
On the Locality of Nash-Williams Forest Decomposition and
Star-Forest Decomposition

David G. Harris

University of Maryland

College Park, Maryland, USA

davidgharris29@gmail.com

Hsin-Hao Su

Boston College

Chestnut Hill, Massachusetts, USA

suhx@bc.edu

Hoa T. Vu

San Diego State University

San Diego, California, USA

hvu2@sdsu.edu

ABSTRACT
Given a graph 𝐺 = (𝑉 , 𝐸) with arboricity 𝑎, we study the problem

of decomposing the edges of 𝐺 into (1 + 𝜀)𝑎 disjoint forests in the

distributed LOCALmodel. While there is a polynomial time central-

ized algorithm for 𝑎-forest decomposition (e.g. [Imai, J. Operation

Research Soc. of Japan ‘83]), it remains an open question how close

we can get to this exact decomposition in the LOCAL model.

Barenboim and Elkin [PODC ‘08] developed a LOCAL algorithm

to compute a (2 + 𝜀)𝑎-forest decomposition in 𝑂 (log𝑛𝜀) rounds.
Ghaffari and Su [SODA ‘17] made further progress by computing

a (1 + 𝜀)𝑎-forest decomposition in 𝑂 (log
3 𝑛

𝜀4
) rounds when 𝜀𝑎 =

Ω(
√︁
𝑎 log𝑛), i.e., the limit of their algorithm is an (𝑎+Ω(

√︁
𝑎 log𝑛))-

forest decomposition. This algorithm, based on a combinatorial

construction of Alon, McDiarmid & Reed [Combinatorica ‘92], in

fact provides a decomposition of the graph into star-forests, i.e.,
each forest is a collection of stars.

Our main goal is to reduce the threshold of 𝜀𝑎 in (1 + 𝜀)𝑎-forest
decomposition. We obtain the following main results:

• An 𝑂 (Δ
𝜌
log

4 𝑛
𝜀)-round algorithm when 𝜀𝑎 = Ω𝜌 (1) in simple

graphs and multigraphs, where 𝜌 > 0 is any arbitrary constant.

• An 𝑂 (log
4 𝑛 logΔ
𝜀)-round algorithm when 𝜀𝑎 = Ω(logΔ

log logΔ) in
simple graphs and multigraphs.

• An 𝑂 (log
4 𝑛
𝜀)-round algorithm when 𝜀𝑎 = Ω(log𝑛) in simple

graphs and multigraphs. This also covers an extension of the

forest-decomposition problem to list-edge-coloring.

• An 𝑂 (log
3 𝑛
𝜀)-round algorithm for star-forest decomposition for

𝜀𝑎 = Ω(
√︁
logΔ + log𝑎) in simple graphs. When 𝜀𝑎 ≥ Ω(logΔ),

this also covers a list-edge-coloring variant.

Our techniques also give an algorithm for (1 + 𝜀)𝑎-outdegree-
orientation in𝑂 (log3 𝑛/𝜀) rounds, which is the first algorithm with

linear dependency on 𝜀−1.
At a high level, the first three results come from a combination

of network decomposition, load balancing, and a new structural

result on local augmenting sequences. The fourth result uses a

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PODC ’21, July 26–30, 2021, Virtual Event, Italy
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8548-0/21/07. . . $15.00

https://doi.org/10.1145/3465084.3467908

more careful probabilistic analysis for the construction of Alon,

McDiarmid & Reed; these bounds on star-forest-decomposition

were not previously known to be possible, even non-constructively.

CCS CONCEPTS
• Theory of computation→ Distributed algorithms; Graph
algorithms analysis; •Mathematics of computing→ Graph
theory.

KEYWORDS
forest decompositions, local algorithms, graph algorithms

ACM Reference Format:
David G. Harris, Hsin-Hao Su, and Hoa T. Vu. 2021. On the Locality of

Nash-Williams Forest Decomposition and Star-Forest Decomposition. In

Proceedings of the 2021 ACM Symposium on Principles of Distributed Com-
puting (PODC ’21), July 26–30, 2021, Virtual Event, Italy. ACM, New York,

NY, USA, 11 pages. https://doi.org/10.1145/3465084.3467908

1 INTRODUCTION
Consider a loopless (multi-)graph 𝐺 = (𝑉 , 𝐸) with 𝑛 = |𝑉 | vertices,
𝑚 = |𝐸 | edges, and maximum degree Δ. A 𝑘-forest decomposition

(abbreviated 𝑘-FD) is a partition of the edges into 𝑘 forests. The

arboricity of𝐺 , denoted 𝑎(𝐺), is a measure of sparsity defined as the

minimum number 𝑘 for which a 𝑘-forest decomposition of𝐺 exists.

We also write 𝑎(𝐸) or just 𝑎 when𝐺 is understood. An elegant result

of Nash-Williams [45] shows that 𝑎(𝐺) is given by the formula:

𝑎(𝐺) = max

𝐻 ⊆𝐺
|𝑉 (𝐻) |≥2

⌈
|𝐸 (𝐻) |
|𝑉 (𝐻) | − 1

⌉
.

Note that the RHS is clearly a lower bound on 𝑎 since each forest

can only consume at most |𝑉 (𝐻) | − 1 edges in a subgraph 𝐻 . In

the centralized setting, a series of polynomial-time algorithms have

been developed for 𝑎-forest decomposition [23, 24, 37, 49].

In this work, we study the problem of computing forest decom-

positions in the LOCAL model of distributed computing [42]. In

this model, the vertices operate in synchronized rounds where each

vertex sends and receives messages of arbitrary size to its neighbors,

and performs arbitrary local computations. The complexity of an

algorithm is defined to be the number of rounds used. An 𝑟 -round

LOCAL algorithm implies that each vertex only uses information

in its 𝑟 -hop neighborhood to compute the answer, and vice versa.

There has been growing interest in investigating the gap between

what can be computed efficiently and the existential bounds of

various combinatorial structures. For example, consider the problem

of proper edge coloring. The classical result of Vizing [57] shows

that a (Δ + 1)-edge-coloring exists in simple graphs. A long series

Session 5: Local Graph Problems PODC ’21, July 26–30, 2021, Virtual Event, Italy

295

https://doi.org/10.1145/3465084.3467908
https://doi.org/10.1145/3465084.3467908

of works have developed efficient LOCAL algorithms using smaller

number of colors [15, 18, 20, 29, 46, 56]. This culminated with [12],

which matched the optimal existential bound with a poly(Δ, log𝑛)
algorithm for (Δ + 1)-edge-coloring. Forest decomposition can be

viewed as a variant of proper edge coloring: in the latter problem,

the edges induced by each color should form a matching, while

in the former they should form a forest. Similar to edge-coloring,

distributed forest decomposition has applications to scheduling of

radio networks and wireless networks [33, 48], where a smaller

number of forests corresponds to a more compact schedule.

In contrast with edge-coloring, computing an 𝑎-FD in the LOCAL
model requires Ω(𝑛) rounds even in simple graphs of constant

maximum degree (see Proposition 6.3). We thus develop algorithms

using (1 + 𝜀)𝑎 forests, i.e. 𝜀𝑎 excess forests beyond the 𝑎 forests

required existentially. Beside round complexity, a key objective is

the number of excess forests used, i.e. what is the minimum range

of 𝜀 in which the algorithms can operate.

The forest decomposition problem was first studied in the

LOCAL model by Barenboim and Elkin [7], who developed the

𝐻 -partition algorithm to compute a (2 + 𝜀)𝑎-forest decomposi-

tion in 𝑂 (log𝑛/𝜀) rounds. This has been a building block in many

other distributed and parallel algorithms [7, 8, 10, 41, 54]. Baren-

boim and Elkin [7] also showed that an 𝑂 (𝑎)-FD would require

Ω(log𝑛
log𝑎
− log∗ 𝑛) rounds. In [9, Open Problem 11.10], they posed

the problem of using fewer than 2𝑎 forests. Some progress was

made by Ghaffari and Su [31] with an algorithm for (1 + 𝜀)𝑎-forest
decomposition in 𝑂 (log3 𝑛/𝜀4) rounds when 𝜀 = Ω(

√︁
log𝑛/𝑎) for

simple graphs, i.e., the minimum number of obtainable forests is

𝑎 + Ω(
√︁
𝑎 log𝑛). A natural question is how far this threshold can

be pushed down.

We make further progress on this objective with an algorithm for

(𝑎 + 3)-FD in poly(Δ, log𝑛) rounds in multigraphs. The polynomial

dependence on Δ can be removed when 𝜀𝑎 is larger; for example,

we obtain a (1 + 𝜀)𝑎-FD in 𝑂 (1/𝜀) · polylog(𝑛) rounds for 𝜀𝑎 =

Ω(logΔ/log logΔ).
Furthermore, we consider two important extensions to this basic

framework.

List Forest Decomposition: Similar to edge coloring, there is a

list version of the forest decomposition problem. Each edge 𝑒 has a

palette of colors 𝑄 (𝑒) from a color-space C, and we should choose

a color 𝜙 (𝑒) ∈ 𝑄 (𝑒) so that, for any color 𝑐 , the subgraph induced

by the 𝑐-colored edges forms a forest. If |𝑄 (𝑒) | ≥ 𝑘 for 𝑒 , we refer

to this as 𝑘-list-forest decomposition (abbreviated 𝑘-LFD).

This generalizes 𝑘-forest-decomposition, which can be viewed

as the case where 𝑄 (𝑒) = C = {1, . . . , 𝑘} for all edges 𝑒 . The total
number of forests (one for each color) may be much larger than

𝑎; in this case, the excess is measured in terms of the number of

extra colors in edges’ palettes (in addition to the 𝑎 colors that are

required by the lower bound).

Based on general matroid arguments, Seymour [53] showed

that an 𝑎-LFD exists for any choice of palettes. This also can be

turned into a polynomial-time centralized algorithm with standard

matroid routines. Thus, from the point of view of combinatorial

constructions and centralized algorithms, forest-decomposition

and list-forest-decomposition are nearly equivalent. In the LOCAL
model, though, list-forest-decomposition appears to bemuch harder.

Unlike forest decomposition, it is not sufficient to color most of the

edges with a small left-over uncolored component.

We give poly(log𝑛, 1/𝜀)-round algorithms for (1+𝜀)𝑎-LFDwhen

𝜀𝑎 = Ω(min{log𝑛,
√︁
𝑎 logΔ}). A key open problem is to find an

efficient algorithm for 𝜀𝑎 ≥ Ω(1).
Low-Diameter and Star-Forest Decompositions: The second
extension is to ensure that the forests in the decomposition have

low diameter. We say that the decomposition has diameter 𝐷 if

every tree in every 𝑐-colored forest has strong diameter at most

𝐷 . Low-diameter forest decompositions are interesting from both

practical and theoretical aspects. For example, a 𝑘-FD of diameter

𝐷 can be turned into 𝑘 rooted forests in 𝑂 (𝐷) rounds.
We develop a few post-processing techniques to convert an ar-

bitrary 𝑘-FD into a (1 + 𝜀)𝑘-FD with diameter 𝑂 (log𝑛/𝜀). When

𝜀𝑘 is large enough, the diameter can be reduced further to 𝑂 (1/𝜀),
which is optimal for multigraphs (see the full paper for details).

In the most extreme case, each forest should be a collection of

stars, i.e., a star-forest. We refer to the problem of decomposing the

graph into 𝑘 star-forests as 𝑘-star-forest decomposition (abbreviated

𝑘-SFD), and we call the list-coloring variant of star-forest decom-

position 𝑘-list-star-forest-decomposition (abbreviated 𝑘-LSFD). This

problem has received some attention in combinatorics. In simple

graphs, we give an𝑂 (log
3 𝑛
𝜀)-round algorithm for (1+𝜀)𝑎-SFDwhen

𝜀𝑎 = Ω(log𝑎 +
√︁
logΔ) as well as an𝑂 (log

3 𝑛
𝜀)-round algorithm for

(1 + 𝜀)𝑎-LSFD when 𝜀𝑎 = Ω(logΔ).

1.1 Summary of Results
Our results for forest decomposition balance a number of mea-

sures: the minimum number of obtainable forests, the running time,

the tree diameters, LFD versus FD, and multigraphs versus simple

graphs. See Table 1 for a summary of a some possible parameters.

Here, 𝜌 > 0 represents any desired constant and we use Ω𝜌 to

represent a constant terms which may depend on 𝜌 .

Excess colors Lists? Multi- Runtime Diameter

graph?

3 No Yes 𝑂̃ (Δ2𝑎 log4 𝑛) ≤ 𝑛
≥ 4 No Yes 𝑂̃ (Δ2

log
4 𝑛/𝜀) 𝑂 (log𝑛/𝜀)

Ω𝜌 (1) No Yes 𝑂 (Δ𝜌 log4 𝑛/𝜀) 𝑂 (log𝑛/𝜀)
≥ 4 + 𝜌 logΔ No Yes 𝑂𝜌 (log4 𝑛/𝜀) 𝑂 (log𝑛/𝜀)
Ω(

√︁
𝑎 logΔ) No Yes 𝑂 (log4 𝑛/𝜀) 𝑂 (1/𝜀)

Ω(log𝑛) No Yes 𝑂 (log3 𝑛/𝜀) 𝑂 (1/𝜀)
Ω(

√︁
𝑎 logΔ) Yes Yes 𝑂 (log4 𝑛/𝜀2) 𝑂 (log𝑛/𝜀2)

Ω(log𝑛) Yes Yes 𝑂 (log4 𝑛/𝜀) 𝑂 (log𝑛/𝜀)
Ω(

√︁
logΔ + log𝑎) No No 𝑂 (log3 𝑛/𝜀) 2 (star)

Ω(logΔ) Yes No 𝑂 (log3 𝑛/𝜀) 2 (star)

Table 1: Algorithms for (1 + 𝜀)𝑎-FD and (1 + 𝜀)𝑎-LFD of 𝐺

Thus, for instance, the final listed algorithm requires excess

𝐾 logΔ and the third listed algorithm requires excess 𝐾𝜌 , where 𝐾

and 𝐾𝜌 are universal constants.

All these algorithms here are randomized and succeed with high
probability (abbreviated w.h.p.), i.e. succeed with probability at least

Session 5: Local Graph Problems PODC ’21, July 26–30, 2021, Virtual Event, Italy

296

1 − 1/poly(𝑛). Since all the failure modes can be locally checked

during the run of the algorithms, they can be derandomized with

an additional polylog(𝑛) factor in the runtime using the recent

breakthrough of [26, 50]; we do not discuss any further issues of

determinization henceforth.

We also show that Ω(1/𝜀) rounds are needed for (1 + 𝜀)𝑎-FD in

multigraphs (See Theorem 6.2).

1.2 Summary: Distributed Augmentation
The results for forest-decomposition and list-forest-decomposition

are based on a distributed implementation of augmenting paths, in
which we color one uncolored edge and possibly change some of

the colored edges while maintaining the solution feasibility. Aug-

mentation approaches have been used for many combinatorial

constructions, such as coloring and matching.

Gabow and Westermann [24] described an approach for 𝑎-forest-

decomposition via augmenting paths. Roughly speaking, this works

as follows: Given an uncolored edge 𝑒1, suppose that we try to

assign it color 𝑐1. If it does not create a cycle, then we are done.

Otherwise, if a cycle is created, we recolor some edge 𝑒2 on the

cycle with different color 𝑐2 ≠ 𝑐1. Continuing this process leads to

an augmenting sequence 𝑒1, 𝑐1, 𝑒2, 𝑐2 . . . , 𝑒ℓ , 𝑐ℓ , such that recoloring

𝑒ℓ in 𝑐ℓ does not create a cycle. Furthermore, a BFS algorithm can

be used to find such an augmenting sequence efficiently in the

centralized setting.

This approach faces two main challenges in the LOCAL model.

First, in order to get a distributed algorithm, we must color many

edges in parallel. Second, it is unclear if the recoloring can be

done in the vicinity of the initial uncolored edge. Note that the

augmenting sequences produced by the Gabow and Westerman

algorithm can be long, and even if a short augmenting sequence

exists, the consecutive edges in the sequence (e.g. 𝑒1 and 𝑒2) can be

arbitrarily far from each other.

Structural Results on Augmenting Sequences: We first show a

structural result on forest decomposition: given a partial (1+𝜀)𝑎-FD
(or, more generally, a partial (1+𝜀)𝑎-LFD) in amultigraph, there is an

augmenting sequence of length 𝑂 (log𝑛/𝜀) where, moreover, every

edge in the sequence lies in the 𝑂 (log𝑛/𝜀)-neighborhood of the

starting uncolored edge. We show this through a key modification

to the BFS algorithm for finding an augmenting sequence. In [24],

when assigning 𝑒𝑖 to color 𝑐𝑖 creates a cycle, then all edges on the

cycle get enqueued for the next layer; by contrast, in our algorithm,

we only enqueue the edges adjacent to 𝑒𝑖 itself. We show even with

this modification, an augmenting sequence appears after𝑂 (log𝑛/𝜀)
steps. This characterizationmay potentially lead to other algorithms

for forest decompositions.

Network Decomposition and Load Balancing Cut Edges: To
apply augmenting paths in parallel, we will use network decom-

position methods similar to [28] to break the graph into smaller

subgraphs. However, we encounter a major roadblock to doing

this directly: identifying an augmenting sequence may still require

checking edges distant from the uncolored edge. For example, it

is not clear how to tell if edge 𝑒1 belongs to a color-𝑐1 cycle in the

LOCAL model as the cycle may extend outside the vicinity of 𝑒1.

To handle this, we develop a procedure CUTwhich removes edges

to break long paths, thereby allowing augmenting sequences to be

locally checkable. To get a (1 + 𝜀)𝑎-forest decomposition of the full

graph, we must ensure that the collection of edges removed by CUT
(the “left-over graph”) has arboricity 𝑂 (𝜀𝑎). It suffices to bound

the number of incident edges removed per vertex; this reduces to

an online load-balancing problem similar to one encountered in

[56], where here the load of a vertex is the number of its directed

neighbors which are removed. In [56], paths come in an online

fashion and we should remove some of their edges so that every

vertex has small load at the end. Here, rooted trees come in an

online fashion, and we need to remove some edges to disconnect

the root from all the leaves.

If edges are removed independently with some uniform proba-

bility, then the number of incident edges per vertex would be stuck

at Ω(log𝑛) due to the concentration threshold. To break this bar-

rier, we generalize the conditioned sampling approach of [56]. The

rough idea is that we randomly remove edges which are incident

to vertices with small loads. We will show that throughout the

algorithm, the root-leaf paths of the trees always contain a large

number of these vertices; thus, it is likely that none of the long

paths survive in any iteration.

Palette Partitioning for List-Coloring: The final step is to re-

color the left-over edges using an additional 𝑂 (𝜀𝑎) colors. For or-
dinary forest decomposition, this is nearly automatic due to our

bound on the arboricity of the left-over graph. For list coloring, we

must reserve a small number of back-up colors for the left-over

edges. We develop two different methods for this; the first uses

the Lovász Local Lemma and the second uses randomized network

decomposition.

There are some additional connections in our work to two closely

related graph parameters, pseudo-arboricity and star-arboricity. Let
us summarize these next.

1.3 Pseudo-Forest Decomposition and Low
Outdegree Orientation

There is a closely related decomposition using pseudo-forests, which
are graphs with at most one cycle in each connected component.

The pseudo-arboricity 𝑎∗ is the minimum number of pseudo-forests

into which a graph can be decomposed. A 𝑘-pseudo-forest decom-

position is equivalent to an edge-orientation where every vertex

has outdegree at most 𝑘 . This characterization, which we call an

𝑘-orientation, is completely local.

A result of Hakimi [35] shows that pseudo-arboricity is given

by an analogous formula to Nash-Williams’ formula for arboricity.

Loopless multigraphs have 𝑎∗ ≤ 𝑎 ≤ 2𝑎∗, and simple graphs also

satisfy 𝑎 ≤ 𝑎∗ + 1. In some sense, 𝑎∗ is a more fundamental graph

parameter than 𝑎, and the problems of pseudo-forest decomposition,

low outdegree orientation, and maximum density subgraph are

more well-understood than forest decomposition. For example, the

maximum density subgraph problem has been studied in many

computational models, e.g. [5, 6, 13, 16, 21, 25, 30, 32, 38, 44, 47, 51,

52]. The low outdegree orientation problem has been studied in the

centralized context in [11, 14, 24, 34, 39, 40].

There has been a long line of work on LOCAL algorithms for

(1 + 𝜀)𝑎∗-orientation [22, 26, 31, 36, 55]. Most recently, [55] gave

an algorithm running in 𝑂̃ (log2 𝑛/𝜀2) rounds for 𝜀𝑎∗ ≥ 32; this

algorithm also applies to the CONGEST model, which is a special

Session 5: Local Graph Problems PODC ’21, July 26–30, 2021, Virtual Event, Italy

297

case of the LOCALmodel where messages are restricted to𝑂 (log𝑛)
bits per round. However, none of the algorithms can achieve better

than Ω(1/𝜀2) dependencies on 𝜀. Notably, the 1/𝜀2 factor in [55]

comes from the number of iterations needed to solve the LP.

Our general strategy of augmenting paths and network decom-

positions can also be used for low outdegree orientations. We will

show the following result:

Theorem 1.1. For a (multi)-graph 𝐺 with pseudo-arboricity 𝑎∗

and 𝜀 ∈ (0, 1), there is a LOCAL algorithm to obtain ⌈𝑎∗ (1 + 𝜀)⌉-
orientation in 𝑂 (log

3 𝑛
𝜀) rounds w.h.p.

Note in particular the linear dependency on 1/𝜀. Theorem 1.1

provides a simple warm-up exercise for our more advanced forest-

decomposition algorithms.

1.4 Star-Arboricity and (List)-Star-Forest
Decomposition for Simple Graphs

The star-arboricity 𝑎star is the minimum number of star-forests

into which the edges of a graph can be partitioned. This has been

studied in combinatorics [1–3], where the main focus is to (non-

constructively) bound 𝑎star in terms of other graph parameters. We

analogously define the list star-arboricity of a graph, 𝑎list
star

; namely,

the smallest value 𝑘 such that there is a LSFD whenever each edge

has a palette of size 𝑘 .

For general loopless multigraphs, it can be shown that 𝑎star ≤
2𝑎∗ and 𝑎list

star
≤ 4𝑎∗. In simple graphs, Alon, McDiarmid & Reed

[2] showed that 𝑎star ≤ 𝑎 + 𝑂 (logΔ). Our results for star-forest-
decomposition in simple graphs come from strengthening this [2]

construction, as well as making it algorithmic.

To briefly summarize, the idea is to start with a 𝑘-orientation

where 𝑘 = (1 + 𝑂 (𝜀))𝑎. A subset of the vertices get marked as

𝑐-centers for each color 𝑐 , otherwise they are 𝑐-leaves. Each vertex

𝑣 gets marked as a 𝑐-center independently with some probability

𝑝 . Finding the star-forest decomposition then reduces to finding a

perfect matching, for each vertex 𝑢, between the colors 𝑐 for which

𝑢 is a 𝑐-leaf, and the neighbors 𝑣 of 𝑢 which are 𝑐-centers.

In the general LSFD case, we show the existence of this perfect

matching for each vertex 𝑢 when 𝜀𝑘 = Ω(logΔ). This is based on

more advanced analysis of concentration bounds (beyond Chernoff

bounds) for the number of 𝑐-leaf neighbors. In the ordinary SFD case,

instead of a perfect matching, we obtain a near-perfect matching,

leaving 𝜀𝑘 unmatched edges per vertex. These left-over edges can

be later decomposed into 2𝜀𝑘 stars. This allows us to strengthen

the bound to 𝜀𝑘 = Ω(
√︁
logΔ + log𝑎).

In addition to being powerful algorithmic results, these also show

two new combinatorial bounds:

Corollary 1.2. A simple graph has 𝑎star ≤ 𝑎+𝑂 (log𝑎+
√︁
logΔ)

and 𝑎liststar ≤ 𝑎 +𝑂 (logΔ).

For lower bounds, [2] showed that there are simple graphs with

𝑎star = 2𝑎 and Δ = 2
Θ(𝑎2)

, while [1] showed that there are simple

graphs where every vertex has degree 𝑑 = 2𝑎 and where 𝑎star ≥
𝑎 +Ω(log𝑎). These two lower bounds show that the dependence of

𝑎star on 𝑎 and Δ are nearly optimal in Corollary 1.2. In particular,

the term log𝑎 cannot be replaced by a function 𝑜 (log𝑎) and the

term

√︁
logΔ cannot be replaced by a function 𝑜 (

√︁
logΔ).

1.5 Preliminaries
The values 𝜀 and 𝑎 are global parameters, along with related param-

eters such as𝑚,𝑛,Δ, 𝑎∗. As is usual in distributed algorithms, we

suppose throughout that we are given some globally-known upper

bounds on these values; when we write 𝑎, 𝑛 etc. we are technically

referring to input values 𝑎, 𝑛̂ etc. which are upper bounds on them.

Almost all of our results become vacuous if 𝜀 < 1/𝑛 (since, in the

LOCAL model, we can simply read in the entire graph in 𝑂 (𝑛)
rounds), so we assume throughout that 𝜀 ∈ (1/𝑛, 1/2).

We define the 𝑟 -neighborhood of a vertex 𝑣 , denoted 𝑁 𝑟 (𝑣), to be
the set of vertices within distance 𝑟 of 𝑣 . We likewise write 𝑁 𝑟 (𝑒)
for an edge 𝑒 and 𝑁 𝑟 (𝑋) for a set 𝑋 of vertices or edges. For any

vertex set 𝑋 , we define 𝐸 (𝑋) to be the set of induced edges on 𝑋 .

We define the power-graph 𝐺𝑟 to be the graph on vertex set 𝑉 and

with an edge 𝑢𝑣 if 𝑢, 𝑣 have distance at most 𝑟 in 𝐺 . Note that, in

the LOCAL model, 𝐺𝑟 can be simulated in 𝑂 (𝑟) rounds of 𝐺 .
For any integer 𝑡 ≥ 0, we define [𝑡] = {1, . . . , 𝑡}. We write

𝐴 = 𝐵 ⊔𝐶 for a disjoint union, i.e. 𝐴 = 𝐵 ∪𝐶 and 𝐵 ∩𝐶 = ∅.
Network Decomposition: A (𝐷, 𝜒)-network decomposition of 𝐺

is a partition of vertices into 𝜒 classes such that every connected

component in every class has strong diameter at most 𝐷 . We refer

to each connected component within each class a cluster. There are
known randomized LOCAL algorithms [4, 19, 43] to compute an

(𝑂 (log𝑛),𝑂 (log𝑛))-network decomposition in 𝑂 (log2 𝑛) rounds.

1.6 Basic Forest Decomposition Algorithms
There are a few simpler forest decomposition algorithms that will

be important building blocks for our more advanced algorithms.

See the full paper for proofs.

Theorem 1.3. Let 𝑡 = ⌊(2 + 𝜀)𝑎∗⌋. There are deterministic
𝑂 (log𝑛𝜀)-round algorithms for the following decompositions of 𝐺 :

• A partition of the vertices of𝐺 into 𝑘 = 𝑂 (log𝑛𝜀) classes𝐻1, . . . , 𝐻𝑘 ,
such that each vertex 𝑣 ∈ 𝐻𝑖 has at most 𝑡 neighbors in𝐻𝑖∪· · ·∪𝐻𝑘 .
• An orientation of the edges of 𝐺 such that the resulting directed
graph is acyclic and each vertex has outdegree at most 𝑡 . We refer
to this as an acyclic 𝑡-orientation.

• A 3𝑡-star-forest-decomposition of 𝐺 .

• A 𝑡-list-forest-decomposition of 𝐺 .

Theorem 1.4. For a multigraph 𝐺 , there is a randomized al-

gorithm for a ⌊(4 + 𝜀)𝑎∗⌋-LSFD in min

(
𝑂 (log

3 𝑛
𝜀), 𝑂̃ (

log𝑛 log∗𝑚
𝜀)

)
rounds w.h.p.

Finally, we consider how to reduce the diameter of a given forest

decomposition. This is often used in our algorithms, where we first

obtain some 𝑘-FD of𝐺 , with unbounded diameter and then relax it

to a 𝑘 (1 + 𝜀)-FD with small diameter.

Proposition 1.5. Let 𝐺 be a multigraph with a 𝑘-FD. For any
𝜀 > 0, there is an 𝑂 (log𝑛𝜀)-round to compute a (𝑘 + ⌈𝜀𝑎⌉)-FD of 𝐺

of diameter 𝐷 ≤ 𝑂 (log𝑛𝜀) w.h.p. If 𝑎 ≥ Ω
(
min{ log𝑛𝜀 ,

logΔ
𝜀2
}
)
, we can

get 𝐷 ≤ 𝑂 (1𝜀) w.h.p. with the same runtime.

Session 5: Local Graph Problems PODC ’21, July 26–30, 2021, Virtual Event, Italy

298

2 ALGORITHM FOR LOW OUTDEGREE
ORIENTATION

We now discuss a LOCAL algorithm for (1+𝜀)𝑎∗-orientation, based
on augmenting sequences and network decomposition. In addition

to being a notable result in its own right, it serves as a good warm-

up exercise to illustrate some of the main ideas of our later forest-

decomposition algorithms.

Consider a multigraph 𝐺 of pseudo-arboricity 𝑎∗. For the pur-
poses of this section only, we allow𝐺 to contain loops. Follow-
ing [31], we can “augment” a given edge-orientation𝜓 by reversing

the edges in some directed path. For a given parameter 𝜀 > 0, let us

say that a vertex 𝑣 is overloaded with respect to a given orientation

𝜓 , if the outdegree of 𝑣 is strictly larger than ⌈𝑎∗ (1 + 𝜀)⌉; otherwise,
if the outdegree is at most ⌈𝑎∗ (1 + 𝜀)⌉, it is underloaded.

We begin with the following observation, which is essentially a

restatement of [31, 35] with more careful counting of parameters.

Lemma 2.1. Let 𝜀 ∈ (0, 1). For a given edge-orientation𝜓 and any
vertex 𝑣 ∈ 𝐺 , there is a directed path of length 𝑂 (log𝑛𝜀) from 𝑣 to a
vertex with outdegree strictly less than 𝑎∗ (1 + 𝜀).

For the purposes of our algorithm, the main significance of this

result is that it allows us to locally fix a given edge-orientation. We

remark that this type of “local patching” result has been critical for

other LOCAL algorithms, such as the Δ-vertex-coloring algorithm

of [27] or the (Δ+1)-edge-coloring algorithm of [12].We summarize

this as follows:

Proposition 2.2. Suppose multigraph 𝐺 has an edge-orientation
𝜓 , and let 𝐿 ⊆ 𝑉 be an arbitrary vertex set. Then there is an edge-
orientation𝜓 ′ with the following properties:

• 𝜓 ′ agrees with𝜓 outside 𝑁 𝑟 (𝐿) where 𝑟 = 𝑂 (log𝑛𝜀).
• All vertices of 𝐿 are underloaded with respect to𝜓 ′.

• All vertices which are underloaded with respect to𝜓 remain under-
loaded with respect to𝜓 ′.

Proof. Following [31], we consider the following process: while

some vertex of 𝐿 is overloaded, we choose any arbitrary such vertex

𝑣 ∈ 𝐿. We then find some directed path 𝑣, 𝑣1, . . . , 𝑣𝑟 from 𝑣 where

𝑟 ≤ 𝑂 (log𝑛/𝜀) and where vertex 𝑣𝑟 has outdegree strictly less than
𝑎∗ (1 + 𝜀). Next, reverse the orientation of all edges along this path.

This does not change the outdegree of the vertices 𝑣1, . . . , 𝑣𝑟−1,
while it decreases the outdegree of 𝑣 by one and increases the

outdegree of 𝑣𝑟 by one. □

We next use network decomposition to extend this local patching

into a global solution, via the following Algorithm 1. Here, 𝐾 is a

universal constant to be specified.

Algorithm 1 Low-degree_Orientation_Decomposition(𝐺)
1: Initialize𝜓 to be some arbitrary orientation of𝐺 .

2: Compute an (𝑂 (log𝑛),𝑂 (log𝑛))-network decomposition in𝐺2𝑅
for

𝑅 = ⌈𝐾 log𝑛/𝜀 ⌉.
3: for each class 𝑧 in the network decomposition do
4: for each component𝐶 in the class 𝑧 in parallel do
5: Modify𝜓 so that vertices inside𝐶 become underloaded, vertices

outside 𝑁𝑅 (𝐶) are unchanged, and no new overloaded vertices are

created.

We remark that Algorithm 1 can be viewed as part of a family of

algorithms based on network decomposition described in [28]. (In

the language of [28], the algorithm can be implemented in SLOCAL
with radius 𝑟 = 𝑂 (log𝑛𝜀).) However, we describe the algorithm

explicitly to keep this paper self-contained, and because we later

need a more general version of Algorithm 1.

Theorem 2.3. Algorithm 1 can be implemented in 𝑂 (log3 𝑛/𝜀)
rounds. At the termination,𝜓 is an edge-orientation with maximum
outdegree ⌈𝑎∗ (1 + 𝜀)⌉ w.h.p.

Proof. For the first step, we use the algorithm of [19] to obtain

the network decomposition for 𝐺2𝑅
in 𝑂 (𝑅 log2 𝑛) rounds. Algo-

rithm 1 processes each cluster 𝐶 of a given class simultaneously

and tries to orient the edges that are adjacent to or inside 𝐶 . We

also define 𝐶 ′ = 𝑁𝑅 (𝐶). From Proposition 2.2, we know that it is

possible to modify 𝜓 within 𝐶 ′ for sufficiently large 𝐾 , such that

all vertices in𝐶 become underloaded, and no additional overloaded

vertices are created.

For any putative orientation 𝜓 ′ which does not modify edges

outside 𝐶 ′, we can check if𝜓 ′ satisfies these properties by looking

locally within 𝑁𝑅 (𝐶). The distance between two clusters in the

same class is at least 2𝑅 + 1. Moreover, if 𝑢, 𝑣 are adjacent in 𝐺2𝑅
,

their distance is at most 2𝑅. So each cluster 𝐶 has weak diameter

at most 𝑂 (𝑅 log𝑛), and also the balls 𝐶 ′
1
and 𝐶 ′

2
must be disjoint

for any two clusters 𝐶1 and 𝐶2 of the same class. So each cluster

can be processed independently without interfering with others.

Therefore, each iteration can be simulated locally in 𝑂 (𝑅 log𝑛)
rounds. Since there are 𝑂 (log𝑛) classes, the total running time is

𝑂 (𝑅 log2 𝑛) = 𝑂 (log3 𝑛/𝜀). □

This shows Theorem 1.1. We will use the same overall strategy

for forest decomposition, but we will encounter two main technical

obstacles. First, we must define an appropriate notion of local patch-

ing and augmenting sequences; this will be far more complex than

Proposition 2.2. Second, and more seriously, forest-decomposition,

unlike low-degree orientation, cannot be locally checked as a given

(partial) forest decomposition may have long cycles. To circumvent

this, we must remove edges at each step to destroy these cycles.

These left-over edges will need some post-processing steps to han-

dle them at the end.

3 AUGMENTING SEQUENCES FOR
LIST-COLORING

We now show our main structural result on the existence of aug-

menting sequences in a multigraph. Given a partial LFD 𝜓 of 𝐺

and an edge 𝑒 = 𝑢𝑣 , we define 𝐶 (𝑒, 𝑐) to be the unique 𝑢-𝑣 path

in the 𝑐-colored forest; if 𝑢 and 𝑣 are disconnected in the color-𝑐

forest then we write 𝐶 (𝑒, 𝑐) = ∅. We write𝜓 (𝑒) = ∅ if an edge 𝑒 is

uncolored.

We define an augmenting sequence w.r.t.𝜓 to be a sequence 𝑃 =

(𝑒1, 𝑒2, . . . , 𝑒ℓ , 𝑐), for edges 𝑒𝑖 and color 𝑐 , satisfying the following

five conditions:

(A1) 𝜓 (𝑒1) = ∅.
(A2) 𝑒𝑖 ∈ 𝐶 (𝑒𝑖−1,𝜓 (𝑒𝑖)) for 2 ≤ 𝑖 ≤ ℓ .
(A3) 𝑒𝑖 ∉ 𝐶 (𝑒 𝑗 ,𝜓 (𝑒𝑖)) for every 𝑖 and 𝑗 such that 𝑗 < 𝑖 − 1.

Session 5: Local Graph Problems PODC ’21, July 26–30, 2021, Virtual Event, Italy

299

(A4) 𝐶 (𝑒ℓ , 𝑐) = ∅.
(A5) 𝜓 (𝑒𝑖+1) ∈ 𝑄 (𝑒𝑖) for each 𝑖 = 1, . . . , ℓ − 1 and 𝑐 ∈ 𝑄 (𝑒ℓ).

Recall that𝑄 (𝑒) denotes the list of available colors for edge 𝑒 . We

say that ℓ is the length of the sequence. We define the augmentation
𝜓 ⊕ 𝑃 to be a new (partial) coloring obtained by setting 𝜓 ′(𝑒𝑖) =
𝜓 (𝑒𝑖+1) for 1 ≤ 𝑖 ≤ ℓ − 1 and 𝜓 ′(𝑒ℓ) = 𝑐 , and 𝜓 ′(𝑒) = 𝜓 (𝑒) for all
other edges 𝑒 ∈ 𝐸 \ {𝑒1, . . . , 𝑒ℓ }. See Figure 1.

Figure 1: An illustration of an augmenting sequence before
(left) and after (right) the augmentation process.

Lemma 3.1. For an augmenting sequence 𝑃 w.r.t𝜓 , the augmenta-
tion𝜓 ⊕ 𝑃 remains a partial list-forest decomposition.

With this definition, we will show the following main result:

Theorem 3.2. Given a partial (1 + 𝜀)𝑎-LFD of a multigraph 𝐺
and an uncolored edge 𝑒 , there is an augmenting sequence 𝑃 =

(𝑒, 𝑒2, . . . , 𝑒ℓ , 𝑐) from 𝑒 where 𝑒2, . . . , 𝑒ℓ ∈ 𝑁 𝑟 (𝑒) for 𝑟 = 𝑂 (log𝑛𝜀).
The main significance of Theorem 3.2 is that it allows us to

locally fix a partial LFD, in the same way Proposition 2.2 allows us

to locally fix an edge-orientation. We summarize this as follows:

Corollary 3.3. Suppose multigraph𝐺 has a partial (1 + 𝜀)𝑎-LFD
𝜓 , and let 𝐿 ⊆ 𝐸 be an arbitrary edge set. Then there is a partial LFD
𝜓 ′ with the following properties:

• 𝜓 ′ agrees with𝜓 outside 𝑁 𝑟 (𝐿) where 𝑟 = 𝑂 (log𝑛𝜀).
• 𝜓 ′ is a full coloring of the edges 𝐿.
• All edges colored in𝜓 are also colored in𝜓 ′.

Proof. We go through each uncolored edge 𝑒 ∈ 𝐿 in an arbitrary
order, and obtain an augmenting sequence 𝑃 from Theorem 3.2,

and then modify𝜓 to𝜓 ← 𝜓 ⊕ 𝑃 . □

To prove Theorem 3.2, we first find a weaker object called an al-
most augmenting sequence, which is a sequence satisfying properties
(A1), (A2), (A4), (A5) but not necessarily (A3). See Algorithm 2.

Algorithm 2 Find_Augmenting_seqence(𝑒init)
1: 𝐸1 = {𝑒init }
2: for 𝑖 = 1 . . .𝑂 (log𝑛/𝜀) do
3: 𝐸𝑖+1 ← 𝐸𝑖 .

4: for each 𝑒 ∈ 𝐸𝑖 and each color 𝑐 ∈ 𝑄 (𝑒) do
5: if 𝐶 (𝑒, 𝑐) ≠ ∅ then
6: for each edge 𝑒′ ∈ 𝐶 (𝑒, 𝑐) \ 𝐸𝑖 adjacent to 𝐸𝑖 do
7: Set 𝐸𝑖+1 ← 𝐸𝑖+1 ∪ {𝑒′ } and 𝜋 (𝑒′) ← 𝑒 .

8: else
9: Return the sequence 𝑃 = (𝑒init, . . . , 𝜋 (𝜋 (𝑒)), 𝜋 (𝑒), 𝑒, 𝑐) .

Lemma 3.4. Algorithm 2 terminates with an almost augmenting
sequence.

Proof. In each iteration 𝑖 , let 𝑉𝑖 denote the endpoints of the

edges in 𝐸𝑖 , and let 𝐸𝑖,𝑐 be the set of edges in 𝐸𝑖 with color 𝑐 under

𝜓 . The sets 𝐸𝑖,𝑐 partition 𝐸𝑖 . An edge only gets added to 𝐸𝑖+1 if

it is adjacent to an edge in 𝐸𝑖 . Thus, the graph spanned by 𝐸𝑖 is

connected and 𝐸𝑖 ⊆ 𝑁 𝑖−1 (𝑒init).
Let us assume we are at some iteration 𝑖 and 𝐶 (𝑒, 𝑐) ≠ ∅ holds

for all 𝑒 ∈ 𝐸𝑖 . For each color 𝑐 , let 𝐸★𝑐 ⊆ 𝐸𝑖 be the set of edges in
𝐸𝑖 whose palette contains color 𝑐 . Let 𝑛𝑐 and 𝑛★𝑐 be the number

of connected components in the subgraphs 𝐺 ′𝑐 = (𝑉𝑖 , 𝐸𝑖,𝑐) and
𝐺★
𝑐 = (𝑉𝑖 , 𝐸★𝑐) respectively. Note that 𝐸𝑖,𝑐 ⊆ 𝐸★𝑐 and𝑛𝑐 = |𝑉𝑖 |− |𝐸𝑖,𝑐 |

since 𝐺 ′𝑐 is a forest. See Figure 2a.

(a)

(b)

Figure 2: In the first figure, the ovals represent components
of𝐺 ′𝑐 while the larger rectangles represent components of𝐺★

𝑐 .
The second figure shows rooted forest𝐻𝑐 , where components
of𝐺 ′𝑐 are contracted to nodes. Each contracted, non-root node
has a parent edge (shown in bold) added to 𝐸𝑖+1.

For each color 𝑐 , we can construct a rooted forest 𝐻𝑐 from 𝐺 ′𝑐
as follows (see Figure 2b): First, contract the edges of 𝐸𝑖,𝑐 ; now

𝐻𝑐 consists of 𝑛𝑐 isolated vertices, which we call contracted nodes.
Second, for every edge 𝑒 ∈ 𝐸★𝑐 , we add 𝐶 (𝑒, 𝑐) to 𝐻𝑐 (both vertices

and edges). This path 𝐶 (𝑒, 𝑐) connects the endpoints of 𝑒 , and so

the graph 𝐻𝑐 now contains at most 𝑛★𝑐 components. Finally, choose

an arbitrary rooting of the forest.

For every contracted, non-root node 𝑢 ′, the parent edge of 𝑢 ′

in 𝐻𝑐 corresponds to some edge 𝑒 of 𝐺 . This edge is adjacent to

exactly one vertex in 𝑉𝑖 , and hence it will appear in 𝐸𝑖+1,𝑐 \ 𝐸𝑖,𝑐 .
Thus there are at least 𝑛𝑐 − 𝑛★𝑐 edges in 𝐸𝑖+1,𝑐 \ 𝐸𝑖,𝑐 . We can sum

over colors 𝑐 to count 𝐸𝑖+1:

|𝐸𝑖+1 | =
∑︁
𝑐∈C

(
|𝐸𝑖,𝑐 | + |𝐸𝑖+1,𝑐 \ 𝐸𝑖,𝑐 |

)
≥

∑︁
𝑐∈C

(
(|𝑉𝑖 | − 𝑛𝑐) + (𝑛𝑐 − 𝑛★𝑐)

)
=
∑︁
𝑐∈C
(|𝑉𝑖 | − 𝑛★𝑐) .

To bound this sum, consider an arbitrary spanning tree 𝑇 of 𝐺 ′.
Since 𝐺 ′ is connected we have |𝑇 | = |𝑉𝑖 | − 1, and also |𝑇 ∩ 𝐸★𝑐 | ≤

Session 5: Local Graph Problems PODC ’21, July 26–30, 2021, Virtual Event, Italy

300

|𝑉𝑖 | − 𝑛★𝑐 for each color 𝑐 . We thus have:

|𝐸𝑖+1 | ≥
∑︁
𝑐∈C
|𝑇∩𝐸★𝑐 | =

∑︁
𝑒∈𝑇
|𝑄 (𝑒) | ≥ |𝑇 | · (1+𝜀)𝑎 = (1+𝜀)𝑎(|𝑉𝑖 |−1) .

Since |𝑉1 | = 2, this implies that |𝐸2 | ≥ (1+𝜀)𝑎. For iteration 𝑖 > 1,

note that by definition of arboricity, we have |𝐸𝑖 |/(|𝑉𝑖 | −1) ≤ 𝑎, and
so |𝐸𝑖+1 | ≥ (1 + 𝜀)𝑎 · |𝐸𝑖 |/𝑎 = (1 + 𝜀) |𝐸𝑖 |. Hence |𝐸ℓ+1 | ≥ (1 + 𝜀)ℓ𝑎
for each ℓ ≥ 1. The overall graph has𝑚 ≤ 𝑛𝑎 edges, so the process

must terminate by iteration ℓ = ⌈log
1+𝜀 𝑛⌉. □

Having found the almost-augmenting sequence from a given

starting edge 𝑒 , we can short-circuit it into an augmenting sequence

as shown in the following result:

Proposition 3.5. If there exists an almost augmenting sequence
𝑃 from 𝑒 to 𝑒 ′, then there exists an augmenting sequence from 𝑒 to 𝑒 ′

which is a subsequence of 𝑃 .

Proof. Let 𝑃 = (𝑒1, 𝑒2, . . . 𝑒ℓ , 𝑐) be an almost augmenting se-

quence with 𝑒1 = 𝑒 and 𝑒ℓ = 𝑒
′
of minimal length ℓ . If 𝑃 satisfies

(A3) we are done. If not, suppose that 𝑒𝑖 ∈ 𝐶 (𝑒 𝑗 ,𝜓 (𝑒𝑖)) for 𝑗 < 𝑖 − 1.
Then, 𝑃 ′ = (𝑒1, . . . , 𝑒 𝑗 , 𝑒𝑖 , . . . 𝑒ℓ , 𝑐) would also be an almost aug-

menting path of length ℓ ′ < ℓ which is a subsequence of 𝑃 . This

contradicts minimality of ℓ . □

Theorem 3.2 now follows immediately from Lemma 3.4 and

Proposition 3.5.

4 LOCAL FOREST DECOMPOSITIONS VIA
AUGMENTATION

Algorithm 3 is a high-level description of our forest decomposition

algorithm. It involves a parameter 𝑅 and a subroutine CUT(𝑋, 𝑅);
their precise specification will be given next, but, as a summary:

given a partial forest decomposition, the procedure CUT(𝑋, 𝑅)
should remove some edges in 𝐸 (𝑁𝑅 (𝑋)) \ 𝐸 (𝑋) so there is no

monochromatic path from 𝑋 to 𝑉 \ 𝑁𝑅 (𝑋). If every execution of

CUT disconnects 𝑋 and 𝑉 \ 𝑁𝑅 (𝑋), we say that the execution of

Algorithm 3 is good.

Algorithm 3 Forest_Decomposition(𝐺)
1: Initialize𝜓 ← ∅.
2: Compute an (𝑂 (log𝑛),𝑂 (log𝑛))-network decomposition in

𝐺2· (𝑅+𝑅′)
for 𝑅′ = ⌈𝐾 ′ log𝑛/𝜀 ⌉.

3: for each class 𝑧 in the network decomposition do
4: for each component𝐶 in the class 𝑧 in parallel do
5: Let𝐶′ = 𝑁𝑅′ (𝐶) and𝐶′′ = 𝑁𝑅+𝑅′ (𝐶) .
6: Execute CUT(𝐶′, 𝑅) .
7: Modify 𝜓 so that edges inside 𝐶 become colored and edges

outside 𝑁𝑅′ (𝐶) are unchanged.

Here 𝐾 ′ is a universal constant to be specified later. We summa-

rize the algorithm as follows:

Theorem 4.1. Algorithm 3 can be implemented in 𝑂 (𝑅 log2 𝑛 +
log

3 𝑛/𝜀) rounds. If the execution of the algorithm is good and every
edge has a palette of size ⌈(1 + 𝜀)𝑎⌉, then at the termination,𝜓 is a
list forest decomposition of all edges of 𝐺 not removed by CUT.

Proof. Let us define 𝐷 = 𝑅 + 𝑅′. At the first step, we use the
algorithm of [19] to obtain an (𝑂 (log𝑛),𝑂 (log𝑛))-network decom-

position in the power graph 𝐺2𝐷
in 𝑂 (𝐷 log

2 𝑛) rounds.
Algorithm 3 processes each cluster𝐶 of a given class, and colors

all edges that are adjacent to or inside 𝐶 (Line 4 to Line 7). Thus, if

an edge 𝑢𝑣 is not removed, it will become colored when we process

the first class containing 𝑢 or 𝑣 . From Corollary 3.3, we know that

it is possible to modify𝜓 within 𝑁𝑅
′ (𝐶) alone, such that all edges

within 𝐶 become colored. Furthermore, if the execution is good,

then CUT(𝐶 ′, 𝑅) disconnects 𝐶 ′ from 𝑉 \ 𝐶 ′′ for every subgraph

induced by each color class 𝑐 . Thus, for any putative coloring 𝜓 ′

which fully colors the edges inside 𝐶 and does not modify edges

outside 𝐶 ′′, we can check if𝜓 ′ is indeed an LFD by looking locally

only within𝐶 ′′. The reason for this is that there cannot be any new

cycles in𝜓 ′ outside𝐶 ′′, since the edges are not modified there, and

thus any cycles would have to be confined to 𝐶 ′′.
The distance between clusters in the same class is at least 2𝐷 +

1. Moreover, if 𝑢, 𝑣 are adjacent in 𝐺2𝐷
, their distance is at most

2𝐷 . So each cluster 𝐶 has weak diameter at most 𝑂 (𝐷 log𝑛), and
also the balls 𝐶 ′′

1
and 𝐶 ′′

2
must be disjoint for any two clusters

𝐶1 and 𝐶2 of the same class. So each cluster can be processed

independently without interfering with others. Therefore, Line

4 to Line 7, including implementation of CUT, can be simulated

locally in𝐶 ′′ in𝑂 (𝐷 log𝑛) rounds. Since there are𝑂 (log𝑛) classes,
the total running time is 𝑂 (𝐷 log

2 𝑛). □

It now remains to specify CUT(𝐶 ′, 𝑅). For each color 𝑐 , define

𝐻𝑐 [𝐶 ′′] to be the collection of all 𝑐-colored edges in 𝐶 ′′ \𝐶 ′. The
goal of CUT(𝐶 ′, 𝑅) is to break all paths in each 𝐻𝑐 [𝐶 ′′] from 𝐶 ′ to
vertices outside 𝐶 ′′. We call the subgraph induced by the removed

edges from all CUT(𝐶 ′, 𝑅) instances the leftover subgraph. When we

remove an edge, we can orient it toward either of its vertices. We

want to bound the maximum number of removed out-neighbors of

any vertex; this can be viewed as a load-balancing problem, where

the load of a vertex is its outdegree in the leftover subgraph. We

describe this in Section 4.1, with appropriate choices for parameter

𝑅. See Figure 3.

Figure 3: 𝐻𝑐 [𝐶 ′′] with 𝑅 = 3. We want to disconnect 𝐶 ′ from
all nodes with distance 𝑅 (black nodes) from 𝐶 ′.

At the end of this process, we combine the list-forest-

decomposition of the main graph with a forest decomposition on

the deleted edges. We summarize this in Section 4.2.

4.1 Implementing CUT
Let us define 𝑇 = 𝑂 (log𝑛) to be the number of classes in the

network decomposition. We now describe a few load balancing

Session 5: Local Graph Problems PODC ’21, July 26–30, 2021, Virtual Event, Italy

301

strategies to implement CUT, with different parameter choices for

the radius 𝑅. We summarize these rules as follows:

Theorem 4.2. The procedure CUT can be implemented so that
w.h.p. the leftover subgraph has pseudo-arboricity at most ⌈𝜀𝑎⌉ and
the execution of Algorithm 3 is good, with the following values for
parameter 𝑅:

(1) 𝑅 = 𝑂 (log
2 𝑛
𝜀) if 𝜀𝑎 ≥ Ω(log𝑛).

(2) 𝑅 = 𝑂 (log𝑛𝜀) if 𝜀𝑎 ≥ Ω(log𝑛) for forest decomposition.

(3) 𝑅 = 𝑂 (Δ
2/⌈𝑎𝜀⌉

logΔ log
2 𝑛

𝑎𝜀2
) if 𝜀𝑎 ≤ logΔ

(4) 𝑅 = 𝑂 (log
2 𝑛
𝜀) if 𝜀𝑎 ≥ logΔ

The first two results here follow from straightforward diameter-

reduction algorithms.

Proof of Theorem 4.2(1). For the first algorithm for

CUT(𝐶 ′, 𝑅), we apply Proposition 1.5 to the forests 𝐻 [𝐶 ′′],
using parameter 𝜀 ′ = 𝜀/(2𝑇) in place of 𝜀. This reduces the

diameter of each forest 𝐻𝑐 [𝐶 ′′] to 𝑂 (log2 𝑛/𝜀), while deleting

an edge-set of arboricity at most ⌈𝜀𝑎/(2𝑇)⌉. In particular, when

𝑅 ≥ Ω(log2 𝑛/𝜀), there cannot be any 𝑅-long path in 𝐻𝑐 [𝐶 ′′] for
any color 𝑐 . Over the 𝑇 iterations of Algorithm 3, the leftover

subgraph has arboricity at most 𝑇 · ⌈𝜀𝑎/(2𝑇)⌉; since 𝑇 = 𝑂 (log𝑛)
and 𝜀𝑎 ≥ Ω(log𝑛), this is at most 𝜀𝑎. □

Proof of Theorem 4.2(2). To implement CUT(𝐶 ′, 𝑅) for a color
𝑐 , we choose an arbitrary root in 𝐶 ′ for each tree of 𝐻𝑐 [𝐶 ′′]. Next,
we choose an integer 𝐽𝑐 uniformly at random from [𝑁], where
𝑁 = ⌊𝑅/2⌋ and 𝑅 = ⌈80𝑇 /𝜀⌉ = Θ(log𝑛𝜀). We then delete all edges 𝑒

in 𝐻𝑐 [𝐶 ′] whose depth 𝑑𝑒 from the root satisfies 𝑑𝑒 ≡ 𝐽𝑐 mod 𝑁 .

After this deletion step, each component of 𝐻𝑐 [𝐶 ′′] has depth at

most 𝑁 , and hence has maximum path length of 𝑅. So 𝑉 \ 𝐶 ′′
is disconnected from 𝐶 ′ with probability one and Algorithm 3 is

always good. By a union bound over vertices, w.h.p. every vertex

has at most 𝜀𝑎 out-neighbors in the orientation. □

We now turn to the last two results of Theorem 4.2. We assume

for this that 𝜀𝑎 = 𝑂 (log𝑛), as otherwise we could apply Theo-

rem 4.2(1). In particular, due to our assumption that 𝜀 ≥ 1/𝑛, we
have𝑚 ≤ 𝑛𝑎 ≤ poly(𝑛).

We use the following algorithm: first, before running Algo-

rithm 3, use Theorem 1.3 to obtain a 3𝑎-orientation 𝐽 of 𝐺 . We

maintain a counter 𝐿(𝑣) for each vertex 𝑣 . To execute CUT(𝐶 ′, 𝑅),
we go through each vertex 𝑣 with 𝐿(𝑣) < 𝜀𝑎; with probability 𝑝 (to

be specified), we delete one random out-neighbor of 𝑣 with respect

to 𝐽 and increment 𝐿(𝑣) by one.

We say a vertex 𝑢 is overloaded if 𝐿(𝑢) ≥ 𝜀𝑎, otherwise it is

underloaded. For an edge 𝑒 oriented from 𝑢 to 𝑣 in 𝐽 , we say that 𝑒

is overloaded or underloaded if 𝑢 is. Given a path 𝑃 , let 𝐸0 (𝑃) and
𝐸1 (𝑃) denote the set of underloaded and overloaded edges in 𝑃

respectively. A length-𝑅 path in 𝐻𝑐 [𝐶 ′′] is called a live branch.

Proposition 4.3. Suppose that 𝑝 ≥ 𝐾 ′′𝑎 log𝑛
𝜂𝑅

, where 𝜂 ∈ [0, 1/2]
and 𝐾 ′′ is a sufficiently large constant. Then w.h.p., either the execu-
tion of Algorithm 3 is good, or some live branch 𝑃 has |𝐸0 (𝑃) | < 𝜂𝑅.

Proof. Any path from𝐶 ′ to𝑉 \𝐶 ′′ must have length at least 𝑅,

hence will pass over some live branch. So it suffices to show that

any live branch 𝑃 in 𝐻𝑐 [𝐶 ′′] during an invocation of CUT(𝐶 ′, 𝑅)
is cut. Each underloaded edge of 𝑃 gets deleted with probability

at least 𝑝/(3𝑎). Furthermore, such deletion events are negatively

correlated, since at most outgoing edge per vertex can be deleted.

Thus, assuming a live branch 𝑃 has |𝐸0 (𝑃) | ≥ 𝜂𝑅, the probability
that 𝑃 remains is at most (1 − 𝑝/(3𝑎))𝜂𝑅 ≤ 𝑒−𝑝𝑅𝜂/(3𝑎) . By our

choice of 𝑝 , this is at most 𝑒−𝐾
′′
log𝑛/3 ≤ 1/poly(𝑛).

Since each 𝐻𝑐 [𝐶 ′′] has at most 𝑛2 live branches, by a union

bound w.h.p. all live branches in 𝐻𝑐 [𝐶 ′′] are cut. Algorithm 3 in-

vokes CUT(𝐶 ′, 𝑅) at most 𝑂 (𝑛 log𝑛) times, and the number of non-

empty forests 𝐻𝑐 [𝐶 ′] is at most𝑚 ≤ poly(𝑛). Hence, by a union

bound over all the invocations, we conclude the algorithm is good

or some live branch has |𝐸0 (𝑃) | < 𝜂𝑅. □

Lemma 4.4. Let 𝜂 ∈ [0, 1/2]. If 𝑅 ≥ 𝐾Δ
2+4𝜂
⌈𝑎𝜀⌉

log
2 𝑛

𝜂𝜀 for a sufficiently
large constant 𝐾 , then 𝑝 can be chosen so that Algorithm 3 is good
w.h.p.

Proof. Let 𝑡 = ⌈𝜀𝑎⌉, and let us set 𝑝 =
𝐾 ′′𝑎 log𝑛

𝜂𝑅
according to

Proposition 4.3. We first need to verify that 𝑝 ∈ [0, 1]. For this, we
can calculate:

𝑝 ≤ 𝜀𝑎 · 2𝐾
′′

𝐾
· log𝑛

log
2 𝑛Δ

2+4𝜂
𝑡

≤ 𝜀𝑎

Ω(𝐾) · Δ
2+4𝜂
𝑡 log𝑛

. (1)

By our assumption that 𝜀𝑎 < log𝑛, this is at most
1

10𝑒Δ
1+2𝜂
𝑡

≤ 1

for large enough 𝐾 .

By Proposition 4.3, it suffices to show that |𝐸1 (𝑃) | < (1−𝜂)𝑅 for

all live branches 𝑃 during the algorithm execution. For this, it will

suffice to bound the probability that all edges in 𝑆 are overloaded

where 𝑆 is arbitrary subset of the edges in 𝑃 . Since 𝑃 is a path,

edges at distance-2 are vertex-disjoint. Thus, 𝑆 involves at least

|𝑆 |/2 distinct vertices. For each such vertex 𝑢, the value 𝐿(𝑢) is a
truncated Binomial random variable with mean at most𝑇𝑝 . Hence𝑢

is overloaded with probability at most 𝑞 = 𝐹+ (𝑇𝑝, 𝑡), where 𝐹+ (𝜇, 𝑡)
denotes the Chernoff upper-tail probability, i.e. the upper bound

on the probability that a Binomial random variable with mean 𝜇

exceeds value 𝑡 . Accordingly, the probability that all edges in 𝑆 are

overloaded is at most 𝑞 |𝑆 |/2.
Since 𝑇 ≤ 𝑂 (log𝑛), by Eq. (1) we have 𝑝𝑇 ≤ 𝜀𝑎

10𝑒Δ
2+4𝜂
𝑡

for large

enough 𝐾 , and therefore

𝑞 = 𝐹+ (𝑇𝑝, 𝑡) ≤
(𝑒𝑇𝑝
𝑡

)𝑡
≤

(𝑒 · 𝜀𝑎
10𝑒Δ(2+4𝜂)/𝑡 · ⌈𝜀𝑎⌉

)𝑡
≤ 1

10Δ2+4𝜂 .

Using this bound on𝑞, and using the fact that Chernoff bounds ap-

ply to sums of variables which obey an upper negative-correlation

property, we calculate:

Pr (|𝐸1 (𝑃) | > (1 − 𝜂)𝑅) ≤ 𝐹+ (𝑅
√
𝑞, (1 − 𝜂)𝑅) ≤

(𝑒√𝑞
1 − 𝜂

) (1−𝜂)𝑅
≤

(𝑒
√
10(1 − 𝜂)Δ1+2𝜂

) (1−𝜂)𝑅
.

Since 𝜂 ≤ 1/2 and 𝑅 ≥ 𝜔 (log𝑛), we get:

Pr (|𝐸1 (𝑃) | > (1 − 𝜂)𝑅) ≤ (𝑒/
√
10)𝑅/2Δ−(1−𝜂) (1+2𝜂)𝑅

≤ (0.93/Δ)𝑅 ≤ 1/(poly(𝑛)Δ𝑅) .

Session 5: Local Graph Problems PODC ’21, July 26–30, 2021, Virtual Event, Italy

302

There are at most 𝑛Δ𝑅−1 paths of length 𝑅. By a union bound, we

conclude that |𝐸0 (𝑃) | ≥ 𝜂𝑅 holds w.h.p. for all such paths. □

We can now conclude our analysis by choosing appropriate

values for parameters 𝑝, 𝜂, 𝑅:

Proof of Theorem 4.2(3),(4). In the algorithm for CUT, each
vertex deletes at most 𝜀𝑎 of its outgoing neighbors under 𝐽 . Hence,

the leftover subgraph has pseudo-arboricity 𝜀𝑎 with probability one.

Given 𝜂, we choose 𝑅, 𝑝 according to Lemma 4.4 so that Algorithm 3

is good w.h.p. For the first result, we set 𝜂 =
⌈𝑎𝜀 ⌉
2 logΔ , giving 𝑅 =

(𝐾Δ
2+4𝜂
⌈𝑎𝜀⌉

log
2 𝑛)/(𝜀𝜂) ≤ 𝑂 (Δ

2/⌈𝜀𝑎⌉
logΔ log

2 𝑛

𝑎𝜀2
). For the second result,

we set 𝜂 = 1/2; the bound on 𝑅 is completely analogous. □

4.2 Putting Everything Together
The following result now summarizes the situation after applying

Algorithm 3. The runtime bounds follow from Theorem 4.1 and the

bounds on 𝑅 given in Theorem 4.2.

Theorem 4.5. If every edge has a palette of size ⌈(1 + 𝜀)𝑎⌉, then
w.h.p. Algorithm 3 generates a partial list-forest decomposition, such
that the uncolored edges have pseudo-arboricity at most ⌈𝜀𝑎⌉. It has
the following complexity:

• With no restriction on 𝜀𝑎, complexity is 𝑂 (Δ
2/⌈𝑎𝜀⌉

logΔ log
4 𝑛

𝑎𝜀2
).

• If 𝜀𝑎 ≥ logΔ, complexity is 𝑂 (log
4 𝑛
𝜀).

• If 𝜀𝑎 ≥ Ω(log𝑛), complexity is 𝑂 (log
4 𝑛
𝜀).

• If 𝜀𝑎 ≥ Ω(log𝑛) for forest decomposition, complexity is 𝑂 (log
3 𝑛
𝜀).

We now need to combine the forest decomposition of the main

graph with a forest decomposition on the leftover graph. For ordi-

nary coloring, this is straightforward; we summarize it as follows:

Theorem 4.6. We can obtain an (1 + 𝜀)𝑎-FD of 𝐺 of diameter 𝐷 ,
under the following conditions:

• If 𝜀𝑎 ≥ 3, then 𝐷 ≤ 𝑛, and the complexity is 𝑂 (Δ
2
logΔ log

4 𝑛
𝜀).

• If 4 ≤ 𝜀𝑎 ≤ logΔ, then 𝐷 ≤ 𝑂 (log𝑛𝜀), and the complexity is

𝑂 (Δ
2/⌈𝑎𝜀⌉

logΔ log
4 𝑛

𝑎𝜀2
).

• If 𝜀𝑎 ≥ logΔ, then 𝐷 ≤ 𝑂 (log𝑛𝜀), and the complexity is 𝑂 (log
4 𝑛
𝜀).

• If 𝜀2𝑎 ≥ Ω(logΔ), then𝐷 ≤ 𝑂 (1𝜀), and the complexity is𝑂 (log
4 𝑛
𝜀).

• If 𝜀𝑎 ≥ Ω(log𝑛), then 𝐷 ≤ 𝑂 (1𝜀), and the complexity is 𝑂 (log
3 𝑛
𝜀).

Proof. Applying Theorem 4.5 with 𝜀 ′ = 𝜀/10 in place of 𝜀 gives

a partial ⌈𝑎(1 + 𝜀/10)⌉-FD of𝐺 , where the uncolored edges 𝐸 ′ have
𝑎∗ (𝐸 ′) ≤ ⌈𝜀𝑎/10⌉. Theorem 1.3(3) then yields a ⌊2.01𝑎∗ (𝐸 ′)⌋-FD of

𝐸 ′. Taken together, these give a𝑘-FD of𝐺 for𝑘 = 𝑎+⌊2.01⌈𝜀𝑎/10⌉⌋+
⌈𝜀𝑎/10⌉; since 𝜀𝑎 ≥ 3, this is at most 𝑎(1 + 𝜀). For the next four
results, we apply Proposition 1.5 to convert this into a 𝑘 + ⌈𝜀 ′𝑎/10⌉-
FD of 𝐺 , with the given bounds on the diameter. □

For list-coloring, we piece together the main graph and leftover

graph by partitioning the color-space C for each vertex. See the

full paper for details. We summarize the results here:

Theorem 4.7. Suppose that 𝐺 is a multigraph where each edge
has a palette of size (1+𝜀)𝑎. We can obtain a list-forest-decomposition
of 𝐺 of diameter 𝐷 w.h.p., under the following conditions:

• If 𝜀𝑎 ≥ Ω(log𝑛), the complexity is 𝑂 (log
4 𝑛
𝜀) and 𝐷 = 𝑂 (log𝑛𝜀).

• If 𝜀2𝑎 ≥ Ω(logΔ), the complexity is 𝑂 (log
4 𝑛

𝜀2
) and 𝐷 = 𝑂 (log𝑛

𝜀2
).

5 STAR-FOREST DECOMPOSITION FOR
SIMPLE GRAPHS

Consider a simple graph 𝐺 of arboricity 𝑎 which is equipped with

a 𝑡-orientation for 𝑡 = ⌈(1 + 𝜀)𝑎⌉. Let us consider the following

process: each vertex 𝑣 in the graph selects a color set 𝐶𝑣 ⊆ C. For
𝑐 ∈ 𝐶𝑣 , we say that 𝑣 is a 𝑐-leaf and for 𝑐 ∉ 𝐶𝑣 we say that 𝑣 is a

𝑐-center. For each vertex 𝑣 , we construct an associated bipartite

graph 𝐻𝑣 (𝐶), whose left-nodes correspond to C and whose right

nodes correspond to the out-neighbors 𝐴(𝑣), and there is an edge

from left-node 𝑖 to right-node 𝑢 iff 𝑖 ∈ 𝐶𝑣 \𝐶𝑢 and 𝑖 ∈ 𝑄 (𝑢𝑣).

Proposition 5.1. If each graph 𝐻𝑣 (𝐶) has a matching of size
at least 𝑡 − 𝛿 , then in 𝑂 (1) rounds we can partition the edges as
𝐸 = 𝐸0 ⊔ 𝐸1 and obtain a LSFD 𝜙0 of 𝐸0, such that 𝐸1 has pseudo-
arboricity at most 𝛿 .

Proof. For each edge (𝑖, 𝑢) in the matching𝑀𝑣 of𝐻𝑣 (𝐶), we set
𝜙 (𝑣𝑢) = 𝑖 . Thus, all color-𝑖 edges have the form 𝑣𝑢 for 𝑖 ∈ 𝐶𝑣 \𝐶𝑢
and (𝑖, 𝑢) ∈ 𝑀𝑣 . Since 𝑀𝑣 is a matching, the edges of each color 𝑖

are a collection of stars on the 𝑖-centers (nodes 𝑢 with 𝑖 ∉ 𝐶𝑢) and

𝑖-leaves (nodes 𝑢 with 𝑖 ∈ 𝐶𝑢). The residual uncolored graph has a

𝛿-orientation, by orienting each vertex 𝑣 to each unmatched vertex

𝑢 ∈ 𝐴(𝑣), hence its pseudo-arboricity is at most 𝛿 . □

So we need to choose 𝐶 so that every graph 𝐻𝑣 (𝐶) has a large
matching. The following two results show that an appropriately

chosen random coloring has this property with good probability.

Lemma 5.2. Suppose that 𝑎𝜀 ≥ 100(
√︁
logΔ + log𝑎). If C = [𝑡]

and each set 𝐶𝑢 is chosen uniformly at random among 𝑎-element
subsets of C, then for any vertex 𝑣 there is a probability of at least
1 − 1/Δ10 that 𝐻𝑣 (𝐶) has a matching of size at least 𝑎(1 − 𝜀).

Lemma 5.3. Suppose that 𝜀 ≤ 10
−6 and 𝑎𝜀 ≥ 10

6
logΔ and each

edge has a palette of size 𝑎(1 + 200𝜀). If we form each set 𝐶𝑢 by
selecting each color independently with probability 1− 𝜀, then for any
vertex 𝑣 there is a probability of at least 1 − 1/Δ10 that 𝐻𝑣 (𝐶) has a
matching of size 𝑡 .

This leads to our main results for star-forest decomposition:

Theorem 5.4. Let 𝐺 be a simple graph with arboricity 𝑎. If 𝑎𝜀 ≥
Ω(

√︁
logΔ + log𝑎), we get an 𝑎(1 + 𝜀)-SFD in𝑂 (log

3 𝑛
𝜀) rounds w.h.p.

If 𝑎𝜀 ≥ Ω(logΔ), we get an 𝑎(1 + 𝜀)-LSFD in 𝑂 (log
3 𝑛
𝜀) rounds w.h.p.

Proof. For the first result, we apply Theorem 1.1 to obtain the

required 𝑡-orientation in 𝑂 (log3 𝑛/𝜀) rounds. Next, use the Lovász
Local Lemma algorithm of [17] to choose 𝐶 such that every graph

𝐻𝑣 (𝐶) has a matching of size at least 𝑡 − 2𝑎𝜀. Each vertex 𝑣 cor-

responds to a bad-event that the matching size is too small. By

Lemma 5.2, this event has probability at most 𝑝 = Δ−10 and de-

pends on 𝑑 = Δ2
other such events (𝑢 and 𝑣 can only affect each

Session 5: Local Graph Problems PODC ’21, July 26–30, 2021, Virtual Event, Italy

303

other if they have distance at most 2). Thus, the criterion 𝑝𝑑2 ≪ 1

is satisfied and the LLL algorithm runs in 𝑂 (log𝑛) rounds.
Given the choice of sets𝐶𝑣 for all 𝑣 , we then apply Proposition 5.1

to get a (1+𝜀)𝑎-SFD of𝐺 , plus a left-over graph of pseudo-arboricity

at most 2𝑎𝜀. We finish by applying Theorem 1.3 to get a 6.01𝑎𝜀-SFD

of the left-over graph. Overall, we get a (1 + 7.01𝜀)𝑎-SFD; the result
then holds by reparametrizing with 𝜀 ′ = 𝜀/100 in place of 𝜀.

The second result is completely analogous, except we use

Lemma 5.3 to obtain the matchings of 𝐻𝑣 . In this cases, there is no

left-over graph to recolor. □

We remark that the main algorithmic bottleneck for Theorem 5.4

is obtaining the 𝑡-orientation. For example, we could alternatively

use the algorithm of [55] to obtain the 𝑡-orientation, and hence

obtain the 𝑎(1 + 𝜀)-LSFD, in 𝑂̃ (log2 𝑛/𝜀2) rounds.

6 LOWER BOUNDS ON ROUND COMPLEXITY
For parameters 𝑎 ≥ 2 and 𝑡 ≥ 1, we construct multigraph 𝐺 as

follows. We begin with four named vertices 𝑥1, 𝑥2, 𝑦1, 𝑥2. There are

⌊𝑎/2⌋ parallel edges from 𝑥1 to 𝑥2 and ⌊𝑎/2⌋ parallel edges from
𝑦1 to 𝑦2. We construct a path 𝑃1 of 𝑡 vertices arranged from 𝑥1 to

𝑦1, with 𝑘 parallel edges between successive vertices on the path

(including 𝑥1 and 𝑦1 themselves). We construct another path 𝑃2 of

𝑡 vertices arranged in a line from 𝑥2 to 𝑦2 with 𝑘 parallel edges.

From𝐺 , we can form a related graph𝐺 ′ by contracting 𝑥1 to 𝑥2 to a
single vertex 𝑥 , as well as 𝑦1 to 𝑦2 to a single vertex 𝑦. See Figure 4.

(a)

(b)

Figure 4: An illustration of 𝐺 and 𝐺 ′ when 𝑘 = 4 and 𝑡 = 4.

It can be seen that the graph 𝐺 has arboricity 𝑎, has 𝑛 = 2𝑡 + 4
vertices and has maximum degree Δ = 𝑂 (𝑎). We have the following

crucial observation for these graphs:

Lemma 6.1. Suppose that 𝑟 ≤ 𝑡/2 and ℓ ≤ 2𝑎. Then for any
𝑟 -round algorithm 𝐴 for ℓ-forest-decomposition on 𝐺 with success
probability 𝑝 , which does not use information about vertex ID’s, there

is a probability of 𝑝2

128−𝑝2 that there are at least 𝑝2𝑎/64 colors 𝑐 such
that (𝑥1, 𝑥2) and (𝑦1, 𝑦2) both have a 𝑐-colored edge.

Proof. For any color 𝑖 , let 𝑋𝑖 denote the event that (𝑥1, 𝑥2) has
an 𝑖-colored edge and 𝑌𝑖 denote the event that (𝑦1, 𝑦2) has an 𝑖-
colored edge, after we run algorithm 𝐴 on the graph.

Since the edges (𝑥1, 𝑥2) and (𝑦1, 𝑦2) have distance 𝑡 in either

graph, the random variables 𝑋𝑖 , 𝑌𝑖 are independent for each 𝑖 .

Furthermore, since the view from (𝑥1, 𝑥2) is isomorphic to the

view from (𝑦1, 𝑦2), they follow the same distribution. Thus, if

we let 𝑝𝑖 denote the probability of 𝑋𝑖 , then we have E [𝑋𝑖𝑌𝑖] =
E [𝑋𝑖] E [𝑌𝑖] = 𝑝2

𝑖
. Hence, letting 𝑍 denote the number of colors

appearing on both (𝑥1, 𝑦1) and (𝑥2, 𝑦2), we have E [𝑍] =
∑ℓ
𝑖=1 𝑝

2

𝑖
.

On the other hand, whenever 𝐴 returns a forest-decomposition,

we have

∑ℓ
𝑖=1 𝑋𝑖 =

∑ℓ
𝑖=1 𝑌𝑖 = ⌊𝑎/2⌋. Taking expectations, it can

then be shown that E [𝑍] = ∑ℓ
𝑖=1 𝑝

2

𝑖
≥ 𝑝2𝑎/32. Markov’s inequality

applied to ℓ − 𝑍 gives Pr(𝑍 < 𝑝2𝑎/64)2 − 1

1−𝑝2/128 . □

Putting these results together, we obtain the following:

Theorem 6.2. Let 𝑎, 𝑛 ≥ 2 be an arbitrary integers and 𝜀 ∈ (0, 1).
Any randomized algorithm for (1 + 𝜀)𝑎-forest-decomposition on 𝑛-
node graphs of arboricity 𝑎 with success probability at least 0.993
requires Ω(min{𝑛, 1/𝜀}) rounds. This bound holds even on graphs of
maximum degree Δ = 𝑂 (𝑎).

Proof. It suffices to show this under the assumption that 1/𝜀 ≤
0.0001𝑛. Also, we can assume without loss of generality that 𝐴

does not depend upon any vertex ID’s; if 𝐴 does so, we simply

choose new independent random vertex ID’s at the beginning of

the process. Now suppose for contradiction that 𝐴 runs in fewer

than 0.001/𝜀 rounds and, with probability 𝑝 = 0.993, produces a

forest-decomposition𝜓 on 𝐺 .

By Lemma 6.1, there is a probability of at least
𝑝2

128−𝑝2 ≥ 0.00776

that there at least 𝑝2𝑎/32 ≥ 0.03𝑎 colors 𝑐 such that (𝑥1, 𝑥2) and
(𝑦1, 𝑦2) both have 𝑐-colored edges. By a counting argument, it can

be shown that whenever𝜓 is a forest-decomposition, then there are

atmost 4𝑡𝜀𝑎 ≤ 0.004𝑎 colors such that that induced coloring on𝐺 ′ is
acyclic. But note that if color 𝑐 has edges on (𝑥1, 𝑥2) and (𝑦1, 𝑦2) and
the induced coloring on𝐺 ′ is cyclic, then also color 𝑐 on𝐺 is cyclic.

Hence, with probability at least 0.00776, at least 0.03𝑎 − 0.004𝑎 > 0

colors induce a cycle. In particular,𝜓 is a forest decomposition with

probability at most 1 − 0.00776 < 0.993, contradiction. □

Proposition 6.3. In simple graphs with arboricity 2, computing
a 2-forest-decomposition with success probability at least 0.5 requires
Ω(𝑛) rounds.

Proof. Construct 𝐺 with parameters 𝑎 = 2 and 𝑡 = ⌊(𝑛 − 2)/8⌋,
and replace every set of parallel edges by a copy of the complete

graph 𝐾4. The resulting simple graph 𝐻 has 2(4𝑡 + 1) ≤ 𝑛 nodes

and it has arboricity 2. Along similar lines to Proposition 6.2, it can

be shown that any algorithm for 2-forest-decomposition with more

than 0.5 probability requires at least 𝑛/100 rounds. □

7 ACKNOWLEDGMENTS
Hsin-Hao Su is supported by NSF Grant No. CCF-2008422.

Thanks to Vladimir Kolmogorov, for suggesting how to set the

parameters for Lemma 5.2. Thanks to Noga Alon, for explaining

some lower bounds for star arboricity. Thanks to Louis Esperet for

some suggestions on notations and terminology. Thanks to anony-

mous conference reviewers for helpful comments and suggestions.

REFERENCES
[1] Ilan Algor and Noga Alon. 1989. The star arboricity of graphs. Discrete Mathe-

matics 43, 1–3 (1989), 11–22.

Session 5: Local Graph Problems PODC ’21, July 26–30, 2021, Virtual Event, Italy

304

[2] Noga Alon, Colin McDiarmid, and Bruce Reed. 1992. Star arboricity. Combina-
torica 12, 4 (1992), 375–380.

[3] Yasukazu Aoki. 1990. The star-arboricity of the complete regular multipartite

graphs. Discrete Mathematics 81, 2 (1990), 115–122.
[4] Baruch Awerbuch, Bonnie Berger, Lenore Cowen, and David Peleg. 1996. Fast

Distributed Network Decompositions and Covers. J. Parallel and Distrib. Comput.
39, 2 (1996), 105–114.

[5] Bahman Bahmani, Ashish Goel, and Kamesh Munagala. 2014. Efficient Primal-

Dual Graph Algorithms for MapReduce. In WAW (Lecture Notes in Computer
Science 8882). 59–78.

[6] Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii. 2012. Densest Subgraph

in Streaming and MapReduce. Proc. VLDB Endowment 5, 5 (2012), 454–465.
[7] Leonid Barenboim and Michael Elkin. 2010. Sublogarithmic distributed MIS

algorithm for sparse graphs using Nash-Williams decomposition. Distributed
Computing 22, 5-6 (2010), 363–379.

[8] Leonid Barenboim and Michael Elkin. 2011. Deterministic Distributed Vertex

Coloring in Polylogarithmic Time. J. ACM 58, 5 (2011), Article #23.

[9] Leonid Barenboim and Michael Elkin. 2013. Distributed Graph Coloring: funda-

mentals and Recent Developments. Synthesis Lectures on Distributed Computing
Theory 4, 1 (2013), 1–171.

[10] Soheil Behnezhad, Sebastian Brandt, Mahsa Derakhshan, Manuela Fischer, Mo-

hammadTaghi Hajiaghayi, Richard M. Karp, and Jara Uitto. 2019. Massively

Parallel Computation of Matching and MIS in Sparse Graphs. In PODC. 481–490.
[11] Edvin Berglin and Gerth Stølting Brodal. 2020. A Simple Greedy Algorithm for

Dynamic Graph Orientation. Algorithmica 82, 2 (2020), 245–259.
[12] Anton Bernshteyn. 2020. A Fast Distributed Algorithm for (Δ+1)-Edge-Coloring.

arXiv preprint arXiv:2006.15703 (2020).
[13] Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalam-

pos E. Tsourakakis. 2015. Space- and Time-Efficient Algorithm for Maintaining

Dense Subgraphs on One-Pass Dynamic Streams. In STOC. 173–182.
[14] Gerth Stølting Brodal and Rolf Fagerberg. 1999. Dynamic Representations of

Sparse Graphs. InWADS. 342–351.
[15] Y.-J. Chang, Q. He,W. Li, S. Pettie, and J. Uitto. 2018. The complexity of distributed

edge coloring with small palettes. In SODA. 2633–2652.
[16] Moses Charikar. 2000. Greedy approximation algorithms for finding dense

components in a graph. In APPROX (Lecture Notes in Computer Science 1913).
84–95.

[17] Kai-Min Chung, Seth Pettie, and Hsin-Hao Su. 2017. Distributed algorithms for

the Lovász local lemma and graph coloring. Dist. Comp. 30, 4 (2017), 261–280.
[18] Devdatt Dubhashi, David A Grable, and Alessandro Panconesi. 1998. Near-

optimal, distributed edge colouring via the nibble method. Theoretical Computer
Science 203, 2 (1998), 225–251.

[19] Michael Elkin and Ofer Neiman. 2016. Distributed Strong Diameter Network

Decomposition: Extended Abstract. In PODC. 211–216.
[20] Michael Elkin, Seth Pettie, and Hsin-Hao Su. 2015. (2Δ − 1)-edge-coloring is

much easier than maximal matching in the distributed setting. In SODA. 355–370.
[21] Hossein Esfandiari, MohammadTaghi Hajiaghayi, and David P. Woodruff. 2016.

Applications of Uniform Sampling: densest Subgraph and Beyond. In SPAA. 397–
399.

[22] Manuela Fischer, Mohsen Ghaffari, and Fabian Kuhn. 2017. Deterministic Dis-

tributed Edge-Coloring via Hypergraph Maximal Matching. In FOCS. 180–191.
[23] Harold N. Gabow and Matthias Stallmann. 1985. Efficient algorithms for graphic

matroid intersection and parity. In ICALP. 210–220.
[24] Harold N. Gabow and Herbert H. Westermann. 1992. Forests, frames, and games:

Algorithms for matroid sums and applications. Algorithmica 7, 1 (1992), Article
#465.

[25] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. 1989. A Fast Parametric Maximum

Flow Algorithm and Applications. SIAM J. Comput. 18, 1 (1989), 30–55.
[26] Mohsen Ghaffari, David G. Harris, and Fabian Kuhn. 2018. On Derandomizing

Local Distributed Algorithms. In FOCS. 662–673.
[27] Mohsen Ghaffari, Juho Hirvonen, Fabian Kuhn, and Yannic Maus. 2018. Improved

distributed Δ-coloring. In PODC. 427–436.
[28] Mohsen Ghaffari, Fabian Kuhn, and Yannic Maus. 2017. On the complexity of

local distributed graph problems. In STOC. 784–797.
[29] Mohsen Ghaffari, Fabian Kuhn, Yannic Maus, and Jara Uitto. 2018. Deterministic

Distributed Edge-coloring with Fewer Colors. In STOC. 418–430.
[30] Mohsen Ghaffari, Silvio Lattanzi, and Slobodan Mitrović. 2019. Improved Parallel

Algorithms for Density-Based Network Clustering. In ICML, Vol. 97. 2201–2210.
[31] Mohsen Ghaffari and Hsin-Hao Su. 2017. Distributed Degree Splitting, Edge

Coloring, and Orientations. In SODA. 2505–2523.
[32] A. V. Goldberg. 1984. Finding a Maximum Density Subgraph. Technical Report

UCB/CSD-84-171. EECS Department, University of California, Berkeley.

[33] A. D. Gore, A. Karandikar, and S. Jagabathula. 2007. On High Spatial Reuse Link

Scheduling in STDMA Wireless Ad Hoc Networks. In IEEE Global Telecommuni-
cations Conference (GLOBALCOM). 736–741.

[34] Anupam Gupta, Amit Kumar, and Cliff Stein. 2014. Maintaining Assignments

Online: Matching, Scheduling, and Flows. In SODA. 468–479.

[35] S Louis Hakimi. 1965. On the degrees of the vertices of a directed graph. Journal
of the Franklin Institute 279, 4 (1965), 290–308.

[36] David G. Harris. 2020. Distributed local approximation algorithms for maximum

matching in graphs and hypergraphs. SIAM J. Comput. 49, 4 (2020), 711–746.
[37] Hiroshi Imai. 1983. Network-Flow Algorithms For Lower-Truncated Transversal

Polymatroids. Journal of the Operations Research Society of Japan 26, 3 (1983),

186–211.

[38] Samir Khuller and Barna Saha. 2009. On Finding Dense Subgraphs. In ICALP.
597–608.

[39] Tsvi Kopelowitz, Robert Krauthgamer, Ely Porat, and Shay Solomon. 2014. Ori-

enting Fully Dynamic Graphs with Worst-Case Time Bounds. In ICALP. 532–543.
[40] Łukasz Kowalik. 2006. Approximation Scheme for Lowest Outdegree Orientation

and Graph Density Measures. In ISAAC. 557–566.
[41] Fabian Kuhn. 2020. Faster Deterministic Distributed Coloring Through Recursive

List Coloring. In SODA. 1244–1259.
[42] Nathan Linial. 1992. Locality in Distributed Graph Algorithms. SIAM J. Comput.

21, 1 (1992), 193–201.

[43] Nathan Linial and Michael E. Saks. 1993. Low diameter graph decompositions.

Combinatorica 13, 4 (1993), 441–454.
[44] AndrewMcGregor, David Tench, Sofya Vorotnikova, andHoa T. Vu. 2015. Densest

Subgraph in Dynamic Graph Streams. In MFCS (2) (Lecture Notes in Computer
Science, Vol. 9235). Springer, 472–482.

[45] C. St.J. A. Nash-Williams. 1964. Decomposition of Finite Graphs Into Forests.

Journal of the London Mathematical Society s1-39, 1 (1964), 12–12.

[46] Alessandro Panconesi and Aravind Srinivasan. 1997. Randomized Distributed

Edge Coloring via an Extension of the Chernoff–Hoeffding Bounds. SIAM
J. Comput. 26, 2 (1997), 350–368. https://doi.org/10.1137/S0097539793250767

arXiv:https://doi.org/10.1137/S0097539793250767

[47] Jean-Claude Picard and Maurice Queyranne. 1982. A network flow solution to

some nonlinear 0-1 programming problems, with applications to graph theory.

Networks 12, 2 (1982), 141–159.
[48] S. Ramanathan and E. L. Lloyd. 1993. Scheduling algorithms for multihop radio

networks. IEEE/ACM Transactions on Networking 1, 2 (1993), 166–177.

[49] James Roskind and Robert E. Tarjan. 1985. A Note on Finding Minimum-Cost

Edge-Disjoint Spanning Trees. Mathematics of Operations Research 10, 4 (1985),

701–708.

[50] Václav Rozhoň and Mohsen Ghaffari. 2020. Polylogarithmic-Time Deterministic

Network Decomposition and Distributed Derandomization. In STOC. 350–363.
[51] Atish Das Sarma, Ashwin Lall, Danupon Nanongkai, and Amitabh Trehan. 2012.

Dense Subgraphs on Dynamic Networks. In DISC (Lecture Notes in Computer
Science, Vol. 7611). Springer, 151–165.

[52] Saurabh Sawlani and Junxing Wang. 2020. Near-Optimal Fully Dynamic Densest

Subgraph. In STOC. 181–193.
[53] Paul D Seymour. 1998. A note on list arboricity. Journal of Combinatorial Theory

Series B 72 (1998), 150–151.

[54] Jessica Shi, Laxman Dhulipala, and Julian Shun. 2020. Parallel Clique Counting

and Peeling Algorithms. arXiv:2002.10047 [cs.DS] arXiv:2002.10047.

[55] Hsin-Hao Su and Hoa T. Vu. 2020. Distributed Dense Subgraph Detection and

Low Outdegree Orientation. In DISC. 15:1–15:18.
[56] Hsin-Hao Su and Hoa T. Vu. 2019. Towards the Locality of Vizing’s Theorem. In

STOC. 355–364.
[57] Vadim G. Vizing. 1964. On an estimate of the chromatic class of a 𝑝-graph.

Diskret. Analiz 3, 7 (1964), 25–30.

Session 5: Local Graph Problems PODC ’21, July 26–30, 2021, Virtual Event, Italy

305

https://doi.org/10.1137/S0097539793250767
https://arxiv.org/abs/https://doi.org/10.1137/S0097539793250767
https://arxiv.org/abs/2002.10047

	Abstract
	1 Introduction
	1.1 Summary of Results
	1.2 Summary: Distributed Augmentation
	1.3 Pseudo-Forest Decomposition and Low Outdegree Orientation
	1.4 Star-Arboricity and (List)-Star-Forest Decomposition for Simple Graphs
	1.5 Preliminaries
	1.6 Basic Forest Decomposition Algorithms

	2 Algorithm for Low Outdegree Orientation
	3 Augmenting Sequences for List-Coloring
	4 Local Forest Decompositions via Augmentation
	4.1 Implementing CUT
	4.2 Putting Everything Together

	5 Star-Forest Decomposition for Simple Graphs
	6 Lower Bounds on Round Complexity
	7 Acknowledgments
	References

