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Abstract

We study a long standing open problem by Ulam, which is whether the

Euclidean ball is the unique body of uniform density which will float in equilib-

rium in any direction. We answer this problem in the class of origin symmetric

n-dimensional convex bodies whose relative density to water is 1
2 . For n = 3,

this result is due to Falconer.

1 Introduction and results

1.1 Ulam floating bodies

A long standing open problem asked by Ulam in [16] (see also [9], Problem 19), is

whether the Euclidean ball is the unique body of uniform density which floats in a

liquid in equilibrium in any direction. We call such a body Ulam floating body. The

formal definition is given below.

A two-dimensional counterexample was found for relative density ρ = 1
2

by Auerbach

[2] and for densities ρ 6= 1
2

by Wegner [17]. These counterexamples are not origin

symmetric. For higher dimension, Wegner obtained results for non-convex bodies

(holes in the body are allowed) in [18]. The problem remains largely open in the class

of convex bodies in higher dimension. In order to study Ulam floating bodies, we

use the notion of the convex floating body, which was introduced independently by

Bárány and Larman [3] and by Schütt and Werner [13]. Let K be a convex body in

Rn and let δ ∈ R, 0 ≤ δ ≤ 1
2
. Then the convex floating body Kδ is defined as

Kδ =
⋂

u∈Sn−1

H−δ,u.

Here H+
δ,u is the halfspace with outer unit normal vector u, which “cuts off” a δ

proportion of K, i.e. voln
(
K ∩H+

δ,u

)
= δ voln(K). The convex floating body is a
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natural variation of Dupin’s floating body K[δ] (see [4]). A convex body K[δ] that is

contained in the convex body K is called a Dupin floating body of K if every support

hyperplane of K[δ] cuts off a set of volume δ voln(K) exactly. In general K[δ] need not

exist. An example is e.g., the simplex in Rn. Dupin showed that if the Dupin floating

body exists, each supporting hyperplane H touches K[δ] at the centroid g(K ∩H) of

K ∩H,

g(K ∩H) =

∫
H

xdx. (1)

If the floating body K[δ] exists, it is equal to the convex floating body Kδ. It was

shown in [10] that for a symmetric convex body K, one has K[δ] = Kδ.

We recall the relation between the density ρ and the volume δvoln(K) that is cut

off. If the liquid has density 1 and the body K has unit volume and density ρ, then

by Archimedes’ law the submerged volume equals the total mass of the body, i.e. ρ,

and consequently the floating part has volume δ = 1− ρ.

In [7], the authors defined the metronoid Mδ(K) of a convex body K to be the

body whose boundary consists of centroids of the floating parts of K, i.e. K ∩H+
δ,u.

More precisely, denoting XK,δ(u) = 1
δvoln(K)

∫
K∩H+

δ,u
x dx, they defined Mδ(K) by

∂Mδ(K) =
{
XK,δ(u) : u ∈ Sn−1

}
,

and showed that XK,δ : Sn−1 → ∂Mδ(K) is the Gauss map of Mδ(K), i.e. the normal

to Mδ(K) at XK,δ(u) is u. Huang, Slomka and Werner showed the following [8,

Section 2.2] for details),

Theorem. [8] Let K be a convex body in Rn. Then K is an Ulam floating body if

and only if Mδ(K) is a Euclidean ball.

We utilize this characterization in our proof of Theorem 1.2.

1.2 Main results

We start with the formal definition of the Ulam floating body. In this definition, and

elsewhere, we use the notation g(B) for the centroid of a set B and int(B) for the

interior of B.

Definition 1.1. Let K be a convex body in Rn. Let u ∈ Sn−1 and Hu a hyperplane

with outer normal u such that H+
u ∩ int(K) 6= ∅. Then

(i) u is an equilibrium direction for K ⇐⇒ g(K)− g(H+
u ∩K) is parallel to u.

(ii) K is an Ulam floating body, if every direction u is an equilibrium direction for K.

We present now two results concerning Ulam’s problem. We first establish a relation

between Ulam floating bodies and a uniform isotropicity property of sections. Our
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second result provides a short proof of a known answer to Ulam’s problem in the class

of symmetric convex bodies with relative density ρ = 1/2.

Theorem 1.2. Let δ ∈
(
0, 1

2

]
and let K ⊂ Rn be a convex body such that Kδ is C1

or Kδ = K[δ] reduces to a point. Then K is an Ulam floating body if and only if there

exists R > 0 such that for all u ∈ Sn−1 and v ∈ Sn−1 ∩ u⊥,∫
K∩Hδ,u

〈x, v〉2 − 〈g(K ∩Hδ,u), v〉2 dx = δ voln(K)R. (2)

In that case, Mδ(K) is a ball of radius R.

Remark. Note that if Kδ = K[δ] reduces to a point, which without loss of generality

we can assume to be 0, then the condition (2) reduces to∫
K∩Hδ,u

〈x, v〉2 dx = δ voln(K)R. (3)

We use the characterization given in Theorem 1.2 to give a short proof of the following

result which was proved in dimension 3 by Falconer [5]. It also follows from a result

in [11].

Theorem 1.3. Let K ⊂ Rn be a symmetric convex body of volume 1 and density 1
2
.

If K is an Ulam floating body, then K is a ball.

2 Background

We collect some definitions and basic results that we use throughout the paper. For

further facts in convex geometry we refer the reader to the books by Gardner [6] and

Schneider [12].

The radial function rK,p : Sn−1 → R+ of a convex body K about a point p ∈ Rn is

defined by

rK,p(u) = max{λ ≥ 0 : λu ∈ K − p}.

If 0 ∈ int(K), the interior of K, we simply write rK instead of rK,0.

Let K ⊂ Rn be a convex body containing a strictly convex body D in its interior,

and let H be a hyperplane supporting D at a point p. If u is the outer unit normal

vector at p, we denote the restriction of the radial function rK∩H,p to Sn−1 ∩ u⊥ by

rK,D(u, ·).

We denote by Bn
2 the Euclidean unit ball centered at 0 and by Sn−1 = ∂Bn

2 its

boundary. The spherical Radon transform R : C(Sn−1)→ C(Sn−1) is defined by

Rf(u) =

∫
u⊥∩Sn−1

f(x)dx (4)

3



for every f ∈ C(Sn−1).

2.1 Some results on floating bodies

Since δ > 1
2

implies Kδ = ∅, we restrict our attention to the range δ ∈
[
0, 1

2

]
. It was

shown in [14] that there is δc, 0 < δc ≤ 1
2

such that Kδc reduces to a point. It can

happen that δc <
1
2
. An example is the simplex.

In fact, Helly’s Theorem (and a simple union bound) implies that δc >
1

n+1
, so we

have δc ∈
(

1
n+1

, 1
2

]
.

As mentioned above, when Dupin’s floating body K[δ] exists, it coincides with the

convex floating body Kδ. The following lemma states that existence of K[δ] is also

guaranteed by smoothness of Kδ. We use this for Theorem 1.2.

Lemma 2.1. If Kδ is C1, then K[δ] exists and Kδ = K[δ].

Proof. Let x ∈ ∂Kδ. By [14], there is at least one hyperplane H through x that cuts

off exactly δvoln(K) from K and this hyperplane touches ∂Kδ in the barycenter of

H ∩K. As Kδ is C1, the hyperplane at every boundary point x ∈ Kδ is unique. Thus

K[δ] exists and Kδ = K[δ].

We know that K 1
2

= {0} for every centrally symmetric convex body K. The Homo-

thety Conjecture [14] (see also [15, 19]), states that the homothety Kδ = t(δ)K only

occurs for ellipsoids. We treat the following conjecture which has a similar flavor.

Conjecture 2.2. Let K ⊂ Rn be a convex body and let δ ∈
(
0, 1

2

)
. If Kδ is a

Euclidean ball, then K is a Euclidean ball.

We now prove the two dimensional case of the conjecture.

Theorem 2.3. Let K ⊂ R2 and suppose there is δ ∈
(
0, 1

2

)
such that Kδ = r B2

2 .

Then K = R B2
2 , for some R > 0.

Proof. We shall prove that the radial function rK : S1 → R is constant. If the

continuous function rK is not constant, it must attain some value R > r such that

the angle θ = arccos
(
r
R

)
∈
(
0, π

2

)
is not a rational multiple of π. Let u1 ∈ S1 be

the point with rK(u1) = R, and let {ui}∞i=1 be the arithmetic progression on S1 with

difference 2θ. We claim that rK is constant on {ui}. Indeed, assuming Rui ∈ ∂K,

we consider the triangle with vertices O, Rui, Rui+1 (see the figure below). The edge

[Rui, Rui+1] is tangent to Kδ = rB2
2 at its midpoint mi, and since Kδ is smooth, the

chord on ∂K containing Rui and mi is bisected by mi, which implies Rui+1 ∈ ∂K,
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i.e., rK(ui+1) = R. Since θ is not a rational multiple of π, the sequence {ui} is dense

in S1. Since rK is constant on a dense set and continuous, it is constant on S1, as

required.

3 Proof of the main theorems

3.1 Proof of Theorem 1.2

Proof. We first treat the case n = 2. Also, we first consider when Kδ = K[δ] reduces

to a point. Without loss of generality we can assume that this point is 0. Then we

have for all u ∈ S1 that g(K ∩Hδ,u) = 0 by (1) and thus 〈g(K ∩Hδ,u), v〉 = 0, for all

v ∈ u⊥ ∩ S1 and the condition reduces to
∫
K∩Hδ,u

〈x, v〉2dx = C. This observation is

true in all dimensions.

Let u ∈ S1. Let v ∈ u⊥ ∩ S1 = Hδ,u ∩ S1. Then, as Hδ,u = span{v}, we get for all

v ∈ S1, ∫
K∩Hδ,u

〈x, v〉2dx =

∫ rK(v)

−rK(v)

x2dx =
2

3
rK(v)3, (5)

as rK(v) = rK(−v). Hence if
∫
K∩Hδ,u

〈x, v〉2dx = C, then we get that for all v ∈ S1

that rK(v) = C1, and hence K is a Euclidean ball and therefore also Mδ(K) is a

Euclidean ball.

For the other direction, we fix u ∈ S1. We may assume that u = (1, 0), i.e., in polar

coordinates u0 corresponds to θ = 0 and r(θ) = 1. For φ small, let w = (cosφ, sinφ)
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and define the sets

E1 = H+
δ,u ∩H

+
δ,w ∩K, E2 = H+

δ,u ∩H
−
δ,w ∩K, E3 = H−δ,u ∩H

+
δ,w ∩K.

In order to compute the derivative of the boundary curve of Mδ(K) we write

δvol2(K) ·
[
XK,δ(w)−XK,δ(u)

]
=

∫
E1∪E3

x dx−
∫
E1∪E2

x dx =

∫
E3

x dx−
∫
E2

x dx

=

∫ π
2

+φ

π
2

∫ rK(θ)

0

(cos θ, sin θ) r2 dr dθ −
∫ −π

2
+φ

−π
2

∫ rK(θ)

0

(cos θ, sin θ) r2 dr dθ

= 2

∫ π
2

+φ

π
2

∫ rK(θ)

0

(cos θ, sin θ) r2 dr dθ =
2

3

∫ π
2

+φ

π
2

rK(θ)3(cos θ, sin θ) dθ.

Thus

d

dφ
[XK,δ(w)−XK,δ(u)] =

2

3 δ vol2(K)
rK

(
φ+

π

2

)3

(− sinφ, cosφ)

and hence ∣∣∣∣ ddφ [XK,δ(w)−XK,δ(u)]

∣∣∣∣ =
2

3 δ vol2(K)
rK

(
φ+

π

2

)3

, (6)

where | · | denotes the Euclidean norm. With z = w⊥, we get from (5) and (6) that∣∣∣∣ ddφ [XK,δ(w)−XK,δ(u)]

∣∣∣∣ =
1

δ vol2(K)

∫
K∩Hδ,w

〈x, z〉2dx. (7)

IfMδ(K) is a Euclidean ball with radius R, we writeXK,δ (cosφ, sinφ) = R (cosφ, sinφ)

in polar coordinates and get from (7)

1

δ vol2(K)

∫
K∩Hδ,w

〈x, z〉2dx =

∣∣∣∣ ddφ [XK,δ(w)−XK,δ(u)]

∣∣∣∣
=

∣∣∣∣ ddφ [XK,δ(w)]

∣∣∣∣ = R.

To treat the case whenKδ does not consist of just one point, we introduce the following

coordinate system for the complement of an open, strictly convex body D ⊂ R2 with

smooth boundary (see also e.g., [20]). Let γ : [0, 2π] → ∂D be the inverse Gauss

map, and T : [0, 2π] → S1 be the unit tangent vector to the curve at γ(θ), oriented

counterclockwise, i.e.,

n(θ) := nD(γ(θ)) =

(
cos θ

sin θ

)
, T (θ) =

γ′(θ)∣∣γ′(θ)∣∣ =

(
− sin θ

cos θ

)
.
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The coordinate system F : R× [0, 2π]→ R2 \D is defined by

F (r, θ) = γ(θ) + rT (θ). (8)

Since ∂F
∂r

= T and ∂F
∂θ

= γ′ − rn, the Jacobian of F is given by |r|.

Now we fix 0 < δ < 1/2 and assume that Kδ does not just consist of one point. We

then set D = int(Kδ), which has smooth boundary by assumption. Without loss of

generality, we can assume that 0 ∈ int(Kδ). It was shown in [14] that Kδ is strictly

convex. Let u ∈ S1, and assume without loss of generality that u = n(0) = (1, 0).

Let w = n(φ) for an angle φ > 0 small enough, such that the lines Hδ,u and Hδ,w

intersect in the interior of K. Define the sets

E1 = H+
δ,u ∩H

+
δ,w ∩K, E2 = H+

δ,u ∩H
−
δ,w ∩K, E3 = H−δ,u ∩H

+
δ,w ∩K,

and let E4 be the bounded connected component of
(
H−δ,u ∩H

−
δ,w

)
\Kδ, see Figure.

Figure

Again, in order to compute the derivative of the boundary curve of Mδ(K) we write

δ vol2(K) · [XK,δ(w)−XK,δ(u)] =

∫
E1∪E3

x dx−
∫
E1∪E2

x dx

=

∫
E3∪E4

x dx−
∫
E2∪E4

x dx.

Now we use the above introduced coordinate system. For n = n(θ) and T = T (θ), let

rK,Kδ(θ) be such that γ(θ) + rK,Kδ(θ) T ∈ ∂K. As Kδ = K[δ], γ(θ) is the midpoint of
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n(θ)⊥ ∩K by Dupin’s characterization of K[δ]. Therefore

δ vol2(K) · [XK,δ(w)−XK,δ(u)]

=

∫ φ

0

∫ rK,Kδ (θ)

0

F (r, θ)|r| dr dθ −
∫ φ

0

∫ 0

−rK,Kδ (θ)

F (r, θ)|r| dr dθ

=

∫ φ

0

∫ rK,Kδ (θ)

0

F (r, θ)r dr dθ +

∫ φ

0

∫ 0

−rK,Kδ (θ)

F (r, θ)r dr dθ

=

∫ φ

0

∫ rK,Kδ (θ)

−rK,Kδ (θ)

F (r, θ)r dr dθ.

Now we use the definition of F . Thus

XK,δ(w)−XK,δ(u) =
1

δ vol2(K)

∫ φ

0

∫ rK,Kδ (θ)

−rK,Kδ (θ)

rγ(θ) + r2T (θ) dr dθ

=
1

δ vol2(K)

∫ φ

0

2

3
r3
K,Kδ

(θ) T (θ) dθ.

As Mδ(K) is strictly convex and C1 by [8], we can differentiate with respect to φ and

get,
dXK,δ(n(φ))

dφ
=

2 r3
K,Kδ

(φ)

3 δ vol2(K)
T (φ). (9)

On the other hand, for any θ ∈ [0, 2π],∫
K∩Hδ,n(θ)

〈x, T (θ)〉2 dx =

∫ rK,Kδ (θ)

−rK,Kδ (θ)

〈γ(θ) + rT (θ), T (θ)〉2 dr

= 2rK,Kδ(θ) 〈γ(θ), T (θ)〉2 + 2〈γ(θ), T (θ)〉
∫ rK,Kδ (θ)

−rK,Kδ (θ)

rdr +

∫ rK,Kδ (θ)

−rK,Kδ (θ)

r2dr

= 〈g(K ∩Hδ,n(θ)), T (θ)〉2 vol1(K ∩Hδ,n(θ)) +
2 r3

K,Kδ
(θ)

3
, (10)

since γ(θ) is the centroid g(K ∩Hδ,n(θ)) of K ∩Hδ,n(θ). Combining (9) and (10), we

get that for θ = φ,∣∣∣∣dXK,δ(n(φ))

dφ

∣∣∣∣ =
1

δ vol2(K)

∫
K∩Hδ,n(φ)

〈x, T (φ)〉2 − 〈g(K ∩Hδ,n(φ)), T (φ)〉2 dx.

By [7, 8], the normal to ∂Mδ(K) at XK,δ(n(φ)) is n(φ) = (cosφ, sinφ) and as Mδ(K)

is strictly convex and C1 by [8], ξ(φ) = XK,δ(n(φ)) is a parametrization of ∂Mδ(K)

with respect to the angle of the normal. The curvature is given by dφ
ds

where s is

the arc length along the curve. Since dξ
ds

is a unit vector, we get by the chain rule
dξ
ds

= dξ
dφ

dφ
ds

that the radius of curvature is given by

R(φ) =

∣∣∣∣dXK,δ(n(φ))

dφ

∣∣∣∣ =
1

δ vol2(K)

∫
K∩Hδ,n(φ)

〈x, T (φ)〉2 − 〈g(K ∩Hδ,n(φ)), T (φ)〉2 dx.
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Since Mδ(K) is a disk if and only if its radius of curvature is constant, the theorem

follows.

Let now n ≥ 3.

Let u ∈ Sn−1 be arbitrary, but fixed, and let v ∈ Sn−1 ∩ u⊥. We denote by W =

span{u, v} the span of u and v and by W⊥ the (n−2)-dimensional subspace that is the

orthogonal complement of W . K̄ = K|W is the orthogonal projection of the convex

body K onto the 2-dimensional subspace W . For a small φ, let w = cosφ u+ sinφ v.

We define Ē1, Ē2 and Ē3 as follows,

Ē1 = (H+
δ,u ∩H

+
δ,w)
∣∣W, Ē2 = (H+

δ,u ∩H
−
δ,η)
∣∣W, Ē3 = (H−δ,u ∩H

+
δ,w)
∣∣W

and Ē4 is the curvilinear triangle enclosed by Hδ,u|W , Hδ,w

∣∣W , and the boundary of

K̄δ = Kδ|W . Then the picture is identical to the previous Figure. We let

Ei = Ēi ×W⊥, for i = 1, 2, 3, 4.

When Kδ reduces to a point, we can assume without loss of generality that Kδ = {0}.
As noted before, the condition then reduces to

∫
K∩Hδ,u

〈x, v〉2dx = C. In this case

Ē4 = ∅ and the proof continues along the same lines as below. Alternatively, one can

replace the coordinate system (8) by the usual polar coordinates in W as it was done

in the case n = 2.

In the general case we thus have that

δ voln(K) [XK,δ(w)−XK,δ(u)] =

∫
K∩H+

δ,w

x dx−
∫
K∩H+

δ,u

x dx

=

∫
K∩(E1∪E3)

x dx−
∫
K∩(E1∪E2)

x dx =

∫
K∩E3

x dx−
∫
K∩E2

x dx

=

∫
K∩(E3∪E4)

x dx−
∫
K∩(E2∪E4)

x dx.

For x ∈ W , we consider the following parallel section function,

AK,W (x) = voln−2

(
K ∩ {W⊥ + x}

)
(11)

and observe that by Fubini,

δ voln(K) [XK,δ(w)] =

∫
K∩H+

δ,w

z dz =

∫
K̄

(∫
(x+W⊥)∩K∩H+

δ,w

y dy

)
dx.
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We denote by g(B) = 1
voln(B)

∫
B
y dy the centroid of the set B. Then we get

δ(XK,δ(w))
∣∣W =

(∫
K∩(E3∪E4)

x dx

) ∣∣∣∣∣W =

(∫
K̄∩(Ē3∪Ē4)

(∫
(x+W⊥)∩K

y dy

)
dx

) ∣∣∣∣∣W
=

(∫
K̄∩(Ē3∪Ē4)

AK,W (x) g((x+W⊥) ∩K) dx

) ∣∣∣∣∣W
=

∫
K̄∩(Ē3∪Ē4)

AK,W (x)
(
g((x+W⊥) ∩K)

) ∣∣W dx

=

∫
K̄∩(Ē3∪Ē4)

AK,W (x) x dx,

and similarly for δ voln(K)(XK,δ(u))
∣∣W . Now we will use the coordinate system

F : R× [0, 2π]→ R \ int
(
K̄δ

)
, introduced earlier in (8),

F (r, θ) = γ(θ) + rT (θ).

We can assume that n(0) = u. Then T (0) = v. We recall that the Jacobian of F

is given by |r|. We abbreviate n = n(θ) and T = T (θ). We let rK̄,K̄δ(n(θ)), T (θ)) =

rK̄,K̄δ(n, T ) > 0 be such that γ(θ) + rK̄,K̄δ(n, T ) T (θ) ∈ ∂K̄, and rK̄,K̄δ(n,−T ) > 0 be

such that γ(θ) + rK̄,K̄δ(n, T ) (−T (θ)) ∈ ∂K̄. We get

δ voln(K) (XK,δ(w)−XK,δ(u))
∣∣W

=

∫ φ

0

∫ rK̄,K̄δ
(n,T )

0

F (r, θ) AK,W (F (r, θ)) |r| dr dθ

−
∫ φ

0

∫ 0

−rK̄,K̄δ (n,−T )

F (r, θ) AK,W (F (r, θ)) |r| dr dθ

=

∫ φ

0

∫ rK̄,K̄δ
(n,T )

0

F (r, w) AK,W (F (r, θ)) r dr dθ

+

∫ φ

0

∫ 0

−rK̄,K̄δ (n,−T )

F (r, θ) AK,W (F (r, θ)) r dr dθ

=

∫ φ

0

∫ rK̄,K̄δ
(n,T )

−rK̄,K̄δ (n,−T )

F (r, θ) AK,W (F (r, θ)) r dr dθ.

We differentiate with respect to φ,

δ voln(K)
d

dφ

(
(XK,δ(w)−XK,δ(u))

∣∣W) = δ voln(K)
d

dφ

(
(XK,δ(w))

∣∣W)
=

∫ rK̄,K̄δ
(n(φ),T (φ))

−rK̄,K̄δ (n(φ),−T (φ))

F (r, φ)AK,W (F (r, φ)) r dr.
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Putting φ = 0, results in

δ voln(K)
d

dφ

(
(XK,δ(w))

∣∣W) ∣∣∣∣∣
φ=0

=

∫ rK̄,K̄δ
(u,v)

−rK̄,K̄δ (u,−v)

F (r, 0)AK,W (F (r, 0)) r dr

=

∫ rK̄,K̄δ
(u,v)

−rK̄,K̄δ (u,−v)

[γ(0) + rv] AK,W (F (r, 0)) r dr

=

∫ rK̄,K̄δ
(u,v)

−rK̄,K̄δ (u,−v)

γ(0) AK,W (F (r, 0)) r dr +

∫ rK̄,K̄δ
(u,v)

−rK̄,K̄δ (u,−v)

r2 v AK,W (F (r, 0)) dr

= v

∫ rK̄,K̄δ
(u,v)

−rK̄,K̄δ (u,−v)

r2 AK,W (F (r, 0)) dr, (12)

where the last equality holds by Dupin since Hδ,u∩Kδ is the centroid of Hδ,u∩K, i.e.∫ rK̄,K̄δ
(u,v)

−rK̄,K̄δ (u,−v)

γ(0) AK,W (F (r, 0)) r dr = 0. (13)

Indeed, in the coordinate system (8), the centroid of Hδ,u ∩ K is γ(0). Thus, with

coordinate system (8) we get as above

voln−1 (K ∩Hδ,u) 〈v, γ(0)〉 =

∫
K∩Hδ,u

〈v, x〉 dx

=

∫ rK̄,K̄δ
(u,v)

−rK̄,K̄δ (u,−v)

〈γ(0) + rv, v〉 AK,W (F (r, 0)) dr

= 〈γ(0), v〉
∫ rK̄,K̄δ

(u,v)

−rK̄,K̄δ (u,−v)

AK,W (F (r, 0)) dr + 〈v, v〉
∫ rK̄,K̄δ

(u,v)

−rK̄,K̄δ (u,−v)

r AK,W (F (r, 0)) dr

= 〈γ(0), v〉 voln−1 (K ∩Hδ,u) +

∫ rK̄,K̄δ
(u,v)

−rK̄,K̄δ (u,−v)

r AK,W (F (r, 0)) dr.

On the other hand, again in the coordinate system (8), and also using (13),∫
K∩Hδ,u

〈x, v〉2 dx =

∫ rK̄,K̄δ
(u,v)

−rK̄,K̄δ (u,−v)

〈γ(0) + rv, v〉2 AK,W (F (r, 0))dr

= 〈γ(0), v〉2
∫ rK̄,K̄δ

(u,v)

−rK̄,K̄δ (u,−v)

AK,W (F (r, 0))dr +

∫ rK̄,K̄δ
(u,v)

−rK̄,K̄δ (u,−v)

r2 AK,W (F (r, 0))dr

= 〈γ(0), v〉2 voln−1 (K ∩Hδ,u) +

∫ rK̄,K̄δ
(u,v)

−rK̄,K̄δ (u,−v)

r2 AK,W (F (r, 0))dr. (14)

As w = cosφ u+ sinφ v, it follows from (12) and (14) that∣∣∣∣∣ ddφ (XK,δ(cosφ u+ sinφ v)
∣∣∣W) ∣∣∣

φ=0

∣∣∣∣∣ =
1

δvoln(K)

∫
K∩Hδ,u

(
〈x, v〉2 − 〈γ(0), v〉2

)
dx

=
1

δ voln(K)

∫
K∩Hδ,u

(
〈x, v〉2 − 〈g(K ∩Hδ,u), v〉2

)
dx.
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Observe that in the case when Kδ = {0}, 〈g(K ∩ Hδ,u), v〉 = 0. We have that

w = n(φ) = cosφ u + sinφ v ∈ W is the outer unit normal to Mδ(K) in Xδ,K(w).

Therefore, w is the outer unit normal to Mδ(K)
∣∣W in Xδ,K(w)

∣∣W . Again, as Mδ(K)

and therefore Mδ(K)
∣∣W is strictly convex and C1 by [8], Xδ,K(n(φ)) is a parametriza-

tion of the boundary of Mδ(K)
∣∣W with respect to the angle of the normal. Thus the

curvature of Mδ(K)
∣∣W is constant, which implies that Mδ(K)

∣∣W is a disk. Since

W is arbitrary, we get that every two dimensional projection of Mδ is a disk, and it

follows that Mδ(K) is a Euclidean ball ([6], Corollary 3.1.6).

3.2 Proof of Theorem 1.3

Proof. Since K is symmetric and has volume 1 and density ρ = 1
2
, we have that δ = 1

2
,

as noted above. Therefore, K 1
2

= K[ 1
2

] = {0}. Since K is an Ulam floating body, the

remark after Theorem 1.2 implies that for any u ∈ Sn−1 and v ∈ u⊥ ∩ Sn−1∫
u⊥∩K

〈x, v〉2 dx = C, (15)

for some constant C. Let u ∈ Sn−1 be arbitrary, but fixed. We pass to polar coordi-

nates in u⊥ and get for all v ∈ u⊥ ∩ Sn−1,

C =

∫
u⊥∩Sn−1

∫ rK(ξ)

t=0

tn〈ξ, v〉2dt dσ(ξ) =
1

n+ 1

∫
u⊥∩Sn−1

rK(ξ)n+1〈ξ, v〉2dσ(ξ).

Now we integrate over all v ∈ u⊥∩Sn−1 = Sn−2 w.r. to the normalized Haar measure

µ on Sn−2. We use that
∫
Sn−2〈ξ, v〉2dµ(v) = cn‖ξ‖ = cn, where cn = 2

voln−2(Bn−2)
voln−2(Sn−2)

and

get that

(n+ 1)C

cn
=

∫
u⊥∩Sn−1

rK(ξ)n+1dσ(ξ) = R rn+1
K (u),

where R is the spherical Radon transform (4). We rewrite this equation as∫
u⊥∩Sn−1

dσ(ξ) =

∫
u⊥∩Sn−1

2voln−2 (Bn−2)

(n+ 1)C
rK(ξ)n+1dσ(ξ),

or

0 =

∫
u⊥∩Sn−1

(
2voln−1 (Bn−2)

(n+ 1)C
rK(ξ)n+1 − 1

)
dσ(ξ).

As u was arbitrary and as rK is even, it then follows from e.g., Theorem C.2.4 of [6]

that rK = const. for σ almost all u and as rK is continuous, rK = const. on Sn−1.

Thus K is a ball.

12
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Flottants. Studia Mathematica 7, 121–142 (1938).
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