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Many two-level nested simulation applications involve the conditional expectation of some response variable,

where the expected response is the quantity of interest, and the expectation is with respect to the inner-level

random variables, conditioned on the outer-level random variables. The latter typically represent random

risk factors, and risk can be quantified by estimating the probability density function (pdf) or cumulative

distribution function (cdf) of the conditional expectation. Much prior work has considered a naïve estimator

that uses the empirical distribution of the sample averages across the inner-level replicates. This results in a

biased estimator, because the distribution of the sample averages is over-dispersed relative to the distribution

of the conditional expectation when the number of inner-level replicates is finite. Whereas most prior work

has focused on allocating the numbers of outer- and inner-level replicates to balance the bias/variance trade-

off, we develop a bias-corrected pdf estimator. Our approach is based on the concept of density deconvolution,

which is widely used to estimate densities with noisy observations but has not previously been considered for

nested simulation problems. For a fixed computational budget, the bias-corrected deconvolution estimator al-

lows more outer-level and fewer inner-level replicates to be used, which substantially improves the efficiency

of the nested simulation.
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1 INTRODUCTION

Nested Monte Carlo simulations (a.k.a. two-level simulations) are widely used for risk assessment
in engineering, finance, and other areas. To make things more concrete, consider the example of
portfolio risk assessment, in which the outer level draws random realizations (scenarios i) of his-
tories of cash flows, commodity, and equity prices, and other random risk factors for each position
in the portfolio, from current time up to some specified future time horizon. The intent is to es-
timate the future value of the portfolio at the horizon for each specific risk factor realization. To
estimate the portfolio value at the horizon for one risk factor realization (which corresponds to one
outer-level replicate), an inner-level simulation draws multiple random realizations (a different re-
alization j for each inner-level replicate) of position behavior beyond the horizon up to some final
maturity time. Variation across the outer simulations is financial risk and is of interest. Variation
among inner-level simulations is Monte Carlo measurement error and, as will be explained, causes
bias that needs to be corrected.
Let n denote the number of outer-level replicates,mi the number of inner-level replicates on the

ith outer-level replicate (which we refer to as the ith scenario), and Yi j the scalar simulated output
response of interest for the jth inner-level replicate of the ith scenario.
In the example, the response Yi j would be the simulated value of all positions in the portfolio at

maturity time for that inner-level realization j within the ith outer-level simulation, plus various
things like accrued cash flows at the horizon, and then discounted back to the current time. Condi-
tioned on the outer-level random quantities for scenario i , the repricing of positions for scenario i
that will occur at the horizon is based on their simulated values {Yi j : j = 1, 2, . . . ,mi } at the matu-
rity time. Specifically, if we define Xi as the conditional expectation of Yi j across a hypothetically
infinite number of inner-level replicates, conditioned on scenario i , then this conditional expecta-
tion determines the portfolio value (and thus the profit or loss) at the horizon for the scenario i
risk factor realizations. Consequently, the portfolio valueXi for scenario i at the horizon is a condi-
tional expectation, and the pdf fX (with respect to the outer-level random quantities, i.e., across i)
of this conditional expectation is used to compute all risk-related quantities, such as the expected
loss, probability of large losses or gains, loss quantiles, and so on. Note that in reality, when the
horizon time arrives, the portfolio would be priced by conducting a single-level simulation of what
happens from the horizon to the final maturity time, with the initial state at the horizon beingwhat-
ever state reality was in at that horizon time. For this single-level simulation, one could use a large
number of replicates to ensure that the sample average of {Yi, j : j = 1, 2, . . .} is sufficiently close to
its conditional expectation, given the scenario i that represents the realization of real-life events
up to the horizon time. In contrast, since we must use a two-level simulation conducted at the
current time to model how the portfolio might be priced at the future horizon (which is dictated
by the outer-level scenario), we cannot afford to conduct a large number of inner-level replicates
for each of a large number of scenarios. We elaborate on this example below and in Section 3.1.1.
Also see References [12, 20, 21] for much more detailed descriptions of estimating the distribution
of the discounted value of portfolio profit and loss at some future time horizon and the nested
simulation framework.
The general two-level simulation setting that we consider in this work is broadly applicable

anytime one uses a standard (single-level) Monte Carlo simulation to estimate an expectation via
a Monte Carlo average, where the expectation depends on other exogenous phenomena that are
random or uncertain. The inner level becomes the Monte Carlo simulation of interest, and each
outer-level replicate draws a different realization of the exogenous phenomena from their assumed
distribution. See Reference [4] for applications in healthcare. In Section 3.1.2, we discuss queuing
systems applications in which the outer-level random quantities are uncertain parameters of the
distributions of simulation inputs.
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Our primary goal for the general setting is to estimate the pdf fX of the conditional expectation
X (we drop the outer-level replicate subscript i and assume outer-level replicates are i.i.d.), based
on the response observations {Yi j : i = 1, 2, . . . ,n; j = 1, 2, . . . ,mi } from the nested simulation.
Note that the estimated pdf can be integrated numerically to estimate the cdf FX (x ) = Pr[X < x] =∫ x
−∞ fX (u)du, which in turn can be inverted numerically to estimate quantiles. Since the average
response

Ȳi ≡
1

mi

mi∑
j=1

Yi j (1)

for the ith scenario can be viewed as an estimate of Xi , a commonly used naïve estimator of fX is
the empirical density of {Ȳi : i = 1, 2, . . . ,n}, e.g., its histogram or some kernel density estimator.
The obvious shortcoming of this naïve estimator, and the primary motivation for this work, is

that Ȳi is only a noisy estimator of Xi for finite mi , in which case the empirical distribution of
{Ȳi : i = 1, 2, . . . ,n} will be over-dispersed (i.e., have a larger spread, larger variance, etc.), relative
to fX . This translates to a bias in the estimator of fX (x ), because at the tail x values the estimator
is consistently higher than the true fX (x ). The over-dispersion bias is more severe with smallermi ,
which is problematic, because it may be computationally prohibitive to use a largemi whennmust
also be sufficiently large. We illustrate the over-dispersion bias in Figure 1 for the portfolio risk
example (the details of the setting and how Yi, j are defined and computed are discussed in Section
3.1.1). Figure 1 shows the true fX for this example, along with a histogram of {Ȳi : i = 1, 2, . . . ,n}
and the corresponding naïve estimator (a kernel density estimator). Note that the naïve estimator
differs substantially from fX and is much more dispersed. In terms of its impact on risk assessment,
if X is a portfolio loss, then the naïve estimator would overestimate the probability of large and
small losses and underestimate the probability of moderate losses. As a preview, we also show the
estimator that we develop in this article, which is a type of deconvolution estimator intended to
correct for the bias present in the naïve estimator. From Figure 1, our bias-corrected deconvolution
estimator is far closer to the true fX .

Some prior works have investigated how to most efficiently estimate characteristics of fX with
a limited computational budget, since it is computationally expensive to have both large n and
large mi . Most such prior work has used the biased naïve estimator and focused on how to bal-
ance between outer-level (n) and inner-level (mi ) replicates. A standard approach is to minimize
the mean squared error (MSE) of the naïve estimator of some specific functional of fX by bal-
ancing the tradeoff between large bias (worse for smallmi ) versus large variance (usually worse
for small n). References [13, 20, 21] focused on situations where the inner-level sample size was
constant across all outer scenarios, which they referred to as uniform allocation. They showed
that in a certain asymptotic sense, the bias and variance of the naïve estimator are functions of
m and n, respectively. For a fixed computational budget, they derived the asymptotically optimal
allocation between n andm to minimize the overall MSE of a specific characteristic of the naïve
estimator (e.g., the probability thatX exceeds some specified value). There are also works (e.g., Ref-
erences [13, 18, 21]) studying naïve estimators in the nonuniform allocation situation in which the
number of inner-level replicates varies across scenarios and is allocated adaptively. When the goal
is to estimate a tail probability or quantile of fX , References [13, 18, 21] showed that nested sim-
ulations can be more efficient by allocating more computational budget to scenarios for which Ȳ
falls near the tail. Reference [5] further considered the naïve estimator in the nonuniform/adaptive
allocation situation. To estimate Pr[X > c] for some specified c , they developed an adaptive alloca-
tion procedure that uses largermi on scenarios for which Ȳi is closer to c and/or the uncertainty
in Ȳi is larger, and they demonstrated a lower asymptotic bias and MSE of the naïve estimator for
this nonuniform allocation.
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Fig. 1. For the portfolio loss example withmi = 5 and n = 104, illustration of over-dispersion bias for the
naïve estimator (green double-dashed curve labeled Naive), which is a smoothed version of the histogram
shown for Ȳi (i = 1, . . . ,n) and is much more dispersed than the true pdf fX (solid black curve), because
Ȳ is a noisy version of X . Our deconvolution-based estimator (orange dot-dashed curve labeled QP,ga) cor-
rects for this bias and is much closer to the true fX . The blue dashed curve (labeled S) is the estimator of
Reference [28].

Two aspects of the approach of Reference [5], upon which we seek to improve, are that it relies
on the biased naïve estimator and that it optimizes the allocation for one specific feature of fX
(Pr[X > c] for one specific c). Regarding the latter, multiple characteristics of fX or even the
entire fX may be of interest, in which case an allocation that increasesmi when Ȳi is close to one
specific value c will not be appropriate. Regarding the former, if one could modify the estimator to
remove the bias, then it is reasonable to suppose that a lower MSE could be achieved for the same
computational expense. In essence, with an unbiased estimator, it is not necessary to trade a larger
variance for a smaller bias. Under a uniform allocation, Reference [30] developed an unbiased
estimator of the variance of X . They showed that with the unbiased estimator, minimizing the
MSE under a fixed computational budgetM = nm generally resulted in a much smaller optimalm
and larger optimal n than if the naïve biased estimator is used. In fact, they showed that even as
M → ∞, the optimalm remains bounded and surprisingly small. This finding allows a much larger
n to be used in the nested simulation, which ultimately gives a much better estimator with smaller
Var(X ) for the same computational budget. Whereas Reference [30] considered only Var(X ) and
its unbiased estimator, in this article, we consider the much harder problem of correcting the bias
in the estimation of the entire pdf fX . This is important, because the entire distribution of X , or
at least multiple characteristics of it, are typically of interest. We refer to this as bias-corrected
density estimation, because it reduces or removes the over-dispersion bias when using the noisy
observations {ȳi : i = 1, 2, . . . ,n} to estimate fX .

Importantly, we show that the conclusions reached by Reference [30] regarding using two-level
simulation to estimate Var(X ) apply to our estimation of fX as well. Namely, under uniform allo-
cation, quite reasonable estimation of fX , FX , and quantiles ofX can be achieved with surprisingly
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smallm; and for a fixed computational budget, more of the budget should be allocated to increasing
the number of outer-level scenarios (larger n) and less to inner-level replicates (smallerm). This
is relative to the recommendations from the prior work that have used the biased estimator (e.g.,
References [5, 13]), for which the optimalm continues to grow as the computational budget grows.
By allowing more outer-level replicates for a given computational budget, our approach reduces
the variance of the estimator without substantially increasing the bias, since the bias is corrected.
Some prior work has considered in a limited manner the bias in the estimation of fX in the

context of nested simulation. Reference [13] developed an expression for the bias in the naïve es-
timator of FX (·), and Reference [5] used the same bias expression when analyzing the effects of
n and m on the MSE. However, neither of these works used the expression to develop a better
estimator by correcting for the bias in the naïve estimator. The bias is “notoriously difficult to
estimate” according to Reference [5], and presumably this is the reason that they did not incorpo-
rate it as the basis for a modified estimator with reduced bias. In contrast, we show in this article
that the structure of the bias can be represented quite naturally within the framework of density
deconvolution, and the resulting bias-corrected deconvolution estimator performs quite reliably
and much better than the naïve estimator. Reference [13] did consider a modified naïve estimator
of FX based on a jackknife approach and showed that it can reduce the bias in the estimator, at
the expense of only a modest increase in the variance. Reference [28] constructed a bias-corrected
estimator of fX based on a type of kernel smoothing density estimator. They showed that their
bias-corrected estimator is less computationally expensive than a typical jackknife estimator and
proved it to have a better MSE convergence rate than the naïve kernel smoothing estimator, given
their optimalm and n allocation.

In this article, we demonstrate that our deconvolution-based estimator outperforms existing
methods for estimating fX in the two-level simulation setting. An additional advantage of our
deconvolution estimator is that it is straightforward to incorporate a number of common density
constraints such as nonnegativity, integration-to-one, unimodality, tail convexity, tail monotonic-
ity, and support constraints (e.g., that X ≥ 0), which can further substantially improve the density
estimation. In addition to focusing on a bias-corrected estimator, the scope of this work also dif-
fers from that of References [5, 13] in that we estimate the entire fX , as opposed to optimizing the
choice of n andmi for one specific feature of fX . Practitioners are often interested in many differ-
ent features of the distribution of X , such as the mean, variance, probability of large loss (or large
gain), FX (c ) for a number of different c , value-at-risk for many different α levels, expected shortfall
for many different α levels, and so on. To calculate many different features, and more generally to
simply understand the distribution of X , having a good estimator of fX that is unbiased even for
smallm is much more useful than having an estimator of only one specific feature of fX .

Our main contributions are to recast the problem of estimating the distribution of the condi-
tional expectation in two-level simulations as a density deconvolution problem to adapt existing
deconvolution estimators to this nested simulation problem and to demonstrate its usage and its
performance for this purpose. In spite of the excellent performance that we demonstrate for this
problem, the connection between deconvolution and the density of a conditional expectation in
two-level simulations has evidently not been recognized and developed before. This is perhaps be-
cause it is not quite an off-the-shelf application of deconvolution, for reasons that become evident
in Sections 2.1 and 2.3. The remainder of the article is organized as follows: Section 2 introduces
the deconvolution framework for the nested simulation problem and discusses various consider-
ations in developing the deconvolution estimator for this problem. In Section 3, we illustrate the
performance of the estimator and compare it with the naïve estimator and the estimator of Refer-
ence [28] under both uniform and adaptive allocations of n andmi . Some concluding remarks are
presented in Section 4.
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2 DECONVOLUTION MODELING FRAMEWORK FOR NESTED SIMULATION

We cast the estimation of fX from the noisy observations {Ȳi : i = 1, 2, . . . ,n} as a density deconvo-
lution problem, for which a number of methods (e.g., References [8, 29, 36]) have been developed.
Although certain Fourier or kernel deconvolution based methods have desirable theoretical prop-
erties like asymptotic convergence rates, they sometimes do not perform well in practice. Using
a variety of examples, Reference [36] demonstrated numerically that their quadratic program-

ming (QP)-based deconvolution estimator generally performed much better for the finite samples
that one analyzes in practice. In this article, we focus on the QP deconvolution estimator of Ref-
erence [36] because of its superior performance and also because it allows a number of common
shape constraints on the distribution to be incorporated to further improve the performance of the
estimator and the efficiency of the nested simulation.
In this section, we discuss how the nested simulation problem can be cast as a deconvolution

problem and how the QP deconvolution method of Reference [36] can be adapted to solve it. In
Section 2.1 the relationship between deconvolution and density estimation in the nested simulation
framework is established. In Section 2.2, we derive the QP deconvolution estimator for the density
of a conditional expectation in a nested simulation, and in Section 2.3, we discuss how to estimate
the conditional error variance function.

2.1 Casting Nested Simulation as a Convolution/Deconvolution Problem

To facilitate the development, we introduce the following notation and write,

Yi j = Y (ωi , ξi, j ), i = 1, 2, . . . ,n; j = 1, 2, . . . ,mi , (2)

where ωi denotes the random outcome that determines ith scenario, and ξi, j denotes the further
random outcome, which, together with ωi , determines the response Yi j for the jth inner-level
replicate of the ith scenario. In the portfolio risk example, the random outcome ωi represents
the complete set of conditions that determine the entire realization of risk factors for scenario i
(e.g., complete price history from current time to the horizon of all commodities, equities, etc., in
the portfolio, together with factors like interest rates); and the random outcome ξi, j represents
the same but from the horizon to the final maturity time, for inner-level replicate j of scenario
i . We assume {ωi : i = 1, 2, . . . ,n} are independent, identically distributed (i.i.d.), and given ωi ,
{ξi, j : j = 1, 2, . . . ,mi } are conditionally i.i.d. for each i . Further assume that for i � k , ξi, j and
ξk,l are independent for all j and l . The number of inner-level replicates mi may depend on ωi .
This setting is quite general in that the outer-level random variables and events determined by
ω may be parametric with few or many parameters, nonparametric, infinite dimensional, and so
on. In Section 3.1.2, we consider a parametric special case in which ω represents uncertainty in
the parameters of an input distribution in a stochastic call center simulation model. Note that,
after each scenario i , the corresponding ωi could be observed in the simulation if desired, since ωi

represents all of the underlying random variables that determine the simulation results for scenario
i . However, our approach does not use observations of ωi directly. We only use the observed {Yi, j :
i = 1, 2, . . . ,n; j = 1, 2, . . . ,mi }.

The goal is to estimate the distribution (with respect to ω) of the conditional expectation X =
X (ω) = E[Y |ω], based on observations of {Yi j : i = 1, 2, . . . ,n; j = 1, 2, . . . ,mi }. Because of
the i.i.d. assumption, we have dropped the subscripts indicating the inner-level and outer-level
replicates in X = E[Y |ω], which we will do throughout the article unless subscripts are needed
to distinguish the replicate. To develop the convolution relationship between the pdfs of Ȳ and X ,
which are at the heart of the density deconvolution approach, we write
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Yi j = Xi + ϵi j and (3)

Ȳi = Xi + Zi , where (4)

Xi = X (ωi ) ≡ E[Yi j |ωi ], (5)

ϵi j = ϵ (ωi , ξi, j ) ≡ Yi j − E[Yi j |ωi ], (6)

Zi = Z (ωi , ξi,1, ξi,2, . . . , ξi,mi
) ≡ Ȳi − E[Yi j |ωi ] =

1

mi

mi∑
j=1

ϵi j . (7)

The pdf of Ȳ is related to the pdfs of X and Z via

fȲ (y) =

∫ ∞

−∞
fȲ |X (y |x ) fX (x )dx =

∫ ∞

−∞
fZ |X (y − x |x ) fX (x )dx , (8)

where the subscripts on the pdfs indicate marginal, conditional, or joint densities. The deconvo-
lution approach described in the next section uses Equation (8) to obtain an estimate of fX from
an estimate of fȲ , the latter being available from the {Ȳi : i = 1, 2, . . . ,n} observations. Relating
the unknown fX to fȲ in Equation (8) requires the conditional distribution fZ |X . Although this is
unknown in general, in our nested simulation setting, we can use the following approximation. Be-
cause Ȳ |ω is a sample average in our setting, the central limit theorem suggests that we can approx-
imate fZ |ω as a normal distribution with mean zero and variance σ 2

Z (ω) ≡ Var[Z |ω] = Var[Ȳ |ω].
If each fZ |ω is normal, then the distribution fZ |X needed in Equation (8) is then the mixture of
zero-mean normal distributions

fZ |X (z |x ) =
∫ ∞

−∞

1

σZ (ω)
ϕ

(
z

σZ (ω)

)
dPω |X (ω |x ), (9)

where ϕ (·) denotes the standard normal density, and Pω |X (ω |x ) denotes the conditional distribu-
tion of ω, given that X (ω) = x . Although this mixture of zero-mean normal distributions is not
exactly normal, it should typically be close to normal. In particular, in simulation settings in which
the conditional variance of Ȳ |ω depends on ω only via the conditional mean X (ω) = E[Ȳ |ω],
the mixture of normals in Equation (9) is exactly normal with mean zero and with variance
v (x ) ≡ Var[Z |X = x], wherev (x ) = σ 2

Z (ω) for anyω such thatX (ω) = x . Consequently, if the con-
ditional variance of Ȳ |ω depends on ω predominantly as a function of the conditional mean (e.g.,
if the conditional standard deviation of Y |ω is approximately proportional to its mean, which is a
common form of heteroskedasticity), then a normal approximation for fZ |X should be reasonable.

The following arguments provide further justification for a normal approximation for fZ |X , in
which case one only needs the conditional variance functionv (x ) for the convolution distribution
in Equation (8), since Z |X is zero-mean by definition. For small Z (note that the size of Z tends
to decrease as inner-level sample size m increases), the general convolution expression of Equa-
tion (8) depends predominantly on v (x ) and less on the specific form of fZ |X . To see this, rewrite
Equation (8) as

fȲ (y) =

∫ ∞

−∞
fZ |X (y − x |x ) fX (x )dx =

∫ ∞

−∞
fX ,Z (x ,y − x )dx

=

∫ ∞

−∞
fX ,Z (y − z, z)dz, (10)

and suppose we can use a second-order Taylor approximation of fX ,Z (y − z, z) about (y, z) with
respect to the first argument. Factoring fX ,Z (y − z, z) = fX (y − z) fZ |X (z |y − z), it follows that the
second-order Taylor approximation is reasonable if fX (y − z) can be approximated by a quadratic
function in the vicinity of eachy and if the conditional distribution fZ |X (z |y−z) does not vary too
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strongly as its second argument varies over the vicinity ofy. Notice that for eachy, the vicinity ofy
over which the approximation must hold is determined by the effective support of the conditional
distribution fZ |X (z |y). Because the variance of fZ |X (z |y) is inversely proportional to the number
of inner-level replicates, the effective support of fZ |X (z |y) narrows as the number of inner-level
replicates increases. The local quadratic approximation becomes

fX ,Z (y − z, z) � fX ,Z (y, z) − f ′X ,Z (y, z)z + f ′′X ,Z (y, z)z
2/2, (11)

where f ′X ,Z (y, z) and f ′′X ,Z (y, z) denote the first and second derivatives of fX ,Z (y, z) with respect

to y. Substituting Equation (11) into (10) gives (see Appendix A for details)

fȲ (y) �
∫ ∞

−∞

{
fX ,Z (y, z) − f ′X ,Z (y, z)z + f ′′X ,Z (y, z)z

2/2
}
dz

= fX (y) +v (y) f
′′
X (y)/2 +v ′(y) f ′X (y) +v

′′(y) fX (y)/2. (12)

Equation (12) indicates that the conditional variance function v (x ) is the main characteristic of
fZ |X that influences fȲ (y), as long as the quadratic approximation in Equation (11) is reasonable.
Consequently, a normal approximation for fZ |X should be fairly innocuous, as long as we can
obtain a reasonable estimate of v (x ). Towards this end, write

v (x ) = E[Z 2 |X = x] = E
[
E(Z 2 |ω) |X = x

]
= E[σ 2

Z (ω) |X = x]

= E

[
σ 2
ϵ (ω)

m(ω)
|X = x

]
, (13)

where σ 2
ϵ (ω) ≡ Var[Y |ω] denotes the conditional variance of Y with respect to all inner-level

randomness, given ω for the outer-level scenario. We have added the argument ω to m to make
clear that the number of inner-level replicates may depend on the outer-level scenario, e.g., ifm(ω)
is chosen based on the conditional mean X (ω) and/or conditional variance σ 2

ϵ (ω). Different ω can
result in Y having the same conditional mean X (ω) but different conditional variance σ 2

ϵ (ω). The
expectation in the right-most term of Equation (13) averages σ 2

Z (ω) across all suchω that share the
same X (ω) = x , weighted by the conditional distribution of ω |X = x . In Section 2.3, we develop a
method for estimating v (x ).

2.1.1 Remarks. Reference [13] used a first-order Taylor approximation of fX ,Z (y − z, z) (with
respect to its first argument) to arrive at the approximation FȲ (y) � FX (y) + v ′(y)F ′X (y)/2 +
v (y)F ′′X (y)/2 in the context of quantifying the bias in the naïve estimator of FX (y). Integrating
Equation (12) leads to the same expression. Hence, the approximation of FȲ (y) used by Refer-
ence [13] remains valid even when a first-order approximation of fX ,Z (y − z, z) is invalid, as long
as a second-order approximation is valid. This is important, because one might expect typical
fX (y) to have non-negligible curvature and be much better approximated locally by a quadratic
approximation than by a linear approximation. It should be noted that Reference [13] did not use
this result to develop a bias-corrected estimator of FX (y). Rather, they used it to quantify the bias
and optimally allocate n andmi to minimize the MSE.

2.2 The QP Deconvolution Estimator for fX

In this section, we derive the QP estimator based on the convolution Equation (8) to obtain a bias-
corrected estimator of fX from the empirical distribution of Ȳ in the context of nested simulation.
The QP density deconvolution estimator of Reference [36] produces an estimate of fX , given a
sample of n i.i.d. noisy observations Yi = Xi + Zi (i = 1, 2, . . . ,n) of X . They assumed the noise
Z is additive and independent of X with a known noise pdf fZ , and their QP estimator is based

on the convolution equation fȲ (y) = ( fX ∗ fZ ) (y) =
∫ ∞
−∞ fZ (y − x ) fX (x )dx . However, in our
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nested simulation setting, the noise pdf fZ |X is a conditional pdf that depends on X . Furthermore,
although we use a zero-mean normal distribution for fZ |X as discussed in the previous section, its
variance functionv (x ) is unknown andmust be estimated. This section is devoted to the derivation
of the QP estimator based on Equation (8), and estimation of v (x ) is discussed in the next section.
We estimate a discretized version of fX over a grid of equally spaced support points {x j : 1 ≤

j ≤ K } for fX and fȲ , where x1 = min{Ȳi : 1 ≤ i ≤ n}, and xK = max{Ȳi : 1 ≤ i ≤ n}. Denote
the discretized pdf values by fX , j ≡ fX (x j ) for 1 ≤ j ≤ K , and similarly for fȲ (·). Let the K-length
vectors fX = [fX ,1, fX ,2, . . . , fX ,K ]

T and fȲ = [fȲ ,1, fȲ ,2, . . . , fȲ ,K ]
T represent the pdfs fX and

fȲ , respectively, at the discrete locations. As an estimate of fȲ , we will use the histogram of the
observations {ȳi : i = 1, 2, . . . ,n} with bins centered at the same set of K support points. That is,

the jth element of the estimator f̂Ȳ of fȲ is the histogram bin height at x j , assuming the histogram

is scaled to be in pdf units. The discretized estimator f̂X of the pdf fX is likewise represented as a
K-length vector.

Defining δ = (xK − x1)/(K − 1), the discretized version of Equation (8) can be written as:

fȲ � CfX ⇐⇒
⎡⎢⎢⎢⎢⎢⎢⎣
fȲ ,1
...

fȲ ,K

⎤⎥⎥⎥⎥⎥⎥⎦ � δ

⎡⎢⎢⎢⎢⎢⎢⎣
fZ |X (x1 − x1 |x1) . . . fZ |X (x1 − xK |xK )

...
. . .

...
fZ |X (xK − x1 |x1) . . . fZ |X (xK − xK |xK )

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
fX ,1

...
fX ,K

⎤⎥⎥⎥⎥⎥⎥⎦ , (14)

where the elements of the convolution matrix C are determined from the conditional noise distri-
bution fZ |X , as discussed in Section 2.1. Estimation of fZ |X is described in Section 2.3.

The basic QP density deconvolution formulation is:

f̂X = argmin
fX

[
‖̂fȲ − CfX ‖2 + λQ (fX )

]
s .t . δ1T fX = 1

fX ≥ 0, (15)

whereQ (fX ) is a regularization term, and λ is a regularization parameter.We use second-derivative
regularizationQ (fX ) = ‖D2fX ‖2, whereD2 is an appropriately defined second-order differencema-
trix operator. That is, we penalize large second derivatives of fX . Some form of regularization is
essential in these types of deconvolution problems, because the convolution matrix C is typically
poorly conditioned, in which case an unregularized solution to Equation (15) would typically be
oscillatory or otherwise badly behaved. Note that the unregularized (λ = 0) solution to Equation
(15) requires inversion of the C matrix. See Reference [36] and the references therein for addi-
tional discussion of this issue. The vector 1 is a column vector of ones, and fX ≥ 0 means that all
elements of fX are nonnegative. The regularization parameter λ can be selected via a SURE-like
method, as discussed in Reference [36]. (SURE is Stein’s Unbiased Risk Estimator.) The SURE-
like method in Reference [36] is derived in the context of homoscedastic noise that is independent
of X . However, it remains valid in the nested simulation context, i.e., the noise Z is conditionally

(givenX ) heteroscedastic. This is because the only assumption for the derivation is that f̂Ȳ follows
a multinomial distribution with mean vector equal to δCfX , which still holds with conditionally

(given X ) heteroscedastic noise as f̂Ȳ is obtained from the histogram. In addition to the automated
SURE-like method, Reference [36] also discussed a graphical method for selecting λ. The former is
convenient if the analysis must be repeated many times (e.g., when analyzing the performance of
the approach in a Monte Carlo setting), whereas the latter has advantages from a more practical
user’s perspective in which the analysis is conducted a single time.
In addition, a number of common features of density functions can be translated into shape

constraints on fX , and incorporated into Reference (15). Specifically, many shape constraints can
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be formulated as a linear constraint, At fX ≥ 0, on fX for some matrix At , where the subscript t is
the index of the shape constraint. Such shape constraints include tail monotonicity, tail convexity,
and unimodality. Moreover, if there is information on the support of fX , e.g., that we know the
support of fX lies within the interval [xa ,xb ] for some specified x1 ≤ xa < xb ≤ xK , then we
could reformulate Reference (15) by replacing the K-dimensional fX by its reduced (b − a + 1)-
dimensional counterpart [fX ,a , fX , (a+1), . . . , fX ,b ]

T and also replacing the K × K matrix C by its
K × (b−a+1) counterpart comprised of columns {a,a+1, . . . ,b} of C. It has been demonstrated in
Reference [36] that including any such “prior” knowledge we may have regarding fX can improve
the pdf estimator substantially.

2.3 Estimating the Conditional Error Variance Function

As discussed in Section 2.1, the conditional error distribution fZ |X (z |x ) required in the decon-
volution estimator is taken to be a zero-mean normal distribution, so only its conditional error
variance function v (x ) in Equation (13) must be estimated. The QP method of Reference [36] as-
sumes known homoscedastic (independent of X ) error distribution, whereas in two-level simula-
tion settings the error distribution is unknown, and it is often strongly heteroscedastic with v (x )
depending strongly on x . In this section, we provide an approach to estimate v (x ).
To make the problem more tractable, suppose that m(ω) = m(X (ω)) depends on ω only via

X (ω), which obviously holds ifm(ω) =m is constant. Then

v (x ) = E

[
σ 2
ϵ (ω)

m(X (ω))
|X (ω) = x

]
=

h(x )

m(x )
,

where h(x ) ≡ E[σ 2
ϵ (ω) |X (ω) = x]. Conditioned on ωi , the sample variance

S2i ≡
1

mi − 1

mi∑
j=1

(Yi j − Ȳi )2

is an unbiased estimator of σ 2
ϵ (ωi ). Thus,

E[S2i |X (ωi ) = x] = E
[
E[S2i |ωi ]|X (ωi ) = x

]
= E[σ 2

ϵ (ωi ) |X (ωi ) = x] = h(x ). (16)

In light of Reference [16], hypothetically supposing Xi were known (e.g., Xi � Ȳi for largemi ),
we could use a loess smoother of the scatterplot of S2i vs. Xi (i = 1, . . . ,n) (or perhaps the square
of a loess smoother of the sample standard deviation Si vs. Xi ) as an estimator of the function
h(x ). Note that “loess” stands for “locally weighted estimation and scatter plot smoothing” and is
a general nonparametric regression approach that is commonly used to smooth low-dimensional
scatter plots [6, 14]. (A smoothing spline could be used instead of loess and would give a similar
estimate.) In practice, however, if we use Ȳi as a surrogate for Xi and fit a loess smoother to the
scatterplot of S2i vs. Ȳi , then what we estimate is the function д(x ) ≡ E[σ 2

ϵ (ω) |Ȳ = x] rather than
the desired function h(x ) = E[σ 2

ϵ (ω) |X = x]. For largemi , for which Xi � Ȳi , this does not pose
a serious problem. However, when mi is small, and as argued before a small mi is desirable, the
functions д and h can be quite different, and using an estimate of д in place of the desired estimate
of h can adversely affect the QP estimator. We demonstrate this later in the examples.
The problem of д differing from h is similar to but much more complicated than the well-known

“errors-in-predictors” problem in linear regression. In simple linear regression with homoscedastic
errors in the predictor and in the response, there is a simple correction to the slope of the fitted
line to give an unbiased estimate of the desired regression coefficient. In our case, the observed
predictor variable for the loess fit is Ȳ = X + Z instead of X , and the error in Ȳ is heteroscedastic,
depending on the randomness inherent to both the outer-level and inner-level replicates. Moreover,
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our estimate of h is nonparametric. Although we omit the results for brevity, we have investigated
various approaches for correcting for the errors-in-predictors phenomenon for heteroscedastic
nonparametric regression, e.g., using deconvolution-like approaches for recoveringh(x ) fromд(ȳ).
However, none of the approaches performed robustly.
Instead, to obtain a reliable estimate of the h function, we adopt the approach of removing the

errors-in-predictors phenomenon, as opposed to correcting for it. Specifically, we run additional
inner-level replicates for a relatively small subset of outer-level replicates, so Ȳ will be close to X
on these replicates. Then, we estimate h(x ) directly by fitting a loess model to only these fewer,
but higher-quality, data points. Let {Y a

i, j : i = 1, 2, . . . ,na ; j = 1, 2, . . . ,ma
i } denote the additional

data, where na and ma
i denote the numbers of additional outer-level and inner-level replicates,

respectively. For the ith additional outer-level replicate, let Ȳ a
i and Sai denote its sample average

and sample standard deviation (across thema
i inner-level replicates), respectively. The loess model

will be fit with {Ȳ a
i : i = 1, . . . ,na } as the predictor variable and {Sai : i = 1, . . . ,na } as the response

variable (which gives an estimate of the square root of h(x )). The additional data are generated
using the following procedure, which is implemented after having run the main nested simulation
that generated the original data {Yi, j : i = 1, 2, . . . ,n; j = 1, 2, . . . ,mi } and their corresponding
averages {Ȳi : i = 1, . . . ,n}:
(1) We begin with na = 12 (which is increased as described later, if needed), and the initial 12

additional outer-level replicates are taken to be those corresponding as closely as possible to
12 evenly spaced points over the interval [Ȳmin , Ȳmax ], i.e., to {Ȳmin +

i−1
11 (Ȳmax − Ȳmin ) : i =

1, 2, . . . , 12}, where Ȳmin and Ȳmax denote the minimum and maximum of {Ȳi : i = 1, . . . ,n}.
This gives an initial set of additional outer-level replicates that roughly span the sample space
of {Xi : i = 1, . . . ,n}, to ensure that the predictor values for the loess fit are spread across the
entire range.

(2) For each of the na outer-level replicates, initially conduct ma
i = 100 inner-level replicates,

and compute the averages {Ȳ a
i : i = 1, . . . ,na } and standard deviations {Sai : i = 1, . . . ,na }.

(3) For each of the na outer-level replicates, sequentially add inner-level replicates (i.e., increase
ma

i ) until the standard error S
a
i /
√
ma

i of Ȳ
a
i is below 3% of the range Ȳmax −Ȳmin . The purpose

of this step is to ensure that each additional Ȳ a
i is close enough to Xi that the errors-in-

predictors can be ignored.
(4) Determine whether the number na of additional outer-level replicates is sufficient to obtain

a reliable loess estimate for h, and if not, select another additional outer-level replicate at
which to run additional simulations:
(i) Fit a loess model with {Ȳ a

i : i = 1, . . . ,na } as the predictor variable and {Sai : i = 1, . . . ,na }
as the response variable. For any x in the domain of the loess model, denote the fitted
response value and its standard error by l (x ) and sl (x ), respectively. If using the loess
function in R ([27]), which we have used in all of our examples, then sl (x ) is produced via
the predict.loess command.

(ii) Compute lmax ≡ maxȲ a
min ≤x ≤Ȳ

a
max

l (x ), x∗ ≡ argmaxȲ a
min ≤x ≤Ȳ

a
max

sl (x ), and s∗ ≡ sl (x
∗),

where Ȳ a
min and Ȳ a

max denote the minimum and maximum, respectively, of {Ȳ a
i : i =

1, . . . ,na }. If s∗ ≥ 0.03 × lmax (i.e., if the maximum standard error exceeds 3% of the
largest predicted response value), then add another outer-level replicate sampled indepen-
dently and increase na by one. As the newly added outer-level replicate, take the replicate
corresponding to whichever of the remaining {Ȳi : i = 1, . . . ,n} is closest to x∗ but within
the interval [Ȳ a

min , Ȳ
a
max ]. Otherwise, if s

∗ < 0.03 × lmax , then stop.
(iii) Repeat Steps (2) and (3), but only for the newly added outer-level replicate.

(5) Repeat Step (4) until the criterion s∗ < 0.03 × lmax is satisfied.
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The above procedure is intended to produce set of high-quality data points for estimating the
function h(x ), in the sense that the sample standard deviations Sk and sample means Ȳk should be
close to the true standard deviations σϵ (ωk ) and the true means Xk , respectively. At termination,
the square of the loess fit l (x ) in Step (4i) is taken as the estimate of the h(x ) function. We denote
the estimate as дa , where the subscript a stands for additional simulations. We have chosen to fit
the loess smoother to Sk and use the square of the smoother, as opposed to fitting directly to S2

k
,

because our local linear smoother implementation extrapolates linearly, and
√
h(x ) is more likely

to be approximately linear in x over the boundary regions than is h(x ) (i.e., the standard deviation
is more likely to be proportional to the mean than is the variance). Note that this only applies to
extrapolation outside the range of data, if needed. Our estimator of h(x ) within the data range is
nonparametric. The performance of дa and its effect on the corresponding QP pdf estimator will
be illustrated in Section 3.
The 3% threshold values in Steps (3) and (4-ii) could be adjusted as tuning parameters to in-

crease or decrease the number of additional inner-level and outer-level replicates, if desired. We
have found the above 3% values to be reasonable and to work robustly for all of the examples we
have tried. To help decide whether a sufficient number of additional inner-level and outer-level
replicates have been conducted, we recommend plotting дa (ȳ) on top of a scatter plot of S2i vs. ȳi
(for both the original replicates and the additional replicates), as in Figure 2(a). If the loess-fitted
дa (ȳ) appears badly behaved (e.g., “wiggly”), this is an indication that additional replicates are
needed.

2.4 Consistency and Rate of Convergence

Appendix D addresses some asymptotic properties of the QP deconvolution estimator. Ap-
pendix D.1 contains a formal proof that the QP deconvolution estimator of FX is consistent.

Appendix D.2 contains a heuristic argument that the convergence rate of f̂X is the same as the
rate of the jackknife estimator in Steckley et al. [28].
In Appendex D.1 it is first shown that the solution to Equation (15), if transformed as in

Equation (8), is strongly L2-consistent for fȲ . Alone, this is not particularly interesting (the
histogram estimate itself is strongly L2-consistent for fȲ ), but the form of the estimator in
Equation (15) allows us to strengthen this result to a weak consistency result for FX in Theorem 3.
It says, in abbreviated form here:

Theorem 1. Let F̂X ,n and FX be the CDFs of f̂X ,n and fX , respectively. Under certain conditions,

with probability 1, F̂X ,n (t ) → FX (t ) for all t .

In fact, since FX is absolutely continuous, it follows that this convergence is uniform (see

Lemma 2.11 of Reference [33]). That is, with probability 1, supt |F̂X ,n (t ) − FX (t ) | → 0. Further-
more, by Lemma 21.2 of Reference [33], the quantile functions converge weakly as well. Letting
F−1 (p) = inf {t : F (t ) ≥ p} be the quantile function of F , Theorem 3 implies that with probability

1, F̂−1X ,n (p) → F−1X (p) for all p.

3 NUMERICAL EXAMPLES AND DISCUSSION

3.1 Examples with Uniform Allocation

In this section, we illustrate the performance of our bias-corrected QP estimator and compare it
with the Steckley et al. estimator [28] and the naïve pdf estimator on two nested simulation exam-
ples. One is a simple parametric version of the portfolio loss example discussed in the introduction,
which we use to demonstrate certain properties of our proposed QP estimator. The second exam-
ple is a more complex call center simulation example. In both examples, our focus is on the output
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analysis of the simulation results rather than optimizing the choice of the number of the outer and
inner-level replicates. Here, we assume a uniform allocation, i.e.,mi =m for all i = 1, 2, . . . ,n.

3.1.1 Portfolio Loss Example. In a variant of the portfolio loss example discussed in the intro-
duction (also see Reference [13] for a more detailed description of a typical example and two-level
simulation framework), suppose we want to estimate the fractional portfolio loss (loss relative to
the portfolio value) given default, using two-level simulation. In the following, we will refer to the
fractional portfolio loss given default as “portfolio loss” for simplicity. In real life, at the horizon
time, the portfolio will be priced by conducting a single-level simulation that corresponds to the
inner level of our nested simulation. This simulation will simulate what will happen between the
horizon time and the final maturity time, beginning with the single state in which real life finds
itself at the horizon time. We need an outer-level simulation, because the purpose of our nested
simulation is to assess at the current time the risks of realizing large portfolio losses in the future,
at the horizon time. This is done in our simulation by estimating the distribution of portfolio prices
at the horizon time. This involves simulating what might happen between the current time and
the horizon time, which is what the outer level of the nested simulation does.
Using the same notation in the introduction and Equations (3)–(7), the portfolio loss for the ith

scenario (i = 1, . . . ,n) generated on the ith replicate of the outer level is Xi = X (ωi ). Given the
outer-level random outcome ωi for that scenario, the inner level of the simulation then generates
the loss-related quantities {Yi j : j = 1, 2, . . . ,m} across them inner-level replicates, such that their
average Ȳi =m

−1∑m
j=1 Yi j serves as a noisy estimate of the loss Xi .

In practice, the risk factors embedded in ωi are nonparametric or extremely high dimensional
(e.g., the entire price and cash flow histories of all positions in the portfolio). However, to have
a known analytical distribution for X , to which we can compare the various estimators in this
example, we conduct the nested simulation as follows: We simulate in the ith outer-level replicate
a portfolio loss Xi ∼ Beta(4, 4) whose mean equals 0.5. Fractional portfolio loss given default is
commonly modeled as a beta distribution References ([1, 11, 17]). In the inner-level replicate, we
simulate the mean-zero pricing error ϵi j |Xi = xi ∼ Gamma(4, 2/xi ) − 2xi for j = 1, . . . ,m. The
simulated average portfolio losses are Ȳi = Xi + Zi , for i = 1, . . . ,n, where Zi = m−1

∑m
j=1 ϵi j

depends on Xi . Under this parameterization, the conditional variance is Var[Z |X = x] = x2/m,
and the signal-to-noise ratio can be analytically obtained as Var[X ]/Var[Z ] =mVar[X ][Var[X ] +
E2[X ]]−1 =m/10 (see Appendix B).

As discussed in Section 2.3, when m is small, the difference between h and д has an adverse
effect on the QP estimator. Using дa as an estimator of h, rather than the original loess estimator
д, improves the estimation of h and the resulting QP pdf estimator. For example, Figure 2(a) shows
the scatterplot of S2i vs. Ȳi (i = 1, 2, . . . ,n) for a typical replicate of the above nested simulation

using a total computational budget M = nm = 5 × 104 and the allocationm = 8 and n = 6, 250. It
also shows the true h function, which is h(x ) = x2 under the parameterization of the portfolio loss
example, along with the loess estimates д and дa . We can see that дa , which only consumes about
3% additional computational budget, substantially improves upon the original loess estimate д.
Figure 2(b) shows the corresponding QP estimators using the functionsh,д andдa from Figure 2(a).
The QP estimator using дa is better than the one using д, both in the middle quantiles and in the
upper tail. The QP estimator using h is only shown as a reference benchmark, since h is unknown
in practice. Notice that the QP estimator using дa is almost as good as the one using h. In the
subsequent discussions, unless noted otherwise, the QP estimator will mean the one using дa .
Figure 1 compares the performances of the bias-corrected QP deconvolution estimator, the bias-

corrected estimator developed in Reference [28], and the naïve estimator (a kernel density esti-
mator) for a typical replicate of the nested simulation under the allocation m = 5, n = 104 and
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Fig. 2. Performance of the proposed h(x ) function estimation procedure and the corresponding QP estima-
tors for the portfolio loss example for a total computational budget of M = nm = 5 × 104 and the allocation
ofm = 8,n = 6, 250. Panel (a) is the scatterplot of the sample variance against the sample mean, along with
the true function h (red dashed) and the estimates д (blue dotted) and дa (orange dot-dashed). Panel (b)
shows the corresponding QP estimators using h, д, and дa , respectively. The curves for h and дa are difficult
to distinguish because they are so close.

demonstrates better performance for the QP deconvolution estimator. For fair comparisons, we
slightly increased the budgets for the naïve and the Steckley et al. estimators so they had the same
budget as the QP estimator with the additional replicates for estimating дa , which typically in-
creased the budget by about 3% (the exact percentage varies from replicate to replicate). We can
see from Figure 1 that the histogram and the naïve estimator are overly dispersed relative to the
true fX , which suggests that a small number of inner-level replicates (m = 5 in this case) intro-
duces substantial bias when we use the naïve estimator. The Steckley et al. estimator, although
better than the naïve estimator, does not correct the bias enough for this small m. In contrast,
the QP estimator with only the two universally applicable shape constraints (i.e., integrate-to-one
and nonnegativity) is much closer to the true density across the entire domain of the distribu-
tion, including the tails. The L1 distances between the true pdf and the pdf estimators (defined as

L1 ( f̂X , fX ) =
∫
| f̂X (x ) − fX (x ) |dx ) for the QP estimator, the Steckley et al. estimator and the naïve

estimator are 0.152, 0.364, and 0.523, respectively, for this typical replicate shown in Figure 1. In
fact, we have selected this replicate as typical, because each of the three estimators had an L1 dis-
tance that is fairly close to their median L1 distance across 30 replicates. The median L1 distances
for the QP, Steckley et al. and naïve estimators are 0.152, 0.368, 0.524, respectively.
Moreover, Figure 3 illustrates thatwhen the total computational budget is fixed, theQP estimator

outperforms the naïve and the Steckley et al. estimators at their respective optimal allocations.
The optimal allocations were determined by finding the pair (n,m) that results in the minimum
aggregateMSEmeasure, as described in the next paragraph. Figure 3 compares the three estimators
for a typical replicate at their optimal allocations under a total computation budget M = 5 ×
104. The optimal allocations are m = 22 for the QP estimator, m = 175 for the naïve estimator,
and m = 100 for the Steckley et al. estimator. Since the total computational budget is fixed, a
larger number of inner-level replicates means a fewer number of outer-level replicates, i.e., fewer
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Fig. 3. pdf estimation results for the same portfolio loss example in Figure 1 but with optimal allocations
for each method, which are m = 22 for the QP estimator, m = 175 for the naïve estimator, and m = 100

for the Steckley et al. estimator. All methods are under the same total computational budget M = 5 × 104.
Comparison with Figure 1 shows that the QP estimator performs more robustly to choice of m, which is
important, since the optimalm is difficult to determine in practice.

observations of Ȳ , which causes the naïve estimator to perform less reliably. Comparing the two
bias-corrected estimators, the QP estimator is better than the Steckley et al. estimator for this
typical replicate in Figure 3. The L1 distances of the QP estimator, the Steckley et al. estimator, and
the naïve estimator are 0.0489, 0.0550, and 0.111, respectively, for this typical replicate shown in
Figure 3. Notice that the performance of our QP estimator for smallerm (Figure 1), relative to its
performance for optimalm (Figure 3), does not degrade nearly as much as does the performance
of the naïve estimator and the Steckley et al. estimator. We investigate this further below.
To more quantitatively compare the methods, we conducted a Monte Carlo (MC) simulation

with fixed computational budget at various allocations. We varym to control the signal-to-noise
ratio (Var[X ]/Var[Z ]) to vary from 0.8 to over 20. To distinguish the performance in estimating
the tails vs. the middle quantiles of the pdfs, we consider the MSE for estimating nine quantiles
corresponding to probabilities p ∈ {0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99} for each allocation.
The MSEs of the quantile estimates are displayed in Tables 1(a) and 1(b), which correspond to the
total budgetsM = 5 × 104 andM = 106, respectively. On eachMC replicate, we generated a new set
ofM Yi, j observations for each allocation and then applied the corresponding pdf estimators to the
data. The regularization parameter for each MC replicate was selected automatically via the SURE-
like method [36]. The number of MC replicates was chosen to ensure that the standard errors of the
MSEs are about 1% the MSE values. TheMSEs reported in the tables for each estimator are for their
optimal allocations for the given computational budget. The optimal allocations were chosen to
minimize the aggregate MSE measure defined as

∑9
i=1MSEi/[pi (1 − pi )], whereMSEi = MSE (p̂i )

is the MSE for the ith probability estimator, among 10 different allocations. The optimal numbers
of inner-level replicates for the given total computational budget for each estimator are displayed
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Table 1. Comparisons of Quantile Estimation MSEs (×105)
for the Portfolio Loss Example for Various Probabilities (p)

under the Optimal Allocations

(a) Fixed total budgetM = 5 × 104

p
QP (h) QP (дa ) Steckley Naïve
(m = 12) (m = 22) (m = 100) (m = 175)

0.01 0.638 0.579 1.68 6.22
0.05 3.67 3.79 8.90 24.0
0.10 4.81 8.00 17.3 40.7
0.25 8.93 17.4 38.3 69.2
0.50 22.90 24.4 53.7 71.2
0.75 12.2 21.7 44.0 55.2
0.90 8.41 16.5 28.6 49.4
0.95 10.1 12.9 21.3 42.0
0.99 6.86 7.01 9.57 20.6

(b) Fixed total budgetM = 106

p
QP (h) QP (дa ) Steckley Naïve
(m = 60) (m = 60) (m = 175) (m = 256)

0.01 0.124 0.146 0.139 0.888
0.05 0.397 0.372 0.802 3.430
0.10 0.631 0.666 1.360 5.730
0.25 1.180 1.380 3.250 9.330
0.50 1.730 1.850 4.790 9.140
0.75 1.470 1.840 3.860 6.030
0.90 1.080 1.170 2.320 6.300
0.95 0.993 1.070 1.810 6.370
0.99 0.549 0.635 0.781 3.410

Note: (optimalm values shown in parentheses) for Each of the

Four pdf Estimators. The Regularization Parameters Were Selected

Using Automated Methods.

in parentheses in the first rows of the tables. We see from Tables 1(a) and 1(b) that the MSEs for
the QP estimator are about half of those for the bias-corrected Steckley et al. estimator across all
quantiles and between about two to ten times smaller than for the naïve estimator (which we take
to be the histogram).
Figure 4 provides a more complete perspective by plotting the aggregate MSE measure and the

MSE measures at nine separate quantiles for each estimator at ten allocations (i.e., 10 values of
m and n = M/m) under fixed computational budget M = 5 × 104. The aggregate MSE (Figure
4(a)) conveys the overall trends of how the performances of the different pdf estimators change
when the allocationm and n = M/m varies. Figure 4(b) shows the MSE measure at nine quantiles
separately. The highlighted bullets indicate the optimal allocation for each estimator based on the
aggregate MSE measure. In practice, if all quantiles are of interest, then the same allocation must
be used for each quantile. Consequently, the MSE at the highlighted bullets is of particular interest
for comparison purposes. The better robustness to choice ofm that is seen by comparing Figures 1
and 3 is substantiated by Figure 4, which shows that the performance of our QP estimator does
not degrade as much as the performance of the naïve estimator and the Steckley et al. estimator
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Fig. 4. Comparisons of the performance of four pdf estimators for the portfolio loss example under fixed
budget M = 5 × 104 and at various inner level allocations (m = 8, 16, 24, 32, 64, 128, 256). The x-axis in
all figures represents the inner level allocationm. The four estimators are the naïve estimator (green long-
dashed), the Steckley et al. estimator (blue dot-dashed line), the QP estimator with дa (orange dashed), and
h (red solid), respectively. The vertical axis is the MSE measure in the log-scale of base 10. The highlighted
bullets (i.e., the single enlarged symbol for each curve) indicate the optimal allocation for each estimator
based on the aggregate MSE measure shown in Figure 4a.
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asm differs from its optimal value, especially for the tail quantiles. This is likely because it does a
better job at correcting for the over-dispersion bias than the Steckley et al. estimator, and the naïve
estimator does not even attempt to correct for this bias. Robustness tom is important, because it is
difficult to determine the optimalm in practice. Moreover, there is no single optimalm if multiple
features of fX are of interest, since the optimal value ofm for estimating quantiles depends heavily
on which quantile, as evident from Figure 4.
As shown in Figure 4, the QP estimator with дa performs comparably to the QP estimator with

h even whenm ≤ 45, which suggests that the estimator дa using the procedure in Section 2.3 is a
reasonable estimator of the true h function. Moreover, the QP estimator outperforms the Steckley
et al. estimator and the naïve estimator for most of the 10 different allocations for this example,
especially when m is small. Although the Steckley et al. method is slightly better than the QP
method for large inner-level sample sizes (m ≥ 60), and both the QP and Steckley et al. estimators
are close to the naïve histogram estimator whenm grows, the QP estimator achieves much better
MSE results for small to moderatem (m = 8 to 45).
As mentioned above, if we compare the performances at only the highlighted bullets, i.e., at each

estimator’s optimal allocation, then the QP estimator performs much better than the alternatives
for almost all nine quantiles and also for the aggregated MSE. Another interesting phenomenon is
that when the same largem value (e.g.,m ≥ 60) is used for both the Steckley et al. and the QP esti-
mator, the former performs a little better overall, more noticeably so for the upper quantiles. This
is understandable, considering that the optimalm values are substantially larger for the Steckley
et al. method than for the QP method. A potential explanation for this is that the QP estimator is
more discretized, whereas the Steckley et al. estimator is a smoother kernel-based method. Thus,
the latter may have advantages when data are sparser in the tail regions, which happens whenm is
large (since the computational budget is fixed, largem means smaller n and fewer Ȳ observations).
For example, for largem the QP estimator may become truncated at some tail quantiles due to lack
of data, whereas the Steckley et al. estimator tends to be smoother and more continuous. However,
it should be emphasized that at their optimal allocations (either using the singlem optimized for
the aggregate MSE measure or using separatem optimized for each quantile) the QP estimator still
substantially outperforms the Steckley et al. estimator and the naïve estimator.
Regarding the assumption of normality for Z , it should be noted that the errors themselves do

not need to be normally distributed, as long as the average Z ofm errors is close to normal. In the
portfolio loss example, the errors follow a gamma distribution (but translated, to have zero mean)
with shape parameter 4, which is a right-skewed distribution. However, even for relatively small
m, the distribution of Z is close to normal. To investigate this, consider a more extreme version of
non-normality in which the errors follow a zero-mean version of a chi-square distribution with
two degrees of freedom, denoted ϵi, j ∼ χ 22 . Note that the χ 22 distribution is also an exponential
distribution, which is highly right-skewed with a jump discontinuity at zero. Figure 5 plots a stan-
dardized version (translated to have zero mean and scaled to have unit variance) of the χ 22 pdf as
the curve for m = 1, since Z = ϵ for m = 1. The figure also plots the standardized pdfs for Z
for variousm ∈ {1, 2, 5, 10, 20, 50, 200,∞}, which get progressively closer to the standard normal
distribution asm increases. Note that by the reproductive property of the chi-square distribution,
the distribution of Z is χ 22m . Even though the distribution for ϵi, j is highly non-normal, the distri-
bution for Z is close to normal for aroundm = 10 or larger. We anticipate that for most stochastic
two-level simulations, the errors will not differ from normality any more than an exponential dis-
tribution differs from normality. For example, we do not envision many applications in which the
Yi, j are Bernoulli. If one encounters an application in which the errors are that far from normal,
then one should use caution to ensure that m is large enough to give an approximately normal
distribution for Z .
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Fig. 5. Illustration of the effect ofm on the approximate normality of Z for a highly non-normal error distri-
bution. The red dashed curve is the standard normal pdf, and the other curves are pdfs for (a standardized
version of) Z for m ∈ {1, 2, 5, 10, 20, 50, 200,∞}, which get progressively closer to the standard normal dis-
tribution asm increases. The distribution for ϵi, j ∼ χ22 is the distribution for Z form = 1, and the normal
distribution is form = ∞.

We note that the deconvolution approach is still valid and can still remove the over-dispersion
biaswhenZ is non-normal, as long as the correct pdf fZ |X is used in the convolution/deconvolution
Equation (8). In fact, it is well-known in the deconvolution literature that super-smooth noise dis-
tributions like Gaussian are notoriously more difficult to deconvolve than other less smooth noise
distributions; see Reference [10]. It is primarily to avoid the difficulty of estimating the noise dis-
tribution that we have taken advantage of the fact that Z is an average ofm errors to approximate
fZ |X as normal in the deconvolution equations. Estimation of a non-normal fZ |X would be sub-
stantially complicated by the fact that it may depend on X .

3.1.2 Input Uncertainty Analysis and a Call Center Simulation Example. As a special case of our
general model in whichω is parametric, consider the problem of studying the effects of uncertainty
in the parameters of the distributions of stochastic inputs in a single-level stochastic simulation.
For example, suppose we have an M/M/c queuing system simulation in which customer arrivals
follow a Poisson process whose mean arrival rate parameter Λ = Λ(ω) is fixed (i.e., constant) but
unknown, and the uncertainty in Λ (due to lack of knowledge of Λ; not because it varies over time)
is represented by treating it as a random variable (r.v.) that follows some specified distribution.
Although the queuing system simulation of interest is a single-level Monte Carlo simulation, one
typically treats the input uncertainty problem via a two-level simulation in which the ith outer-
level replicate consists of generating one random draw ofΛ from its distribution (Λi = Λ(ωi )). Each
inner-level replicate comprises one run of the actual simulation model for that particular Λi . That
is, on the jth inner-level replicate of the ith scenario, the number of customers being served during
a given time period is simulated and denoted by Yi j = Y (Λi , ξi, j ), where ξi, j determines all sources
of randomness in the inner-level replicate due to the random Poisson arrivals (but with Poisson
arrival rate parameter Λi fixed) and the random service times. A common performance metric
is the expected number of customers served during the given time period, i.e., the conditional
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expectation X = X (Λ) = E[Y |Λ], which is a function of the unknown Λ. Hence, the pdf fX of
the conditional expectation X (Λ) with respect to the distribution of Λ represents the uncertainty
in the system performance due to uncertainty in the input parameter Λ. As a slightly different
version of this setting, suppose one computes an updated forecast of Λ the night before some
target period. Assuming the forecast is not perfect and involves some uncertainty, the distribution
for Λ that one would use could be some distribution with mean equal to the forecast and standard
deviation equal to the standard error of the forecast. In this case, our computed distribution for
the conditional expectation E[Y |Λ] would represent the distribution of the expected number of
customers served on the target day, where the distribution is with respect to the uncertainty in
the forecasted Λ.
For this parametric input uncertainty problem with low-dimensional Λ, Reference [35] viewed

the parameters Λ = Λtrue as fixed but unknown and developed a Bayesian credible interval for
E[Y |Λtrue ] with uncertainty in Λtrue estimated via standard Bayesian methods applied to a sam-
ple of real input data. Their approach is based on using a surrogate model to represent E[Y |Λ] as
a function of Λ, which tends to smooth out the noise that results from using a finite number of
inner-level replicates and in this manner partially accounts for the over-dispersion problem. Al-
though their objective of obtaining a credible interval for E[Y |Λtrue ] differs from our objective of
estimating the distribution of E[Y |Λ], one might consider adapting a similar Bayesian approach
for our objective. Instead, here, we apply our deconvolution-based approach, partly because it is
more general and applies to parametric or nonparametric uncertainty (the surrogate modeling in
Reference [35] requires a relatively low-dimensional parameterization), and also because a second
Bayesian mechanism in Reference [35] would exacerbate the over-dispersion problem if no surro-
gate modeling is used. In follow-up work, Reference [3] notes that surrogate modeling approaches
are not effective for high-dimensional parametric uncertainty in input distributions or for non-
parametric empirical input distributions and developed a bootstrapping confidence interval (CI)
that takes into account nonparametric input uncertainty but is not unduly widened by the noise
in {Ȳi : i = 1, 2, . . . ,n}. Whereas their approach shrinks every Ȳi towards the grand average by the
same shrinkage factor, our deconvolution estimator is a more principled approach that adjusts the
estimated density in a more nuanced manner.
To make a more concrete example, consider a call center simulation in which the calls arrive

at the center according to a Poisson process, whose mean arrival rate parameter Λ is fixed but
unknown. See References [2, 15, 16, 23, 25] for further details and other modeling considerations
relevant to call center simulation, including the situation in which parameters like Λ vary stochas-
tically over time. In our setting of a fixed but unknown Λ, suppose we represent its uncertainty by
assuming it follows some lognormal distribution with known parameters. In real call center simu-
lations, there may be many different and more complex sources of outer-level uncertainty, such as
parameters for arrival distributions for many different categories of calls, nonparametric arrival
distribution uncertainty, uncertainties in many different service time distributions for different
categories of calls and for different servers, random variables that represent initial states of many
different queues, and so on. However, we use the lognormal parametric uncertainty model for
simplicity and transparency, and because our approach treats more complex uncertainty sources
exactly the same as simple parametric uncertainty.
The service time for the arrived call is assumed to follow an exponential distributionwith known

parameters. We also assume the capacity of the system is K , which means that the maximum
number of calls waiting in queue or being served isK and an arriving call is lost if it sees the system
is full, i.e., if the system already has K calls when the new call arrives. Each call is associated with
a random profit that is assumed to follow a normal distribution, whose parameters are known. We
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study the behavior of the system within a specified unit of time, during which time the arrival
rate parameter Λ is assumed constant, and we consider the effect of Λ varying according to its
underlying lognormal distribution. The particular measure of interest is the expected increase in
profit over a specified time interval that results from adding one additional server to the call center,
which is a function of the unknown arrival rate parameter Λ. Thus, the r.v. X that is of interest is
the difference in the conditional expectation of the profit (conditional on Λ) between anM/M/c/K
queue (referred to as System 1) and anM/M/(c+1)/K queue (referred to as System 2), where c is the
number of servers. In the simulation, one outer-level replicate consists of generating one random
realization Λi from its lognormal distribution. One inner-level replicate consists of generating call
arrivals from their Poisson process with parameter Λi , generating service times for the calls from
their exponential distribution, assigning a random profit to each accepted call from its normal
distribution, and calculating the total profit gained by adding the server for the collection of calls
that were accepted. We conducted paired experiments for System 1 and System 2, meaning that for
the ith outer-level replicate, the two systems share the same arrival rate parameter Λi (except for
the common value of Λi , the two systems were simulated independently). Using a common value
of arrival rate helps to isolate the effect of adding one more server on the system performance. See
Reference [23] for further discussion of common random numbers in call center simulations. After
obtaining the total profit for the two systems on each inner-level replicate j, the profit difference
Yi j between the two systems were then calculated. Note that given Λi , the randomness in Yi j from
the outer level is due to the random Poisson arrivals, as well as the random service times and
random profit.
More specifically, for the jth inner-level replicate of the ith outer-level replicate, denote the total

numbers of accepted calls within the specified time interval asN 1
i j andN

2
i j for System 1 and System

2, respectively. Each accepted call is associated with a random profit Pr
i j,k

, k = 1, 2, . . . ,N r
i j ; r = 1, 2,

and the total profit gained by System r within the specified time interval is
∑N r

i j

k=1
Pr
i j,k

. Therefore,

the r.v. Yi j , which is the observed increase in profit by adding one more server in the call center
system, is

Yi j =

N 2
i j∑

k=1

P2
i j,k −

N 1
i j∑

k=1

P1
i j,k .

We are interested in estimating the pdf of the expected increase in profit given the random
arrival rate Λ, i.e., the pdf of X = E[Yi j |Λ]. The sample average Ȳi = m−1

∑m
j=1 Yi j can be viewed

as a noisy estimate of Xi = E[Yi j |Λi ].
For the parameterization of this example, we take Λ ∼ lognorm(1.68, 0.3), which has mean 5.61

and standard deviation 1.72. The service time follows an exponential distribution with a mean of
1. The distribution of the profit associated with each accepted call is chosen to be N (1, 0.05). The
number of servers is c = 5 for System 1 and c+1 = 6 for System 2, and the capacity for both systems
is K = 10. For the purpose of having a closed-form analytical expression for fX , the simulation
is initiated in the steady state. (The closed-form expression for fX is used only to evaluate the
performance of the approach; we did not incorporate this knowledge of fX into the estimation
procedure.)
Figure 6 illustrates the typical noise level for one simulated dataset with the total computational

budget being M = 1.25 × 106 and the allocation being m = 250 and n = 5,000. The number of
inner-level replicatesm used in this example is larger than in the portfolio loss example, because
the inherent inner-level noise in this example is much larger. Thus, even with this larger m,
the naïve estimator is still substantially over-dispersed compared to the true fX , as seen in the
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Fig. 6. For the call center example, a scatterplot of the sample variance S2i against the sample mean Ȳi for
i = 1, . . . ,n, along with the “true” h function (the red dashed curve), the loess estimates д (the blue dotted
curve) and дa (the orange dot-dashed curve). The black open circles correspond to the replicates in the
additional simulations that were used to estimate дa .

histogram in Figure 7. Using too few inner-level replicates, the noise levels are so large that
even the deconvolution or bias correction is challenging. Figure 6 is a scatterplot of S2i vs. Ȳi
(i = 1, 2, . . . ,n) for each scenario ωi . The “true” function h in this example is obtained by fitting
a loess [6, 14] local linear smoother to a scatterplot of S2i vs. Ȳi from a separate data set with very
largem and n values (which is not shown here and which was only used to obtain the ground truth
for this example for assessment purposes). The estimated functionsд and дa (the latter fit to the ad-
ditional simulation results, as described earlier) are also shown in Figure 6. It is again the case that
дa is much closer to the “true” function h compared to д, and the procedure for obtaining дa only
costs about 0.73% additional computational budget for this particular MC replicate. Across the MC
replicates for this example, the additional cost for estimating дa was generally between 0.5% and
0.9%.
Figure 7 compares the QP estimator with its alternatives, and it also demonstrates the enhanced

performance achieved by including the support shape constraint in the QP method. Specifically,
Figure 7 plots the histogram of the observations ȳi for i = 1, . . . ,n, along with the true pdf fX
(the derivation of which is presented in Appendix C) and the four pdf estimators. The true pdf for
the call center problem has an unusual shape due to the particular structure and parameterization
of the problem, which makes the bias-correction challenging for this example. In spite of the chal-
lenging nature of this example, the QP estimator, which is denoted as “QP” and usesдa and the two
universally applicable shape constraints (integrate-to-one and nonnegativity), still performs much
better than the naïve estimator at estimating fX . In addition, the QP estimator is less over-dispersed
than is the Steckley et al. estimator.We also plot the QP estimatorwith an additional constraint that
the support ofX is nonnegative (i.e., that fX (x ) = 0 forx < 0), which is denoted as “QPs” in Figure 7.
Including the additional support constraint significantly improves the performance of the QP esti-
mator. Specifically, QPs better captures the sharp feature at x = 0, which is difficult to accomplish
using a conventional kernel-based method. It is reasonable to include the nonnegative support
constraint for this particular call center example, because we know that given the same arrival
rate and call center capacity, adding a server to the system can only increase the expected number
of customers served, and hence can only increase the expected profit (ignoring the cost of the
server).
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Fig. 7. Histogram of the observations Ȳi (i = 1, . . . ,n) for the call center example, along with the true pdf fX
(black solid curve) and two QP estimators using дa (the red long-dashed curve and the orange dot-dashed
curve). The two QP estimators both incorporate the integrate-to-one and the nonnegativity constraints,
while the one denoted as QPs (red long-dashed curve) includes the additional support constraint thatX ≥ 0.
The blue dashed curve is the Steckley et al. estimator, and the green two-dashed curve is the naïve estimator
(the kernel-smoothed histogram).

3.2 Portfolio Loss Example with Adaptive Allocation

In some financial applications, the inner-level allocationm =m(ωi ) =m(X (ωi )) is determined by
an adaptive procedure and depends on the individual outer-level scenario ωi References [5, 12].
As discussed in Section 2.3, our QP estimation approach remains applicable when the nested simu-
lation utilizes adaptive allocation as long as the number of inner-level replicates does not depend
on ωi other than via Xi = X (ωi ). In this section, we examine the performance of the QP estimator
when an adaptive allocation is used in the portfolio loss example introduced in Section 3.1.1. An
adaptive allocation is useful mainly when, instead of desiring the entire pdf fX , one is primarily
interested in Pr [X ≤ q] for one particular threshold q, where q may be prespecified or may be a
specified quantile.
As was demonstrated in Reference [5], the number of inner-level replicates in the adaptive allo-

cation should be larger, perhaps orders of magnitude larger, in the vicinity of the threshold q. Here,
we assume the rule for choosingmi as a function of the portfolio loss X (ωi ) for the ith scenario is
given, and we focus on the behavior of the different pdf estimators under the adaptive allocation.
SinceX is not known in practice, one would have to choosemi as a function of some surrogate like
Ȳi , as was done in References [5, 12]. Figure 8 plots our rule for choosingm(x ) as a function of x ,
which is based on the functional relation suggested in Reference [5] for a specified loss threshold
q = 0.721, which corresponds to the 0.90 quantile of fX . In practice, the 0.90 quantile q = 0.721
would not be known in advance. Regardless, we still use Pr [X ≤ 0.721] as a convenient basis for
comparison in this example. Figure 8(a) is the theoretical rule, while Figure 8(b) is the actual rule
that roundsm(x ) to the nearest integer. We use n = 4, 096 as the fixed number of outer-level repli-
cates, and the total computational budget for this example is 80,000. The functions h, д, and дa
for one typical MC replicate are plotted in Figure 9. The corresponding conditional error variance
functions for Ȳ plotted in Figure 9(b) are obtained by dividing the functions in Figure 9(a) by the
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Fig. 8. (a): The theoretical number of inner-level replicatesm(x ) as a function of x for each scenario for the
adaptive allocation of the portfolio loss example. (b): The actual integer number of inner-level replicates used
in the simulation. The vertical dashed line corresponds to the 0.90 quantile at q = 0.721.

Fig. 9. (a): For the adaptive allocation of the portfolio loss example, the theoretical h function (red dashed
curve) and the estimated functions with (дa : orange dot-dashed curve) and without (д: blue dotted curve)
additional simulations. The black open circles correspond to the additional replicates from which дa was
obtained. (b): The functions in Figure 9(a) divided by them(x ) function shown in Figure 8(b) serve as estimates
of the variance function in Figure 9(b). The vertical dashed line corresponds to the 0.90 quantile q = 0.721.

corresponding number of inner-level replicates shown in Figure 8(b). Notice that the conditional
error variance functions dip around the threshold q = 0.721 due to the increased number of the
inner-level replicates in that vicinity, which is intuitively appealing if the goal is to estimate the
0.90 quantile. The histogram of the Ȳ observations for this MC replicate is displayed in Figure 10,
and the histogram mass to the left of the vertical line at the true 0.90 quantile q = 0.721 is only
0.854. That is, the estimate of Pr [X ≤ 0.721] using the naïve histogram estimator is only 0.854,
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Table 2. Comparison of the Averages and MSEs of the Estimated Pr [X ≤ q] for Three Methods across 200
MC Replicates for the Adaptive Allocation Version of the Portfolio Loss Example

p
Naïve Steckley QP дa

Ave (p̂) MSE (p̂) Ave (p̂) MSE (p̂) Ave (p̂) MSE (p̂)
0.8 0.771 8.74e-04 (2.95e-05) 0.800 8.16e-05 (8.71e-06) 0.808 9.16e-05 (8.59e-06)
0.9 0.850 2.51e-03 (3.42e-05) 0.883 3.29e-04 (1.74e-05) 0.902 8.56e-05 (7.39e-06)
0.95 0.898 2.70e-03 (3.33e-05) 0.931 4.16e-04 (1.82e-05) 0.944 7.47e-05 (6.88e-06)
0.99 0.953 1.41e-03 (1.79e-05) 0.978 1.62e-04 (8.01e-06) 0.985 3.53e-05 (2.80e-06)

Note: The Quantiles q Correspond to Probability Levels {0.80, 0.90, 0.95, 0.99} Standard errors of the MSEs are shown in

parentheses.

Fig. 10. For the adaptive allocation of the portfolio loss example, the histogram (naïve estimator) of the loss
density together with three pdf estimators. The orange dotted dashed curve is the QP estimator with дa ,
the blue dashed curve is the Steckley et al. estimator, and the green dashed curve is the kernel smoothing
estimator. The vertical dashed line corresponds to the 0.90 quantile q = 0.721.

compared to the true probability 0.90. In contrast, the estimate of Pr [X ≤ 0.721] using the QP
estimator with дa is 0.899, which is very close to the true probability 0.90.
The preceding results are for one typical MC replicate. We repeated the analysis for 200 MC

replicates, the results of which are summarized in Table 2. On each MC replicate, the two-level
simulation was repeated, and the three pdf estimators (naïve, Steckley et al., and QP) were re-
calculated. For each of the three pdf estimators, the corresponding estimate p̂ of the probability
Pr [X ≤ q] for four separate tail quantiles q corresponding to probabilities p ∈ {0.8, 0.9, 0.95, 0.99}
were calculated. Table 2 shows the average p̂ values across the 200 replicates, along with their
MSEs, from which we see that using bias-corrected estimators (the Steckley et al. estimator and
the QP estimator) improves the naïve estimator by an order of magnitude. Furthermore, the QP
estimator outperforms the Steckley et al. estimator (and the naïve estimator) in terms of both bias
and MSE.

4 CONCLUSIONS

In this article, we have developed and analyzed a density deconvolution approach for obtaining
a bias-corrected estimator of the density of the conditional expectation from a nested simulation.
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We have derived the deconvolution relationships, which are valid for either uniform (constant
mi =m) or adaptive (variablemi ) allocations, as long as the numbermi of inner-level replicates is
chosen to depend on the outer-level scenario ωi only via Xi = X (ωi ).
Our deconvolution estimator requires an estimate of the conditional variance function h(x ),

which is challenging due to the “errors-in-predictors” phenomenon that results from Ȳi differing
fromXi due to finitemi . Our solution is to conduct additional inner-level replicates for just a hand-
ful of outer-level replicates. This was to ensure that we obtain a limited number of higher-quality
Ȳi observations that are closer to the true Xi and also to ensure that the sample variances for the
inner-level replicates are close to the true conditional variances.We fit a local linear loess smoother
to these fewer but higher-quality data points to get the conditional error variance function. We
found this approach to provide amore accurate error variance function estimator, compared to sim-
ply fitting a loess smoother to all the lower-quality data points (i.e., the Ȳi observations obtained
in the main nested simulation using the fewer number of inner-level replicates) (see Figures 2
and 6).
The examples in Section 3.1 have demonstrated that the deconvolution estimator with only the

universally applicable integrate-to-one and nonnegative constraints outperforms the naïve esti-
mator and the Steckley et al. estimator, and the difference margin is largest when the number of
inner-level replicates is small. What is particularly relevant is that the deconvolution estimator per-
forms better than the alternative estimators across the range of quantiles when each estimator uses
its optimal allocation for a fixed computational budget (see Figure 3, Figure 4, and Table 1), and its
performance does not degrade as muchwhenm differs from its optimal value (see Figsures 1 and 4).
This form of robustness to choice ofm in the allocation between inner- and outer-level replicates is
important, because it is difficult to determine the optimalm in practice, and there is no single opti-
malm if multiple features of fX are of interest (e.g., its mean, median, standard devaition, multiple
upper quantiles, multiple lower quantiles). Another advantage of the deconvolution estimator is
that a number of relevant shape constraints on the pdf can be easily incorporated, which further
improves its performance. This was illustrated via the call center example, in which including an
additional X ≥ 0 support shape constraint on the pdf fX further improved the deconvolution es-
timator by a substantial amount (Figure 7). Finally, the deconvolution method performed well not
only in the uniform allocation setting, but also in the adaptive allocation nested simulation setting,
as demonstrated in Section 3.2.

APPENDIX

A DERIVATION OF EQUATION (12)

We derive Equation (12) based on the second-order Taylor expansion approximation of Equa-
tion (11) to establish the predominant dependence of fȲ on fX and on the conditional error variance
function v (·). From Equation (11),

fȲ (y) �
∫ ∞

−∞

{
fX ,Z (y, z) − f ′X ,Z (y, z)z +

1

2
f ′′X ,Z (y, z)z

2
}
dz

=

∫ ∞

−∞
fX ,Z (y, z)dz −

∫ ∞

−∞
f ′X ,Z (y, z)zdz +

∫ ∞

−∞
f ′′X ,Z (y, z)z

2/2dz.

Assuming regularity conditions [26] that allow us to exchange the order of the differentiation and
integration operations and since E[Z |X = y] = 0, we have
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fȲ (y) = fX (y) −
∂

∂y

∫ ∞

−∞
fX ,Z (y, z)zdz +

1

2

∂2

∂y2

∫ ∞

−∞
fX ,Z (y, z)z

2dz (17)

= fX (y) −
∂

∂y
fX (y)

∫ ∞

−∞
fZ |X (z |y)zdz +

1

2

∂2

∂y2
fX (y)

∫ ∞

−∞
fZ |X (z |y)z2dz (18)

= fX (y) −
∂

∂y

{
fX (y)E[Z |X = y]

}
+
1

2

∂2

∂y2

{
fX (y)E[Z

2 |X = y]
}

(19)

= fX (y) −
∂

∂y

{
fX (y)E[Z |X = y]

}
+
1

2

∂2

∂y2

{
fX (y)v (y)

}
(20)

= fX (y) +
1

2
v (y) f ′′X (y) +v ′(y) f ′X (y) +

1

2
v ′′(y) fX (y). (21)

B DERIVATION OF SIGNAL-TO-NOISE RATIO IN SECTION (3.1.1)

The derivation of the signal-to-noise ratio mentioned in the portfolio loss example in Section (3.1.1)
follows from the familiar variance decomposition formula and from our specific parametrization
of the example. Specifically, since the r.v. Z |X = x is defined as m−1

∑m
j=1 ϵj |X = x , under the

assumptions that ϵj |X = x are i.i.d. for j = 1, . . . ,m and ϵj |X = x ∼ Gamma(4, 2/x ) − 2x , the
conditional expectation and conditional variance of Z |X = x are 0 and x2/m, respectively. The
variance decomposition formula becomes

Var[Z ] = E
[
Var[Z |X ]

]
+ Var

[
E[Z |X ]

]
(22)

= E

[
X 2

m

]
+ Var[0] (23)

=
1

m

[
Var[X ] + E2[X ]

]
. (24)

Hence, the signal-to-noise ratio is

Var[X ]

Var[Z ]
=

mVar[X ]

Var[X ] + E2[X ]
.

When X ∼ Beta(4, 4), we have Var[X ] = 1/36, E[X ] = 1/2, and Var[X ]/Var[Z ] =m/10.

C DERIVATION OF THE THEORETICAL fX IN THE CALL CENTER EXAMPLE

In this section, we derive the analytical expression for the theoretical pdf fX in the call center
example. For an M/M/c/K queue, define ρ = λ/μ to be the ratio of the arrival rate λ over the
service rate μ (here, μ is known), and define a = ρ/c . The number of calls in anM/M/c/K system
has a steady state distribution whose probability mass function is [31, 32]

pn = Pr (# of calls in the system = n | arrival rate = λ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρn

n!
p0 : 0 ≤ n ≤ c

ρncc−n

c!
p0 : c ≤ n ≤ K

,

where

p0 = Pr (no call in the system| arrival rate = λ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[ ρc
c!
· 1−aK−c+11−a +

c−1∑
n=0

ρn

n!

]−1
: a � 1[ ρc

c!
(K − c + 1) +

c−1∑
n=0

ρn

n!

]−1
: a = 1

.
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Then, we define

p−K = Pr (an arriving call is accepted| arrival rate = λ) = 1 − pK = 1 − ρKcc−K

c!
p0.

Hence, by Poisson splitting, the number of accepted calls in one unit of time is Pois (λp−K ), given
that the arrival rate in this unit of time is λ.
LetNr denote the number of accepted calls for system r , r = 1, 2 (System 1 isM/M/c/K ; System 2

isM/M/(c+1)/K ). Then, within a unit of time with arrival rate λ, we have Nr |Λ = λ ∼ Pois (λpr−K ),
where pr−K is the probability of an arriving call being accepted given an arrival rate λ for System
r (r = 1, 2). Denote the difference in the total profit gained by the two systems as Y , whose con-
ditional expectation given the unknown arrival rate Λ is the expected profit improvement that
results from adding one more server, which we denote by X . Thus, we have

X = E[Y |Λ] = E

⎡⎢⎢⎢⎢⎣��
N2∑
k=1

P2,k −
N1∑
k=1

P1,k��
����Λ
⎤⎥⎥⎥⎥⎦ = E[P1,1] · E[(N2 − N1) |Λ], (25)

where the Pr,k denotes the profit gained by the kth accepted call in System r (r = 1, 2). The second
equality in Equation (25) holds due to the fact that all random profits are i.i.d. Since the distribution
of the profit associated with each accepted call is chosen to be N (1, 0.05), in which case E[Pr,k ] = 1
for all r and k , Equation (25) becomes X = E[(N2 − N1) |Λ]. If we define E[(N2 − N1) |Λ = λ] =
λp2−K − λp

1
−K � t (λ), then X = t (Λ) with pdf

fX (x ) = ft (Λ) (x ) = fΛ
(
t−1 (x )

) ����� ddx t−1 (x )
����� .

Remark C1: Note that t (λ) = λp2−K − λp1−K , where p
1
−K = 1 − ρK cc−K

c ! · [1 + ρ + ρ2/2! + · · · +
ρc

c !
1−aK−c+1

1−a ]−1 ≈ 1 − ρK cc−K

c ! · (1 − ρ) and p2−K ≈ 1 − ρK (c+1)c−K

c ! · (1 − ρ). Therefore,

t (λ) = λ

(
1 − λ

μ

)
λ

μ

K cc−K − (c + 1)c−K

c!
∝ λK+1,

from which it follows that

d

dx
t−1 (0) ∝ d

dx
K+1
√
x ���x=0 ∝ x−

K
K+1

���x=0 = ∞.
Since fX (x ) = fΛ(t

−1 (x )) | d
dx
t−1 (x ) |, and the derivative of t−1 (x ) at x = 0 is infinite by the above

argument, the pdf of X at 0 is infinite, i.e., fX (0) = ∞. This is not apparent in Figure 7, since the
vertical axis was truncated.

D CONSISTENCY AND RATE OF CONVERGENCE

In this section, we present a proof that QP deconvolution estimator is weakly consistent and a
heuristic argument that its convergence rate is the same as the rate of the jackknife estimator
in Steckley et al. [28]. The many challenging steps and technical details needed to convert the
heuristic argument to a rigorous proof would require a new article.

D.1 Consistency

In this section, we address non-parametric consistency of the estimator defined in Equation (15).

Since that equation only defines the estimate at the Kn discretization points, f̂X ,n (xn,i ), i =

1, . . . ,Kn , we must extend the solution to a function on R. We do that by taking f̂X ,n to be a
histogram-like estimate: the function, constant on [xn,i − δn/2,xn,i + δn/2), i = 1, . . . ,Kn with
values on those intervals given by the solution of Equation (15), and zero elsewhere. Denoting
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the integral transform in Equation (8) by K f (y) :=
∫ ∞
−∞ fZ |X (y − x |x ) f (x ) dx , we roughly follow

the approach in Mendelsohn and Rice [24]: We first show in Theorem 2 that under certain con-

ditions, K f̂X ,n is strongly L2-consistent for fȲ = K fX . Then, in Theorem 3, we show that as a

consequence of Theorem 2, the corresponding CDFs F̂X ,n converge weakly to FX with probability
1 (weak convergence here meaning pointwise convergence at every continuity point of FX ; in this
case every point, since FX is assumed to have a density). Finally, in Lemma 2, we show that if
fX has four L2 derivatives, and fZ |X is Gaussian with variance function v (x ), then under some
conditions on v (x ), the assumptions of Theorem 2 are satisfied.
In this section, matrices and vectors are written in boldface, and if f denotes a compactly sup-

ported, piecewise constant function, then f denotes the vector of the values it attains. Operators
on function spaces are denoted by calligraphic letters, so C f maps the function f to a function,
while Cfmaps the vector f to a vector. The norm on the function space L2 (R) is denoted by ‖ · ‖L2

and is defined by ‖ f ‖2L2
=
∫ ∞
−∞ f (x )2 dx . The conventional 2-norm on RK is denoted by ‖ · ‖K,2.

Note that if f̂ is a random function, or f̂ a random vector in RK , then ‖ f̂ ‖L2 and ‖f̂‖K,2 are both
R-valued random variables.

Theorem 2. For each integer n, let the approximation subspace An , with approximation interval

An := [xn,1 −δn/2,xn,Kn +δn/2), consist of non-negative functions integrating to unity, with support
contained inAn , constant on [xn,i−δn/2,xn,i+δn/2), and uniformly bounded by some B > 0. Assume

the following:

(1) There is a sequence {an }, each ai ∈ Ai , with the property that ‖an − fX ‖L2 → 0 and

δn ‖D2an ‖2Kn,2 = O (1).

(2) There is a sequence of approximators { f̂Ȳ ,n } of fȲ with f̂Ȳ ,i ∈ Ai s.t. ‖ f̂Ȳ ,n − fȲ ‖L2

a .s .→ 0.

(3) The functions f̂X ,n and an have support contained in Sn = [an ,bn], and the maps y �→
1Acn (y) supx ∈Sn fZ |X (y − x |x )2 are bounded by some integrable function.

(4) The operator K : L2 (R) → L2 (R) is bounded.

(5) For each n, our estimate is the unique f̂X ,n ∈ An minimizing ‖̂fȲ ,n − Cn f̂X ,n ‖2Kn,2 +
λn ‖D2̂fX ,n ‖2Kn,2, where f̂Ȳ ,n and Cn f̂X ,n are vectors of values of f̂Ȳ ,n and Cn f̂X ,n and D2 a

second-differencing operator.

(6) The map (x ,y) �→ fZ |X (y − x |x ) is uniformly continuous in (x ,y) with modulus of continuity

ω (ε ).
(7) λn → 0 and ω (δn ) (bn − an )

√
Knδn → 0.

Then,

‖K fX − K f̂X ,n ‖L2

a .s .→ 0. (26)

Proof of Theorem 2. The formulation in Equation (15) uses two layers of approximation. First,

only a finite interval is addressed in the objective, while K f̂X ,n may have support on all of
R; second, the integral transform K is approximated by a discrete approximation. If we are
given Kn ,δn , {xn,i }, with approximation interval An := [xn,1 − δn/2,xn,Kn + δn/2), with Cn

the convolution matrix C in Equation (14), and the x̃i ∈ [xn,i − δn/2,xn,i + δn/2) satisfying

δn f (x̃i ) fZ |X (y − x̃i |x̃i ) =
∫ xn,i+δn/2
xn,i−δn/2

f (x ) fZ |X (y − x |x )dx , then we can define the following map-

pings to address each of those approximations:

Cn f (y) =
⎧⎪⎨⎪⎩δn[Cnf]j = δn

∑Kn
i=1 f (xn,i ) fZ |X (xn, j − xn,i |xn,i ) if y ∈ [xn, j − δ/2,xn, j + δn/2)

0 if y � An ,

(27)
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Rn f (y) =⎧⎪⎨⎪⎩δn
∑Kn

i=1[f (x̃i ) fZ |X (y − x̃i |x̃i ) − f (xn,i ) fZ |X (xn, j − xn,i |xn,i )] if y ∈ [xn, j − δ/2,xn, j + δn/2)
0 if y � An ,

(28)

Tn f (y) =
⎧⎪⎨⎪⎩0 if y ∈ An∫ ∞
−∞ f (x ) fZ |X (y − x |x )dx if y � An ,

(29)

representing the approximation of the convolution, the remainder from that approximation, and
the remainder due to the ignored tail, respectively. We have the property that when f has support
contained in An and is piecewise constant on [xn,i − δn ,xn,i + δn ), then K f = Cn f + Rn f + Tn f ,
since if y ∈ [xn, j − δn ,xn, j + δn ) ⊂ An ,

K f (y) =

∫
An

f (x ) fZ |X (y − x |x )dx

(a) =

Kn∑
i=1

∫ xn,i+δn/2

xn,i−δn/2
f (x ) fZ |X (y − x |x )dx

(b) = δn

Kn∑
i=1

f (x̃i ) fZ |X (y − x̃i |x̃i )

(c) = δn

Kn∑
i=1

f (xn,i ) fZ |X (xn, j − xn,i |xn,i )

+ δn

Kn∑
i=1

[f (x̃i ) fZ |X (y − x̃i |x̃i ) − f (xn,i ) fZ |X (xn, j − xn,i |xn,i )]

= Cn f (y) + Rn f (y)

(30)

In (a), we have re-written the integral as a sum over the discretization grid. In (b), we invoke the

mean value theorem to get x̃i ∈ [xn,i − δn/2,xn,i + δn/2) s.t.
∫ xn,i+δn/2
xn,i−δn/2

f (x ) fZ |X (y − x |x )dx =
δn f (x̃i ) fZ |X (y − x̃i |x̃i ). In (c), we substitute the x̃i ’s and y’s bin midpoints.

The foregoing is convenient, because if a function f is compactly supported and piecewise
constant on a uniformly spaced partition—in our case, Cn f is just such a function—then its L2-
norm can be expressed in terms of the 2-norm of the vector of the values it takes on: If f is the
vector with entries fi = f (xi ), and the spacing is δ , then

‖ f ‖2L2
=

K∑
i=1

δ f (xi )
2 = δ ‖f‖2K,2. (31)

The objective in Equation (15) involves minimizing a penalized vector 2-norm ‖̂fȲ ,n − Cf‖2K,2,
and we are already thinking of f̂Ȳ ,n as piecewise constant—a histogram—so it will be convenient
to think of Cnf as the values of a piecewise constant approximation Cn f of K f .
The following lemma will be useful. The lemma’s proof is deferred to below the current proof.

Lemma 1. Under the assumptions, the norms of the errors in our discrete approximation and support

approximation converge to zero. Specifically,

(i) Under Assumptions 3, 6, & 7, if {sn } is a sequence with si ∈ Ai , then ‖Rnsn ‖L2 → 0.
(ii) Under Assumption 3, if {sn } is a sequence of pdfs, then ‖Tnsn ‖L2 → 0.
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By Assumption 2, P(‖ f̂Ȳ ,n− fȲ ‖L2 → 0) = 1; assume that this event occurs. Since fȲ = K fX , we

want to show that ‖ fȲ − K f̂X ,n ‖L2 converges to zero. First, we bound it by an expression related
to the objective in Equation (15) plus some approximation remainders.

‖ fȲ − K f̂X ,n ‖L2 = ‖ fȲ − Cn f̂X ,n − Rn f̂X ,n − Tn f̂X ,n ‖L2

≤ ‖ fȲ − Cn f̂X ,n ‖L2 + ‖Rn f̂X ,n ‖L2 + ‖Tn f̂X ,n ‖L2

≤ ‖ f̂Ȳ ,n − Cn f̂X ,n ‖L2 + ‖ fȲ − f̂Ȳ ,n ‖L2 + ‖Rn f̂X ,n ‖L2 + ‖Tn f̂X ,n ‖L2

=
√
δn ‖̂fȲ ,n − Cn f̂n ‖K,2 + ‖ fȲ − f̂Ȳ ,n ‖L2 + ‖Rn f̂X ,n ‖L2 + ‖Tn f̂X ,n ‖L2 .

(32)

The first term is what appears in the objective in Equation (15). As mentioned, the second term
goes to zero by Assumption 2. The third and fourth terms go to zero by Lemma 1. To see that the
first term goes to zero:

δn ‖̂fȲ ,n − Cn f̂X ,n ‖2K,2 ≤ δn[‖̂fȲ ,n − Cn f̂X ,n ‖2K,2 + λn ‖D2̂fX ,n ‖2K,2]

(a) ≤ δn[‖̂fȲ ,n − Cnan ‖2K,2 + λn ‖D2an ‖2K,2]

= δn ‖̂fȲ ,n − Cnan ‖2K,2 + λnδn ‖D2an ‖2K,2.

(33)

The first inequality follows from the positivity of λn ‖D2̂fX ,n ‖22 . In (a), we use Assumption 5, and
by Assumption 1, the second term goes to zero if λn → 0. Finally, for the first term above,√

δn ‖̂fȲ ,n − Cnan ‖2 = ‖ f̂Ȳ ,n − Cnan ‖L2

≤ ‖ fȲ − Kan ‖L2 + ‖ fȲ − f̂Ȳ ,n ‖L2 + ‖Rnan ‖L2 + ‖Tnan ‖L2

= ‖K ( fX − an )‖L2 + ‖ fȲ − f̂Ȳ ,n ‖L2 + ‖Rnan ‖L2 + ‖Tnan ‖L2 .

(34)

The first term converges to zero by Assumptions 4 and 1, the second by Assumption 2, and the
third and fourth by Lemma 1.

Thus, we conclude that P(‖K fX − K f̂X ,n ‖L2 → 0) = 1, as needed. �

Proof of Lemma 1. For (i), let n be large enough that An ⊃ [an ,bn] and suppose y ∈ An . We
have, letting � be the smallest index for which x� − δn/2 > an ,

Rnsn (y) = δn

Kn∑
i=1

sn (xn,i )[fZ |X (y − x̃i |x̃i ) − fZ |X (xn, j − xn,i |xn,i )]

(a) ≤ Bδn

�+ �(bn−an )/δn �∑
i=�

[fZ |X (y − x̃i |x̃i ) − fZ |X (xn, j − xn,i |xn,i )]

(b) ≤ Bδn

�+ �(bn−an )/δn �∑
i=�

ω (δn ) ≤ B (bn − an )ω (δn ),

(35)

where (a) is by the fact that sn < B and sn is zero outside [an ,bn], and (b) is by the uniform
continuity of д with modulus ω (ε ). Now, since Rnsn (y) = 0 for y � An ,

‖Rnsn ‖2L2
≤ B2 (an − bn )2ω (δn )2Knδn , (36)

so

‖Rnsn ‖L2 ≤ B (an − bn )ω (δn )
√
Knδn , (37)

Assumption 7 gives the desired result.
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Now, for (ii), observe that

‖Tnsn ‖L2 =

∫
Acn

[∫
Sn

sn (x ) fZ |X (y − x |x )dx
]2

dy

≤
∫
Acn

⎡⎢⎢⎢⎢⎣
(∫

sn (x )dx

) �� supx ∈Sn
fZ |X (y − x |x )��

⎤⎥⎥⎥⎥⎦
2

dy

=

∫
1Acn (y) sup

x ∈Sn
fZ |X (y − x |x )2dy,

(38)

invoking Hölder’s inequality with p = 1, q = ∞. By the existence of a dominating integrable
function from Assumption 3 and the fact that 1Acn (y) supx ∈Sn fZ |X (y − x |x )2 converges pointwise
to the zero function, the dominated convergence theorem yields that ‖Tnsn ‖L2 → 0. �

Now, in the following, we upgrade result (26) about K f̂X ,n to convergence of F̂X ,n :

Theorem 3. Let F̂X ,n and FX be the cdfs of f̂X ,n and fX , respectively. Suppose that fX has the

unique distribution for which K fX = fȲ . Under Assumptions 1–7, P(F̂X ,n
w→ FX ) = 1.

Proof of Theorem 3. Under the assumptions, Theorem 2 yields that P(‖K f̂X ,n− fȲ ‖L2 → 0) =

1. Assume that this event occurs. By Theorem 3.2.9 of Reference [9], if every subsequence of F̂X ,n

has a further subsequence converging to FX , then F̂X ,n
w→ FX . Let F̂X ,nk be a subsequence of F̂X ,n

By Helly’s Selection Theorem (Theorem 3.2.6 of Reference [9]), there is a further subsequence

such that F̂X ,nkj

w→ F̄ . Then, for any y, we have

K f̂X ,nkj
(y) =

∫
fZ |X (y − x |x )dF̂X ,nkj

(x ) →
∫

fZ |X (y − x |x )dF̄ (x ) = f̄Ȳ (y). (39)

But, since ‖K f̂X ,nkj
− fȲ ‖L2 → 0, by Theorem 2, we have that ‖ f̄Ȳ − fȲ ‖L2 = 0. Hence f̄Ȳ = fȲ

a.e., and by the assumption of uniqueness, F̄ = FX . Thus, the conditions of Theorem 3.2.9 in

Reference [9] are satisfied, and we conclude that F̂X ,n
w→ FX . �

Lemma 2. Assume that fX , f
′
X , . . . , f

(4)
X
∈ L2. Suppose that An = [xn,i − δn/2,xn,Kn + δn/2] and

Sn = [an ,bn], with Sn ⊂ An . Suppose further that an − (xn,1 − δn/2) and xn,Kn + δn − bn are both

increasing. Suppose that we have error densities

fZ |X (y − x |x ) =
1√

2πv (x )
exp− (y − x )

2

2v (x )
,

and that there arem,M,m′,M ′ ∈ R s.t. 0 < m ≤ v (x ) ≤ M andm′ ≤ v ′(x ) ≤ M ′ for all x ∈ S .
Then Assumptions 1–7 are satisfied.

Proof of Lemma 2.

Assumption 1. One such sequence is given by

an (x ) = fX (xn,i ) for x ∈ [xn,i − δn/2,xn,i + δn/2), i = 1, . . . ,Kn (40)

and an (x ) = 0 otherwise. Note that for x ∈ [xn,i − δn/2,xn,i + δn/2),
| fX (x ) − an (x ) |2 = | fX (x ) − fX (xn,i ) |2 (41)

=
�����
∫ xn,i

x

f ′(t ) dt
�����
2

(42)
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≤
∫ xn,i+δn/2

xn,i−δn/2
f ′(t )2 dt , (43)

so

‖ fX − an ‖2L2
=

∫ ∞

−∞
| fX (x ) − an (x ) |2 dx (44)

=

Kn∑
i=1

∫ xn,i+δn/2

xn,i−δn/2
| fX (x ) − an (x ) |2 dx +

∫
Acn

fX (x )
2 dx (45)

≤
Kn∑
i=1

∫ xn,i+δn/2

xn,i−δn/2

∫ xn,i+δn/2

xn,i−δn/2
f ′(t )2 dt dx +

∫
Acn

fX (x )
2 dx (46)

= δn

∫
An

f ′(t )2 dt +

∫
Acn

fX (x )
2 dx (47)

≤ δn ‖ f ′X ‖
2
L2
+

∫
Acn

fX (x )
2 dx , (48)

each of which converges to zero as n → ∞. Now, let

D2an (x ) =
⎧⎪⎨⎪⎩
an (xn,i+δn )−2an (xn,i )+an (xn,i−δn )

δ 2
n

if x ∈ [xn,i − δn ,xn,i + δn ), i = 1, . . . ,Kn

0 o.w.
(49)

so by definition of an ,

D2an (x ) =
⎧⎪⎨⎪⎩
fX (xn,i+δn )−2fX (xn,i )+fX (xn,i−δn )

δ 2
n

if x ∈ [xn,i − δn ,xn,i + δn ), i = 1, . . . ,Kn

0 o.w.
(50)

By the second representation above (see Reference [7]),

D2an (x ) = f ′′X (x ) −
δ 2n
12

f (4)
X

(ξx ), (51)

with ξx ∈ [xn,i − δn ,xn,i + δn ) if x ∈ [xn,i − δn ,xn,i + δn ), and an argument similar to the above

yields that ‖D2an ‖2L2
= δn ‖D2an ‖2Kn,2 = O (1).

Assumption 2. Theorem 2 of Reference [37] gives that if fȲ ∈ L2, xn,1 → −∞, xn,K → ∞, δn → 0,

and nδn → ∞, then ‖ f̂Ȳ ,n − fȲ ‖L2

a .s .→ 0.

Assumption 3. If y < xn,1 − δn , then

sup
x ∈Sn

1

2πv (x )
exp− (y − x )

2

v (x )
≤ 1

2πm
exp− (y − a1)

2

M
(52)

and similarly if y > xn,Kn + δn , then

sup
x ∈Sn

1

2πv (x )
exp− (y − x )

2

v (x )
≤ 1

2πm
exp− (y − b1)

2

M
, (53)

each of which are integrable, so a satisfactory integrable function is found by taking the former for

y < a1, the latter for y > b1, and some constant value for y ∈ [a1,b1].
Assumption 4. By Reference [19], Chapter 16, Theorem 2, K : L2 (R) → L2 (R) is bounded if

sup
x

∫
fZ |X (y − x |x ) dy < ∞ and sup

y

∫
fZ |X (y − x |x ) dx < ∞. (54)
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Since fZ |X is a pdf for each x , supx
∫
fZ |X (y − x |x ) dy = 1. For the other, this follows from the

assumptions on the variance function:

sup
y

∫
1√

2πv (x )
exp− (y − x )

2

2v (x )
dx ≤ sup

y

∫
1√

2πv (x )
exp− (y − x )

2

2v (x )
dx (55)

≤ sup
y

∫
1

√
2πm

exp− (y − x )
2

2M
dx (56)

= Cm,M , (57)

where Cm,M is a constant depending only onm and M .

Assumption 5. Satisfied by construction of f̂X ,n .

Assumption 6. Call G (x ,y) = fZ |X (y − x |x ). It is sufficient to show that F = {G (·,y) |y ∈ R} ∪
{G (x , ·) |x ∈ R} is uniformly equicontinuous with modulus cε , which can be shown by demonstrating

that these functions are Lipschitz continuous with constant at most c . For each x , ∂G/∂y is bounded

by ±1/
√
2eπv (x )4, so for any x , G (x , ·) has Lipschitz constant at most 1/

√
2eπm4. Also,

∂G (x ,y)

∂x
=
e−

(x−y )2
2v (x )

[
v ′(x ) (x − y)2 − 2v (x ) (x − y) −v (x )v ′(x )

]
√
8πv (x )5

, (58)

which can be bounded above and below by substituting, depending on the sign of x −y, the bounds for
v (x ) and v ′(x ). Each function of that form is bounded, with extrema not depending on y, and so each
G (·,y) has Lipschitz constant at most the largest magnitude of the extrema of those functions. Thus,

the family F of functions is uniformly equicontinuous with modulus cε , so ω (ε ) = 2cε is a modulus

of continuity satisfying Assumption 6.

Assumption 7. We note that this requirement is satisfied if λn = o(1) and Knδ
3
n → 0, the second

of which is consistent with the foregoing requirements for satisfying Assumption 2. �

D.2 Convergence Rate

Assume for simplicity that mi = m for all n and that the variance function is a constant σ 2
ϵ and

known. Since m → ∞, the outer-level simulations become a negligible portion of the computa-
tional cost. Therefore, as in Reference [28], we will use M = mn, the number of inner-level simu-
lations, as the computational budget. The best MSE convergence rate for the jackknife estimator
in Steckley et al. is O (M−8/11) and is achieved withm = C1n

2/9, for some C1 > 0, so M = C1n
11/9.

Here, “best rate” means the rate whenm → ∞ optimally.
Fan [10] studies kernel deconvolution under the modelYi = Xi +σ0ϵi , whereXi and ϵi are mutu-

ally independent and each is i.i.d. with distribution independent of n, and σ0 → 0 as n → ∞. Fan’s
model with the error variance converging to 0 is exactly what is needed to study deconvolution
in nested simulation withm → ∞. Fan shows that if σ0 → 0 sufficiently fast, deconvolution esti-
mators can achieve the same convergence rate as when there is no measurement error, i.e., σ0 = 0
and a kernel density estimator, not a deconvolution kernel estimator, is used.
To apply Fan’s Theorem 4, we make the identifications

Yi = Y i , Xi = Xi , ϵi =
√
mZi , σ0 =

1
√
m
,

where the left-hand side of each equation is the quantity in Fan and the right-hand side is the
corresponding quantity in this article. Notice that var(ϵi ) = σ 2

ϵ .

Fan studies convergence in a weighted Lp norm ‖ f ‖wp =
{∫ ∞
−∞ | f (x ) |

pw (x )dx
}1/p

, where 1 ≤
p < ∞ and w is integrable. If p = ∞, then ‖ f ‖wp is the usual sup norm and there is no weighting
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function w . The convergence rate that Fan establishes holds for all p ≥ 1 and, in the case that
p < ∞, for all integrable w . The rate does not depend on p or w . For comparison with MSE rates
in Reference [28], we focus on ‖ · ‖2w2.

The convergence rate of f̂X depends on the rate at which σ0 → 0 and the order of the kernel. A

kernel K has order ν if
∫
K (x )xkdx equals 0 for k = 1, . . . ,ν − 1 and is non-zero for k = ν . Assume

K is order ν = 4, which requires that K takes both positive and negative values. By Theorem 4 of

Fan [10], if σ0 = C2n
−1/(2ν+1) = C2n

−1/9, for some C2 > 0, and other assumptions in Fan are met,

then the weighted mean squared error of f̂X converges to 0 at rate O (n−8/9). For σ0 = C2n
−1/9 to

hold, we needm = C1n
2/9 so M = C1n

11/9 and n = C−11 M9/11 and the weighted squared error rate

isO (M−8/11), the rate of the jackknife estimator in Steckley et al. [28]. One difference between the
results that we derive from Reference [10] and those in Reference [28] is that the latter uses an
unweighted MSE, whereas the former cannot usew ≡ 1, since this function is not integrable.
A key part of our conjecture is that the QP deconvolution estimator behaves like a kernel decon-

volution estimator with a 4th-order kernel. Smoothing a histogram converts a density estimation
problem to a regression problem where one smooths the bin areas against the bin centers. There-
fore, our estimator is essentially a spline estimator with a piecewise constant spline and a penalty
on the second derivative. Li and Ruppert [22] show that spline smoothing with a penalty on the
second derivative is asymptotically equivalent to kernel smoothing using a 4th-order kernel. In-
terestingly, the order of the kernel depends only on the derivative that is penalized, not the degree
of the spline.
Our simulation results show that the QP estimator has a smallerMSE than the Steckley jackknife

estimator, but not an order of magnitude smaller, suggesting that the difference is in the constants,
not the rates, and consistent with our conjecture.
Steckley et al. [28] show that the best rate for the naive estimator is O (c−4/7), which, of course,

is slower thanO (c−8/11). The QP deconvolution estimator could achieve a faster convergence rate
if the penalty were placed on a derivative higher than the second [34], but whether this would
translate into better performance in practical settings is unclear.
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