‖φ‖∞ < ∞ yield valid priors, the converse is not
true: there exist valid priors P1 such that the corresponding ‖φ‖∞ = ∞. For instance,
perturbing the beta stick-breaking form by changing α provides a counterexample since
the log of the beta density is unbounded below; see Example 3 of Supplement A.3 for
more details. The limited expressiveness of Bφ(δ) may at first seem like a shortcoming
of the perturbation given by (7). However, we show in Section 5 that, among a class of
potential functional perturbations such as those proposed by Gustafson (1996b), only
the one we defined in (7) is Fréchet differentiable—and thus can be used to safely reason
about worst-case φ.

Computing the terms in the Taylor series. It remains to show that α �→ η̂(α)
and t �→ η̂(t) are continuously differentiable, and to provide a computable formula for
the derivative. Differentiability naturally requires some regularity conditions on the VB
parameterization and on the optimum. We state sufficient conditions in the following
Assumption 1, which is satisfied for any local optimum of a smooth, unconstrained
parameterization of the variational approximation.

Assumption 1. Assume that: (1) the map η �→ KL (η) is twice continuously differen-

tiable at η̂; (2) the Hessian matrix ∂2KL(η)
∂η∂ηT

∣

∣

∣

η̂
is non-singular; and (3) there exists an

open ball Bη ⊆ R
Dη such that η̂ ∈ Bη ⊆ Ωη.

Our next result establishes the differentiability of η̂ and provides a computable
formula for the derivative.

Theorem 1. Let Assumption 1 hold for the VB approximation given in Section 3.2.
Either take ε = t under the perturbation given by log P̃(νk|t) = logP0(νk)+ tφ(νk) with
‖φ‖∞ < ∞, or take ε = α − α0 in a perturbation to the concentration parameter α of
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the unnormalized beta distribution log P̃(νk|α) = α log(1− νk). Then the map ε �→ η̂(ε)
is continuously differentiable at ε = 0 with derivative

dη̂(ε)

dε

∣

∣

∣

∣

ε=0

= − Ĥ−1Ĵ , where ρk(νk) :=
∂ log P̃(νk|ε)

∂ε

∣

∣

∣

∣

∣

ε=0

, (10)

Ĥ :=
∂2KL (η)

∂η∂ηT

∣

∣

∣

∣

η=η̂

, S(ζ|η) :=
∂ logQ(ζ|η)

∂η

∣

∣

∣

∣

η

, and (11)

Ĵ :=
∂

∂η
E

Q(ζ|η)

[

Kmax−1
∑

k=1

ρk(νk)

] ∣

∣

∣

∣

∣

η=η̂

= E
Q(ζ|η̂)

[

S(ζ|η̂)
Kmax−1
∑

k=1

ρk(νk)

]

. (12)

Proof. The result follows from Theorem 4 of Supplement A.1, which states general
conditions for the differentiability of VB optima. We show in Supplement A.2 and
A.3 that the conditions of Theorem 4 are satisfied in the case of our present BNP
problem. The equivalence of the expressions for Ĵ follows by differentiating through the
expectation; see Lemma 3 of Supplement B for more details.

(10) requires computation of two terms: Ĥ−1 and Ĵ . Typically, Ĵ , which is a deriva-
tive of a variational expectation, is straightforward to evaluate: the requisite expec-
tation is evaluated either in closed form or approximated numerically; then, in either
case, an application of automatic differentiation provides the gradient (Baydin et al.,
2018). Forming and inverting or factorizing Ĥ can present a challenge due to its high
dimensionality—it has dimensions Dη ×Dη, where Dη is the dimension of η. However,
in many cases—including the BNP problem that is our focus—we can take advantage
of model sparsity to efficiently compute (10) (see Section 6), and our experiments con-

firm that we can compute dη̂(ε)
dε

∣

∣

∣

ε=0
much more efficiently than re-optimizing the VB

objective directly (Section 7.4). Moreover, the savings increase dramatically when we

are interested in a range of ε values because dη̂(ε)
dε

∣

∣

∣

ε=0
can be re-used to for any chosen

value of ε.

5 The Influence Function and Worst-Case Functional
Perturbations

We next show how to find influential and worst-case functional perturbations to the
stick-breaking density. We start by showing how to compute an influence function to
summarize the effect of different choices of φ. Using the influence function, we are able
to design stick-breaking densities that produce a large change in a quantity of interest,
including computing the worst-case perturbation in Bφ(δ). To justify such uses of the
influence function, we prove that, for multiplicative perturbations and the ∞-norm,
the VB objective is Fréchet differentiable—i.e., that it admits a uniformly good linear
approximation in a neighborhood of the null perturbation. Finally, we show that our
Fréchet differentiability result is unique among a broad class of alternative choices of
functional perturbation.
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The influence function and worst-case perturbations. We begin by defining the
influence function Ψ and discussing its usefulness for understanding the effect of func-
tional perturbations φ. Suppose we have a one-dimensional, differentiable quantity of
interest, g(·) : Ωη �→ R, and are considering various alternative priors as given by φ
in (7). Under the approximation in (8), the dependence of g(η̂lin(t)) on φ is not simple
if g(·) is non-linear. However, for a particular choice of φ, by applying the chain rule with

Theorem 1, we can derive a fully linear approximation g(η̂(t)) ≈ g(η̂)+ dg(η̂(t))
dt

∣

∣

∣

t=0
(t−0).

The advantage of linearizing g in this way is that the map φ �→ dg(η̂(t))
dt

∣

∣

∣

t=0
has a par-

ticularly simple form, as given by the following result.

Corollary 1. Under the conditions of Theorem 1, using (7) with ‖φ‖∞ < ∞ and ε = t,
let g(·) : Ωη �→ R denote a continuously differentiable, real-valued function of interest.
Define the influence function Ψ : [0, 1] �→ R:

Ψ(·) := −
Kmax−1
∑

k=1

dg(η)

dηT

∣

∣

∣

∣

η̂

Ĥ−1Sk(·|η̂)Qk(·|η̂), (13)

where Sk(·|η̂) and Qk(·|η̂) replace Q(ζ|η) with just the factor of Q for νk. Then the
derivative in (10) can be written as

dg(η̂(t))

dt

∣

∣

∣

∣

0

=

∫ 1

0

Ψ(ν0)φ(ν0)dν0. (14)

Proof. The form of the influence function is given by the chain rule, gathering terms
in (10), and re-writing the variational expectation as an integral over [0, 1]. We establish
an analogous general result for general VB approximations in Corollary 3 of Supplement
A.3, specializing to the BNP case in Example 4 of Supplement A.3.

By choosing perturbations φ that align with the influence function, we can form
priors that we expect to be influential for the function of interest, g(·). For example, in
our experiments of Section 7, we show that by choosing φ to be a Gaussian bump aligned
with particularly high-magnitude positive or negative values of the influence function,
one can ensure a large positive or negative gradient, and hence a large predicted change.

Further, with Corollary 1 in hand, we can find a closed-form expression for the
worst-case choice of φ ∈ Bφ(δ), which is essentially a VB analogue to Gustafson (1996b,
Result 11).

Corollary 2. Under the conditions of Corollary 1,

sup
φ∈Bφ(δ)

dg(η̂(t))

dt

∣

∣

∣

∣

0

= δ

∫

|Ψ(ν0)|μ(dν0),

and the supremum is achieved at the perturbation φ∗(·) = δ sign (Ψ(·)).
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Proof. The result follows immediately from applying Hölder’s inequality to (14). We
establish a similar but much more general result for VB approximations with general
choices of model and parameters in Corollary 4 of Supplement A.4. The present result
is a special case using Example 4 of Supplement A.4.

In our experiments of Section 7, we use Corollaries 1 and 2 to choose influential
perturbations, and then use the partially linearized (8) to make predictions about the
effect of the perturbations.

Figure 1: Left two: A multiplicative ball Bφ(δ). Right: Two densities that are distant
according to reverse KL divergence and ‖·‖∞ but close according to ‖·‖p for p ∈ [1,∞).

Multiplicative perturbations are continuously Fréchet differentiable. The in-
fluence function provides a succinct summary of the effect of all perturbations φ ∈ Bφ(δ),
which we might hope to be accurate for sufficiently small δ. However, the accuracy of
our approximation within Bφ(δ) is not guaranteed by Theorem 1 alone. Specifically,
Theorem 1 states only that, for a particular direction φ, t �→ η̂(t) is continuously
differentiable—i.e. that, for a fixed φ, one can make t sufficiently small so that the
error

∣

∣η̂(t)− η̂lin(t)
∣

∣ goes to zero faster than t. But, if we write η̂(tφ) and η̂lin(tφ) to
make the dependence on φ explicit, then Theorem 1 does not imply that for a fixed
δ (no matter how small), the worst-case error supφ∈Bφ(δ)

∣

∣η̂(φ)− η̂lin(φ)
∣

∣ is bounded,
much less that it goes to zero faster than δ.

Thus, to be assured that the influence function is a meaningful summary of the
effect of all φ ∈ Bφ(δ), we wish to establish that the linear approximation given by (8)
is uniformly accurate over all φ of interest within a sufficiently small neighborhood of
the zero function. Specifically, observing that φ is a point in the Banach space L∞

(Dudley, 2018, Theorem 5.2.1), we wish to establish that the map φ �→ η̂(φ) from L∞

to R
Dη is Fréchet differentiable, as we now formally define.1

1Fréchet differentiability is sometimes referred to as “bounded” differentiability. In addition to
Fréchet, two other notions of differentiability are common in statistics: Hadamard (i.e., compact) dif-
ferentiability, and Gateaux (i.e., weak, or directional) differentiability. In each case, the derivative is
given by the same linear operator, but comes with different accuracy guarantees, of which Fréchet is
the strongest. Consequently, our Theorem 2 below implies both Hadamard and Gateaux differentia-
bility as a consequence of Fréchet differentiability. See Averbukh and Smolyanov (1967) for a general
mathematical treatment of differentiability in Banach spaces, or Reeds (1976) for a treatment intended
for statisticians.
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Definition 1. (Fréchet differentiability, (Zeidler, 1986, Definition 4.5)) Let B1 and B2

denote Banach spaces, and let B1 ⊆ B1 define an open neighborhood of φ0 ∈ B1. A
function f : B1 �→ B2 is Fréchet differentiable at φ0 if there exists a bounded linear
operator, f lin : B1 �→ B2, such that, for φ ∈ B1,

f(φ)− f(φ0)− f lin
φ0

(φ− φ0) = o(‖φ− φ0‖) as ‖φ− φ0‖ → 0.

The function f is continuously Fréchet differentiable if the map φ0 �→ f lin
φ0

(·) is contin-
uous as a map from B1 to the space of all continuous linear operators from B1 to B2

equipped with the operator norm. �

By Zeidler (1986, Proposition 4.8), if a function is Fréchet differentiable, then the
linear operator f lin is given precisely by the directional derivative df(φ0+ t(φ−φ0))/dt.
Thus, if φ �→ η̂(φ) is Fréchet differentiable, its derivative is given by Corollary 1. Fréchet
differentiability guarantees that, for sufficiently small δ, the error of the linear approxi-
mation given by Corollary 1 does not blow up in the ball Bφ(δ).

We emphasize that Fréchet differentiability is neither sufficient nor necessary for
a derivative to be useful. For example, it is possible in principle for a function to be
Fréchet differentiable but still have a very large finite second derivative, and so fail to
extrapolate meaningfully to any alternatives one cares about. Conversely, if a function
fails to be Fréchet differentiable, the derivative may still perform well in particular
directions, including that chosen by Corollary 2. Nevertheless, Fréchet differentiability
is a strong local result, and provides some assurance that one can use results such as
Corollary 2 without uncovering pathological behavior.

Finally, then, we prove that our perturbation is continuously Fréchet differentiable.

Theorem 2. Under the conditions of Theorem 1, the map φ �→ η̂(φ) is well-defined
and continuously Fréchet differentiable in a neighborhood of the zero function as a map
from L∞ to R

Dη , with the derivative given in Corollary 1.

Proof. Our result here is a special case of our general result for VB approximations
given in Theorem 5 of Supplement A.4.

Many other functional perturbations and norms are not Fréchet differen-

tiable. So far we have focused on the multiplicative functional perturbations in (7)
combined with the infinity norm in (9). We now ask whether we could perform a similar
analysis for other functional perturbations. We show that, of the perturbations proposed
by Gustafson (1996b), only multiplicative perturbations yield Fréchet differentiable VB
optima.

Specifically, Gustafson (1996b) examines general perturbations, from initial prior P0

to alternative P1, that take the following form—with θ a parameter θ ∈ Ωθ ⊆ R
Dθ and

p ∈ [1,∞):

P̃(θ|tp) :=

(

(1− tp)P0(θ)
1/p + tp

1

p
P1(θ)

1/p

)p

. (15)
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Again, let φ represent the perturbation, now with:

φ(θ|P1, p) := P1(θ)
1/p − P0(θ)

1/p and ‖φ‖p :=

(
∫ 1

0

|φ(θ)|p dθ

)1/p

. (16)

The limit p → ∞ recovers our multiplicative perturbation in (7) with infinity norm
in (9). The choice p = 1 recovers a purely additive perturbation. Gustafson (1996b, Re-
sult 2) states that ‖φ‖p < ∞ ensures that the corresponding P̃(θ|tp) can be normalized,
strongly motivating using the ‖·‖p norm with the perturbation given by (15).

Our next theorem shows that the reverse KL divergence is discontinuous in ‖·‖p for
p < ∞. Since Fréchet differentiability implies continuity (Zeidler, 1986, Proposition 4.8
(d)), Theorem 3 implies that it is impossible to derive an analogue of Theorem 2 for
perturbations of the form in (15) with the norms in (16).2

Theorem 3. Let μ denote a measure on the Borel sets of some domain Ωθ, with μ
absolutely continuous with respect to the Lebesgue measure, and let Q(θ) and P0(θ)
denote densities with respect to μ. Without loss of generality, assume that Q(θ) > 0 on
Ωθ. Assume that KL (Q(θ)||P0(θ)) is well-defined and finite.

Then, for any ε > 0 and any M > 0, we can find a density P1(θ) such that
‖φ(θ|P1, p)‖p < ε but |KL (q(θ)||P1(θ))−KL (q(θ)||P0(θ))| > M .

Proof. See Supplement A.5 for a constructive proof, the key to which is the fact that in
any ‖·‖p neighborhood of zero there exist prior densities taking values arbitrarily close
to zero on sets of nonzero measure, for which the reverse KL divergence blows up.

Recall from Section 4 (and particularly Example 3 of Supplement A.3) that there
exist priors that cannot be formed from (7) using φ with ‖φ‖∞ < ∞. In light of the
proof of Theorem 3, the limited expressiveness of multiplicative perturbations with the
‖·‖∞ norm looks like a feature rather than a bug. Consider the rightmost panel of
Figure 1, which illustrates the tradeoffs between the various norms. The two blue and
red densities are far from one another according to reverse KL divergence since the red
density takes values that are nearly zero where the blue density has nonzero mass. The
two densities are also distant in ‖·‖∞ since it takes a large multiplicative change to turn
the nonzero blue density into the nearly zero red density. However, the two densities are
close in ‖·‖p since the region where the red density is nearly zero has a small measure.
In order for VB approximations to be continuous (a necessary condition for Fréchet
differentiability), one must consider a topology on priors that is no coarser than the
topology induced by reverse KL divergence. But since valid priors can take values close

2Hadamard differentiability also implies continuity, so our Theorem 3 also implies Hadamard non-
differentiability (Averbukh and Smolyanov, 1967, Section 3). In general, a functional may be Gateaux
differentiable but discontinuous, though in such cases there are necessarily directions in which the
derivative provides an arbitrarily poor approximation to the behavior of the functional (see Averbukh
and Smolyanov (1967, Example 1.19)). In the present case, as we discuss in Supplement A.5, there
exist pointwise negative priors in every ‖·‖

p
neighborhood of P0 for p < ∞, so even establishing

Gateaux differentiability (i.e., the mere existence of a directional derivative in every direction) requires
a somewhat artificial extension of the KL divergence to accommodate pointwise negative prior densities.
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to zero, a sacrifice in expressiveness of the neighborhood of zero must be made in order
to induce a topology that is compatible with reverse KL divergence. Multiplicative
changes and the ‖·‖∞ norm implement such a tradeoff in a natural, easy-to-understand
way.

In this sense, VB approximations based on reverse KL divergence are inherently
non-robust to priors that ablate mass nearly to zero. No parameterization of the space
of priors will relieve this non-robustness. Only by basing variational approximations on
divergences other than reverse KL might this non-robustness be alleviated.

6 Fast Computation of the Sensitivity

A principal challenge of computing the sensitivity efficiently is the high-dimensional
nature of the parameter ζ and hence the variational parameters η. In particular, we
have seen that, in our BNP stick-breaking model, ζ and η both grow linearly with the
number of data points N . This growth leads to two major computational challenges: (1)
we must solve a high-dimensional optimization problem to extremize the VB objective,
and (2) we must solve a linear system given by the Hessian Ĥ. Here we show how we can
use special structure in the model to reduce to low-dimensional problems and thereby
enjoy efficient computation.

Global and local parameters. In both cases, the key to reducing to a lower-dimensional
problem is separating global and local parameters. Global variables are common to all
data points. Local variables are unique to each data point. For instance, in a Gaus-
sian (or other typical) mixture model, the stick-breaking proportions ν and component
parameters β are global, whereas the cluster assignment parameters z are local.

Let γ denote the collection of global parameters. When we use a standard mean-field
VB parameterization, the VB distributions on γ have their own variational parameters,
which we denote ηγ . Similarly, let � denote the local parameters and let η
 be the
corresponding local variational parameters.

Reducing to optimization over the global variational parameters. We next
show how to reduce the potentially high-dimensional optimization problem over all of
η to optimizing over just the global variational parameters ηγ .

In all models we will consider, the conditional posterior P(z|γ, x) has a tractable
closed form. Since we choose a conjugate mean-field approximating family for Q(z|η),
the optimal local variational parameters η̂
 can be written as a closed-form function of
the global variational parameters ηγ . For some prior parameter ε (as in Theorem 1), let
η̂
(ηγ ; ε) denote this mapping, so that

η̂
(ηγ ; ε) := argmin
η�

KL ((ηγ , η
), ε) . (17)

In Example 6 (Supplement D.1), we illustrate this technique for a Gaussian mixture
model. Using (17), we can rewrite our objective as a function of the global parameters.
Define

KLglob(ηγ , ε) := KL
(

(ηγ , η̂
(ηγ ; ε)), ε
)

.
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The η̂γ(ε) that minimizes KLglob(ηγ , ε) is the same as the corresponding sub-vector of
the η̂(ε) that minimizes KL (η, ε).

Rather than optimizing the KL (η) over all variational parameters, we numerically
optimize KLglob, which is a function only of the relatively low-dimensional global pa-
rameters. To minimize KLglob(ηγ) in practice, we run the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm with a loose convergence tolerance followed by the trust-
region Newton conjugate gradient method to find a high-quality optimum (the trust-ncg
method of scipy.optimize.minimize, Virtanen et al. (2020); see also Nocedal and
Wright (2006, Chapter 7)). After the optimization terminates at an optimal η̂γ , the
optimal local parameters η̂
 can be set in closed form to produce the entire vector of
optimal variational parameters, η̂ = (η̂γ , η̂
).

6.1 Computing and Inverting the Hessian

Since the dimension Dη of η scales with N , we can quickly reach cases where inverting
or even instantiating a dense matrix of size Dη ×Dη in memory would be prohibitive.

The key to efficient computation is that Ĥ is not dense; we will again exploit structure
inherent in the global/local decomposition.

For generic variables a and b, let Hab denote the sub-matrix ∂2KL (η) /∂ηaη
T
b

∣

∣

η̂
, the

Hessian with respect to the variational parameters governing a and b. We decompose
the Hessian matrix Ĥ into four blocks according to the global/local decomposition:

Ĥ =
∂2KL (η)

∂η∂ηT

∣

∣

∣

∣

η̂

=

(

Hγγ Hγ


H
γ H



)

.

Similarly, let Ĵγ be the components of Ĵ corresponding to the variational parameters

ηγ . The local components, Ĵ
, are zero since no local variables enter the expectation
in (12) when we are perturbing the stick-breaking distribution.

In this notation,

dη̂(ε)

dε

∣

∣

∣

∣

ε=0

= −

(

Hγγ Hγ


H
γ H



)−1 (
Ĵγ
0

)

. (18)

Applying the Schur complement and focusing on the global parameters (see Supplement
D.2 for more details), we find

dη̂γ(ε)

dε

∣

∣

∣

∣

ε=0

= −Ĥ−1
γ Ĵγ where Ĥγ :=

(

Hγγ −Hγ
H
−1


 H
γ

)

, (19)

In the models we consider, H

 is block diagonal, and the size of Hγγ is relatively
small. Thus each term of (19) can be tractably computed, even on very large datasets.
While the Schur complement calculation is illustrative, (19) is equivalent to applying
automatic differentiation to the global-only objective KLglob(ηγ , ε); see Supplement D.2
for details.
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In our BNP applications, it is not cost-effective to form and invert or factorize Ĥ in
memory. Instead, we numerically solve linear systems of the form Ĥ−1v using the con-
jugate gradient (CG) algorithm (Nocedal and Wright, 2006, Chapter 5), which requires
only Hessian-vector products that are readily available through automatic differentia-
tion.

A linear approximation only in the global variational parameters. With the
tools above, we can separate out the linear approximation in the global parameters and
then directly compute the local parameters. In particular, we compute

η̂linγ (ε) := η̂γ +
dη̂γ(ε)

dε

∣

∣

∣

∣

ε=0

ε, (20)

and then use η̂
(ηγ) e.g. in computing our quantity of interest. By doing so, our approx-
imation is able to retain non-linearities in the map ηγ �→ η̂
(ηγ). We give an example for
the expected number of clusters in Supplement D.3. In all our experiments, we use (20)
in this way.

7 Experimental Results

We next evaluate our sensitivity approximations on three real data sets, each with a dif-
ferent model using stick-breaking.3 We find that our approximations largely agree with
ground truth obtained by re-running the VB optimization, but with the evaluation of
our derivative an order of magnitude faster than re-optimizing for a given perturbation.

7.1 Gaussian Mixture Modeling on Iris Data

We perform a clustering analysis of Fisher’s iris data set (Fisher, 1936; Anderson, 1936).
Here each data point (with N = 150 total points) represents d = 4 measurements of a
particular flower, from one of three iris species. We use a standard Gaussian mixture
model with a conjugate Gaussian-Wishart prior for the component parameters (detailed
in Supplement E.2) and a mean-field VB approximation with truncation parameter
Kmax = 15. We consider two quantities of interest: (1) gcl, the posterior expected
number of clusters among the N observed data points, and (2) gpred,cl, the posterior
predictive expected number of clusters in N new (i.e. as-yet-unseen) data points. We
set the base stick-breaking prior P0(νk) to be the standard Beta (νk|1, α) distribution
with α = α0 = 2. Under the base stick-breaking prior with α0, the posterior expected
number of clusters matches the three iris species; see also Figure 13 in Supplement E.2
for an illustration.

Sensitivity to the concentration parameter. We approximate the changes in the
quantities of interest as α varies over α ∈ [0.1, 4.0], which corresponds to an a priori
expected number of clusters among N data points in [1.5, 15] (Supplement E.1). Over
this range, the shape of a Beta (1, α) density varies considerably, as shown in Figure 12
in Supplement E.1.

3Code and instructions for reproducing our experiments can be found online at https://github.

com/Runjing-Liu120/BNPStickBreakingSensitivity.
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Figure 2: The expected number of clusters in the original data set (gcl, left) and in a
new data set of size N (gpred,cl, right) as α varies in the fit of the iris data. We formed
the linear approximation at α0 = 2.

Figure 2 compares our linear approximation to ground truth on the two quantities
of interest as α varies. Over this range of α, the posterior expected number of clusters
in the observed data is quite robust; it remains nearly constant at three. The posterior
predictive expected number of clusters in N new data points is less robust; it ranges
roughly from 3.0 to 5.6 expected species. Our approximation captures this qualitative
behavior. As expected, the approximation is least accurate furthest from the α0, where
the Taylor series is centered.

Sensitivity to functional perturbations. Insensitivity of the expected number of
clusters gcl to α does not rule out sensitivity to other prior perturbations. We now check
how our approximation fares for the multiplicative perturbations in (7). We consider
perturbations φ that are Gaussian bumps in logit stick space, with each perturbation
centered at a different location on the real line. Each row of Figure 3 corresponds to a
different φ. Each φ is shown in gray in the leftmost plot of its row. The middle column
of Figure 3 shows the stick-breaking prior P(νk|φ) induced by the corresponding φ. The
rightmost column of Figure 3 shows the changes produced by the φ perturbation for
that row. We see that our approximation captures the qualitative behavior of the exact
changes.

We also see in this example that we can use the influence function to predict the
effect of functional changes to the stick-breaking prior. In the leftmost column, we plot in
purple the influence function in the logit space.4 According to Corollary 1, the sign and
magnitude of the effect of a perturbation should be determined by its integral against

4Corollary 1 expresses the influence function in the stick domain [0, 1], but, for visualization, it is
preferable to express the influence function in the logit stick domain R. The more general Corollary 3
in Supplement A.3 accommodates such transformations.
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Figure 3: Sensitivity of the expected number of in-sample clusters in the iris data set
to three multiplicative perturbations each with ‖φ‖∞ = 1. (Left) The multiplicative
perturbation φ is in grey. The influence function Ψ, scaled so ‖Ψ‖∞ = 1, is in pur-
ple. (Middle) The initial P0(νk) (light blue) and alternative P1(νk) (dark blue) priors.
(Right) The effect of the perturbation on the change in expected number of in-sample
clusters for t ∈ [0, 1].

the influence function. Thus, when φ lines up with a negative part of Ψ, as in the first
row, we expect the change to be negative. Similarly, we expect the perturbation of the
bottom row to produce a positive change, and the middle row, in which φ overlaps with
both negative and positive parts of the influence function, to produce a relatively small
change. We see this intuition borne out in the rightmost column.

Worst-case functional perturbation. Finally, Figure 4 shows the worst-case multi-
plicative perturbation with ‖φ‖∞ = 1, as given by Corollary 2, along with its effect on
the prior and gcl. As expected, this worst-case perturbation has a much larger effect on
gcl compared to the other unit-norm perturbations in Figure 3. However, even with the
worst-case perturbation—which results in an unreasonably shaped prior density—the
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Figure 4: Sensitivity of the expected number of in-sample clusters in the iris data set to
the worst-case multiplicative perturbation with ‖φ‖∞ = 1.

change in gcl is still small. We conclude that gcl appears to be a robust quantity for this

model and dataset.

7.2 Regression Mixture Modeling

We next check our approximation on a more complex clustering task: clustering time

series, with a co-clustering matrix (and summaries thereof) as the quantity of interest.

Data and model. We use a publicly available data set of mice gene expression (Shoe-

maker et al., 2015). Mice were infected with influenza virus, and expression levels of a set

of genes were assessed at 14 time points after infection. Three measurements were taken

at each time point (called biological replicates), for a total of M = 42 measurements

per gene.

The goal of the analysis is to cluster the time-course gene expression data under

the assumption that genes with similar time-course behavior may have similar function.

Clustering gene expressions is often used for exploratory analysis and is a first step

before further downstream investigation. It is important, therefore, to ascertain the

stability of the discovered clusters.

The left plot of Figure 14 in Supplement E.3 shows the measurements of a single

gene over time. We model each gene as belonging to a latent component, where each

component defines a smooth expression curve over time. Then, observations are drawn

by adding i.i.d. noise to the smoothed curve along with a gene-specific offset. Following

Luan and Li (2003), we construct the smoothers using cubic B-splines.

Let xn ∈ R
M be measurements of gene n at M time points. Let A be the M × d

B-spline regressor matrix, so that the ij-th entry of A is the j-th B-spline basis vector

evaluated at the i-th time point. The right plot of Figure 14 in Supplement E.3 shows
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the B-spline basis. The distribution of the data arising from component k is

P(xn|βk, bn) = N
(

xn|Aμk + bn, τ
−1
k IM×M

)

, (21)

where bn is a gene-specific additive offset and I is the identity matrix. We include
the additive offset because we are interested in clustering gene expressions based on
their patterns over time, not their absolute level. In this model, the component-specific
parameters are βk = (μk, τk), the regression coefficients and the inverse noise variance.
The component frequencies are determined by stick-breaking according to ν, and cluster
assignments z are drawn as in Section 3.1.

Our variational approximation factorizes similarly to (2) except with an additional
factor for the additive shift. In our variational approximation, we also make a simplifica-
tion by letting Q(βk|η) = δ(βk|η), where δ(·|η) denotes a point mass at a parameterized
location. See Supplement E.3 for further details concerning the model and variational
approximation.

Quantity of interest: the co-clustering matrix and summaries. In this appli-
cation, we are particularly interested in which genes cluster together, so we focus on
the posterior co-clustering matrix. Let gcc(η) ∈ R

N×N denote the matrix whose (i, j)-th
entry is the posterior probability that gene i belongs to the same cluster as gene j, given
by

[gcc(η)]ij = E
Q(z|η)

[I (zi = zj)] =

⎧

⎨

⎩

∑Kmax

k=1

(

E
Q(zi|η)

[zik] E
Q(zj |η)

[zjk]

)

for i 
= j

1 for i = j.

Figure 5 shows the inferred co-clustering matrix at α0.

Figure 5: The inferred co-clustering matrix of gene expressions at α0 = 6.

Below, we will use the influence function (Corollary 2) to try and find a perturbation
that produces large changes in the co-clustering matrix. To compute the worst-case



308 Evaluating Sensitivity to the Stick-Breaking Prior in BNP

perturbation, we must choose a univariate summary of the N2-dimensional co-clustering
matrix whose derivative we wish to extremize. We use the sum of the eigenvalues of the
symmetrically normalized graph Laplacian, as given by

gev(η) = Tr
(

I −D(η)−1/2gcc(η)D(η)−1/2
)

,

where D(η)−1/2 is the diagonal matrix with entries di =
∑N

j=1[gcc(η)]ij . The quantity
gev is differentiable, and has close connection with the number of distinct components
in a graph (von Luxburg, 2007). We expect that prior perturbations that produce large
changes in gev will also produce large changes in the full co-clustering matrix.

Sensitivity to the concentration parameter. We first evaluate the sensitivity of
the co-clustering matrix gcc to the choice of α in the stick-breaking prior.

We start at α = α0 = 6. We use the linear approximation to extrapolate the co-
clustering matrix under prior parameters α = 0.1 and α = 12. The a priori expected
number of clusters in the original data at these values is 2 and 50, respectively. Despite
this wide prior range, the change in the posterior co-clustering matrix for each α is
minuscule (Figure 6). The largest absolute changes in the co-clustering matrix are of
order 10−2. Refitting the approximate posterior at α = 0.1 and α = 12 confirms the
insensitivity predicted by the linearized variational global parameters. Beyond capturing
insensitivity, the linearized parameters were also able to capture the sign and size of the
changes in the individual entries of the co-clustering matrix, even though these changes
are small.

Sensitivity to functional perturbations. We now investigate sensitivity of the co-
clustering matrix to deviations from the beta prior. In Figure 7, we use the influence
function for gev to construct a nonparametric prior perturbation that we expect to have
a large, positive effect. The resulting prior does indeed produce changes an order of
magnitude larger than those produced by the perturbations to α shown in Figure 6,
and our approximation is again able to capture the qualitative changes. The influence
function is also able to explain why α perturbations were unable to produce large
changes in this case: Figure 8 shows that changing α (as in Example 3) induces large
changes in the prior only where the influence function is small.

However, even with the (unreasonable-looking) selected functional perturbation, the
size of the differences in the co-clustering matrix remains modest. It is unlikely that any
scientific conclusions derived from the co-clustering matrix would have changed after
the functional perturbation. The co-clustering matrix appears robust to perturbations
in the stick-breaking distribution.

7.3 Genetic Admixture Modeling with fastSTRUCTURE

Our final analysis illustrates the use of our approximation for stick-breaking priors
beyond clustering; namely, in topic modeling.
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Figure 6: Differences in the co-clustering matrix at α = 0.1 (top row) and α = 12
(bottom row), relative to the co-clustering matrix at α0 = 6. (Left) A scatter plot of
differences under the linear approximation against differences after refitting. Each point
represents an entry of the co-clustering matrix. Note the scales of the axes: the largest
change in an entry of the co-clustering matrix is ≈ 0.03. (Middle) Sign changes in the co-
clustering matrix observed after refitting, ignoring the magnitude of the change. (Right)
Sign changes under the linearly approximated variational parameters. For visualization,
changes with absolute value < 10−5 are not colored.

Data and model. We use a publicly available dataset that contains genotypes from

N = 155 individuals of an endangered bird species, the Taita thrush (Galbusera et al.,

2000). Individuals were collected from four regions in southeast Kenya (Chawia, Mbololo,

Ngangao, Yale), and each individual was genotyped at L = 7 micro-satellite loci. The

four regions were once part of a cohesive cloud forest that has been fragmented by hu-

man development. For this endangered bird species, understanding the degree to which

populations have grown genetically distinct is important for conservation efforts: well-

separated populations with little genetic diversity are particularly at risk of extinction.

The goal of the analysis is to infer the population of origin for specific loci and estimate

the degree to which populations are admixed in each individual.
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Figure 7: Effect on the co-clustering matrix of a multiplicative functional perturba-
tion. (Top left) The perturbation φ is in grey, and the influence function is in purple.
(Top right) The effect of this perturbation on the prior density. (Bottom) The effect of
this perturbation on the co-clustering matrix. Note the scale of the scatter plot axes
compared with the scatter plots in Figure 6.

Let xnli ∈ {1, . . . , Jl} be the observed genotype for individual n at locus l and

chromosome i. Jl is the number of possible genotypes at locus l. For example, if the

measurements are all single nucleotides (A, T, C or G) then Jl = 4 for all l.

A latent population is characterized by the collection βk = (βk1, . . . , βkL), where

βkl ∈ ∆Jl−1 are the latent frequencies for the Jl possible genotypes at locus l. Let znli
be the assignment of observation xnli to a latent population. Notice that for a given

individual n, different loci (or even different chromosomes at a given locus) may have

different population assignments. The distribution of xnli ∈ {1, . . . , Jl} arising from

population k is P(xnli|βk) = Categorical (xnli|βkl).

Unlike the previous models, we now have a stick-breaking process for each individual.
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Figure 8: The multiplicative perturbations φα(·) that corresponds to decreasing (left)
or increasing (right) the α parameter.

Draw sticks

νnk
indep
∼ Pstick(νnk), n = 1, . . . , N ; k = 1, 2, . . . .

The prior assignment probability vector πn = (πn1, πn2, . . .), now unique to each indi-
vidual, is formed by the same stick-breaking construction as before,

πnk = νnk
∏

k′<k

(1− νnk′).

The population assignment znli is drawn from a multinomial distribution

p(znli|πn) =

∞
∏

k=1

πznlik

nk .

In this genetics application, we call πn the admixture of individual n.

Initially we take Pstick to be Beta (1, α) with parameter α = α0 = 3. The choice
of α0 = 3 corresponds to roughly four distinct populations a priori, in agreement with
the observation that the individuals come from four geographic regions. Below, we will
evaluate sensitivity to this prior choice.

This model is identical to fastSTRUCTURE, a model proposed in Pritchard et al.
(2000) and Raj et al. (2014), except that we replace the Dirichlet prior in fastSTRUC-
TURE with an infinite stick-breaking process. The result is a model similar to a hierar-
chical Dirichlet process for topic modeling (Teh et al., 2006), but without the top-level
Dirichlet process. In addition, genotypes at genetic markers take the place of words in
a document; in lieu of inferring “topics,” we infer latent populations.

We use a mean-field variational approximation, and all distributions are condition-
ally conjugate except for the stick-breaking proportions, which remain logit-normal. See
Supplement E.4 for further details.
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Quantity of interest. The posterior quantities of interest in this application are the
admixtures πn. Figure 16 plots the inferred admixtures E

Q(πn|η̂)
[πn] for all individuals n.

In the approximate posterior with α0, there appear to be three dominant latent pop-
ulations, which we arbitrarily label as populations 1, 2, and 3 (top panel of Figure 9). The
inferred admixture proportions generally correspond with geographic regions: Mbololo
individuals are primarily population 1, Ngangao individuals are primarily population 2,
and Chawia individuals are a mixture of populations 1, 2, and 3 (Figure 16 in Supple-
ment E.4).

Notably, outlying admixtures among individuals from the same geographic region
provide clues into the historical migration patterns of this species. For example, while
most Mbololo individuals are dominantly population 1, several Mbololo individuals
have abnormally large admixture proportions of population 2. Conversely, while most
Ngangao individuals are dominantly population 2, several Ngangao individuals have
abnormally large admixture proportions of population 1. These patterns suggest that
some migration has occurred between the Mbololo and Ngangao regions.

We evaluate the sensitivity of this conclusion to possible prior perturbations. Define
the posterior quantity

gadmix(η;N , k) = E
Q(π|η)

[

1

|N |

∑

n∈N

πnk

]

,

the average admixture proportion of population k in a set of individuals N .

Below, we consider gadmix with three different sets of individuals: N = {26, . . . , 31},
corresponding to the outlying Mbololo individuals, labeled “A” in Figure 9; N =
{125, . . . , 128}, corresponding to the four outlying Ngangao individuals, labeled “B”;
and N = {139, . . . , 155} corresponding to all Chawia individuals, labeled “C”. For in-
dividuals A, we let k = 2 in gadmix and examine the robustness of the presence of
population 2; for individuals B, we use k = 1; and for individuals C, we use k = 3. The
first two posterior quantities relate to the inferred migration between the Mbololo and
Ngangao regions. In the last example, we study the robustness of having a third latent
population present, a population that primarily appears in Chawia individuals.

Functional sensitivity.We construct worst-case negative perturbations for each of the
three variants of gadmix, in order to see whether the biologically interesting patterns can
be made to disappear with different prior choices. Figure 9 shows the result of the worst-
case perturbations on the prior density and gadmix. After the worst-case perturbation,
the admixture proportion of population 2 in individuals A was nearly halved. On the
other hand, the admixture of population 1 in individuals B is more robust. We conclude
that the inferred migration from Ngangao to Mbololo is relatively robust to the stick-
breaking prior, while conclusions about migration from Mbololo to Ngangao may be
dependent on prior choices.

In this data set and model, the conclusions from the linear approximation did not
always agree with the conclusions from refitting the variational approximation. For
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Figure 9: Sensitivity of inferred admixtures for several outlying individuals. For indi-
viduals A, we examine the sensitivity of the admixture proportion of population 2. For
individuals B, we examine the population 1 admixture. For the individuals C, we ex-
amine the population 3 admixture. (Left column) The worst-case negative perturbation
with ‖φ‖∞ = 1 in grey, plotted against the influence function in purple (scaled such
that ‖ψ‖∞ = 1). (Middle column) The effect of the perturbation on the prior density.
(Right column) Effects on the inferred admixture.

example, the admixture proportion of population 3 in individuals C were predicted to

more sensitive by our linear approximation than were actually observed after refitting
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(Figure 9, bottom row).

Moreover, even though the linear approximation agreed with the refits for individ-
uals A in overall admixture proportion (Figure 9, second row), the approximation does
not perform uniformly well over all individuals. Figure 10 plots the inferred admixtures
computed using the linearized variational parameters and the refitted variational pa-
rameters. The admixture proportion of population 2 in individual n = 25 dramatically
increased after refitting with the perturbed prior; the linearized parameters failed to
reproduce this change.

Even though linear approximation works less well in this example, the influence
function is still able to guide our choice of functional perturbations at which to refit.
While the worst-case perturbations we used may be an adversarial choice, the influence
function suggests that we can construct a smoother perturbation with a similar effect
as the worst-case, as we did in Section 7.2. Importantly, as we will note in the next
subsection, the influence function is cheap to compute relative to refitting. For a further
discussion of the limitations of the linear approximation, see Supplement F.

Figure 10: Inferred admixtures after the worst-case perturbation to individuals “A” (see
Figure 9 for perturbation).

7.4 Computation Time

The relative computational costs of the approximation and re-fitting for our three ex-
periments are shown in Table 1. The data sets we considered in our experiments had
varying degrees of complexity, and the computational of cost of fitting the variational
approximation thus also varies accordingly. However, the cost of forming the linear
approximation—the step that requires computing and inverting the Hessian matrix—
was consistently roughly an order of magnitude faster than refitting.

Recall from Section 6 that the solution of a linear system involving Ĥ−1 is the com-
putationally intensive part of the linear approximation, and that the linear system needs
to be solved only once for a given perturbation, as described in Section 6. Consistent
with this observation, in all the examples, after the linear approximation is formed,
extrapolating to any new prior parameter α 
= α0 or t 
= 0 takes only fractions of a
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iris mice thrush
Initial fit 1 30 7

Hessian solve for α sensitivity 0.02 3 0.3
Linear approx. η̂lin(α) 0.0008 0.001 0.0008

Refits η̂(α) 0.5 30 5

The influence function
(at 1000 grid points) 0.09 3 0.6

Hessian solve for φ 0.02 3 0.4
Linear approx. η̂lin(φ) 0.001 0.001 0.0008

Refit η̂lin(φ) 0.6 20 10

Table 1: Compute time in seconds of various quantities on each data set. Reported
times for η̂(α) and η̂lin(α) are median times over the set of considered α’s. The reported
influence function time is the time required to evaluate the influence function on a grid
of 1000 points.

second. For example, in the thrush data and fastSTRUCTURE model, the initial fit
took seven seconds, with subsequent refits (which we warm-started with the initial fit)
taking between five and ten seconds. Solving a linear system to form the linear approx-
imation for a particular perturbation φ took less than a second, and evaluating η̂(φ)
was essentially free.

8 Conclusion

We provide a method to approximate the effect of changing a BNP prior on a poste-
rior quantity of interest in a VB approximation. Our method is generally applicable,
straightforward to implement, and computationally efficient. In our experiments, we
show by refitting that the predictions of the approximation are typically qualitatively
accurate. Over the range of situations and quantities of interest we considered, we dis-
covered robustness (co-clustering in the mice dataset), non-robustness (the predictive
number of clusters in the iris dataset), and intermediate cases where some closely re-
lated posterior quantities were robust and others not (the population memberships of
the thrush dataset). Given such a variety of outcomes, the authors hesitate to draw
any generalizable conclusions about the robustness of DPM models, much less generic
BNP posteriors. On the contrary, we hope that our results motivate users to check for
robustness directly, for their particular datasets and models of interest, rather than try-
ing to rely too heavily on intuition or general principles. Indeed, we hope that the ease
with which one can compute our prior sensitivity measures, combined with the possibil-
ity of uncovering materially important non-robustness, will encourage the widespread
adoption of routine prior robustness checks.

In the present work, we have focused only on the task of detecting and characterizing
non-robustness. We have not attempted to address the critical questions of what to do
when a conclusion is non-robust, nor how to make robust modeling choices. We hope
that routine, widespread robustness checking in a variety of real-world problems will
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further inform and motivate solutions to the important question of how to deal with,
and even prevent, non-robustness in practice.

Though the need for prior robustness checking seems particularly well-motivated
in discrete BNP problems, where the DPM prior is often chosen for computational
convenience rather than considered subjective belief, prior robustness checks are relevant
to almost all Bayesian analysis. Despite our present focus on BNP models and the DPM
prior in particular, our methodology extends not only to other truncated approximations
of discrete BNP priors, but to any VB approximation based on reverse KL divergence.
The best evidence for the usefulness of our methodology of linear approximation will
come from widespread adoption and verification in many different applications and
modeling environments, and we hope that the present work is only the beginning.

Supplementary Material

Evaluating Sensitivity to the Stick-Breaking Prior in Bayesian Nonparametrics: Sup-
plementary Materials (DOI: 10.1214/22-BA1309SUPP; .pdf). The supplementary ma-
terials contain detailed proofs, extended theoretical discussion, and more details on the
experiments.
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Ambrogioni, L., Güçlü, U., Güçlütürk, Y., Hinne, M., van Gerven, M., and Maris, E.
(2018). “Wasserstein Variational Inference.” Advances in Neural Information Process-
ing Systems, 31: 2473–2482. 291

Anderson, E. (1936). “The species problem in iris.” Annals of the Missouri Botanical
Garden, 23(3): 457–509. 303

Averbukh, V. and Smolyanov, O. (1967). “The theory of differentiation in linear topo-
logical spaces.” Russian Mathematical Surveys, 22(6): 201–258. MR0223886. 299,
300

Barrios, E., Lijoi, A., Nieto-Barajas, L., and Prünster, I. (2013). “Modeling with
normalized random measure mixture models.” Statistical Science, 28(3): 313–334.
MR3135535. doi: https://doi.org/10.1214/13-STS416. 291

Basu, S. (2000). Bayesian Robustness and Bayesian Nonparametrics , 223–240. New
York, NY: Springer New York. MR1795218. doi: https://doi.org/10.1007/

978-1-4612-1306-2_12. 291

Basu, S., Jammalamadaka, S. R., and Liu, W. (1996). “Local posterior robustness
with parametric priors: Maximum and average sensitivity.” In Maximum Entropy
and Bayesian Methods, 97–106. Springer. 291

Baydin, A., Pearlmutter, B., Radul, A., and Siskind, J. (2018). “Automatic differen-
tiation in machine learning: A survey.” Journal of Machine Learning Research, 18.
MR3800512. 296



R. Giordano, R. Liu, M. I. Jordan, and T. Broderick 317

Blei, D. and Jordan, M. I. (2006). “Variational inference for Dirichlet process mixtures.”

Bayesian Analysis, 1(1): 121 – 143. MR2227367. doi: https://doi.org/10.1214/

06-BA104. 292

Blei, D., Kucukelbir, A., and McAuliffe, J. (2017). “Variational inference: A review for

statisticians.” Journal of the American Statistical Association, 112(518): 859–877.

MR3671776. doi: https://doi.org/10.1080/01621459.2017.1285773. 293

Campbell, T., Huggins, J., How, J., and Broderick, T. (2019). “Truncated random

measures.” Bernoulli , 25(2): 1256–1288. MR3920372. doi: https://doi.org/10.

3150/18-bej1020. 291

Canale, A., Lijoi, A., Nipoti, B., and Prünster, I. (2017). “On the Pitman–Yor pro-

cess with spike and slab base measure.” Biometrika, 104(3): 681–697. MR3694590.

doi: https://doi.org/10.1093/biomet/asx041. 291

Cook, D. (1986). “Assessment of local influence.” Journal of the Royal Statistical So-

ciety: Series B (Methodological), 48(2): 133–155. MR0867994. 290

Doshi, F., Miller, K., Van Gael, J., and Teh, Y. (2009). “Variational inference for the

Indian buffet process.” In Artificial Intelligence and Statistics, 137–144. PMLR. 291

Dudley, R. (2018). Real Analysis and Probability . CRC Press. MR1932358.

doi: https://doi.org/10.1017/CBO9780511755347. 299

Ferguson, T. (1973). “A Bayesian analysis of some nonparametric problems.” The

Annals of Statistics, 209–230. MR0350949. 287

Fisher, R. (1936). “The use of multiple measurements in taxonomic problems.” Annals

of eugenics, 7(2): 179–188. 303

Galbusera, P., Lens, L., Schenck, T., Waiyaki, E., and Matthysen, E. (2000). “Genetic

variability and gene flow in the globally, critically-endangered Taita Thrush.” Con-

servation Genetics, 1: 45–55. 310

Gelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A., and Rubin, D. (2013).

Bayesian Data Analysis, Third Edition. Chapman & Hall/CRC Texts in Statistical

Science. Taylor & Francis. MR3235677. 288, 290

Ghaderinezhad, F. and Ley, C. (2019). “Quantification of the impact of priors in

Bayesian statistics via Stein’s method.” Statistics & Probability Letters, 146: 206–

212. MR3884714. doi: https://doi.org/10.1016/j.spl.2018.11.012. 290

Giordano, R., Broderick, T., and Jordan, M. I. (2018). “Covariances, robustness and

variational Bayes.” Journal of Machine Learning Research, 19(51). MR3874159.

289, 290, 291

Giordano, R., Liu, R., Jordan, M. I., and Broderick, T. (2022). “Evaluating Sensitivity

to the Stick-Breaking Prior in Bayesian Nonparametrics: Supplementary Materials.”

Bayesian Analysis. doi: https://doi.org/10.1214/22-BA1309SUPP. 293



318 Evaluating Sensitivity to the Stick-Breaking Prior in BNP

Gustafson, P. (1996a). “Local sensitivity of inferences to prior marginals.” Journal of
the American Statistical Association, 91(434): 774–781. MR1395744. doi: https://
doi.org/10.2307/2291672. 290

Gustafson, P. (1996b). “Local sensitivity of posterior expectations.” Annals of Statis-
tics, 24(1): 174–195. 289, 290, 291, 294, 295, 297, 300

Gustafson, P. (2000). Local Robustness in Bayesian Analysis, 71–88. New York, NY:
Springer New York. 290

Hampel, F., Ronchetti, E., Rousseeuw, P., and Stahel, W. (2011). Robust Statis-
tics: The Approach Based on Influence Functions, volume 196. John Wiley & Sons.
MR0829458. 290

Insua, D. R. and Ruggeri, F. (2000). Robust Bayesian Analysis. Springer. MR1795206.
doi: https://doi.org/10.1007/978-1-4612-1306-2. 290

Jaeckel, L. (1972). “The Infinitesimal Jackknife, Memorandum.” Technical report, MM
72-1215-11, Bell Lab. Murray Hill, NJ. 290

Jasra, A., Holmes, C., and Stephens, D. (2005). “Markov chain Monte Carlo methods
and the label switching problem in Bayesian mixture modeling.” Statistical Science,
20(1): 50 – 67. MR2182987. doi: https://doi.org/10.1214/088342305000000016.
289

Krantz, S. and Parks, H. (2012). The Implicit Function Theorem: History, Theory, and
Applications. Springer Science & Business Media. MR2977424. doi: https://doi.
org/10.1007/978-1-4614-5981-1. 291

Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., and Blei, D. (2017). “Automatic
differentiation variational inference.” The Journal of Machine Learning Research,
18(1): 430–474. MR3634881. 289

Li, Y. and Turner, R. (2016). “Variational inference with Rényi divergence.” stat , 1050:
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First, we would like to congratulate the authors for their development of a fast and
efficient method of assessing sensitivity to the prior specification of the Dirichlet process
mixture (DPM) and related models. Their techniques are widely applicable and will see
much use. Their examples give us a taste of what can be done with their method in
models that move beyond the DPM. We greatly enjoyed reading the paper.

The past 30-plus years have seen incredible growth in the use of Bayesian methods for
data analysis. The initial growth was driven by the development of Markov chain Monte
Carlo (MCMC) methods that allowed one to fit models of substantial complexity. This
was quickly followed by a realization in the entire statistics community that Bayesian
methods simply work better than classical methods in “high information” settings with
clean data – settings where one can reliably write down a complete Bayesian model and
can clearly specify the inference problem. In practice, this translates to settings where
different analysts (or the same analyst on different days) would select similar sampling
densities for the data and similar prior distributions for the parameters, including latent
structures, to arrive at similar models, and would also choose similar loss functions to
formalize the inference problem. It also relies on realism in the model, with choices
based on an understanding of the phenomenon under study rather than computational
convenience. In these settings, the mathematical theory that links optimal inference to
Bayesian methods is borne out. Bayesian methods simply work better than methods
that are distant from Bayes.

The success of Bayesian methods is not uniform. In “low information” settings,
specification of the sampling density and form of the model are every bit as challenging
for the Bayesian as for the classical statistician. For high or infinite dimensional models,
specification of the prior distribution remains a challenge. Data of dubious quality have
the potential to dramatically impact the final inference. MCMC methods are often slow
and sometimes exhibit poor convergence. And analysts commonly adjust their model to
make fitting it easier and quicker. These difficulties are not shortcomings of the analyst,
but rather features of the low information-complex model setting. They set an agenda
for research on Bayesian data analysis.

The centerpiece of this agenda is how to improve Bayesian data analysis. Here, we see
three main threads. One focuses on diagnostics through the development of techniques
to identify deficiencies in the model (whether sampling density, prior distribution or a
combination of the two), to identify cases that do not accord with the model (as in
outliers), and to identify cases that have a large impact on inference (influential cases).
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The second focuses on computational implementation. The third focuses on strategies
to improve model specification and inference, with particular attention to robustness in
the low information setting.

Giordano et al.’s delightful paper focuses on the first thread and is informed by
the second. The authors’ insight into the (in)effective use of Bayesian methods shines
sharply through their paper. They consider a high/infinite dimensional setting where
the prior distribution is specified through a rule-based strategy and where it would
be difficult to place full confidence in any chosen rule. In this same setting, vari-
ational methods for fitting the model are far quicker than MCMC methods. Varia-
tional Bayes (VB) methods also generate the derivatives needed to examine the local
sensitivity of features of the posterior distribution to changes in the prior distribu-
tion.

The developments in Giordano et al.’s paper parallel the development of local influ-
ence as a diagnostic method in classical statistics. Cook (1977)’s initial development of
case influence examined the impact of individual cases on inference in the linear model.
The main technique was case deletion. It led to Cook’s distance, now a standard diag-
nostic summary in regression. Cook (1986) subsequently extended measures of influence
to classical nonlinear models which, in the early-to-mid 1980’s, were subject to the diffi-
culties more recently experienced by MCMC methods. The models were slow to fit (via
maximum likelihood) and one needed to be concerned with the numerical accuracy of
the fits. With no clean analytical form, these difficulties rendered case deletion meth-
ods ineffective for the interactive data analysis that was being developed at the time.
Instead, Cook turned to local influence, considering infinitesimal perturbations of case
weights, and looked for big directional derivatives.

Cook’s methods have been extended to the Bayesian setting, initially with pre-
MCMC computation (e.g., Johnson and Geisser (1983)) and then with MCMC (e.g.,
Weiss (1996), Bradlow and Zaslavsky (1997), MacEachern and Peruggia (2000)). The
approaches include both full case deletion and local influence (viz. Thomas et al. (2018)),
and they cover a variety of inferences, from impact on the full posterior distribution to
impact on marginal summaries of the posterior. While these methods are successful for
linear models and low-dimensional nonlinear models the techniques are less effective for
high-dimensional problems of the sort considered by Giordano et al.

Our first question for the authors is whether the techniques they develop can be
adapted to assess local case influence. If so, is such an adaptation computationally
feasible? The extension would provide the analyst with an additional tool to identify
cases or sets of cases that have a large impact on inference.

Our second question concerns robust forms of the prior distribution. As described in
the paper, DPM models are often used for clustering problems. Inferences on clustering,
such as the number of clusters and co-clustering probabilities, are influenced by the prior
specification. The parameter of the Dirichlet process (DP) may be split into two parts,
the total mass parameter α and a base probability measure, Pbase. The distribution

Pbase generates cluster specific parameters, i.e., βk
iid
∼ Pbase(β | ξ), where the βk’s

are cluster specific parameters and ξ is the hyperparameter vector for Pbase. Jointly
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with α, Pbase influences inference on the clustering structure. For example, Bush et al.
(2010) and Lee et al. (2014) studied the joint impact of α and the dispersion of Pbase

on posterior inference. In particular, for fixed α and a given dataset of size n, a DPM
model tends to produce fewer clusters with larger sizes under more dispersed Pbase.
In response to this phenomenon, Lee et al. (2014) developed a local-mass preserving
prior distribution for Bayesian nonparametric (BNP) models that produces more stable
inference for clustering. The central idea is to define “local mass” as the mass assigned
by a measure to a region L of interest in the parameter space Ωβ prior to analysis and
to jointly elicit Pbase and α by holding the mass in L constant. In addition to providing
more stable inference about clustering, this form of prior distribution stabilizes inference
for other quantities such as estimation of cluster locations.

It would be of great interest to see whether the authors’ method can be extended to
perform a more comprehensive examination of model sensitivity, including sensitivity
to the local mass L. Does the authors’ quick and automated tool to assess sensitivity
of inference to the specification of α extend to prior distributions with a local mass
structure? If so, does one form of prior distribution show greater robustness than the
other?

Our final comment returns to data analysis. The standard Bayesian analysis requires
a rigorous determination of three components; (i) the sampling distribution (likelihood
function) for the observations, (ii) the prior distribution of the parameters and (iii)
loss function for making inference (decision). Bayesian analysis strongly depends on
the choice of these components, and it is essential to investigate the sensitivity of the
procedure to perturbation of all three components. The loss function has traditionally
received less attention than the prior distribution and sampling density, as it often
has little impact in a low-dimensional parametric setting. However, the choice of the
inference (loss) function is critical for BNP models due to their flexibility. For example,
DPMs are good at accommodating local features of the data such as outliers. These
cases may be captured as one or more clusters that depart from the general pattern
of the data. Thus, an inference function that discounts the impact of the outliers on
the overall analysis can be more desirable than traditional inference functions (e.g.,
the quadratic loss function and the 0-1 loss function) for robust decision making (Lee
and MacEachern, 2014). The inference function does not “wash out” as the sample size
grows. This is similar to the parameter α not washing out for clustering in DPM models.
We see scope for the development of inference functions that target a sensible summary
of the posterior (or predictive) distribution and that lead to stable inference as the prior
and sampling density are varied. Do the authors have a sense of whether a summary
such as “number of clusters exceeding a given size” tends to be more robust than the
simple “number of clusters”? Do the authors know of systematic ways to create more
robust summaries of clusters?

In keeping with the level innovation in this work, the paper opens a host of ques-
tions. Those above seem, to us, to walk the tightrope of computational feasibility that
leads from the questions we can answer with our written model to those we would an-
swer with infinite resources. We close our discussion here, congratulating the authors
on an interesting paper that develops a technique that will undoubtedly see heavy
use.
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Invited Discussion

Jim Griffin∗ and Maria Kalli†

Giordano et al. discuss the use of (local) sensitivity analysis in Bayesian nonparametric
(BNP) models applied to classification and clustering. Understanding the sensitivity
of BNP models to the choice of hyperparameters is an important topic. Surprisingly
little work has been done to date (see the references in the paper for some notable
exceptions). Perhaps, this is partly due to a reliance on “large support” arguments for
BNP methods which downplay the importance of hyperparameter choices. In practice,
conclusions can be affected by the choice of the underlying nonparametric prior and the
paper describes tools based on variational Bayes (VB) and automatic differentiation
(AD) to build approximations of the posterior distribution under a perturbed prior.
The use of AD methods is particularly important in this problem since it avoids the
laborious calculation of large numbers of derivatives which have made local sensitivity
methods hard to apply to complex models. This work also complements recent work by
Jacobi et al. (2018) and Chan et al. (2019) who apply AD to Markov chain Monte Carlo
methods applied to parametric models in econometrics (such as vector autoregressions)
to understand local sensitivity.

The paper focuses on estimating the number of clusters underlying a data set. It
shows that this number can be sensitive to both the choice of the mass/precision param-
eter in a Dirichlet process or the choice of the “breaks” distribution in a stick-breaking
construction. Their method allows the derivation of “worse-case” perturbation distri-
butions, which is important in understanding the extent of sensitivity to these choices.

A key assumption made by the authors is that the distribution Pstick is the same
for all νk. This assumption has an effect on the number of clusters. Relaxing it so
that νk depends on k would be an interesting future direction for local sensitivity with
stick-breaking processes, perhaps through a simple dependence of the distribution of
νk on k such as in the Pitman-Yor process (Pitman and Yor, 1997). More generally,
the Dirichlet process could be embedded within a more general class of processes such
as normalized random measures with independent increments (James et al., 2009) or
Gibbs-type priors (Gnedin and Pitman, 2006). These type of priors would allow more
flexibility in properties such as the distribution of the number of distinct values (see
e.g. De Blasi et al., 2015).

For the rest of our discussion, we will consider how some of the methods developed
in the paper can be applied to density estimation. This is another important application
of Bayesian nonoparametrics methods, in particular, the use of Bayesian nonparametric
mixture models. In this case, the posterior distribution can be sensitive to both the
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choice of the nonparametric prior and the prior on the mixture components. We focus
on the model of Griffin (2010) where a univariate sample x1, . . . , xn is modelled by

xi ∼ N(μi, aσ
2), μi

i.i.d.
∼ F, F ∼ DP(MH),

where DP(MH) represents a Dirichlet process with a concentration/precision parameter
M and base measure H = N(μ0, (1− a)σ2). The parameter a controls the flexibility of
the marginal distribution of xi with larger values shrinking the distribution towards a
normal distribution.

Figure 1: Fitted densities for the galaxy data with M = 1 and a = 0.001 (dashed line),
a = 0.034 (solid line), and a = 0.12 (dot-dashed line).

This model was fitted using VB to the galaxy data (Escobar and West, 1995) for
a range of values of a and M . We find that the fitted density is insensitive to the
choice of M but not to the choice of a. To further investigate the effect of a, we plot the
fitted densities for three values of a. These are displayed in Figure 1. There is substantial
variation in the estimated density, The value of a = 0.12 led to a single mode around x =
21.56 whereas a = 0.0001 and a = 0.034 each have two modes at x = 20.1 and x = 23.0.

Giordano et al ’s approach can be easily extended to other hyperparameters, such as
a, by suitably adapting Theorem 1 (using a suitable choice of θ and P in the development
in the supplementary material) if the regularity conditions are met. In our experience,
the main computational overhead of the method is the VB and AD steps for evaluating
the second derivatives of the Kullback-Leibler divergences with respect to the variational
parameters. However, once these have been calculated, the sensitivity with respect to
different hyperparameters is cheap to compute.

We apply this extended approach to understanding local sensitivity to the value of a.
We choose a single value of a which is denoted by a0 and run the VB algorithms 100 times
to find local modes. We choose the local mode with the highest value of the Evidence
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Figure 2: The density at x = 20.1, x = 21.56 and x = 23.0 as a function of a. The lines
are: refitting (solid line), approximation using all 100 VB estimates evaluated with a0
(dashed line), approximation using the optimal VB estimate evaluated with a0 (dot-
dashed line). The values of a0 are 0.0103, 0.0332 and 0.0681. You can see in all plots a
clear change point around 0.035.

Lower Bound (ELBO) as the final VB parameter values. This addresses the large number
of local modes that can be found during the VB optimisation process. Figure 2 displays
the results of using the approximation for the fitted density at x = 20.1, x = 21.56 and
x = 23.0 for different values of a0 with M = 1. These values of x correspond to the two
central peaks and the central trough in the density estimate for small values of a. There
is a clear change point in the fitted density value around a = 0.035. The approximation
(shown as the dot-dashed line) is good locally and the fitted density value for a < 0.035
can be well-approximated if a0 < 0.035. Similarly, fitted density values for a > 0.035 can
be well-approximated if a0 > 0.035. We also consider retaining all 100 local modes and
using the linear approximation to calculate approximate local modes for other values of
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a. For each value of a, the local modes with the highest ELBO is used as the final VB
parameters. This approach is more expensive since AD is performed 100 times but has
the potential to allow the chosen local mode to change with a. The results are shown
as the dashed line. These work well when a0 = 0.0681 where the dashed line is able to
follow the change point at a = 0.035 for all three values of x but poorly for the other
values of a0 with only a = 0.103 and x = 23.0 showing the change point. This suggests
that the approximation can be made more robust by considering many local modes.
This idea could be further developed to create a set of local modes for different values
of a0 and the creation of a smaller, diverse set of local modes which could control the
number of times that AD is run.

Our application of the method developed in the paper shows that these methods can
be used to evaluate the local sensitivity to parts of the model beyond the distribution
of the weights. We find that the approximation can work well locally. However, in the
presence of multi-modality, it can break down. This could be addressed by building a
representative sets of pairs of the values of the hyperparameters and VB parameters.
We believe that the authors methods for functional perturbation could also be applied
to wider class of parameters in nonparametric models. We congratulate the authors on
a thought-provoking paper which describes a promising approach to a difficult problem.
At the heart of the paper is an approach to find approximations of the VB parameters
and various derivatives for different values of hyperparameters. This could be used to
drive optimisation algorithms to find optimal values of hyperparameters using empirical
Bayes. Perhaps, more interestingly this would allow hyperparameters to be chosen using
a particular loss function (perhaps with cross-validation), which would be consistent
with recent thinking around generalized Bayes estimation.
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Invited Discussion∗

Maŕıa F. Gil–Leyva† and Ramsés H. Mena‡

In Bayesian nonparametric models it is a difficult task to track analytically how prior
choices affect posterior inference. As a consequence, hyperparameters, which typically
do not enjoy a straightforward interpretation, are often chosen somewhat arbitrarily,
blindly or only relying on empirical guidelines. For this reason, we very much appreciate
the topic choice and congratulate the authors for the solid mathematical framework
developed in their paper.

1 Overview

Consider a Bayesian nonparametric (BNP) model where data points x = (xn)
N
n=1, taking

values in a Borel space, X, are modeled by

P(x | β, π) =
N
∏

n=1

P(xn | β, π) =
n
∏

n=1

∞
∑

k=1

πk G(xn | βk), (1)

where the frequencies π = (πk)
∞
k=1 are non negative random variables that sum up

to one, β = (βk) are the random component parameters, and G( · | βk) stands for a
distribution over X for each fixed value of βk in the parameter space Ωβ . This description
of the model is equivalent to that stated in the paper, in which data points are modeled
via

P(x | z, β) =
N
∏

n=1

P(xn | zn, β) =
N
∏

n=1

∞
∏

k=1

G(xn | βk)
znk , (2)

where z = (zn)
N
n=1 and zn = (zn1, zn2, . . .) is an indicator vector such that znk = 1

occurs with probability πk and indicates xn is assigned to the kth component, with
zni = 0 for all i 
= k. It is further assumed that π and β are independent, and the βk

are iid from a diffuse prior Pbase. This means that the underlying discrete probability
measure over Ωβ , defined by

P =

∞
∑

j=1

πkδβk
, (3)

is a species sampling process as studied by Pitman (1996, 2006). Once the base measure,
Pbase, is chosen, it only remains to determine the distribution of the frequencies, π, to
fully specify the prior distribution of the BNP model. Being that π takes values in
the infinite dimensional simplex ∆∞ = {(p1, p2, . . .) : pk ≥ 0,

∑∞
k=1 pk = 1}, it is
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not straightforward to choose a prior for π directly. The stick-breaking construction
(Sethuraman, 1994; Ishwaran and James, 2001) suggest to decompose

π1 = ν1, πk = νk

k−1
∏

j=1

(1− νj), k ≥ 2, (4)

and instead specify the law of the sticks (νk)
∞
k=1. At the outset, one could consider

νk
iid
∼ Pstick, in particular the choice Pstick = Beta(1, α) yields P is a Dirichlet pro-

cess (Ferguson, 1973; Sethuraman, 1994) with concentration parameter α > 0. The
tractability of this process and its distinct representations (Blackwell and MacQueen,
1973; Regazzini et al., 2003; Hjort et al., 2010; Ghosal and van der Vaart, 2017) have
positioned it as the canonical example of species sampling processes in BNP literature.

One way to perform posterior inference is to design a Markov Chain Monte Carlo
(MCMC) algorithm (cf. Escobar and West, 1995; Neal, 2000; Walker, 2007; Papaspi-
liopoulos and Roberts, 2008; Kalli et al., 2011) where the invariant measure of the
constructed Markov chain is the posterior P(z, β, π | x). Then, after suitably initializ-
ing the Markov chain and allowing it to evolve long enough, one obtains samples from
P(z, β, π | x) which can be used to estimate quantities of interest. The most impor-
tant advantage of MCMC methods is that, at least theoretically, posterior inference
can be performed with arbitrary precision if a sufficiently large number of iterations is
considered. However, these algorithms tend to be computationally expensive, specially
for most complex models and large datasets. Another approach is Variational Bayes
(VB) or Variational Inference (VI) (Wainwright and Jordan, 2008; Bishop, 2006; Blei
and Jordan, 2006), it consist in approximating the posterior, P(z, β, π | x), through a
distribution, Q( · | η̂), that minimizes the Kullback-Leiber divergence, among a class of
proposals {Q( · | η) : η ∈ Ωη} enjoying a simplified tractable form. Quantities of inter-
est can then be estimated by a function, say g, of the optimized variational parameters
η̂: g(η̂). VB methods are typically much faster to implement than MCMC algorithms.
Hence they are well suited for large datasets or when one wants to explore and compare
many prior assumptions. The drawback is that there is no guarantee that the posterior
distribution will be approximated with arbitrary precision. In general less restricted
approximating classes, {Q( · | η) : η ∈ Ωη}, will lead to a more precise approxima-
tions, nonetheless the optimization problem can also be harder to solve for them (if not
intractable).

The paper focuses in a mean-field VB variant, where approximating distributions
factorize over the parameters. In particular, for the models in (2), it is assumed they
take the form:

Q(ζ | η) =

(

Kmax
∏

k=1

Q(βk | η)

)

⎛

⎝

Kmax−1
∏

k=1

Q(νk | η)

⎞

⎠

(

N
∏

n=1

Q(zn | η)

)

, (5)

where ζ collects the first Kmax elements of β, π and of zn, and νKmax
= 1 for all

distributions in the variational class. In general, η̂ will depend on the initial assumptions
of the model, and thus the estimation of quantities of interest, g(η̂), may change if
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distinct priors are chosen. The main contribution of the authors is to establish a solid
methodology for quantifying the change in g(η̂) under “mild” changes of

(a) the concentration parameter α in a Dirichlet model, and

(b) the stick-breaking density, Pstick, in models where νk
iid
∼ Pstick.

To tackle (a) the mapping α �→ g(η̂) = g(η̂(α)) is considered, and under smoothness
and differentiability conditions it is locally approximated by

g(η̂(α)) ≈ g(η̂lin(α)), with η̂lin(α) = η̂(α0) +
dη̂(α)

dα

∣

∣

∣

∣

α0

(α− α0), (6)

in a neighborhood of α0. Although the treatment of (b) is more delicate and challenging,
the idea is the same: evaluate the mapping Pstick �→ g(η̂) = g(η̂(Pstick)) in a neighbor-
hood of a density P0, using first-order Taylor series approximations. To this aim the
authors consider the perturbations, P(· | t), of P0, obtained by normalizing P̃(· | t)
where

log P̃(· | t) = logP0 + tφ, (7)

and φ is a Lebesgue-measurable function on [0, 1]. The function φ can be interpreted
as the “direction” towards which P0 is being perturbed. In particular if P1 is another
density (absolutely continuous with respect to P0) the choice φ = log(P1/P0) yields

log P̃(· | t) = (1− t) logP0 + t logP1, (8)

allowing to continuously transform P0 into P1. In general, if η̂(t) represents the value of η̂
for a particular choice P(· | t) (once φ is chosen), under smoothness and differentiability
conditions, an approximation analogous to (6) is obtained through

g(η̂(t)) ≈ g(η̂lin(t)), with η̂lin(t) = η̂(0) +
dη̂(t)

dt

∣

∣

∣

∣

t=0

(t). (9)

Since the mapping, t �→ g(η̂(t)), depends on the choice of φ, this function can also
be understood as the “direction” over which Pstick �→ g(η̂(Pstick)) is being studied in
a neighborhood of P0. Naturally, some choices of φ yield larger (positive or negative)
gradients of t �→ g(η̂(t)). In this sense, the authors also provide guidelines to understand
the effect of φ and discriminate “directions” over which the mapping Pstick �→ g(η̂) =
g(η̂(Pstick)) is more steep. Performing the analysis for such choices of φ allows an overall
assessment of the model’s local robustness at P0, for a particular quantity of interest.

In the experimental analysis the methodology is applied to evaluate sensitivity and
model robustness for clustering estimation. Although, the experimental results do not
include evaluation for density estimation, BNP models are widely used for this task.
To the best of our understanding, the methodology developed by the authors readily
applies to this context, where different BNP models have been found less sensitive to
distinct choices of sticks distributions (cf. see Figure 1).
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2 Extensions

The remainder of this discussion attempts to motivate extensions of the solid mathemat-
ical framework developed in the paper for assessing local sensitivity in stick-breaking
BNP models. The methodology developed by the authors considers BNP stick-breaking

models with iid sticks, νk
iid
∼ Pstick. Two natural directions to extend them are (a) to

relax the independence hypothesis or (b) to relax the identical distribution assumption.
In particular, a model that arises under (a) is the Geometric model (Fuentes-Garćıa
et al., 2010) where νk = v for every k ≥ 1, and some random variable 0 < v < 1
almost surely. A common feature between these sticks and iid sticks is that in both
cases (νk)

∞
k=1 forms an exchangeable sequence. The models resulting from this general

assumption have been recently studied by Gil-Leyva and Mena (2021), under the name
exchangeable stick-breaking (ESB) models. In particular, they provide a way to modu-
late dependence among elements in (νk)

∞
k=1 by tuning a single [0, 1]-valued hyperparam-

eter, ρ, under the assumption that the directing random measure, of the exchangeable
sequence (νk)

∞
k=1, is a Dirichlet process (Ferguson, 1973) over [0, 1]. Formally, in their

Theorem 3.3 and Corollary 4.2 they derived the following result:

Theorem 1. For each ρ ∈ (0, 1) let Pρ be a species sampling process, as in (3), with

stick-breaking weights, as in (4), where νk | Pstick
iid
∼ Pstick, and Pstick is a Dirichlet

process with concentration parameter α = (1 − ρ)/ρ. Then as ρ → 0, Pρ converges in
distribution to a stick-breaking process with iid sticks, P0; and as ρ → 1, Pρ converges
in distribution to a Geometric process, P1.

Whenever the mapping β �→ G( · | β) is continuous with respect to the weak topology,
which is the case of Gaussian kernels, Theorem 1 provides a way to continuously warp
BNP models with iid sticks into Geometric models. Or in other words, continuously
transform completely independent sticks into completely dependent ones while keeping
the identical distribution assumption. Another common feature between the identical
sticks of Geometric processes and iid sticks is that both form Markov processes. In
particular, if one considers Markov sticks, (νk)

∞
k=1, with transition probability kernel

P[νk ∈ · | νk−1] = ρ δνk−1
+ (1− ρ)Pstick, (10)

and initial distribution Pstick, then νk ∼ Pstick, marginally, for every k ≥ 1. Furthermore,

the choice ρ = 0 yields νk
iid
∼ Pstick and for ρ = 1 we recover the sticks νk = ν1 ∼ Pstick,

of Geometric processes. Hence (10), also establishes a way to continuously transform iid
sticks into identical sticks, but in this case by means of a Markovian symmetry instead
of exchangeability. This suggests that a first step towards evaluating sensitivity of stick-
breaking BNP models with respect to the dependence amongst sticks could be to study
the mapping ρ �→ g(η̂(ρ)), by extending the present work to the models in Theorem 1 or
to models with sticks described by (10). It would be particularly appealing to evaluate
ρ �→ g(η̂(ρ)) at a neighborhood of ρ = 0, as this could give insight on how much does
the estimated quantity of interest, g(η̂), changes if the independence of the sticks is
perturbed towards exchangeability or a Markov dependence.

Another interesting direction to extend the work of the authors is to keep the in-
dependence assumption on the sticks and relax the identical distribution one. In this
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Figure 1: Estimated density of the galaxy dataset (upper row) and sensitivity analysis
of the expected number of clusters (bottom row), for ESB (left column) and PY (right
column).

scenario we find the well-known Pitman-Yor (PY, Pitman and Yor, 1997; Ishwaran and
James, 2001) model, whose frequencies admit a stick-breaking decomposition with in-

dependent νk
ind
∼ Beta(1 − σ, α + kσ), for some σ ∈ [0, 1) and α > −σ. Evidently, the

choice σ = 0 recovers a Dirichlet process for which the expected frequencies, E[πk], decay
exponentially fast. In contrast, for σ > 0, the expected weights decrease much slower.
Hence, it also seems very appealing to extend the proposed methodology so to (at least)
cover Pitman-Yor processes. Then, the analysis of the mapping (σ, α) �→ g(η̂(σ, α))
on a neighborhood of (0, α) could be starting point of a more rigorous understanding
about the implications of biasing the identical distribution assumption on the sticks
towards working with νk’s that decrease in expectation, and thus lead to heavier-tailed
frequencies π.

Inhere we have performed a small simulation study where five ESB models, as in
Theorem 1, and five PY models were implemented with distinct values of ρ and σ,
respectively, in order to estimate the density of the well-known galaxy dataset as well
as the posterior expected number or clusters

E

[

∞
∑

k=1

1

{

N
∑

n=1

zn,k > 0

}∣

∣

∣

∣

∣

x

]

. (11)
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In the first row of Figure 1 we observe that the estimated density is not very sensitive
to different prior assumptions on (νk)

∞
k=1, in fact it is very similar for all considered

ESB and PY models. In the bottom row we see that the expected number of clusters
does changes even under mild increments of ρ or σ, for both ESB and PY models. We
also see that if these quantities are closer to zero, increments affect more the expected
number of clusters. Comparing the two graphs in the bottom row we observe that
PY models are more sensitive towards increments of σ than ESB models are when
increasing ρ. Recalling the role that ρ and σ play, this small analysis suggests that
stick-breaking models are less sensitive when biasing the iid assumption on the sticks
towards exchangeable sticks than when biasing the same assumption towards the non
identically distributed PY sticks.

It is worth highlighting that for this study we used a Gibbs sampling method, thus
the algorithm had to be run separately for each different model. Additionally, due
to the random nature of the algorithm we observed relatively large variance for the
estimates of (11) when running the code multiple times with few iterations, therefore
many iterations had to be considered in order to provide good estimates of (11). This
is computationally expensive, even for such a simple dataset and few hyper-parameter
values. The framework developed by the authors to analyze local sensitivity for iid
stick-breaking models can be implemented significantly faster, and it would be very
appealing if their methodology could be extend to account for experiments such as
the one presented inhere. We believe that the gain in terms of computational time
would be specially significant for ESB models, where Gibbs samplers convergence to
the stationary distribution is slow.

2.1 Variational Inference for Dirichlet driven ESB models

In order to extend the present methodology to ESB models, the first step would be to
derive a VB approach to implement them. Here we discuss possible paths that could
be pursued to derive a mean-field VB implementation of ESB models. To this aim,
we first recall how does mean-field VB operates, so say we are seeking to approximate
the posterior distribution P(ζ | x). The mean-field VB approach suggests to consider
variational distributions that factorize as

Q(ζ) =

m
∏

i=1

Q(ζi), (12)

for some partition {ζi}
m
i=1 of ζ. To solve the optimization problem we can guess initial

values of Q∗(ζi) and iteratively update the factors through

logQ∗(ζj) =

∫

logP(x, ζ)
∏

i �=j

Q∗(dζi), j ∈ {1, . . . ,m} (13)

(cf. Equation (10.9) in Bishop, 2006).

For the BNP models in (2) with stick-breaking weights as in (4), at the outset, one
can assume that the approximating distributions take the form

Q(ζ) = Q(z[K])Q(β[K], ν[K]), (14)
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where ζ = {z[K], β[K], ν[K]}, z[K] collects the first K elements of each zn, β[K] = (βk)
K
k=1

and ν[K] = (νk)
K
k=1, with νK = 1 for all distributions in the variational class, and some

truncation level K = Kmax. Noting that

P(x, z, β, ν) = P(x | z, β)P(z | ν)P(β)P(ν),

from (13) we find

logQ∗
(

z[K]

)

=

N
∑

n=1

K
∑

k=1

znk log λnk + const., (15)

where log λnk = E
∗[log G(xn | βk)] + E

∗[log νk] +
∑k−1

i=1 E
∗[log(1− νi)], and

logQ∗
(

β[K], ν[K]

)

= logQ∗
(

β[K]

)

+ logQ∗
(

ν[K]

)

, (16)

where

logQ∗
(

β[K]

)

=

K
∑

k=1

{

logPbase(βk) +

N
∑

n=1

E
∗[znk] log G(xn | βk)

}

+ const.,

logQ∗
(

ν[K]

)

= logP(ν[K]) +

K−1
∑

k=1

ak log νk + bk log(1− νk) + const.

(17)

Here E
∗[f(·)] = EQ∗(·)[f(·)], ak =

∑N
n=1 E

∗[znk], bk =
∑N

n=1

∑K
i=k+1 E

∗[znk], and

P(ν[K]) refers to the joint prior density of ν[K]. In particular, if νk
iid
∼ Pstick apriori,

we get logP(ν[K]) =
∑K

k=1 logPstick(νk). In this case, (15)–(17) imply that considering
the variational class determined by (14) is equivalent to assume that the approximating
distributions factorize as

Q(ζ) =

(

N
∏

n=1

Q(zn)

)(

K
∏

k=1

Q(βk)

)(

K−1
∏

k=1

Q(νk)

)

, (18)

identically as in (5). If instead, the νk are exchangeable and νk | Pstick
iid
∼ Pstick, where

Pstick is a Dirichlet process with total mass parameter α and base measure Pstick we
get

P(ν[K]) =
αM

∏M
m=1(nm − 1)!

∏K−1
i=0 (α+ i)

×
M
∏

m=1

Pstick(ν
∗
m), (19)

where ν∗1 , . . . , ν
∗
M are the distinct values that ν[K] exhibits and nm = |{k ≤ K : νk =

ν∗m}| (Pitman, 1996). For this type of sticks we find that assuming the class in (14) is
equivalent to consider approximating distributions of the form

Q(ζ) =

(

N
∏

n=1

Q(zn)

)(

K
∏

k=1

Q(βk)

)

Q
(

ν[K]

)

. (20)
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However, since logP(ν[K]) does not decomposes into terms that only involve one νk,
the factorization in (18) is not equivalent to that in (14). One option would be to work
with approximating distributions as in (20), thus avoiding additional restrictions to the
variational class. In this setting, to fully derive the mean-field VB implementation it
would be necessary to compute explicitly Q∗(ν[K]) as in (17) where P(ν[K]) is given
by (19). Although theoretically possible, in practice this is numerically very expensive
as the computation of the normalization constant of Q∗(ν[K]) requires to sum over all
partitions of the first K − 1 integers. Alternatively, one could assume approximating
distributions as in (18), in which case it suffices to compute

logQ∗(νk) = logP(νk | ν−k) +

K−1
∑

k=1

ak log νk + bk log(1− νk) + const.,

for each k ≤ K − 1, where ak and bk are as in (17) and P(νk | ν−k) refers to the con-
ditional distribution νk given ν−k = (ν1, . . . , νk−1, νk+1, . . . , νK−1). Being that apriori
elements in ν[K] are exchangeable and driven by a Dirichlet process it is well-known
that

P(νk | ν−k) =

M
∑

m=1

nm

α+K − 1
1{νk = ν∗m}+

α

α+K − 1
Pstick(νk),

where ν∗1 , . . . , ν
∗
M are the distinct values in ν−k and nm = |{j 
= k : νj = ν∗m}| (Blackwell

and MacQueen, 1973; Pitman, 1996). In particular, if Pstick stands for a Beta distribu-
tion, computing Q∗(νk) explicitly can be easily achieved. Unfortunately, assuming the
factorization in (18) for ESB models does represents making an additional assumption
that shortens the variational class. Hence, it is not obvious whether it is preferable as-
sume (18), or to assume (20) and approximate the normalization constant of Q∗(ν[K])
instead of computing it explicitly. A third option that could be worth investigating
is to take into consideration the directing random measure, Pstick, and include it in
ζ. Perhaps by doing so one could find a middle point between considering the class
in (18) or that in (20). Provided that we can find a variational class of distributions
that is sufficiently flexible and tractable, and that generalizes the mean-field VB ap-
proach for iid sticks considered by the authors, it then makes sense to try and extend
their methodology to ESB models.
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Invited Discussion∗

Filippo Ascolani†, Marta Catalano‡ and Igor Prünster§

The specification of the prior and its impact on statistical analyses have received consid-
erable attention since the early developments of Bayesian methodologies. In a seminal
work (de Finetti, 1934) Bruno de Finetti writes (in our own translation): “. . . subjective
does not mean arbitrary, we can not make events more or less likely as we please, but
rather according to the degree of confidence we feel about them”. In fact, a prior should
be a truthful representation of our beliefs about the phenomenon of interest and needs
to satisfy the coherence principle. See de Finetti (1937, 1970); Regazzini (1987). The
following natural step consists in assessing how prior choices affect conclusions, leading
immediately into the realm of robustness: does a small change in the prior specification
lead to a big change in the inferential conclusions?

This is particularly relevant when dealing with Bayesian nonparametric (BNP) in-
ference, which loosely speaking entails specifying a distribution over infinitely many
parameters. This makes the study of the distributional properties of a nonparametric
model and, a fortiori, its subjective elicitation challenging tasks. From this viewpoint, it
is reasonable to focus on meaningful finite-dimensional functionals of the nonparametric
prior and tune the parameters based on their behaviour. For instance, a popular recipe
is to elicit the parameters of the nonparametric prior based on the induced behaviour of
the number of clusters (Lijoi et al., 2007a,b). An alternative strategy consists in speci-
fying the distribution of the mean (Kessler et al., 2015; Gaffi et al., 2022). In this spirit,
the main contribution of this stimulating discussion paper is to develop a framework to
conduct a sensitivity analysis for specific functionals, with theoretical guarantees and
still retaining computational convenience: this works by combining a variational Bayes
approach (Blei and Jordan, 2006) with automatic differentiation and the tools of local
robustness (Gustafson, 1996). The result is an interesting and inspiring work, that will
surely have an impact on both future research and practice.

The authors consider mixture models directed by a discrete nonparametric prior,
with a special focus on Dirichlet process mixtures. Thus the exchangeable observations
are modeled through a nonparametric random mixture of suitable kernels. Note that,
when performing frequentist asymptotic validations of Bayesian models, one assumes the
data not to be generated according to the Bayesian model, but rather to be i.i.d. from
a “true” distribution. This corresponds to the so–called “what-if” approach of Diaconis
and Freedman (1986). In this perspective, when analyzing the asymptotic distribution
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Figure 1: Posterior distributions on the number of components corresponding to mix-
tures of the Dirichlet (DP), the Pitman-Yor (PY) and the normalized generalized gamma
(NGG) processes with n = 50 and parameters set so that E [K50] = 25. Source: De Blasi
et al. (2015).

of a functional of interest, there can be distinct behaviours depending on whether the
data generating mechanism produces exchangeable observations from the model or i.i.d.
data from a “true” distribution. Since it may well be the case that both assumptions
are misspecified, particular care is needed before reaching general conclusions. In the
context of mixture models, the (latent) mixing component is often of crucial interest,
since it allows to perform model-based clustering and infer a probability distribution
for the number of clusters in the population. It is therefore important to conduct a
sensitivity analysis on these latent quantities, although in contrast with de Finetti’s
prescription to focus exclusively on observable quantities.

In fact, the latent structure within mixture models is a quite delicate object and
different nonparametric priors may lead to very different posterior distributions on the
number of clusters, while at the same time to almost identical density estimates (which
are obtained by “integrating out the latent structure”). To illustrate this phenomenon
we recall a toy example of De Blasi et al. (2015, Section 3): for 50 i.i.d. data from a mix-
ture of two Gaussians (which plays the role of the “true” distribution), the performance
of five different “misspecified” nonparametric priors is compared. More precisely, the five
priors on the mixing measure (belonging to Dirichlet, Pitman-Yor or Normalized gener-
alized gamma families) are all tuned such that the prior expectation on the number of
mixture components K50 is 25, strongly misspecified with respect to the “true” number
2. The posterior distributions clearly move mass towards a smaller number of compo-
nents as shown in Figure 1, but a significant variability persists with the posterior mode
going from to 2 to 9 components. The Pitman-Yor and normalized generalized gamma
processes with a high value of σ exhibit a better correction to the prior misspecification,
whereas the Dirichlet process stands out as the less robust. It is important to note that
none of the models assigns mass to a single cluster: in general, the lowest value with pos-
itive mass can be heuristically interpreted as the minimum number of mixture compo-
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nents (of the given kernel, which in this case is Gaussian) needed to fit a given “true” dis-
tribution. In contrast, the density estimates are almost indistinguishable (De Blasi et al.,
2015, Figure 4). This is not surprising since any density can be approximated arbitrarily
well with a mixture density with number of components larger than the ground truth
(possibly even infinite). In fact, the described phenomena in terms of clustering structure
and density estimation are generic for misspecified priors and not confined to the toy ex-
ample recalled here. As for the frequentist asymptotic evaluation, results about density
estimation support the above findings: under mild assumptions on the “true” univari-
ate density, the posterior densities corresponding to a Dirichlet process or a Pitman-Yor
process mixing measure are proven to converge to the “truth” with nearly optimal con-
traction rates (Ghosal and van der Vaart, 2007b; Scricciolo, 2014), and we envisage this
to hold for a wide range of BNP mixing measures and beyond exchangeability (see, e.g.,
Catalano et al. (2022)). Frequentist evaluation of the posterior distribution of Kn itself
is more problematic, since for any finite sample the number of clusters is bounded by
the sample size n leading to a distribution for the number of clusters on the integers
{1, . . . , n}, an appealing feature. Letting the sample size diverge, one automatically al-
lows the number of clusters to diverge as well. Then, an identifiability issue takes over
because of the above mentioned fact that a density can be approximated arbitrarily well
with more mixture components than needed: what is usually framed in terms of incon-
sistent behaviour, should rather be interpreted as lack of identifiability. Finding the ap-
propriate framework for a frequentist asymptotic evaluation of Kn within mixtures is, in
our view, still an open problem. On the contrary, interesting results have been obtained
for the frequentist evaluation of the whole mixing measure in the Wasserstein distance, a
research line opened by the seminal paper of Nguyen (2013). The Wasserstein distance is
ideal in this setting because it takes into account the geometry of the underlying space,
thus identifying clusters that are arbitrarily close, irrespectively of their overall number.

In summary, inference on the latent structure is often a primary goal of the analysis.
However, it is quite a delicate object and the inferential results may depend on both the
chosen prior and the specification of its parameters. Hence, a careful sensitivity study
is of paramount importance. This represents a challenging task and is typically carried
out making some simplifying hypotheses. Two of them are also assumed in the paper.

First, the authors approximate the Dirichlet process by truncating its stick-breaking
representation to Kmax < ∞ elements: this allows one to work with finitely many pa-
rameters and leads to a computationally convenient algorithm. Taking a sufficiently
large Kmax leads to “good” approximations of a Dirichlet process a priori. However,
what happens a posteriori is less clear-cut. See Regazzini and Sazonov (2001) for early
results in this direction. When the Dirichlet process is employed within a mixture model
and the focus is on the clustering structure, assessing the quality of approximation in
the posterior represents an important open question. Moreover, if one allows the number
of observations n to vary, it is natural to wonder about the relationship between Kmax

and n. In fact, it seems intuitive to let Kmax increase with n leading to a sample size
dependent approximation. By the previous considerations it is apparent that Kmax ≥ n
is desirable: Kmax < n would imply a truncation also of the support of the posterior
distribution of the number of clusters adding another layer of approximation. If, for com-
putational convenience, one is willing to accept this additional approximation layer in
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order to have Kmax grow slower than n, what could a reasonable choice be? A possibility
would be to use the a priori growth rate of Kn, which is often available (e.g., logarith-
mic and polynomial for, respectively, Dirichlet and Pitman-Yor processes). Clearly its
posterior growth rate would be more appropriate, but no results are known for mix-
ture models and current results are confined to prediction in species sampling problems
(Favaro et al., 2009). Our intuition is that the growth may depend on the degree of close-
ness between the kernel and the data generating mechanism, but since at the present
stage a formal treatment is missing, the value of Kmax should be decided case by case.

Second, the authors consider a variational approximation, on which the sensitivity
analysis is conducted: this is a main theme of the paper, since by carefully studying
the variational distribution they are able to derive (Fréchet) differentiability of the
involved functions (Theorems 1 and 2). However, it is not clear how close in reverse
KL-divergence the distributions should be in order to be close in terms of the clustering
structure. Indeed, it is not difficult to find priors that are close in distributional sense,
but with very different asymptotic predictive growth, such as a Dirichlet process with
parameter θ and a Pitman-Yor process with parameters (θ, σ ≈ 0). See Favaro et al.
(2009); De Blasi et al. (2015). Thus, taking into account also the dependence of Kmax on
n, we cannot exclude that the resulting approximation has a different latent behaviour
than the original process, especially when n is large.

In conclusion, this inspiring paper combines results from different fields and provides
probably the most effective tool for sensitivity analysis that we may hope for, with the
current knowledge. Indeed, in our opinion, the biggest issue is our limited understanding
of the behaviour of the posterior distribution on the latent space, even when n is large.
The same holds for the distributional properties of other latent quantities of interest,
such as the co-clustering matrix, which are currently still unknown. We hope to see a
stream of work in this direction in the near future. We congratulate the authors for this
seminal contribution to the study of sensitivity in BNP.
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Contributed Discussion

Giovanni Rebaudo∗, Augusto Fasano†, Beatrice Franzolini‡, and Peter Müller§

We congratulate the authors for a very interesting paper, which provides a concrete
contribution to the Bayesian nonparametric (BNP) literature. Their work provides an
efficient method to evaluate the sensitivity of posterior quantities of interest – computed
through variational Bayes approximations – to the prior distribution of the mixing
weights in Bayesian discrete mixture models. The authors argue for sensitivity checks
to uncover possible non-robustness of the results to prior settings. Importantly, they
develop an easy-to-use and efficient method to do it in BNP mixtures. In the following,
we illustrate our comments on the most widely used construction discussed by the
authors: the Dirichlet process mixture (DPM) model (Lo, 1984), namely

Xi | θi
ind
∼ P(·|θi), θi | P̃

iid
∼ P̃ , P̃ ∼ DP(α,Pbase). (1)

Following the authors, in such a setting one of the goals is to perform inference about
the random number of clusters, Gcl, that is the number of occupied mixture components
P in a sample of size N , with a particular focus on its expected value. In this regard,
it is worth noticing that robustness is relevant just in terms of the specific quantity of
interest or decision of the analysis.

First, we agree with the authors that sensitivity analysis to prior assumptions should
be done routinely if the prior specification is driven by mathematical convenience or
heuristics, as often is in BNP models. This would highlight the influence of the specific
assumptions on the results of the analysis, pointing to which of them should be justified
more strongly. After assessing sensitivity, the next fundamental question is: how can we
justify probabilistic assumptions in the challenging infinite/high-dimensional Bayesian
settings? In principle, one possibility could be provided by the subjective Bayesian
paradigm. According to it, the prior should reflect a priori opinions on quantities of
interest. Those are more easily elicited when expressed directly in terms of observable
values (see e.g., Fortini and Petrone, 2016). However, this approach can be particularly
challenging in the BNP world due to the infinite/high-dimensionality of the parameter
space. One way to tackle this issue and elicit prior assumptions consists in working
with prior predictive distributions or with the a priori expected value of the number
of clusters (see e.g., De Blasi et al., 2015). However, posterior inference strongly de-
pends also on other a priori assumptions, such as the choice of the mixture kernel and
the base measure in DPM. Another way to justify the choice of the prior is in terms
of the properties of the summaries of interest (e.g., consistency of Gcl) assuming an
ideal frequentist truth (Nobile, 1994; Miller and Harrison, 2018; Ascolani et al., 2022).
Furthermore, different prior settings can be also specified in a given dataset by tuning
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the hyperparameters in terms of predictive accuracy, e.g. via cross-validation. All of the
above methods – as well as other possible alternatives, including popular empirical-based
approaches (Liu, 1996; McAuliffe et al., 2006) – require to specify some subjective as-
sumptions (e.g., homogeneity assumptions, prior distribution, data generating process,
loss function). The implications of such assumptions are challenging to assess, pointing
toward the need for further research, especially in the BNP mixture framework.

Second, considering the sensitivity of the stick-breaking prior to values of α in (1),
it would be interesting to assess how the specification of a prior for the concentration
parameter could increase robustness. The use of a prior on α leads to a mixing measure
that is itself a mixture in the sense of Antoniak (1974). Ideally, this would allow learning
from the data which values of α are most appropriate for the data at hand. Consequently,
it would be very interesting to investigate how the results and the sensitivity checks
proposed by the authors could be embedded in such a framework.

Another useful extension of the idea and techniques developed by the authors is
to provide a toolkit that assesses sensitivity to the choice of the kernel or of the base
measure of the DP. A common choice of kernel P and base measure Pbase in (1) are the
Gaussian kernel and the conjugate normal-inverse-Wishart base measure, respectively.
Such assumptions are typically motivated by mathematical convenience and the choice
of the hyperparameters of the base measure is mainly carried out following heuristics.
However, posterior inference on the number of clusters strongly depends on such as-
sumptions as shown empirically and theoretically (see e.g., Petralia et al., 2012; Cai
et al., 2021; Chandra et al., 2020).

Finally, as anticipated by the authors, it would be very interesting to exploit the
general results developed in the work to obtain an easy-to-use tool to check the sensitiv-
ity also for mixture models under different prior distributions for the mixing measure in
the popular class of Gibbs-type priors (Gnedin and Pitman, 2006; De Blasi et al., 2015)
as well as for other approximations arising from different divergences or distances.

To conclude we believe the work by Giordano, Liu, Jordan, and Broderick can stimu-
late further computational research in the Bayesian community and be applied in many
practical situations. We commend them one more time for a remarkable paper.
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Contributed Discussion

Xenia Miscouridou∗ and Francesca Panero†

We congratulate the authors for the interesting and novel work on the evaluation of the
sensitivity of a set of stick-breaking priors via mean-field variational Bayes. The paper
focuses on Dirichlet process mixtures (DPM), a popular prior distribution in many
applications. The widespread use of DPMs makes it vital to be able to understand
their properties and the implications of their use. This method has the potential to
become part of the toolkit of statisticians who would like to pursue applications under
the Bayesian nonparametric (BNP) framework.

Our discussion focuses on possible extensions of the current work to non stick-
breaking priors. We motivate why these random probability measures deserve to be
considered for a similar sensitivity analysis and suggest a possible way to adapt the
framework of Giordano et al.’s using some recently developed finite approximations of
completely random measures.

The authors provide a computational tool to quickly and automatically assess the
sensitivity to prior specification of variational Bayes (VB) approximations in the par-
ticular case of some stick-breaking priors. They focus on the canonical Dirichlet pro-
cess mixture model, heavily used in topic modelling and clustering, and suggest that
the methods apply directly to any discrete BNP model that admits a truncated stick-
breaking construction with independent and identically distributed (iid) proportions
(νk)k. The Dirichlet process (DP) is arguably the most widely used discrete random
probability measure admitting a stick-breaking representation. It belongs to a wider
family of species sampling models known as Gibbs-type priors (see, for example, De Blasi
et al. (2013)), which are characterised by a particular form of the exchangeable partition
probability function. Other models within this family are the Pitman-Yor (PY) process,
the normalised σ-stable process, the normalised generalised gamma process (NGGP)
and the uniform process (Wallach et al. (2010)).

Gibbs-type priors do not necessarily admit a stick-breaking representation. As al-
ready mentioned in the Invited Discussion by J. Griffin and M. Kalli, an exciting result
would be to obtain an extension of the sensitivity analysis provided by Giordano et al.’s
to the broader family of Gibbs-type models. Expanding on this, we will highlight in
the following paragraphs the notable clustering properties of some random probability
measures other than the Dirichlet process, and suggest a possible way to address the
sensitivity analysis despite the lack of stick-breaking representations.

The generalised gamma process (GGP) (Hougaard, 1986; Brix, 1999), also known
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as (exponentially) tilted stable process, has mean measure

ρ(dw) =
1

Γ(1− σ)
w−1−σe−τwdw, (1)

where σ ∈ (0, 1) and τ ≥ 0, or σ ≤ 0 and τ > 0.

Clustering models based on the DP or PY priors can only describe clusters whose
size grows linearly with the sample size n. Di Benedetto et al. (2021) propose a class
of random partition models based on the GGP which is able to generate partitions
whose cluster sizes grow sublinearly with n, a property known as microclustering. In
particular, their model offers a power-law growth of cluster sizes with exponent in
(0, 1). While Di Benedetto et al. (2021) employed an MCMC approach for inference,
a variational approach has computational and practical advantages. For a variational
framework one needs to consider approximations to these distributions. Lee et al. (2016,
2017) proceed in this direction by introducing and using finite dimensional approxima-
tions of the GGP (and other infinite measures). Precisely, they use the BFRY (De-
vroye and James, 2014) distributions to approximate the infinite measures for power-
law mixture models and graphs with power-law degree distribution within a mean-
field variational inference framework. For some context on BFRY distributions,1 recall
that a BFRY(τ), τ ∈ (0, 1) random variable X is characterised by a density function
fτ (x) = τ(1 − e−x)/(Γ(1 − τ)x1+τ ), x > 0. It is infinitely divisible and can be con-
veniently sampled as a ratio of gamma and uniform random variables. Heading a step
further, Lee et al. (2022) generalise the BFRY priors giving more generic series represen-
tations and iid approximations for both the GGP and stable beta process. This suggests
the following question: can we adapt the proposed sensitivity toolbox to the case of se-
ries representations and iid approximations proposed in Lee et al. (2017, 2022) to cover
these interesting applications? In this way one would obtain a sensitivity analysis for
microclustering or other applications of the GGP which have a power-law behaviour.

Recently, there was a lot of attention on graph modelling with power-law behaviour
as these can model real-world graphs with node heterogeneity. Sparse random graphs
with power-law degree distributions were originally introduced by Caron and Fox (2017)
who used a GGP process prior on the network node parameters. A series of papers
(Herlau et al. (2016); Miscouridou et al. (2018); Todeschini et al. (2020); Naik et al.
(2021, 2022)) followed, expanding the properties and types of graphs. In all of these
works, the parameter σ in Eq (1) is crucial as it tunes the sparsity of the graph and the
degree heterogeneity (power-law), therefore a desirable result would be to come up with
a similar computational toolbox to evaluate the sensitivity to the GGP process prior
focusing on σ for graph modelling.

References
Bertoin, J., Fujita, T., Roynette, B., and Yor, M. (2006). “On a particular class of
self-decomposable random variables: the durations of Bessel excursions straddling

1The name BFRY was coined in Devroye and James (2014) after the work of Bertoin et al. (2006),
who used this random variable in the study of excursion duration in Bessel processes.



350 Contributed Discussion

independent exponential times.” Probability and Mathematical Statistics, (26): 315–
366. MR2325310. 349

Brix, A. (1999). “Generalized gamma measures and shot-noise Cox processes.” Advances
in Applied Probability , 31(4): 929–953. MR1747450. doi: https://doi.org/10.1239/
aap/1029955251. 348

Caron, F. and Fox, E. (2017). “Sparse Graphs using Exchangeable Random Mea-
sures.” Journal of the Royal Statistical Society B , 79: 1295–1366. Part 5. MR3731666.
doi: https://doi.org/10.1111/rssb.12233. 349

De Blasi, P., Favaro, S., Lijoi, A., Mena, R. H., Prünster, I., and Ruggiero, M. (2013).
“Are Gibbs-type priors the most natural generalization of the Dirichlet process?”
IEEE transactions on pattern analysis and machine intelligence, 37(2): 212–229. 348

Devroye, L. and James, L. F. (2014). “On simulation and properties of the stable law.”
Statistical Methods and Applications,, 3(23): 307–343. MR3233961. doi: https://
doi.org/10.1007/s10260-014-0260-0. 349

Di Benedetto, G., Caron, F., and Teh, Y. W. (2021). “Nonexchangeable random parti-
tion models for microclustering.” Annals of Statistics, 49(4): 1931–1957. MR4319236.
doi: https://doi.org/10.1214/20-aos2003. 349

Herlau, T., Schmidt, M. N., and Mørup, M. (2016). “Completely random measures for
modelling lock-structured sparse networks.” Advances in Neural Information Process-
ing Systems, 29. 349

Hougaard, P. (1986). “Survival models for heterogeneous populations derived from sta-
ble distributions.” Biometrika, 73(2): 387–396. MR0855898. doi: https://doi.org/
10.1093/biomet/73.2.387. 348

Lee, J., Heaukulani, C., Ghahramani, Z., James, L. F., and Choi, S. (2017). “Bayesian
inference on random simple graphs with power law degree distributions.” In Proceed-
ings of the 34th International Conference on Machine Learning . 349

Lee, J., James, L. F., and Choi, S. (2016). “Finite-dimensional BFRY priors and varia-
tional Bayesian inference for power-law models.” In Advances in Neural Information
Processing Systems 29 (NIPS 2016). 349

Lee, J., Miscouridou, X., and Caron, F. (2022). “A unified construction of series repre-
sentations and iid approximations of completely random measures.” Bernoulli . 349

Miscouridou, X., Caron, F., and Teh, Y. W. (2018). “Modelling sparsity, heterogene-
ity, reciprocity and community structure in temporal interaction data.” Advances in
Neural Information Processing Systems, 31. 349

Naik, C., Caron, F., and Rousseau, J. (2021). “Sparse networks with core-
periphery structure.” Electronic Journal of Statistics, 15(1): 1814–1868. MR4255305.
doi: https://doi.org/10.1214/21-ejs1819. 349

Naik, C., Caron, F., Rousseau, J., Teh, Y. W., and Palla, K. (2022). “Bayesian Nonpara-
metrics for Sparse Dynamic Networks.” European Conference on Machine Learning
and Data Mining (ECML PKDD). 349



X. Miscouridou and F. Panero 351

Todeschini, A., Miscouridou, X., and Caron, F. (2020). “Exchangeable random measures
for sparse and modular graphs with overlapping communities.” Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 82(2): 487–520. MR4084173.
doi: https://doi.org/10.1111/rssb.12363. 349

Wallach, H. M., Jensen, S. T., Dicker, L., and Heller, K. A. (2010). “An Alternative Prior
Process for Nonparametric Bayesian Clustering.” In Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics. 348



352 Contributed Discussion

Contributed Discussion

David Banks∗ and Subarup Guha†

Abstract. What is the probability of realizing a distribution from a stick-breaking

process that falls outside an ε-ball on the base measure?

The discussion paper is brilliant and important. It informs prior choice in the context
of stick-breaking Bayesian analyses. Calculating derivatives in the variational Bayesian
posterior approximations is especially cool. But we beg indulgence to discuss an adjacent
problem whose solution would have implications for concentration of measure and the
sensitivity of stick-breaking priors.

Let the vector of probabilities (p1, . . . , pn) have the n-dimensional Dirichlet distri-
bution, Dn(α/n, . . . , α/n). Let θ∗1 , . . . , θ

∗
n be i.i.d. draws from the base distribution H

that are independent of p1, . . . , pn. Then Fn
L
=

∑n
j=1 pjδθ∗

j
where

L
= denotes “equal in

distribution” and δθ is a point mass at θ. Ishwaran and Zarepour (2000) shows Fn
L
→ F

as n → ∞. What is the chance of a realization that is some specified distance from H?

Draw a distribution F from the Dirichlet process DP (αH), with H the base measure
and α > 0 the mass parameter. The sup norm of F and H is dK(F,H) = supx∈R

|F (x)−
H(x)|. For ε ∈ (0, 1), we seek Pr[dK(F,H) ≤ ε].

We know Pr[dK(Fn, H) ≤ ε] approximates Pr[dK(F,H) ≤ ε] for large n. So Fn
L
=

∑n
j=1 qjδθ(j), where θ(1) ≤ θ(2) . . . ≤ θ(n) are the order statistics of n i.i.d. draws from

H and (q1, . . . , qn) ∼ Dn(α/n, . . . , α/n). Since Fn is discrete, the sup norm equals

maxnj=1 |Fn(θj)−H(θj)|, which equals maxnj=1 |rj −H(θ(j))| with rj =
∑j

k=1 qk. Since
H(θ) is uniformly distributed whenever θ ∼ H, the distribution of maxnj=1 |rj −H(θj)|

is the same distribution as that of maxnj=1 |rj − Uj | provided Uj
i.i.d.
∼ U(0, 1) for j =

1, . . . , n. Thus Pr[dK(Fn, H) ≤ ε] equals Pr[∩n
j=1Aj ] where the event Aj =

[

|rj−Uj | ≤ ε
]

and the probability for the Kolmogorov sup norm does not depend on H.

Let r = (r1, . . . , rn). Because Pr[∩n
j=1Aj ] =

∫

Pr
[

∩n
j=1Aj | r

]

[r] dr, and since it is
easy to generate samples of r, one can use Monte Carlo to approximate Pr[∩n

j=1Aj ].

But direct calculation is impossible since evaluation of Pr
[

∩n
j=1Aj | r

]

is equivalent to
computing the volume of an n-dimensional simplex with vertices determined by r:

Pr
[

∩n
j=1Aj | r

]

= n!

∫ Mn

Ln

. . .

∫ M1

L1

dz1 . . . dzn

where the integral limits (which correspond to the vertices) are Lj = max{0, rj − ε},
Mj = min{zj+1, rj + ε} for j < n and Mn = min{1, rn + ε}.
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Let Gα(·) be a gamma process with α ∈ [0, 1]. Then Gα(0) = 0; for any two indices
0 ≤ t1 < t2 ≤ 1, the process increment Gα(t2)−Gα(t1) is gamma with shape parameter
α(t2 − t1) and scale parameter 1; process increments for disjoint intervals are mutually
independent. The Gα(·) is a.s. continuous and increasing. Let Bα(t) = Gα(t)/Gα(1).
Then Bα(t) is Beta (αt, α(1− t)) for 0 < t < 1. It has a.s. continuous sample paths that
monotonically increase from 0 to 1.

Theorem 1. Let F ∼ DP (αH). If H is continuous, then the sup norm is dK(F,H)
L
=

sup0≤t≤1 |Bα(t)− U(t)| for U the uniform distribution on [0, 1].

Proof. For n ≥ 2, let −∞ = x0 < x1 < · · · < xn = ∞. The sets Ai = (xi−1, xi], where
i = 1, . . . , n, form a partition of the real line. The vector (F (A1), . . . , F (An)) has the
n-dimensional Dirichlet distribution, Dn (αH(A1), . . . , αH(An)).

Consider the process B∗
α(x)=Bα(H(x)). Then limx→−∞ B∗

α(x)=0, limx→∞ B∗
α(x)=

1, and B∗
α(x) is distributed as Beta (αH(x), α[1−H(x)]). The vector (B∗

α(x1), B
∗
α(x2)−

B∗
α(x1), . . . , B

∗
α(xn)−B∗

α(xn−1)) has the distribution Dn (αH(A1), . . . , αH(An)). Since

∪i
j=1Aj = (−∞, xi] for i = 1, . . . , n, then (F (x1), . . . , F (xn))

L
= (B∗

α(x1), . . . , B
∗
α(xn)).

B∗
α(·) has the same finite-dimensional distributions as DP (αH) but is a.s. continuous.

Since H is continuous, the mapping H : R → [0, 1] is invertible. Thus

max
i=1,...,n

∣

∣F (xi)−H(xi)
∣

∣

L
= max

i=1,...,n

∣

∣B∗
α(xi)−H(xi)

∣

∣ = max
i=1,...,n

∣

∣Bα(ti)−H ◦H−1(ti)
∣

∣

where ti = H(xi), and the result follows from the beta process. For integers n ≥ 2 and

for i = 0, . . . , n, set t
(n)
i = i/n ∈ [0, 1], let x

(n)
i = H−1(t

(n)
i ) ∈ R. We see

max
1≤i≤n

∣

∣F (x
(n)
i )−H(x

(n)
i )

∣

∣

L
= max

1≤i≤n

∣

∣Bα(t
(n)
i )−H ◦H−1(t

(n)
i )

∣

∣ for n ≥ 2. (0.1)

For i ≥ 1, limn→∞(t
(n)
i+1 − t

(n)
i ) = limn→∞ 1/n = 0. So limn→∞(x

(n)
i+1 − x

(n)
i ) = 0

because H−1 is continuous. Taking n → ∞ in (0.1) gives supx∈R |F (x) − H(x)|
L
=

sup0≤t≤1 |Bα(t)−H ◦H−1(t)| from right-continuity of F , H, and Bα.

Bayesian use of Dirichlet processes requires selection of H and α. That choice should
account for the probability that a realization is near H. We hope that one of the super-
smart readers of this journal will find a closed form solution for Pr[dK(F,H) ≤ ε].
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Rejoinder

Ryan Giordano∗,¶, Runjing Liu†,¶, Michael I. Jordan‡, and Tamara Broderick§

1 Introduction

We feel very grateful to have our work carefully read and commented on by so many
insightful respondents. We would like to thank Professor Steel and the editorial board of
Bayesian Analysis for selecting our work and making this discussion possible. Statistical
robustness is a venerable topic of conversation and we have no doubt that the present
discussion will continue far into the future.

We might roughly categorize points made in the responses as follows:1

1. Would a different model or summary statistic be more or less robust than the
Dirichlet process (DP) and number of clusters?

2. Can (or should) one form variational Bayes (VB) approximations to different
models from the BNP literature?

3. Can one form a local sensitivity metric to different quantities of interest, model-
ing or fitting parameters, different posterior approximation procedures, or some
combination of all of these?

Questions in category (1) and (2) are natural and important, since our work is based
on arguably the most canonical Bayesian nonparametric prior (the DP), and a fairly
vanilla VB approximation (a mean field approximation to a truncated stick-breaking
representation). The evaluation of our robustness ideas with respect to a wider range of
priors and approximations is certainly warranted. Nevertheless, in the present rejoinder
we will focus on questions in category (3), largely because we feel that our use of local
sensitivity metrics constitutes our work’s most distinctive contribution.

Can one form a local robustness metric for a particular problem? In Section 2 of the
present rejoinder, we will argue: typically, yes, quite directly, in Markov chain Monte
Carlo (MCMC) applications as well as VB. In Section 2.1 we derive local robustness
metrics for a select few settings that were described in the responses. After reading

∗Department of EECS, MIT, 77 Massachusetts Ave., 32-D762, Cambridge, MA 02139,
rgiordan@gmail.com

†Department of Statistics, 367 Evans Hall, UC Berkeley, Berkeley, CA 94720
‡Department of Statistics, 367 Evans Hall, UC Berkeley, Berkeley, CA 94720
§Department of EECS, MIT, 77 Massachusetts Ave., 32-D762, Cambridge, MA 02139
¶Equal contribution.
1Please think of these categories as atom locations from an Indian buffet process, not a Chinese

restaurant process; respondents engaged at times with multiple categories simultaneously. For example,
Gil-Leyva and Mena ask how to form a VB approximation to an exchangeable stick breaking (ESB)
prior (item 2) in order to form a local sensitivity metric (item 3) to assess whether the ESB prior is
robust for pointwise density estimation (item 1).
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Section 2, we hope that all readers of this rejoinder feel able and empowered to form
and investigate local robustness metrics for their own particular problems.

However, in the subsequent Section 3, we will argue that simply forming a local ro-
bustness metric is not enough: the hard work is showing that it is useful. Computability,
interpretability, and the ability of a local robustness metric to extrapolate well, are more
important — and more difficult to establish — than mere computation of derivatives.
It is this work of establishing usefulness that we have endeavored to undertake in the
present paper, and to which we wish to call attention as a foundation for further work.

As might be expected in a topic as established as robustness, the points made in
this rejoinder are not new, and have in fact been argued in the past by many of our own
respondents. Nevertheless, we hope that by emphasizing the relative ease of computing
derivatives and the relative difficulty of showing their utility in particular contexts, we
can help advance the research agenda in this important and challenging area.

2 What does it take to do local robustness?

A great deal of statistical inference—including Bayesian statistics—fixes some hyperpa-
rameter ω and then performs posterior inference using some combination of two types
of estimators:

• The solution to a system of estimating equations: θ̂opt := θ such that G(θ, ω) = 0.

• A posterior moment from a density known up to a constant: θ̂samp := E
P(ζ|ω)

[H(ζ)].

An example of θ̂opt could be the parameter that sets the gradient of a VB loss function

to zero (as in our paper), and an example of θ̂samp could be a posterior mean. In prac-

tice, we may not be able to compute either exactly: θ̂opt might be approximated using

numerical optimization, and θ̂samp may be approximated using Markov chain Monte
Carlo (MCMC). Below, we will briefly discuss the consequences of using approxima-

tions, but assume for the moment that we can compute θ̂opt and θ̂samp to a desired
accuracy. A practitioner might then ask, “what would happen if ω had taken on some
different value?” The techniques of local robustness approximately answer this ques-
tion by forming a series approximation using derivatives of the maps ω �→ θ̂opt(ω) and

ω �→ θ̂samp(ω).

There are simple, general formulas for both these derivatives, under certain common
(but not universal) regularity conditions. For notational simplicity, take ω to be a scalar

for the moment. Furthermore, let us take θ̂opt(ω) to be finite-dimensional, P(ζ|ω) to be
defined as a Radon-Nikodym derivative with respect to a common dominating measure
for all ω, assume that we can exchange integration and differentiation as needed, and
assume all needed partial derivatives exist. Then

dθ̂opt(ω)

dω

∣

∣

∣

∣

∣

ω0

=

(

∂G(θ, ω)

∂θ

∣

∣

∣

∣

θ=θ̂opt(ω0),ω=ω0

)−1
∂G(θ, ω)

∂ω

∣

∣

∣

∣

θ=θ̂opt(ω0),ω=ω0

(1)
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and

dθ̂samp(ω)

dω

∣

∣

∣

∣

∣

ω0

= Cov
P(ζ|ω0)

(

H(ζ),
∂ log P(ζ|ω)

∂ω

∣

∣

∣

∣

ω=ω0

)

. (2)

These two formulas have been noted many times in the literature, though we feel it is
worth calling attention to the simplicity of their form. The estimating equation deriva-
tive in eq. (1) is formed using the implicit function theorem (Krantz and Parks, 2012)
and is used, explicitly or implicitly, in many local robustness works (Hampel, 1974;
Thomas and Cook, 1989; Hattori and Kato, 2009; Shi et al., 2016), as well as our own
present paper. The sampling derivative in eq. (2) is formed by differentiating under
the integral using a dominated convergence theorem (Billingsley, 2008, Theorem 5.4)
and appears widely, in various forms, in the local Bayesian robustness literature and
beyond (Diaconis and Freedman, 1986; Ruggeri and Wasserman, 1993; Gustafson, 1996;
Mohamed et al., 2020).

Importantly, eqs. (1) and (2) can be computed nearly automatically using automatic

differentiation, using only the original solution θ̂opt(ω0) or the ability to compute mo-
ments of P(ζ|ω0). Furthermore, higher-order derivatives can be computed mechanically
by repeatedly applying eqs. (1) and (2) to themselves. For example, higher-order ver-
sions of eq. (1) can be found in Giordano et al. (2019a). In practice, one can use a

corresponding numerical approximation to θ̂opt(ω0) or draws from P(ζ|ω0) to approx-
imate the derivatives. As observed by Griffin and Kalli, the key practical difficulty
with eq. (1) is the solution of a linear system, and the key practical difficulty with eq. (2)
is Monte Carlo error.

One might contrast eqs. (1) and (2) with approaches that differentiate the optimiza-
tion procedure or the sampling procedure directly, as in chapter 6 of Maclaurin (2016)
and Jacobi et al. (2018), respectively, both of which require considerable bespoke com-
putational effort, even with automatic differentiation. The simplicity of eqs. (1) and (2)

comes at a cost, however, of assuming (respectively) that θ̂opt actually solves the es-
timating equation, or that we are actually able to approximate draws from P(ζ|ω0).
Studying eqs. (1) and (2) in the presence of violations of these assumptions is exciting
and ongoing work, most notably in the setting of optimization (Bae et al., 2022).

Although eqs. (1) and (2) apply to scalar ω, they extend readily to multivariate and
even functional derivatives, since one can use scalar derivatives to differentiate along a
path in a multivariate space. Different notions of “derivative” differ only in how they
conceptually bundle these path derivatives together—as a basis for a gradient in finite
dimensional vector spaces (Fleming, 2012), as a basis for a tangent plane in a geomet-
ric perspective (McInerney, 2013; Murray and Rice, 1993), as Hadamard or Fréchet
derivatives in infinite-dimensional spaces according to the smoothness of the underlying
function (Averbukh and Smolyanov, 1967; Zeidler, 1986). In each case, however, for a
particular path, the derivative is always formally the same, and computable by eqs. (1)
and (2).

Given estimators of the form θ̂opt, θ̂samp, or some smooth combination of them, the
capacity to imagine a parameterized set of perturbations of interest (and a class of
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univariate paths through it), one can form local robustness measures—even for infinite-
dimensional perturbations—using little more than eqs. (1) and (2), univariate calculus,
and the chain rule. In the following section, we will demonstrate this point in a few of
the settings described by the respondents.

2.1 Some requested derivatives

We now demonstrate our claim that derivatives are typically straightforward to compute
by doing so for several of the settings requested by our respondents: case influence mea-
sures (Cook, 1977), exchangeable stick breaking (ESB) processes (Gil-Leyva and Mena,
2021), empirical Bayes (EB) procedures (McAuliffe et al., 2006), and robustness to the
loss function. For ESB processes and EB we will discuss some interesting challenges
that arise from working with infinite-dimensional priors in BNP models.

Many respondents noted that our (classical) approach to deriving local robustness
measures extends readily to other settings. Readers who are similarly convinced that it is
not difficult to compute local robustness derivatives for a wide range of applications, for
both MCMC and optimization-based statistical procedures, can safely skip to Section 3.

For this short rejoinder we have selected only a few settings from the responses to
address in detail, and we have chosen to prioritize the settings that are most unlike the
results in our paper. Unfortunately, doing so means forgoing discussion of some ideas
which seem particularly promising to us, such as the proposal of Miscouridou and

Panero to apply local robustness techniques to the VB approximations for generalized
gamma processes given in Lee et al. (2016).

Throughout this section, we will take ζ to denote all parameters of a model and X

to denote observed data, so that the posterior is P(ζ|X). Let φ(ζ) be some quantity
of interest. Note that, in eq. (2), we need only differentiate log P(ζ, X|ω) rather than
log P(ζ|X, ω), because the normalizing constant P(X|ω) does not depend on ζ and does
not contribute to the covariance.

Case influence MacEachern and Lee connect our work to a long history of frequen-
tist and Bayesian “case influence” literature. This literature attempts to quantify the
importance of individual datapoints or groups of datapoints on a particular inferential
procedure. MacEachern and Lee point to a set of works, beginning with Cook (1977),
which is particularly concerned with “outliers” or “gross errors” as popularized by Hu-
ber (1964).2 Indeed, the idea of using local approximations to robustness under generic
data perturbations goes back even farther—at least as far as von Mises (1947)—and
has been employed for asymptotic theory (Serfling, 1980; Shao and Tu, 2012; van der
Vaart and Wellner, 1996), design and analysis of robust estimators (Hampel, 1974),
approximation of cross-validation in machine learning (Koh and Liang, 2017; Giordano
et al., 2019b) and more.

To connect this broad literature to our work, we can augment each datapoint with a
scalar-valued weight, wn, in such a way that wn = 1 represents no change, and wn = 0

2A short historical account of this branch of robust statistics is given by Stigler (2010).
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represents omitting the datapoint from the model. Specifically, letting w = (w1, . . . , wN )
and X = (X1, . . . , XN ), we can write the log likelihood in a Bayesian model as

log P(X, ζ|w) =

N
∑

n=1

wn log P(Xn|ζ) + log P(ζ),

with P(ζ|X, w) representing the corresponding posterior. With unit weights, we recover
the original posterior: P(ζ|X, w = (1, . . . , 1)) = P(ζ|X). When wn = 0 but all other
weights are one, data point n is left out. Similarly, one can drop or replicate any set of
data points using the appropriate configuration of zeros, ones, or other integers.

The advantage of writing log P(ζ|X, w) in this way is that we can take a particular wn

to be our hyperparameter ω and apply eqs. (1) and (2) to form a local approximation to
leaving out (or replicating) sets of datapoints. The form of the derivative for estimating
equations resulting from eq. (1) is the well-known empirical influence function for M -
estimators (see, e.g., eq. 2.3.5 of Hampel et al. (1986)). Perhaps less widely known is
the corresponding result for MCMC estimators, which is

∂ E
P(ζ|X,w)

[φ(ζ)]

∂wn

∣

∣

∣

∣

∣

∣

w=(1,...,1)

= Cov
P(ζ|X)

(φ(ζ), log P(Xn|ζ)) . (3)

The right-hand side of eq. (3) can be estimated from MCMC samples. Then the quantity
given in eq. (3) is precisely the “Bayesian empirical influence function,” evaluated at
Xn, for the statistic E

P(ζ|X)
[φ(ζ)]. As with the frequentist influence function, eq. (3) may

be used to approximate all sorts of case deletion schemes from both the frequentist and
Bayesian literature—as long as one can show that it provides a good approximation to
the effect of actually removing the points.3

Dirichlet-driven ESB models Gil-Leyva and Mena ask about local sensitivity anal-
ysis for Dirichlet-driven exchangeable stick breaking (ESB) models (Gil-Leyva and
Mena, 2021). The joint stick distribution in an ESB model is controlled by a parameter
ρ ∈ [0, 1] that smoothly transitions between stick-breaking priors with independent and
identically distributed sticks and stick-breaking priors for which all the sticks take a
common value. Gil-Leyva and Mena take the quantity of interest to be the posterior
estimate of the density of the data generating distribution evaluated at a point—a quan-
tity which we can call φ(ζ)—and ask how E

P(ζ|X,ρ)
[φ(ζ)] depends on ρ. Gil-Leyva and

Mena run an MCMC chain, but then, in order to compute local robustness measures,
attempt to construct a VB approximation to this posterior, observing that one would

3We should note that a first-order approximation is inadequate when taking some form of KL
divergence from the original posterior as the quantity of interest, as is done in much of the literature
cited by MacEachern and Lee (e.g., Johnson and Geisser, 1983; McCulloch, 1989; Carlin and Polson,
1991; Thomas et al., 2018). This KL divergence is minimized at w = (1, . . . , 1), so the first derivative
with respect to the weights is zero, and one must form a local approximation using a second-order
derivative. However, all our comments in the present rejoinder, particularly Section 3, apply to local
second-order approximations as well as to first-order approximations.
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need either to make a (potentially limiting) mean field assumption on the sticks or deal
with a computationally intractable normalizing constant.

We will avoid the question of how to construct a VB approximation in their setting,
and derive instead a local sensitivity measure that can be used with an MCMC chain—
as long as the stick-breaking distribution can be effectively truncated at K sticks for
some finite K. Let the truncated stick lengths be denoted by v1, . . . , vK . We can imagine
several ways to truncate an ESB model, but for the present purposes, one would need to
be able to sample from the truncated model, and the prior P(v1, . . . vK |ρ) would need
to be tractable and smooth for any draw from the MCMC chain.4 By eq. (2) we then
have

∂ E
P(ζ|X,ρ)

[φ(ζ)]

∂ρ

∣

∣

∣

∣

∣

∣

ρ=ρ0

= Cov
P(ζ|X,ρ0)

(

φ(ζ),
∂ log P(v1, . . . , vK |ρ)

∂ρ

∣

∣

∣

∣

ρ=ρ0

)

. (4)

The preceding sampling covariance can in principle be approximated from MCMC sam-
ples, with no need to form a VB approximation.

Carefully considering the implications of truncating ESB models is beyond the scope
of this rejoinder, but it is worth noting the challenges for local robustness if one does
not truncate, especially since Gil-Leyva and Mena (2021) use a slice sampler and do not
truncate the stick-breaking distribution. If the log prior contained an infinite number
of terms, it is not obvious that one could apply the dominated convergence to derive
eq. (2). There exist sampling schemes that in fact sample only a finite number of sticks
without truncation; see, e.g., Gil-Leyva and Mena (2021) and Walker (2007). Similarly,
one might hope that one could apply eq. (2) without truncation by conditioning on
auxiliary random variables in the log P(ζ|ω) term in eq. (2). But this term cannot be
conditional on quantities that are random in P(ζ|ω). Additionally, the truncation will,
in general, have an effect; here, the quantity of interest (the posterior estimate of the
data density at a point) has nonzero correlation with all sticks. Although the posterior
density at a point plausibly has diminishing correlation with sticks that come later in
the process, one could design adversarial quantities of interest—e.g., the value of the
10,000-th stick—for which truncation would be quite inaccurate. Developing tractable
sensitivity measures for infinite-dimensional posteriors is an interesting problem, though
we suspect that eq. (4) will still be informative using straightforward finite truncation,
especially given that any error in the linear approximation may well be larger than the
error induced by truncation.

Empirical Bayes Rebaudo, Fasano, Franzolini, and Müller ask whether Empiri-
cal Bayes (EB) methods for setting a DP prior might be more robust. One might answer
such a question empirically by forming local robustness measures for EB procedures,
which we will now undertake.

4Note that for the un-truncated Dirichlet-driven ESB model, the density of any finite number of
sticks is tractable and smooth as a function of ρ: see Appendix E, Section 5 of the supplementary
material to Gil-Leyva and Mena (2021) where the needed density is derived as part of a Gibbs sampler
for ρ.
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Concretely, McAuliffe et al. (2006) rely on an EB procedure to choose the DP con-
centration parameter. Their EB procedure takes the following general form. Fix some
hyperparameter ω, which might be a case weight (see above), a perturbation of the base
measure, etc. The EB procedure then finds a prior parameter α̂ that satisfies, for some
F and G,

G(α̂, m(α̂, ω)) = 0 where m(α, ω) := E
P(ζ|X,α,ω)

[F (ζ)] . (5)

Specifically, to set the concentration parameter of a DP prior using EB, McAuliffe et al.
(2006) take α to be the DP concentration parameter, F (ζ) to denote the number of

clusters observed for the dataset X of size N , and G(α, m) =
∑N

n=1
α

α+n−1 − m (see
their eq. 8).

EB procedures such as this one take the form of an estimating equation that depends
on a posterior moment, which can be differentiated by eqs. (1) and (2) and the chain rule.
Note that α̂ depends on ω, which we write as α̂(ω). Additionally, write α̂0 := α̂(ω0) and
m0 := m(α̂0, ω0). To compute a local robustness measure for the posterior expectation
of φ(ζ), we must compute

∂ E
P(ζ|X,α̂(ω),ω)

[φ(ζ)]

∂ω

∣

∣

∣

∣

∣

∣

ω0

,

accounting for the ω dependence in both the empirical Bayes procedure and the final
posterior expectation. This derivative can be readily computed by applying the chain
rule and eqs. (1) and (2). The result, given below in eq. (6), is a bit tedious, but its
computation is entirely mechanical (and automatable) and applies to any EB procedure
of the form in eq. (5).5

∂ E
P(ζ|X,α̂(ω),ω)

[φ(ζ)]

∂ω

∣

∣

∣

∣

∣

∣

ω0

= Cov
P(ζ|X,α̂0,ω0)

(

φ(ζ),
∂ log P(ζ, X|α̂0, ω)

∂ω

∣

∣

∣

∣

ω0

+
∂ log P(ζ, X|α, ω0)

∂α

∣

∣

∣

∣

α̂0

dα̂(ω)

dω

∣

∣

∣

∣

ω0

)

where
dα̂(ω)

dω

∣

∣

∣

∣

ω0

= −

(

∂G(α, m(α, ω0))

∂α

∣

∣

∣

∣

α̂0

)−1 (

∂G(α̂0, m)

∂m

∣

∣

∣

∣

m0

∂m(α̂0, ω)

∂ω

∣

∣

∣

∣

ω0

)

,

∂G(α, m(α, ω0))

∂α

∣

∣

∣

∣

α̂0

=
∂G(α, m0)

∂α

∣

∣

∣

∣

α̂0

+
∂G(α̂0, m)

∂m

∣

∣

∣

∣

m0

∂m(α, ω0)

∂α

∣

∣

∣

∣

α̂0

,

∂m(α, ω0)

∂α

∣

∣

∣

∣

α̂0

= Cov
P(ζ|X,α̂0,ω0)

(

F (ζ),
∂ log P(ζ, X|α, ω0)

∂α

∣

∣

∣

∣

α̂0

)

,

5For compactness, we have suppressed some evaluation notation in this display; for example, we
write α̂0 in place of α = α̂0. The evaluation is always done for the parameter with respect to which we
are differentiating.
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and
∂m(α0, ω)

∂ω

∣

∣

∣

∣

ω0

= Cov
P(ζ|X,α̂0,ω0)

(

F (ζ),
∂ log P(ζ, X|α̂0, ω)

∂ω

∣

∣

∣

∣

ω0

)

. (6)

One might ask whether eq. (6) can be applied to the EB procedure used by McAuliffe
et al. (2006) for the base measure. Unfortunately, since McAuliffe et al. (2006) estimate
the base measure nonparametrically, the space of possible base measures is infinite-
dimensional, and so one cannot apply eq. (1) directly. Versions of eq. (1) for infinite-
dimensional parameters exist (see, e.g., Chapter 4 of Zeidler, 1986), though applying
them in practice seems to be challenging and beyond the scope of this short rejoinder.
Alternatively, one could represent the base measure using a large but finite basis and
apply eq. (6).

Loss functions MacEachern and Lee ask whether we can compute sensitivity to the
loss function in a Bayesian analysis. Formally, for a posterior P(ζ|X) and loss function
L, under common regularity conditions we have

θ̂loss := argmin
θ

E
P(ζ|X)

[L(ζ, θ)] ⇔ E
P(ζ|X)

[

∂L(ζ, θ)

∂θ

∣

∣

∣

∣

θ=θ̂loss

]

= 0. (7)

We will consider the common situation described in eq. (7). However, we note that, by
exchanging the order of local robustness derivatives and posterior expectations, this ap-
proach could be naturally extended to estimators of the form given in Lee and MacEach-
ern (2014), i.e., E

P(ζ|X)

[

argminθ

∫

L(y, θ)ζ(dy)
]

for a distribution-valued ζ.

Equation (7) defines an estimating equation for θ̂loss. We can parameterize a path
to a different loss function using L(ζ, θ, ω) = L(ζ, θ) + ω∆(ζ, θ) for some ∆(ζ, θ). Then,
apply eq. (1) to eq. (7), and interchange differentiation and integration to get

dθ̂loss(ω)

dω

∣

∣

∣

∣

∣

ω=0

= −

(

E
P(ζ|X)

[

∂2L(ζ, θ)

∂θ∂θ

∣

∣

∣

∣

θ=θ̂loss

])−1

E
P(ζ|X)

[

∂∆(ζ, θ)

∂θ

∣

∣

∣

∣

θ=θ̂loss

]

. (8)

For example, to estimate the effect of replacing the mean with the median, we could
take L(ζ, θ) = 1

2 (ζ − θ)2, ∆ = |ζ − θ| − L(ζ, θ), and

Median(P(ζ|X)) − E
P(ζ|X)

[ζ] = θ̂loss(1) − θ̂loss(0) ≈
dθ̂loss(ω)

dω

∣

∣

∣

∣

∣

ω=0

(1 − 0)

= E
P(ζ|X)

[

I

(

ζ > E
P(ζ|X)

[ζ]

)]

− E
P(ζ|X)

[

I

(

ζ < E
P(ζ|X)

[ζ]

)]

. (9)

For example, this approximation reasonably asserts that the median will exceed the
mean when the posterior is asymmetric, with a greater mass to the right of the mean
than to the left. (But we will discuss some of its limitations in Section 3 below.)

Since ∆ could be any function satisfying basic regularity conditions, one could in
principle use eq. (8) to explore the space of loss functions—if one can believe that
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the approximation provided by ∆ �→ dθ̂loss(ω)
dω

∣

∣

∣

ω=0
is a good one uniformly over the

candidate set of perturbations ∆. However, again, we do not necessarily recommend
this for this particular path through the space of loss functions. On the contrary, we
will use this example in Section 3 below as an example of a derivative that may not
serve its intended purpose very well.

3 What makes a derivative useful?

In Section 2.1 above, we derived local robustness measures for several settings requested
by our respondents, and we expect that readers can readily derive most of the rest for
themselves. Have we solved all their problems? Certainly not! To the contrary, we will
argue that the computation of derivatives is straightforward, but showing their utility
is harder.

In our view, a useful derivative should (at least) satisfy a few related “usefulness
desiderata”: (1) be readily computable to the desired accuracy, (2) be easily inter-
pretable, and, most importantly, (3) extrapolate well so as to provide a reasonable
approximation to the “global robustness” problem. We have endeavored to show that
certain derivatives are at least plausibly useful, according to these criteria, for DP pri-
ors in VB approximations. In addition to considering Fréchet differentiability—which
is, arguably, a rather low bar for a derivative to pass—we primarily demonstrated our
local robustness measure’s ability to extrapolate through careful experiments and com-
parison with refitting. In certain situations, such as case influence in large datasets,
one can sometimes prove good extrapolation by bounding the second derivative under
readily interpretable conditions (as in Giordano et al., 2019b).

Evaluating the usefulness desiderata for the derivatives given in Section 2.1 above is
worth doing, and it is the work which constitutes most of the effort. We do not believe
that all the results of Section 2.1 will pass the test. Let us focus on the loss function
example, though many of these potential problems apply to the other settings as well.

Computability. The expected Hessian inside the inverse in eq. (8) will have Monte
Carlo error if estimated with MCMC, which will bias the inverse. Furthermore, if the
difference between L and L + ∆ occurs mostly in the tails, the expectation of the
derivative of ∆ may suffer from high MCMC noise.

Interpretability. The loss function derivative in eq. (8) will behave pathologically
as an approximation to losses that are pointwise close to the original loss function, but
have very large derivatives near θ̂loss. Without a judiciously constrained search space
to exclude such alternative loss functions, eq. (8) will provide poor guidance when
exploring the space of alternative loss functions. Unfortunately, a more complex search
space comes at a cost, which is the computational difficulty of optimizing a linear form
(i.e., the derivative in eq. (8), viewed as a functional of ∆) over this space.

Extrapolation. The example of the mean and median shows that the derivative
eq. (8) may not always extrapolate well in common use cases. Though we know that
the mean and median can be arbitrarily different in general, the approximation to the
difference in eq. (9) cannot be larger in magnitude than one.
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Attempting to investigate and repair these deficiencies—e.g., by improved MCMC
sampling, alternative paths through the space of loss functions, and the selection of
search sets in the space of loss functions—is an interesting and valuable project, and
one that may require considerably more effort than derivation of the local robustness
approximation.

The usefulness desiderata sufficed for our objective, which was primarily to provide
a tool for quickly exploring the space of stick-breaking priors in a way that is not
too computationally or technically burdensome, for a particular quantity of interest.
On the other hand, we do not attempt to detect sensitivity of the entire model (e.g.,
with a whole-distribution divergence measure), we do not assert that a large worst-
case derivative implied non-robustness (e.g., the corresponding prior may have looked
subjectively unreasonable), and we do not assert that our good results on extrapolation
will necessarily hold in very different settings (we primarily showed good extrapolation
via experiment). In this sense, our objectives are somewhat different than much of the
classical robustness literature, which we see as attempting to provide more universal
notions of “robustness.” For example, the foundational works of Ruggeri and Wasserman
(1993), Basu et al. (1996), Gustafson (1996), to which we are quite indebted, appear to
take as their task the definition of a single number which can be interrogated, relatively
free of context, to ascertain whether a posterior is “robust” or not. This goal is reflected
in how their techniques are used, for example, in Basu (2000). A similar goal of finding
universal metrics of “data importance” motivates much of the case deletion literature; it
is perhaps for this reason that many authors focus on various forms of whole-model KL
divergence or likelihood ratios (see, e.g., Johnson and Geisser, 1983; Cook, 1986; Carlin
and Polson, 1991). The production of a universally valid local robustness metric requires
even stricter conditions on the derivative than our usefulness desiderata; e.g., it must
extrapolate well in all directions, its worst-case perturbation must lead to a subjectively
reasonable prior, the researcher must actually care about whole-model sensitivity and
not just a particular posterior quantity, and so on.

Our context-specific approach and a more universalist approach need not be at odds.
On the contrary, the intuition and best practices arising from routine and systematic
assessment of prior assumptions might lead, in the end, to better and more universally
applicable metrics of robustness. Similarly, asymptotic analysis of the sort advocated by
Ascolani, Catalano, and Prünster can inform and be informed by the robustness
of particular finite-data settings.

Where local approximations fail to satisfy the usefulness desiderata, there is ample
room for creativity. The analysis of Griffin and Kalli, which both clearly demon-
strates a failure of a linear approximation to extrapolate and suggests a solution, seems
exemplary to us. Their idea of performing sensitivity analysis separately for a number of
local modes seems promising; to their suggestion we might add forming a (second order)
approximation to the value of the ELBO at these modes as well, in order to assess when
the relative ordering of the modes changes. Local approximations might also augment
other schemes, such as suggesting quadratic transforms for the importance sampling
techniques of MacEachern and Peruggia (2000).

We hope that researchers will feel empowered by this work to creatively explore the
space of model perturbations, relatively unencumbered by the difficulty of deriving local
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robustness measures, but attentive to their ability to answer useful questions in their
own modeling contexts.
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