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Abstract

We study a long standing open problem by Ulam, which is whether the
Fuclidean ball is the unique body of uniform density which will float in equilib-
rium in any direction. We answer this problem in the class of origin symmetric
n-dimensional convex bodies whose relative density to water is % For n = 3,
this result is due to Falconer.

1 Introduction and results

1.1 Ulam floating bodies

A long standing open problem asked by Ulam in [16] (see also [9], Problem 19), is
whether the Euclidean ball is the unique body of uniform density which floats in a
liquid in equilibrium in any direction. We call such a body Ulam floating body. The
formal definition is given below.

A two-dimensional counterexample was found for relative density p = % by Auerbach
2] and for densities p # 1 by Wegner [17]. These counterexamples are not origin
symmetric. For higher dimension, Wegner obtained results for non-convex bodies
(holes in the body are allowed) in [18]. The problem remains largely open in the class
of convex bodies in higher dimension. In order to study Ulam floating bodies, we
use the notion of the convexr floating body, which was introduced independently by
Barany and Larman [3] and by Schiitt and Werner [13]. Let K be a convex body in
R"and let 0 e R, 0 <6 < % Then the convex floating body Kj is defined as

Ks= () Hy,
uesSn—1

Here H;u is the halfspace with outer unit normal vector u, which “cuts off” a ¢
proportion of K, i.e. vol, (K N H(g"u) = § vol,(K). The convex floating body is a
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natural variation of Dupin’s floating body K[s (see [4]). A convex body K5 that is
contained in the convex body K is called a Dupin floating body of K if every support
hyperplane of K5 cuts off a set of volume ¢ vol,(K) exactly. In general K5 need not
exist. An example is e.g., the simplex in R™. Dupin showed that if the Dupin floating
body exists, each supporting hyperplane H touches K5 at the centroid g(K N H) of
KNH,

g(KNH) :/ xdx. (1)

H
If the floating body K5 exists, it is equal to the convex floating body Ks. It was
shown in [10] that for a symmetric convex body K, one has K5 = K.

We recall the relation between the density p and the volume dvol,(K) that is cut
off. If the liquid has density 1 and the body K has unit volume and density p, then
by Archimedes’ law the submerged volume equals the total mass of the body, i.e. p,
and consequently the floating part has volume 6 =1 — p.

In [7], the authors defined the metronoid Ms(K) of a convex body K to be the
body whose boundary consists of centroids of the floating parts of K, ie. K N H;u.
+ xdx, they defined Ms(K) by

S,u

More precisely, denoting Xy s5(u) = m Jxcom

OMs(K) = { Xgs(u) : ue S},
and showed that Xg 5 : S"' — OM;(K) is the Gauss map of Ms(K), i.e. the normal

to Ms(K) at Xgs(u) is u. Huang, Slomka and Werner showed the following |8,
Section 2.2] for details),

Theorem. [8] Let K be a convex body in R™. Then K is an Ulam floating body if
and only if Ms(K) is a Fuclidean ball.

We utilize this characterization in our proof of Theorem 1.2.

1.2 Main results

We start with the formal definition of the Ulam floating body. In this definition, and
elsewhere, we use the notation g(B) for the centroid of a set B and int(B) for the
interior of B.

Definition 1.1. Let K be a convex body in R". Let v € S*~! and H, a hyperplane
with outer normal u such that H; Nint(K) # (). Then

(i) w is an equilibrium direction for K <= ¢(K) — g(H; N K) is parallel to u.

(ii) K is an Ulam floating body, if every direction u is an equilibrium direction for K.

We present now two results concerning Ulam’s problem. We first establish a relation
between Ulam floating bodies and a uniform isotropicity property of sections. Our
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second result provides a short proof of a known answer to Ulam’s problem in the class
of symmetric convex bodies with relative density p = 1/2.

Theorem 1.2. Let § € (0, %} and let K C R™ be a convex body such that Ks is C*
or K5 = K5 reduces to a point. Then K is an Ulam floating body if and only if there
exists R > 0 such that for allu € S ! and v € S" ' Nu',

/ (z,v)* — (g(K N Hs,),v)* dz = § vol,(K)R. (2)
KﬂHtgyu
In that case, Ms(K) is a ball of radius R.

Remark. Note that if K5 = K5 reduces to a point, which without loss of generality
we can assume to be 0, then the condition (2) reduces to

/KmH (z,v)*dx = § vol,(K)R. (3)

We use the characterization given in Theorem 1.2 to give a short proof of the following
result which was proved in dimension 3 by Falconer [5]. It also follows from a result
in [11].

Theorem 1.3. Let K C R" be a symmetric convex body of volume 1 and density %
If K is an Ulam floating body, then K is a ball.

2 Background

We collect some definitions and basic results that we use throughout the paper. For
further facts in convex geometry we refer the reader to the books by Gardner [6] and
Schneider [12].

The radial function 7, : S"' — R* of a convex body K about a point p € R is
defined by
rrp(u) =max{\>0:\ue K —p}.

If 0 € int(K), the interior of K, we simply write 7 instead of 7 .

Let K C R"” be a convex body containing a strictly convex body D in its interior,
and let H be a hyperplane supporting D at a point p. If u is the outer unit normal
vector at p, we denote the restriction of the radial function rxng, to S tnut by
T K, D(’LL, )

We denote by By the Euclidean unit ball centered at 0 and by S™! = OB its
boundary. The spherical Radon transform R : C(S™1) — C(S™!) is defined by

Rfw) = [ fla)ds (@)
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for every f € C(S™71).

2.1 Some results on floating bodies

Since ¢ > % implies K5 = (), we restrict our attention to the range 6 € [O, %} It was

shown in [14] that there is ., 0 < 6. < % such that K, reduces to a point. It can

happen that J. < % An example is the simplex.
9 . . . . l
In fact, Helly’s Theorem (and a simple union bound) implies that 6, > s

have d, € (#1, 1.

SO we

As mentioned above, when Dupin’s floating body K5 exists, it coincides with the
convex floating body Kj;. The following lemma states that existence of K is also
guaranteed by smoothness of K5. We use this for Theorem 1.2.

Lemma 2.1. If Ks is C', then Ky exists and K5 = K.

Proof. Let x € 0Ks. By [14], there is at least one hyperplane H through x that cuts
off exactly dvol,(K) from K and this hyperplane touches 0K in the barycenter of
HNK. As K5 is C', the hyperplane at every boundary point z € Kj is unique. Thus
K[g] exists and K5 = K[(g]. ]

We know that K 1= {0} for every centrally symmetric convex body K. The Homo-
thety Conjecture [14] (see also [15, 19]), states that the homothety K5 = t(0)K only
occurs for ellipsoids. We treat the following conjecture which has a similar flavor.

Conjecture 2.2. Let K C R” be a convex body and let § € (0,%). If K5 s a
FEuclidean ball, then K is a Euclidean ball.

We now prove the two dimensional case of the conjecture.

Theorem 2.3. Let K C R? and suppose there is § € (0, %) such that Ks = r B3.
Then K = R B2, for some R > 0.

Proof. We shall prove that the radial function rx : S' — R is constant. If the
continuous function 7 is not constant, it must attain some value R > r such that
the angle 8 = arccos (%) € (0, %) is not a rational multiple of 7. Let u; € S! be
the point with rx(u1) = R, and let {u;};~, be the arithmetic progression on S* with
difference 26. We claim that rg is constant on {u;}. Indeed, assuming Ru; € 0K,
we consider the triangle with vertices O, Ru;, Ru;11 (see the figure below). The edge
[Ru;, Ru; 1] is tangent to K5 = rB% at its midpoint m;, and since Kj is smooth, the
chord on 0K containing Ru; and m; is bisected by m;, which implies Ru;.1 € 0K,
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i.e., T (u;y1) = R. Since 6 is not a rational multiple of 7, the sequence {u;} is dense
in S'. Since 7k is constant on a dense set and continuous, it is constant on S!, as

required.

R-uj4q

? ‘

3 Proof of the main theorems

3.1 Proof of Theorem 1.2

Proof. We first treat the case n = 2. Also, we first consider when K5 = K5 reduces
to a point. Without loss of generality we can assume that this point is 0. Then we
have for all u € S* that g(K N Hs,) = 0 by (1) and thus (¢(K N Hs,),v) = 0, for all

v € ut N St and the condition reduces to z,v)?dx = C. This observation is

fKﬁHg’u<
true in all dimensions.
Let u € S'. Let v € ut N S* = Hs,, N S'. Then, as Hs, = span{v}, we get for all

ve St

K (v) 2

/ (z,v)?dr = / v dr = Sri(v)?, (5)
KﬂHg’u 71”1((1}) 3

as 7x(v) = rx(—v). Hence if [, (r,v)’dv = C, then we get that for all v € S*

that r(v) = Cy, and hence K is a Euclidean ball and therefore also Ms(K) is a

Euclidean ball.

For the other direction, we fix u € S*. We may assume that u = (1,0), i.e., in polar
coordinates ug corresponds to = 0 and r(#) = 1. For ¢ small, let w = (cos ¢, sin ¢)



and define the sets
Ey=H{ NnH{ NK, E,=H; NH; NK, Ey=H; NH NK.
In order to compute the derivative of the boundary curve of Ms(K) we write

dvoly(K) - [XK,6(w> - XK,é(u)]

:/ a:d:z:'—/ xdx—/:cda:—/ xdx
FE1UFEs FE1UFE>
T+ —3+¢
/ / (cos@,sinf) r? dr df — / / (cos@,sin ) r? dr df

2+¢ 2 §+¢
= 2/ / (cos 0, sin @) v dr df = 3/ i (0)3(cos 8, sin 0) df.
3 0 3

Thus
d 2 T\ 3 i
1o [(Xks(w) — Xk s(u)] = 35 voly(K) K <¢ + 5) (—sin ¢, cos ¢)
and hence
d 2 T\ 3
‘dgb Xk s(w) — X s(u)]| = m Tk (¢+ §> : (6)
where | - | denotes the Euclidean norm. With z = wt, we get from (5) and (6) that
- ica() = Xl = oo [ ot 7)
d¢ Ko\ K. d voly(K) KN Hy ’ ’

If Ms(K) is a Euclidean ball with radius R, we write X s (cos ¢, sin ¢) = R (cos ¢, sin ¢)
in polar coordinates and get from (7)

m/}mmw(m,z)%x = ‘digb[XK’é(w) — X s(u)]
- | Bt - 7

To treat the case when K does not consist of just one point, we introduce the following
coordinate system for the complement of an open, strictly convex body D C R? with
smooth boundary (see also e.g., [20]). Let v : [0,27] — 0D be the inverse Gauss
map, and T : [0,27] — S* be the unit tangent vector to the curve at v(6), oriented
counterclockwise, i.e.,

) =notr8) = (g ). 1O =Lk = (0.

sin 6 cos




The coordinate system F : R x [0,27] — R? \ D is defined by

F(r,0) =~(0) +rT(0). (8)

Since %—f =T and %—g =" — rn, the Jacobian of F'is given by |r|.

Now we fix 0 < § < 1/2 and assume that K5 does not just consist of one point. We
then set D = int(K;), which has smooth boundary by assumption. Without loss of
generality, we can assume that 0 € int(Ks). It was shown in [14] that Kj is strictly
convex. Let u € S!, and assume without loss of generality that u = n(0) = (1,0).
Let w = n(¢) for an angle ¢ > 0 small enough, such that the lines Hs, and Hs,
intersect in the interior of K. Define the sets

Ele;umH;me, EQ:H;umH;me, EnggumH;me,

and let E4 be the bounded connected component of (H(;u N H(;w) \ K, see Figure.

Figure

Again, in order to compute the derivative of the boundary curve of My(K) we write

d volo(K) - [Xks(w) — Xk s(u) = / rdr — / xrdz
E1UE3 E1UE>

= / xdr — / xdx.
E3UEs E2UEy

Now we use the above introduced coordinate system. For n = n(6) and 7" = T'(9), let
Tk, k5 (0) be such that v(0) + rg k,(0) T € OK. As K5 = Kpg), 7(0) is the midpoint of



n(0)* N K by Dupin’s characterization of Kj5). Therefore

5VO].2 [XK(s( ) XK5

TKK5
= // F(r,0)|r| drdf — // F(r,0)|r|drdf
—Trk, K50
TK, K5 (0
= // F(T,H)Tde@—i—// F(r,0)rdrd
0 J—rk Kx;0)
TK, K5 (0
= // F(r,0)rdrdf.
TR, Ks(0

Now we use the definition of F'. Thus

T, Ks(0
Xis(w) — Xgs(u) = Svol (7 V012 / / )+ r*T(0) dr df

TK,Kg (6

—_— 3. (0) T(6)db.
5 VOIQ(K) /0 3 " (0) T(6)
As M;(K) is strictly convex and C* by [8], we can differentiate with respect to ¢ and
get,

IXics((6)) 2 e (9)
do 36 volo(K)

T(¢). (9)

On the other hand, for any 6 € [0, 27],

i, K5 (0)
[ wrenrd= [T @)+ o). re a
KNHs (6)

—TK,Ks (9)

T, K5 (0) T, Ks(0)
= 21k i, (0) (7(0),T(0))* + 2(v(), T(G))/ rdr +/ r2dr

—7K,K5(0) —7r,K5(0)

2 T%{,Ké(e)

3 3
since y(0) is the centroid g(K N Hsyg)) of K N Hspe). Combining (9) and (10), we
get that for 0 = ¢,

‘dXK’;Eﬁn((b)) ‘ B o V0112(K> /KﬂHs n(e) (z, T(¢)>2 —(g(KN H&"(d)))’ T(¢)>2 dx.

By [7, 8], the normal to OM;(K) at X s5(n(¢)) is n(¢) = (cos ¢, sin ¢) and as Ms(K)
is strictly convex and C' by [8], £(¢) = Xk s(n(9)) is a parametrization of OM;(K)
with respect to the angle of the normal. The curvature is given by 9 where s is

= (g(K N Hsn(p)), T())* voli (K N Hs ) + (10)

the arc length along the curve. Since % is a unit vector, we get by the chain rule
% = %% that the radius of curvature is given by
dXks(n(o)) ' 1 / ) )
qu - , - x7T¢ - gKmHzS,n 7T¢ dx.
(@) 19 5T Sy, TP~ (ol @) T(9))
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Since Ms(K) is a disk if and only if its radius of curvature is constant, the theorem
follows.

Let now n > 3.

Let v € S"! be arbitrary, but fixed, and let v € S" ' Nut. We denote by W =
span{u, v} the span of u and v and by W+ the (n—2)-dimensional subspace that is the
orthogonal complement of W. K = K|W is the orthogonal projection of the convex
body K onto the 2-dimensional subspace W. For a small ¢, let w = cos ¢ u+sin ¢ v.
We define F;, £, and Ej5 as follows,

By = (Hf, 0 HY )|W, Ey = (H}, 0 Hy )W, Es=(H;, NH),)|W

,w

and Fj is the curvilinear triangle enclosed by Hs.|W, H57w‘W, and the boundary of
K; = Ks|W. Then the picture is identical to the previous Figure. We let

E,=E; xW*, for i=1,234.

When K; reduces to a point, we can assume without loss of generality that K5 = {0}.
As noted before, the condition then reduces to || KNy, (z,v)?dz = C. In this case
E4 = () and the proof continues along the same lines as below. Alternatively, one can
replace the coordinate system (8) by the usual polar coordinates in W as it was done
in the case n = 2.

In the general case we thus have that

d voly(K) [Xks(w) — Xk s(u)] = / rdr — / xrdr
KnHy, KnHY,

:/ xdx—/ :de:/ $dx—/ xdx
Kﬂ(EluE;;) Kﬂ(EluEg) KNEs KNEs

:/ a:d:z:—/ rdx.
KN(E3UEY) KN(E3UE;Y)

For x € W, we consider the following parallel section function,
AKJ/V(.Z') = VOln,Q (K N {WJ' + iL‘}) (11)

and observe that by Fubini,

d vol,(K) [Xks(w)] = / zdz = / / y dy | dx.
KnHY K \J(@+WhnKnH;



We denote by g(B) =
- /I'm B Agw(z) (9((z+WHNK)) W dx

= / AK,W(‘,E) Z d.’E,
f(ﬂ(EgUEZ)

and similarly for 0 vol,(K)(Xxs(u))|W. Now we will use the coordinate system
F:R x [0,27] — R\ int (Kj), introduced earlier in (8),

( B) J 5 Y dy the centroid of the set B. Then we get

voly,

o) oy U ) )
KN (E3UEy) KN(E3UEy) (z+WHNK

/ g Aw@) ol £ WO E) dx)

§(Xgs(w)|W =

w

F(r,0) =~(0) +rT(0).

We can assume that n(0) = u. Then T'(0) = v. We recall that the Jacobian of F
is given by |r|. We abbreviate n = n(0) and T" = T'(6). We let rz ,(n(0)),T(0)) =
ri.i;(n, T) > 0 be such that v(0) +rz ,(n,T) T(9) € 0K, and rz g, (n, —T) > 0 be
such that v(0) + rg z,(n, T) (=T(0)) € OK. We get

§ voly(K) (Xks(w) — Xk s(u)) |W
_ / ’ / TRy D F(r,0) A (F(r0)) |r| drdf

6 0
_// F(r,0) A (F(r,0)) |r| drdo
0 _Tk,ké(nv_T)
¢ TK,K(;(n:T)
_ / / Fr,w) Aww (F(r,0)) rdrdo
0 0

/ / o F(r,0) Agw (F(r,0)) rdrdd

//TKK(;”T F(r,0) Axw(F(r,0)) rdrdf.

g Ké(n T)

We differentiate with respect to ¢,

d
§ vol, (K )dqﬁ (Xko(w) — Xgs(u)|W) =6 vol (K )%((XK,é(w))]W)
" i (M(9)T(9))
_ / Fr, 6) A (F(r, 8)) rdr.
—7 k5 (0(8),~T(®))
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Putting ¢ = 0, results in

o VOIH(K)C% ((XK(;(w))‘W)

TR R (W0)

= / F(r,0)Agw(F(r,0)) rdr

=0 TR, Ks (u,—v)

TR K (W0)
= / [7(0) + rv] Agw(F(r,0)) rdr

—Tg kg (W)

TR, K5 (W) ERACK))
= / v(0) Agw(F(r,0)) rdr —I—/ r? v Agw(F(r,0))dr
—rg kg (W) - ks (U,—v)
TR, K (4:0)
=0 / r? Agw(F(r,0))dr, (12)

—rg kg (W)

where the last equality holds by Dupin since H;,, N K is the centroid of Hs, N K, i.e.

T &5 (Uv)
/ 2(0) Agew (F(r,0)) rdr =0, (13)
—Tg, kg (u,=0)
Indeed, in the coordinate system (8), the centroid of Hj, N K is y(0). Thus, with
coordinate system (8) we get as above

vol,—1 (K N Hs,,) (v,7(0)) = / (v, ) dx

KﬂH(;,u

TR ks (W)
[ )+ ) A (P 0) dr

—T& K5 (W)

TR K5 (V) TR K5 (V)
= (7(0), ) / A (F(r,0)) dr + (v,0) / r A (F(r,0)) dr

TR, kg (u,=0) TR, K5 (=)

TR k5 (W)
— (7(0),v) voly_1 (K N Hy.) + / T A (F(r,0)) dr.

—TR K (u,—v)

On the other hand, again in the coordinate system (8), and also using (13),

TR R (W)
/ (2,0)? d = / T (0) 4 ro, 0 Ay (F(r,0))dr
KﬂHg’u

TR Ry (u,—v)

) TR Rg (u,v) rkﬁf(é(u,v) )
= (7(0), v) Agw(F(r,0))dr + re Agw(F(r,0))dr
—Tr &5 (4h—v) —Tr &5 (4—0)
Tk ks (W)
= (7(0),v)? vol,,_; (K N Hs.,,) +/ ' r* Agw(F(r,0))dr. (14)

g ks (w,—v)

As w = cos ¢ u + sin ¢ v, it follows from (12) and (14) that

5 (usteosoussino W) | = st [ (@ = 000000 s
1

= 5 volo(K) /}mHM ({2, 0)* = (g(K N Hsu),0)?) da.

¢=0
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Observe that in the case when K; = {0}, (¢9(K N Hs,),v) = 0. We have that
w = n(p) = cosp u+sing v € W is the outer unit normal to Ms(K) in Xs x(w).
Therefore, w is the outer unit normal to M;(K)|W in X(;VK(w)|W. Again, as M;s(K)
and therefore M;(K)|W is strictly convex and C* by [8], X (n(¢)) is a parametriza-
tion of the boundary of Ms(K )|W with respect to the angle of the normal. Thus the
curvature of Ms(K)|W is constant, which implies that Ms(K)|W is a disk. Since
W is arbitrary, we get that every two dimensional projection of Mj is a disk, and it
follows that Ms(K) is a Euclidean ball ([6], Corollary 3.1.6).

]

3.2 Proof of Theorem 1.3

Proof. Since K is symmetric and has volume 1 and density p = %, we have that § = %,
as noted above. Therefore, K1 = K1) = {0}. Since K is an Ulam floating body, the
remark after Theorem 1.2 implies that for any v € S"! and v € u*t N S"~1

/ULOK(x, v)2dr = C, (15)

for some constant C. Let u € S™~! be arbitrary, but fixed. We pass to polar coordi-
nates in u* and get for all v € u* N S" 1,

Tk (£) 1
c- | e )t do(€) = — ()€, )% ©).
utnsn—1 Jt=0 n+1 utngn—1
Now we integrate over all v € utNS""! = §"~2 w.r. to the normalized Haar measure
vol,— n—2
poon S"2. We use that [, (&, v)du(v) = ¢, ||€]| = ¢n, where ¢, = 2%(?1_2)) and

get that
(n+1)C

Cn

= [ Rl = Ry )

where R is the spherical Radon transform (4). We rewrite this equation as

_ 2vol,, 5 (B™"2) il
/uLmsnl do(8) = /uJ-QSTLI (n+1)C ri(€)" " do (6),

0= [ (e 0 2100

As u was arbitrary and as rg is even, it then follows from e.g., Theorem C.2.4 of [6]

or

that 75 = const. for o almost all © and as 7 is continuous, 7x = const. on S™ 1.
Thus K is a ball. O
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