Session 5: Local Graph Problems

PODC 21, July 26-30, 2021, Virtual Event, Italy

On the Locality of Nash-Williams Forest Decomposition and
Star-Forest Decomposition

David G. Harris
University of Maryland
College Park, Maryland, USA
davidgharris29@gmail.com

ABSTRACT

Given a graph G = (V, E) with arboricity a, we study the problem
of decomposing the edges of G into (1 + ¢)a disjoint forests in the
distributed LOCAL model. While there is a polynomial time central-
ized algorithm for a-forest decomposition (e.g. [Imai, J. Operation
Research Soc. of Japan ‘83]), it remains an open question how close
we can get to this exact decomposition in the LOCAL model.

Barenboim and Elkin [PODC ‘08] developed a LOCAL algorithm
logn

to compute a (2 + ¢)a-forest decomposition in O() rounds.
Ghaffari and Su [SODA ‘17] made further progress by computing

3
a (1 + ¢)a-forest decomposition in O(IOE4 ") rounds when ea =

Q(+/alogn), i.e., the limit of their algorithm is an (a+Q(+/alogn))-
forest decomposition. This algorithm, based on a combinatorial
construction of Alon, McDiarmid & Reed [Combinatorica ‘92], in
fact provides a decomposition of the graph into star-forests, i.e.,
each forest is a collection of stars.

Our main goal is to reduce the threshold of ¢a in (1 + ¢)a-forest
decomposition. We obtain the following main results:

4
e An O(%)—round algorithm when ea = Q,(1) in simple

graphs and multigraphs, where p > 0 is any arbitrary constant.
log A

Q(loglogA) in

4
e An O(w%round algorithm when ea =
simple graphs and multigraphs.

4
e An O(IOgg ")-round algorithm when ea = Q(logn) in simple

graphs and multigraphs. This also covers an extension of the
forest-decomposition problem to list-edge-coloring.

3
e An O(IOgg %)-round algorithm for star-forest decomposition for

ea = Q(+/log A + log a) in simple graphs. When ea > Q(logA),
this also covers a list-edge-coloring variant.

Our techniques also give an algorithm for (1 + ¢)a-outdegree-
orientation in O(log® n/¢) rounds, which is the first algorithm with
linear dependency on ¢ 1.

At a high level, the first three results come from a combination
of network decomposition, load balancing, and a new structural

result on local augmenting sequences. The fourth result uses a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PODC °21, July 26-30, 2021, Virtual Event, Italy

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8548-0/21/07...$15.00
https://doi.org/10.1145/3465084.3467908

Hsin-Hao Su
Boston College
Chestnut Hill, Massachusetts, USA
suhx@bc.edu

295

Hoa T. Vu
San Diego State University
San Diego, California, USA
hvu2@sdsu.edu

more careful probabilistic analysis for the construction of Alon,
McDiarmid & Reed; these bounds on star-forest-decomposition
were not previously known to be possible, even non-constructively.

CCS CONCEPTS

« Theory of computation — Distributed algorithms; Graph
algorithms analysis; - Mathematics of computing — Graph
theory.

KEYWORDS

forest decompositions, local algorithms, graph algorithms

ACM Reference Format:

David G. Harris, Hsin-Hao Su, and Hoa T. Vu. 2021. On the Locality of
Nash-Williams Forest Decomposition and Star-Forest Decomposition. In
Proceedings of the 2021 ACM Symposium on Principles of Distributed Com-
puting (PODC °21), July 26-30, 2021, Virtual Event, Italy. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3465084.3467908

1 INTRODUCTION

Consider a loopless (multi-)graph G = (V, E) with n = |V| vertices,
m = |E| edges, and maximum degree A. A k-forest decomposition
(abbreviated k-FD) is a partition of the edges into k forests. The
arboricity of G, denoted a(G), is a measure of sparsity defined as the
minimum number k for which a k-forest decomposition of G exists.
We also write a(E) or just a when G is understood. An elegant result
of Nash-Williams [45] shows that a(G) is given by the formula:

|E(H)|

a(@) = V()] - J'

HCG
|V(H)|>2
Note that the RHS is clearly a lower bound on a since each forest
can only consume at most |V(H)| — 1 edges in a subgraph H. In
the centralized setting, a series of polynomial-time algorithms have
been developed for a-forest decomposition [23, 24, 37, 49].

In this work, we study the problem of computing forest decom-
positions in the LOCAL model of distributed computing [42]. In
this model, the vertices operate in synchronized rounds where each
vertex sends and receives messages of arbitrary size to its neighbors,
and performs arbitrary local computations. The complexity of an
algorithm is defined to be the number of rounds used. An r-round
LOCAL algorithm implies that each vertex only uses information
in its r-hop neighborhood to compute the answer, and vice versa.

There has been growing interest in investigating the gap between
what can be computed efficiently and the existential bounds of
various combinatorial structures. For example, consider the problem
of proper edge coloring. The classical result of Vizing [57] shows
that a (A + 1)-edge-coloring exists in simple graphs. A long series

https://doi.org/10.1145/3465084.3467908
https://doi.org/10.1145/3465084.3467908

Session 5: Local Graph Problems

of works have developed efficient LOCAL algorithms using smaller
number of colors [15, 18, 20, 29, 46, 56]. This culminated with [12],
which matched the optimal existential bound with a poly (A, log n)
algorithm for (A + 1)-edge-coloring. Forest decomposition can be
viewed as a variant of proper edge coloring: in the latter problem,
the edges induced by each color should form a matching, while
in the former they should form a forest. Similar to edge-coloring,
distributed forest decomposition has applications to scheduling of
radio networks and wireless networks [33, 48], where a smaller
number of forests corresponds to a more compact schedule.

In contrast with edge-coloring, computing an a-FD in the LOCAL
model requires Q(n) rounds even in simple graphs of constant
maximum degree (see Proposition 6.3). We thus develop algorithms
using (1 + ¢)a forests, i.e. ea excess forests beyond the a forests
required existentially. Beside round complexity, a key objective is
the number of excess forests used, i.e. what is the minimum range
of ¢ in which the algorithms can operate.

The forest decomposition problem was first studied in the
LOCAL model by Barenboim and Elkin [7], who developed the
H-partition algorithm to compute a (2 + ¢)a-forest decomposi-
tion in O(log n/¢) rounds. This has been a building block in many
other distributed and parallel algorithms [7, 8, 10, 41, 54]. Baren-
boim and Elkin [7] also showed that an O(a)-FD would require

Q(}ggz —log" n) rounds. In [9, Open Problem 11.10], they posed
the problem of using fewer than 2a forests. Some progress was
made by Ghaffari and Su [31] with an algorithm for (1 + ¢)a-forest
decomposition in O(log3 n/e*) rounds when ¢ = Q(+/log n/a) for
simple graphs, i.e., the minimum number of obtainable forests is
a + Q(+y/alogn). A natural question is how far this threshold can
be pushed down.

We make further progress on this objective with an algorithm for
(a+3)-FD in poly(A, log n) rounds in multigraphs. The polynomial
dependence on A can be removed when ¢a is larger; for example,
we obtain a (1 + €)a-FD in O(1/¢) - polylog(n) rounds for ea =
Q(log A/loglog A).

Furthermore, we consider two important extensions to this basic
framework.

List Forest Decomposition: Similar to edge coloring, there is a
list version of the forest decomposition problem. Each edge e has a
palette of colors Q(e) from a color-space C, and we should choose
a color ¢(e) € Q(e) so that, for any color c, the subgraph induced
by the c-colored edges forms a forest. If |Q(e)| > k for e, we refer
to this as k-list-forest decomposition (abbreviated k-LFD).

This generalizes k-forest-decomposition, which can be viewed
as the case where Q(e) = C = {1,..., k} for all edges e. The total
number of forests (one for each color) may be much larger than
a; in this case, the excess is measured in terms of the number of
extra colors in edges’ palettes (in addition to the a colors that are
required by the lower bound).

Based on general matroid arguments, Seymour [53] showed
that an a-LFD exists for any choice of palettes. This also can be
turned into a polynomial-time centralized algorithm with standard
matroid routines. Thus, from the point of view of combinatorial
constructions and centralized algorithms, forest-decomposition
and list-forest-decomposition are nearly equivalent. In the LOCAL
model, though, list-forest-decomposition appears to be much harder.

296

PODC 21, July 26-30, 2021, Virtual Event, Italy

Unlike forest decomposition, it is not sufficient to color most of the
edges with a small left-over uncolored component.

We give poly(log n, 1/¢)-round algorithms for (1+¢)a-LFD when
ea = Q(min{logn, y/alogA}). A key open problem is to find an
efficient algorithm for ea > Q(1).

Low-Diameter and Star-Forest Decompositions: The second
extension is to ensure that the forests in the decomposition have
low diameter. We say that the decomposition has diameter D if
every tree in every c-colored forest has strong diameter at most
D. Low-diameter forest decompositions are interesting from both
practical and theoretical aspects. For example, a k-FD of diameter
D can be turned into k rooted forests in O(D) rounds.

We develop a few post-processing techniques to convert an ar-
bitrary k-FD into a (1 + ¢)k-FD with diameter O(logn/¢). When
¢k is large enough, the diameter can be reduced further to O(1/¢),
which is optimal for multigraphs (see the full paper for details).

In the most extreme case, each forest should be a collection of
stars, i.e., a star-forest. We refer to the problem of decomposing the
graph into k star-forests as k-star-forest decomposition (abbreviated
k-SFD), and we call the list-coloring variant of star-forest decom-
position k-list-star-forest-decomposition (abbreviated k-LSFD). This
problem has received some attention in combinatorics. In simple
log® n

&
ea=Q(loga+ \/IOE) as well as an O(
(1 + €)a-LSFD when ea = Q(log A).

graphs, we give an O()-round algorithm for (1+¢)a-SFD when

log®n
&

)-round algorithm for

1.1 Summary of Results

Our results for forest decomposition balance a number of mea-
sures: the minimum number of obtainable forests, the running time,
the tree diameters, LFD versus FD, and multigraphs versus simple
graphs. See Table 1 for a summary of a some possible parameters.
Here, p > 0 represents any desired constant and we use Q, to
represent a constant terms which may depend on p.

Excess colors Lists? | Multi- | Runtime Diameter
graph?
3 No Yes O(A%alogin) | <n
>4 No Yes O(A? log*n/e) | O(logn/e)
Q,(1) No Yes O(AP log*n/e) | O(logn/e)
>4+plogA No Yes O, (log4 n/e) O(logn/e)
Q(4/alogA) No Yes O(log*n/e) O(1/e)
Q(logn) No Yes O(log3 n/e) O(1/e)
Q(\/alog A) Yes Yes O(log4 n/e%) O(logn/e%)
Q(logn) Yes Yes O(log4 nj/e) O(logn/e)
Q(4/log A +loga) | No No O(log> n/e) 2 (star)
Q(logA) Yes No O(log® n/e) 2 (star)

Table 1: Algorithms for (1 + ¢)a-FD and (1 + ¢)a-LFD of G

Thus, for instance, the final listed algorithm requires excess

K log A and the third listed algorithm requires excess K p> Where K

and I?p are universal constants.
All these algorithms here are randomized and succeed with high
probability (abbreviated w.h.p.), i.e. succeed with probability at least

Session 5: Local Graph Problems

1 — 1/poly(n). Since all the failure modes can be locally checked
during the run of the algorithms, they can be derandomized with
an additional polylog(n) factor in the runtime using the recent
breakthrough of [26, 50]; we do not discuss any further issues of
determinization henceforth.

We also show that Q(1/¢) rounds are needed for (1 + ¢)a-FD in
multigraphs (See Theorem 6.2).

1.2 Summary: Distributed Augmentation

The results for forest-decomposition and list-forest-decomposition
are based on a distributed implementation of augmenting paths, in
which we color one uncolored edge and possibly change some of
the colored edges while maintaining the solution feasibility. Aug-
mentation approaches have been used for many combinatorial
constructions, such as coloring and matching.

Gabow and Westermann [24] described an approach for a-forest-
decomposition via augmenting paths. Roughly speaking, this works
as follows: Given an uncolored edge eq, suppose that we try to
assign it color c;. If it does not create a cycle, then we are done.
Otherwise, if a cycle is created, we recolor some edge e, on the
cycle with different color ¢z # c1. Continuing this process leads to
an augmenting sequence e1, c1, €2,C2 . . ., e¢, C¢, such that recoloring
e¢ in ¢, does not create a cycle. Furthermore, a BFS algorithm can
be used to find such an augmenting sequence efficiently in the
centralized setting.

This approach faces two main challenges in the LOCAL model.
First, in order to get a distributed algorithm, we must color many
edges in parallel. Second, it is unclear if the recoloring can be
done in the vicinity of the initial uncolored edge. Note that the
augmenting sequences produced by the Gabow and Westerman
algorithm can be long, and even if a short augmenting sequence
exists, the consecutive edges in the sequence (e.g. e; and e3) can be
arbitrarily far from each other.

Structural Results on Augmenting Sequences: We first show a
structural result on forest decomposition: given a partial (1+¢)a-FD
(or, more generally, a partial (1+¢)a-LFD) in a multigraph, there is an
augmenting sequence of length O(log n/e) where, moreover, every
edge in the sequence lies in the O(log n/¢)-neighborhood of the
starting uncolored edge. We show this through a key modification
to the BFS algorithm for finding an augmenting sequence. In [24],
when assigning e; to color c; creates a cycle, then all edges on the
cycle get enqueued for the next layer; by contrast, in our algorithm,
we only enqueue the edges adjacent to e; itself. We show even with
this modification, an augmenting sequence appears after O(log n/¢)
steps. This characterization may potentially lead to other algorithms
for forest decompositions.

Network Decomposition and Load Balancing Cut Edges: To
apply augmenting paths in parallel, we will use network decom-
position methods similar to [28] to break the graph into smaller
subgraphs. However, we encounter a major roadblock to doing
this directly: identifying an augmenting sequence may still require
checking edges distant from the uncolored edge. For example, it
is not clear how to tell if edge e; belongs to a color-c; cycle in the
LOCAL model as the cycle may extend outside the vicinity of e;.
To handle this, we develop a procedure CUT which removes edges
to break long paths, thereby allowing augmenting sequences to be

297

PODC 21, July 26-30, 2021, Virtual Event, Italy

locally checkable. To get a (1 + ¢)a-forest decomposition of the full
graph, we must ensure that the collection of edges removed by CUT
(the “left-over graph”) has arboricity O(ea). It suffices to bound
the number of incident edges removed per vertex; this reduces to
an online load-balancing problem similar to one encountered in
[56], where here the load of a vertex is the number of its directed
neighbors which are removed. In [56], paths come in an online
fashion and we should remove some of their edges so that every
vertex has small load at the end. Here, rooted trees come in an
online fashion, and we need to remove some edges to disconnect
the root from all the leaves.

If edges are removed independently with some uniform proba-
bility, then the number of incident edges per vertex would be stuck
at Q(logn) due to the concentration threshold. To break this bar-
rier, we generalize the conditioned sampling approach of [56]. The
rough idea is that we randomly remove edges which are incident
to vertices with small loads. We will show that throughout the
algorithm, the root-leaf paths of the trees always contain a large
number of these vertices; thus, it is likely that none of the long
paths survive in any iteration.

Palette Partitioning for List-Coloring: The final step is to re-
color the left-over edges using an additional O(ea) colors. For or-
dinary forest decomposition, this is nearly automatic due to our
bound on the arboricity of the left-over graph. For list coloring, we
must reserve a small number of back-up colors for the left-over
edges. We develop two different methods for this; the first uses
the Lovasz Local Lemma and the second uses randomized network
decomposition.

There are some additional connections in our work to two closely
related graph parameters, pseudo-arboricity and star-arboricity. Let
us summarize these next.

1.3 Pseudo-Forest Decomposition and Low
Outdegree Orientation

There is a closely related decomposition using pseudo-forests, which
are graphs with at most one cycle in each connected component.
The pseudo-arboricity a* is the minimum number of pseudo-forests
into which a graph can be decomposed. A k-pseudo-forest decom-
position is equivalent to an edge-orientation where every vertex
has outdegree at most k. This characterization, which we call an
k-orientation, is completely local.

A result of Hakimi [35] shows that pseudo-arboricity is given
by an analogous formula to Nash-Williams’ formula for arboricity.
Loopless multigraphs have a* < a < 24, and simple graphs also
satisfy a < a* + 1. In some sense, a* is a more fundamental graph
parameter than a, and the problems of pseudo-forest decomposition,
low outdegree orientation, and maximum density subgraph are
more well-understood than forest decomposition. For example, the
maximum density subgraph problem has been studied in many
computational models, e.g. [5, 6, 13, 16, 21, 25, 30, 32, 38, 44, 47, 51,
52]. The low outdegree orientation problem has been studied in the
centralized context in [11, 14, 24, 34, 39, 40].

There has been a long line of work on LOCAL algorithms for
(1 + ¢)a”-orientation [22, 26, 31, 36, 55]. Most recently, [55] gave
an algorithm running in O(log? n/¢?) rounds for ea* > 32; this
algorithm also applies to the CONGEST model, which is a special

Session 5: Local Graph Problems

case of the LOCAL model where messages are restricted to O(log n)
bits per round. However, none of the algorithms can achieve better
than Q(1/¢%) dependencies on ¢. Notably, the 1/¢% factor in [55]
comes from the number of iterations needed to solve the LP.

Our general strategy of augmenting paths and network decom-
positions can also be used for low outdegree orientations. We will
show the following result:

THEOREM 1.1. For a (multi)-graph G with pseudo-arboricity a*

and ¢ € (0,1), there is a LOCAL algorithm to obtain [a* (1 + ¢)]-

log®n
€

orientation in O() rounds w.h.p.

Note in particular the linear dependency on 1/¢. Theorem 1.1
provides a simple warm-up exercise for our more advanced forest-
decomposition algorithms.

1.4 Star-Arboricity and (List)-Star-Forest
Decomposition for Simple Graphs

The star-arboricity agtar is the minimum number of star-forests
into which the edges of a graph can be partitioned. This has been
studied in combinatorics [1-3], where the main focus is to (non-
constructively) bound agtar in terms of other graph parameters. We
analogously define the list star-arboricity of a graph, alsitsatr; namely,
the smallest value k such that there is a LSFD whenever each edge
has a palette of size k.

For general loopless multigraphs, it can be shown that agtar <
2d* and aEtSatr < 4a"*. In simple graphs, Alon, McDiarmid & Reed
[2] showed that astar < a + O(log A). Our results for star-forest-
decomposition in simple graphs come from strengthening this [2]
construction, as well as making it algorithmic.

To briefly summarize, the idea is to start with a k-orientation
where k = (1 + O(¢))a. A subset of the vertices get marked as
c-centers for each color ¢, otherwise they are c-leaves. Each vertex
v gets marked as a c-center independently with some probability
p. Finding the star-forest decomposition then reduces to finding a
perfect matching, for each vertex u, between the colors ¢ for which
u is a c-leaf, and the neighbors v of u which are c-centers.

In the general LSFD case, we show the existence of this perfect
matching for each vertex u when ¢k = Q(log A). This is based on
more advanced analysis of concentration bounds (beyond Chernoff
bounds) for the number of c-leaf neighbors. In the ordinary SFD case,
instead of a perfect matching, we obtain a near-perfect matching,
leaving ek unmatched edges per vertex. These left-over edges can
be later decomposed into 2¢k stars. This allows us to strengthen
the bound to ek = Q(4/log A +log a).

In addition to being powerful algorithmic results, these also show
two new combinatorial bounds:

COROLLARY 1.2. A simple graph has agqr < a+0O(log a++/logA)
list < g4 O(log A).

and Astar =

For lower bounds, [2] showed that there are simple graphs with
astar = 2a and A = 29(“2), while [1] showed that there are simple
graphs where every vertex has degree d = 2a and where agtar >
a+ Q(loga). These two lower bounds show that the dependence of
astar on a and A are nearly optimal in Corollary 1.2. In particular,
the term log a cannot be replaced by a function o(log a) and the
term +/log A cannot be replaced by a function o(+/log A).

298

PODC 21, July 26-30, 2021, Virtual Event, Italy

1.5 Preliminaries

The values ¢ and a are global parameters, along with related param-
eters such as m, n, A, a*. As is usual in distributed algorithms, we
suppose throughout that we are given some globally-known upper
bounds on these values; when we write a, n etc. we are technically
referring to input values 4, fi etc. which are upper bounds on them.
Almost all of our results become vacuous if ¢ < 1/n (since, in the
LOCAL model, we can simply read in the entire graph in O(n)
rounds), so we assume throughout that ¢ € (1/n,1/2).

We define the r-neighborhood of a vertex v, denoted N (v), to be
the set of vertices within distance r of v. We likewise write N” (e)
for an edge e and N” (X) for a set X of vertices or edges. For any
vertex set X, we define E(X) to be the set of induced edges on X.
We define the power-graph G to be the graph on vertex set V and
with an edge uv if u, v have distance at most r in G. Note that, in
the LOCAL model, G" can be simulated in O(r) rounds of G.

For any integer t > 0, we define [t] = {1,...,t}. We write
A = B UC for a disjoint union, i.e. A=BUCand BNC = 0.

Network Decomposition: A (D, y)-network decomposition of G
is a partition of vertices into y classes such that every connected
component in every class has strong diameter at most D. We refer
to each connected component within each class a cluster. There are
known randomized LOCAL algorithms [4, 19, 43] to compute an
(O(log n), O(log n))-network decomposition in O(log? n) rounds.

1.6 Basic Forest Decomposition Algorithms
There are a few simpler forest decomposition algorithms that will
be important building blocks for our more advanced algorithms.
See the full paper for proofs.

THEOREM 1.3. Let t =

o(lOfn)-round algorithms for the following decompositions of G:

L(2 + €)a*]. There are deterministic

o A partition of the vertices of G intok = O(logn) classesHy, ..., Hy,

such that each vertexv € H; has at most t neighbors in H; U- - - UHp.

o An orientation of the edges of G such that the resulting directed
graph is acyclic and each vertex has outdegree at most t. We refer
to this as an acyclic t-orientation.

o A 3t-star-forest-decomposition of G.
o A t-list-forest-decomposition of G.

THEOREM 1.4. For a multigraph G, there is a randomized al-
3 ~ *
gorithm for a | (4 + €)a*|-LSFD in min(O(lOgg n),O(IOgnLOg m))

rounds w.h.p.

Finally, we consider how to reduce the diameter of a given forest
decomposition. This is often used in our algorithms, where we first
obtain some k-FD of G, with unbounded diameter and then relax it
to a k(1 + ¢)-FD with small diameter.

PROPOSITION 1.5. Let G be a multigraph with a k-FD. For any
&> 0, there is an O(lofn)—round to compute a (k + [ea])-FD of G
of diameter D < O(lo%) wh.p. Ifa > Q(min{lofn, loggZA

getD < O(%) w.h.p. with the same runtime.

), we can

Session 5: Local Graph Problems

2 ALGORITHM FOR LOW OUTDEGREE
ORIENTATION

We now discuss a LOCAL algorithm for (1+¢)a*-orientation, based
on augmenting sequences and network decomposition. In addition
to being a notable result in its own right, it serves as a good warm-
up exercise to illustrate some of the main ideas of our later forest-
decomposition algorithms.

Consider a multigraph G of pseudo-arboricity a*. For the pur-
poses of this section only, we allow G to contain loops. Follow-
ing [31], we can “augment” a given edge-orientation ¥ by reversing
the edges in some directed path. For a given parameter ¢ > 0, let us
say that a vertex v is overloaded with respect to a given orientation
¥, if the outdegree of v is strictly larger than [a* (1 + ¢)]; otherwise,
if the outdegree is at most [a*(1 + ¢)], it is underloaded.

We begin with the following observation, which is essentially a
restatement of [31, 35] with more careful counting of parameters.

LEMMA 2.1. Let ¢ € (0,1). For a given edge-orientation and any

vertex v € G, there is a directed path of length O(10%"
vertex with outdegree strictly less than a* (1 + ¢).

) fromo toa

For the purposes of our algorithm, the main significance of this
result is that it allows us to locally fix a given edge-orientation. We
remark that this type of “local patching” result has been critical for
other LOCAL algorithms, such as the A-vertex-coloring algorithm
of [27] or the (A+1)-edge-coloring algorithm of [12]. We summarize
this as follows:

PROPOSITION 2.2. Suppose multigraph G has an edge-orientation
Y, and let L C V be an arbitrary vertex set. Then there is an edge-
orientation " with the following properties:

o’ agrees with outside N" (L) wherer = 0(10%).
o All vertices of L are underloaded with respect to y/’.

o All vertices which are underloaded with respect to { remain under-
loaded with respect to {/’.

Proor. Following [31], we consider the following process: while
some vertex of L is overloaded, we choose any arbitrary such vertex
v € L. We then find some directed path v,v1,...,v, from v where
r < O(log n/¢) and where vertex v, has outdegree strictly less than
a*(1+ ¢). Next, reverse the orientation of all edges along this path.
This does not change the outdegree of the vertices vy, ...,0,-1,
while it decreases the outdegree of v by one and increases the
outdegree of v, by one. O

We next use network decomposition to extend this local patching
into a global solution, via the following Algorithm 1. Here, K is a
universal constant to be specified.

Algorithm 1 Low-DEGREE_ORIENTATION_DECOMPOSITION(G)

1: Initialize ¥ to be some arbitrary orientation of G.

2: Compute an (O(logn), O(log n))-network decomposition in G?R for
R = [Klogn/e].

3: for each class z in the network decomposition do

4: for each component C in the class z in parallel do

5: Modify ¢ so that vertices inside C become underloaded, vertices
outside NR(C) are unchanged, and no new overloaded vertices are
created.

299

PODC 21, July 26-30, 2021, Virtual Event, Italy

We remark that Algorithm 1 can be viewed as part of a family of
algorithms based on network decomposition described in [28]. (In
the language of [28], the algorithm can be implemented in SLOCAL
with radius r = O(lofn).) However, we describe the algorithm
explicitly to keep this paper self-contained, and because we later

need a more general version of Algorithm 1.

THEOREM 2.3. Algorithm 1 can be implemented in O(log® n/e)
rounds. At the termination, { is an edge-orientation with maximum
outdegree [a* (1 + ¢)] wh.p.

Proor. For the first step, we use the algorithm of [19] to obtain
the network decomposition for G*R in O(Rlog? n) rounds. Algo-
rithm 1 processes each cluster C of a given class simultaneously
and tries to orient the edges that are adjacent to or inside C. We
also define C’ = NR(C). From Proposition 2.2, we know that it is
possible to modify ¢ within C” for sufficiently large K, such that
all vertices in C become underloaded, and no additional overloaded
vertices are created.

For any putative orientation ¥’ which does not modify edges
outside C’, we can check if ¢’ satisfies these properties by looking
locally within NR(C). The distance between two clusters in the
same class is at least 2R + 1. Moreover, if u, v are adjacent in GZR,
their distance is at most 2R. So each cluster C has weak diameter
at most O(Rlog n), and also the balls C; and C; must be disjoint
for any two clusters C; and C; of the same class. So each cluster
can be processed independently without interfering with others.
Therefore, each iteration can be simulated locally in O(Rlogn)
rounds. Since there are O(log n) classes, the total running time is
O(Rlog? n) = O(log® n/e). o

This shows Theorem 1.1. We will use the same overall strategy
for forest decomposition, but we will encounter two main technical
obstacles. First, we must define an appropriate notion of local patch-
ing and augmenting sequences; this will be far more complex than
Proposition 2.2. Second, and more seriously, forest-decomposition,
unlike low-degree orientation, cannot be locally checked as a given
(partial) forest decomposition may have long cycles. To circumvent
this, we must remove edges at each step to destroy these cycles.
These left-over edges will need some post-processing steps to han-
dle them at the end.

3 AUGMENTING SEQUENCES FOR
LIST-COLORING

We now show our main structural result on the existence of aug-
menting sequences in a multigraph. Given a partial LFD ¢ of G
and an edge e = uv, we define C(e, c) to be the unique u-v path
in the c-colored forest; if u and v are disconnected in the color-c
forest then we write C(e, ¢) = 0. We write {(e) = 0 if an edge e is
uncolored.

We define an augmenting sequence w.r.t. |/ to be a sequence P =
(e1,e,...,epc), for edges e; and color c, satisfying the following
five conditions:

(A1) Y(er) = 0.
(A2) ej € C(ei-1,¥(ej)) for2 <i < ¢
(A3) e; ¢ C(ej, Y(e;)) for every i and j such that j <i-1.

Session 5: Local Graph Problems

(A4) C(ep,c) = 0.
(A5) Y(eir1) € Q(e;) foreachi=1,...,£—1and c € Q(ey).
Recall that Q(e) denotes the list of available colors for edge e. We
say that ¢ is the length of the sequence. We define the augmentation
¥ @ P to be a new (partial) coloring obtained by setting /" (e;) =
V(eiy1) for1 <i < ¢—1and ¥ (er) = ¢, and ' (e) = (e) for all
other edges e € E \ {e1,...,er}. See Figure 1.

o o9

1
€3 >, €3
a’b\o AN

Figure 1: An illustration of an augmenting sequence before
(left) and after (right) the augmentation process.

LEMMA 3.1. For an augmenting sequence P w.r.t i/, the augmenta-
tion f @ P remains a partial list-forest decomposition.

With this definition, we will show the following main result:

THEOREM 3.2. Given a partial (1 + ¢€)a-LFD of a multigraph G
and an uncolored edge e, there is an augmenting sequence P =
(e e2,...,epc) frome whereey,...,ep € N (e) forr = O(IO#).

The main significance of Theorem 3.2 is that it allows us to

locally fix a partial LFD, in the same way Proposition 2.2 allows us
to locally fix an edge-orientation. We summarize this as follows:

COROLLARY 3.3. Suppose multigraph G has a partial (1+ ¢)a-LFD
¥, and let L C E be an arbitrary edge set. Then there is a partial LFD
¥’ with the following properties:

o |’ agrees with outside N" (L) where r = O(logn).
e ’ is a full coloring of the edges L.

o All edges colored in i are also colored in)’ .

Proor. We go through each uncolored edge e € L in an arbitrary
order, and obtain an augmenting sequence P from Theorem 3.2,
and then modify ¢ to «— ¢ & P. m|

To prove Theorem 3.2, we first find a weaker object called an al-
most augmenting sequence, which is a sequence satisfying properties
(A1), (A2), (A4), (A5) but not necessarily (A3). See Algorithm 2.

Algorithm 2 FIND_AUGMENTING_SEQUENCE (€jpit)

1: E1 = {einit}
2: fori=1...0(logn/¢) do
3: Ej.1 <« Ej.
for each e € E; and each color ¢ € Q(e) do
if C(e,c) # 0 then
for each edge ¢’ € C(e,c) \ E; adjacent to E; do
Set Ejy1 < Ejy1 U {e’} and 7 (€’) « e.

else

Y o o

Return the sequence P = (ejnit, - - ., (7 (e)), (e), e, c).

LEMMA 3.4. Algorithm 2 terminates with an almost augmenting
sequence.

300

PODC 21, July 26-30, 2021, Virtual Event, Italy

ProOF. In each iteration i, let V; denote the endpoints of the
edges in E;, and let E; ¢ be the set of edges in E; with color ¢ under
. The sets E; . partition E;. An edge only gets added to E;4 if
it is adjacent to an edge in E;. Thus, the graph spanned by E; is
connected and E; € N*=1(ejpir).

Let us assume we are at some iteration i and C(e,c) # 0 holds
for all e € E;. For each color c, let E: C E; be the set of edges in
E; whose palette contains color c. Let n; and n}¥ be the number
of connected components in the subgraphs G, = (V;, Ei.) and
G} = (V;, EY¥) respectively. Note that E; . C Ex and ne = |Vi|—|E; |
since G/, is a forest. See Figure 2a.

(b)

Figure 2: In the first figure, the ovals represent components
of G/ while the larger rectangles represent components of G
The second figure shows rooted forest H., where components
of G/ are contracted to nodes. Each contracted, non-root node
has a parent edge (shown in bold) added to E;,;.

For each color ¢, we can construct a rooted forest He from G/
as follows (see Figure 2b): First, contract the edges of E;.; now
H_ consists of n. isolated vertices, which we call contracted nodes.
Second, for every edge e € E:, we add C(e, ¢) to H, (both vertices
and edges). This path C(e, ¢) connects the endpoints of e, and so
the graph H, now contains at most n} components. Finally, choose
an arbitrary rooting of the forest.

For every contracted, non-root node u’, the parent edge of u’
in H, corresponds to some edge e of G. This edge is adjacent to
exactly one vertex in V;, and hence it will appear in Ejy1¢ \ Eje.
Thus there are at least n. — n¥ edges in Ejt1,¢ \ Ejc. We can sum
over colors ¢ to count Ej1:

|Eiv1| = Z (IEic| + |Eirse \ Eicl)

ceC
> > (il =ne) + (ne =nf)) = 37 (IVil =)
ceC ceC

To bound this sum, consider an arbitrary spanning tree T of G’.
Since G’ is connected we have |T| = |V;| — 1, and also |T N EX| <

Session 5: Local Graph Problems

|Vi| = n¥ for each color c. We thus have:

Einl 2 Y ITAES = 3 1Q(e)] 2 [T]-(1+6)a = (1+e)a(|[Vi|-1).
ceC eeT

Since |Vi| = 2, this implies that |Ez| > (1+¢)a. For iterationi > 1,

note that by definition of arboricity, we have |E;|/(|Vi|—1) < a,and

50 |Eiz1| = (1+€)a- |Eil/a = (1+¢)|E;|. Hence |Epy1] = (1+¢)la

for each ¢ > 1. The overall graph has m < na edges, so the process

must terminate by iteration ¢ = [log;,, n]. O

Having found the almost-augmenting sequence from a given
starting edge e, we can short-circuit it into an augmenting sequence
as shown in the following result:

PROPOSITION 3.5. If there exists an almost augmenting sequence
P from e to €', then there exists an augmenting sequence from e to e’
which is a subsequence of P.

PrROOF. Let P = (ey, ez, ...epc) be an almost augmenting se-
quence with e; = e and e; = ¢’ of minimal length ¢. If P satisfies
(A3) we are done. If not, suppose that e; € C(ej, ¥(e;)) for j <i—1.
Then, P’ = (ey,.. ..ep,c) would also be an almost aug-
menting path of length ¢’ < ¢ which is a subsequence of P. This
contradicts minimality of ¢. O

.,ej,ei,.

Theorem 3.2 now follows immediately from Lemma 3.4 and
Proposition 3.5.

4 LOCAL FOREST DECOMPOSITIONS VIA
AUGMENTATION

Algorithm 3 is a high-level description of our forest decomposition
algorithm. It involves a parameter R and a subroutine CUT(X, R);
their precise specification will be given next, but, as a summary:
given a partial forest decomposition, the procedure CUT(X,R)
should remove some edges in E(NR(X)) \ E(X) so there is no
monochromatic path from X to V' \ NR(X). If every execution of
CUT disconnects X and V \ NR(X), we say that the execution of
Algorithm 3 is good.

Algorithm 3 FOREST_DECOMPOSITION(G)

1: Initialize ¢ « 0.

2: Compute an (O(logn),O(logn))-network decomposition
G¥(R+R) for R = [K’logn/e].

3: for each class z in the network decomposition do

4 for each component C in the class z in parallel do

5: Let ¢’ = NR'(C) and " = NR*R ().

6

7

in

Execute CUT(C’, R).
Modify ¢ so that edges inside C become colored and edges
outside N¥ (C) are unchanged.

Here K’ is a universal constant to be specified later. We summa-
rize the algorithm as follows:

THEOREM 4.1. Algorithm 3 can be implemented in O(Rlog? n +
log® n/¢) rounds. If the execution of the algorithm is good and every
edge has a palette of size [(1 + €)a], then at the termination, / is a
list forest decomposition of all edges of G not removed by CUT.

301

PODC 21, July 26-30, 2021, Virtual Event, Italy

Proor. Let us define D = R + R’. At the first step, we use the
algorithm of [19] to obtain an (O(log n), O(log n))-network decom-
position in the power graph G?P in O(D log? n) rounds.

Algorithm 3 processes each cluster C of a given class, and colors
all edges that are adjacent to or inside C (Line 4 to Line 7). Thus, if
an edge uo is not removed, it will become colored when we process
the first class containing u or v. From Corollary 3.3, we know that
it is possible to modify i within NX'(C) alone, such that all edges
within C become colored. Furthermore, if the execution is good,
then CUT(C’, R) disconnects C” from V \ C”’ for every subgraph
induced by each color class c. Thus, for any putative coloring ¢’
which fully colors the edges inside C and does not modify edges
outside C”’, we can check if / is indeed an LFD by looking locally
only within C”. The reason for this is that there cannot be any new
cycles in " outside C”, since the edges are not modified there, and
thus any cycles would have to be confined to C”’.

The distance between clusters in the same class is at least 2D +
1. Moreover, if u, v are adjacent in G*P , their distance is at most
2D. So each cluster C has weak diameter at most O(D log n), and
also the balls C{’ and C}’ must be disjoint for any two clusters
C1 and Cy of the same class. So each cluster can be processed
independently without interfering with others. Therefore, Line
4 to Line 7, including implementation of CUT, can be simulated
locally in C”” in O(D log n) rounds. Since there are O(log n) classes,
the total running time is O(D log? n). O

It now remains to specify CUT(C’, R). For each color ¢, define
H:[C”"] to be the collection of all c-colored edges in C”” \ C’. The
goal of CUT(C’, R) is to break all paths in each H.[C”’] from C’ to
vertices outside C””. We call the subgraph induced by the removed
edges from all CUT(C’, R) instances the leftover subgraph. When we
remove an edge, we can orient it toward either of its vertices. We
want to bound the maximum number of removed out-neighbors of
any vertex; this can be viewed as a load-balancing problem, where
the load of a vertex is its outdegree in the leftover subgraph. We
describe this in Section 4.1, with appropriate choices for parameter
R. See Figure 3.

Figure 3: H.[C"'] with R = 3. We want to disconnect C’ from
all nodes with distance R (black nodes) from C’.

At the end of this process, we combine the list-forest-
decomposition of the main graph with a forest decomposition on
the deleted edges. We summarize this in Section 4.2.

4.1 Implementing CUT

Let us define T = O(logn) to be the number of classes in the
network decomposition. We now describe a few load balancing

Session 5: Local Graph Problems

strategies to implement CUT, with different parameter choices for
the radius R. We summarize these rules as follows:

THEOREM 4.2. The procedure CUT can be implemented so that
w.h.p. the leftover subgraph has pseudo-arboricity at most [ea] and
the execution of Algorithm 3 is good, with the following values for
parameter R:

2

(1) R=0(2E2) ifea > Q(logn).

(2) R= O(lo%) ifea > Q(logn) for forest decomposition.
/Tael 2

(3) R= O(ATloghloe) 4 < Jog A
2

(4) R= O(bng) ifea > log A

The first two results here follow from straightforward diameter-
reduction algorithms.

Proof of Theorem 4.2(1). For the first algorithm for
CUT(C’,R), we apply Proposition 1.5 to the forests H[C"],
using parameter ¢’ = ¢/(2T) in place of ¢. This reduces the
diameter of each forest H.[C"'] to O(log? n/¢), while deleting
an edge-set of arboricity at most [¢a/(2T)]. In particular, when
R > Q(log? n/e), there cannot be any R-long path in H.[C"’] for
any color c. Over the T iterations of Algorithm 3, the leftover
subgraph has arboricity at most T - [ea/(2T)]; since T = O(log n)
and ea > Q(logn), this is at most ¢a. O

Proof of Theorem 4.2(2). To implement CUT(C’, R) for a color
¢, we choose an arbitrary root in C’ for each tree of H.[C’’]. Next,
we choose an integer J; uniformly at random from [N], where

N =|R/2] and R = [80T /] = O(10%"). We then delete all edges e
in H;[C’] whose depth d, from the root satisfies d. = J; mod N.
After this deletion step, each component of H.[C”’] has depth at
most N, and hence has maximum path length of R. So V \ C”’
is disconnected from C’” with probability one and Algorithm 3 is
always good. By a union bound over vertices, w.h.p. every vertex

has at most ¢a out-neighbors in the orientation. O

We now turn to the last two results of Theorem 4.2. We assume
for this that ea = O(logn), as otherwise we could apply Theo-
rem 4.2(1). In particular, due to our assumption that ¢ > 1/n, we
have m < na < poly(n).

We use the following algorithm: first, before running Algo-
rithm 3, use Theorem 1.3 to obtain a 3a-orientation J of G. We
maintain a counter L(v) for each vertex v. To execute CUT(C’,R),
we go through each vertex v with L(v) < ea; with probability p (to
be specified), we delete one random out-neighbor of v with respect
to J and increment L(v) by one.

We say a vertex u is overloaded if L(u) > ea, otherwise it is
underloaded. For an edge e oriented from u to v in J, we say that e
is overloaded or underloaded if u is. Given a path P, let Eq(P) and
E1(P) denote the set of underloaded and overloaded edges in P
respectively. A length-R path in Hc[C”'] is called a live branch.

PROPOSITION 4.3. Suppose that p > K‘;—?gn, wheren € [0,1/2]
and K" is a sufficiently large constant. Then w.h.p., either the execu-

tion of Algorithm 3 is good, or some live branch P has |Ey(P)| < nR.

ProoF. Any path from C’ to V \ C”" must have length at least R,
hence will pass over some live branch. So it suffices to show that

302

PODC 21, July 26-30, 2021, Virtual Event, Italy

any live branch P in H.[C"’] during an invocation of CUT(C’,R)
is cut. Each underloaded edge of P gets deleted with probability
at least p/(3a). Furthermore, such deletion events are negatively
correlated, since at most outgoing edge per vertex can be deleted.
Thus, assuming a live branch P has |Eg(P)| > nR, the probability
that P remains is at most (1 — p/(3a))"® < e~PRy/(3a) By our
choice of p, this is at most e~K"logn/3 < 1/poly(n).

Since each H[C’’] has at most n? live branches, by a union
bound w.h.p. all live branches in H.[C’’] are cut. Algorithm 3 in-
vokes CUT(C’, R) at most O(nlog n) times, and the number of non-
empty forests H.[C’] is at most m < poly(n). Hence, by a union
bound over all the invocations, we conclude the algorithm is good
or some live branch has |Ey(P)| < nR. o

244y

LEMMA 4.4. Letn € [0,1/2]. IfR > &‘gbgzn
large constant K, then p can be chosen so that Algorithm 3 is good
w.h.p.

for a sufficiently

PrRoOF. Let t = [ea], and let us set p = Klalogn aggn

Proposition 4.3. We first need to verify that p € [0, 1]. For this, we
can calculate:

according to

zKN
X .

logn ea

p<ea-

2+4 < 2+4 . (1)
+417 +417
log?nA™7 Q(K)-A7 logn

By our assumption that ¢a < log n, this is at most

for large enough K.

By Proposition 4.3, it suffices to show that |E; (P)| < (1—n)R for
all live branches P during the algorithm execution. For this, it will
suffice to bound the probability that all edges in S are overloaded
where S is arbitrary subset of the edges in P. Since P is a path,
edges at distance-2 are vertex-disjoint. Thus, S involves at least
|S|/2 distinct vertices. For each such vertex u, the value L(u) is a
truncated Binomial random variable with mean at most Tp. Hence u
is overloaded with probability at most g = Fy (Tp, t), where Fy(u, t)
denotes the Chernoff upper-tail probability, i.e. the upper bound
on the probability that a Binomial random variable with mean p
exceeds value t. Accordingly, the probability that all edges in S are
overloaded is at most q|5|/2.

Since T < O(log n), by Eq. (1) we have pT < —4 for large

10eA™ 7
enough K, and therefore

q=F(Tp,t) < (ETTp)t < (

< ! .
1OA2+4'7

e-é&a
]03A<2+4rl)/t .

t
[ea])
Using this bound on g, and using the fact that Chernoff bounds ap-

ply to sums of variables which obey an upper negative-correlation
property, we calculate:

Ve

)(1—37);’]

(1-mR
Pr (IEy(P)] > (1 -)R) < Fy(RyG (1 - n)R) < ()

e
Since n < 1/2 and R > w(logn), we get:
Pr([Ey(P)| > (1= 1)R) < (¢/V10)R/ZA-(mm (1+2mR
< (0.93/A)K < 1/(poly(n)AR).

Session 5: Local Graph Problems

There are at most nAR™! paths of length R. By a union bound, we

conclude that |Eg(P)| > nR holds w.h.p. for all such paths. O

We can now conclude our analysis by choosing appropriate
values for parameters p, 7, R:

Proof of Theorem 4.2(3),(4). In the algorithm for CUT, each
vertex deletes at most €a of its outgoing neighbors under J. Hence,
the leftover subgraph has pseudo-arboricity ea with probability one.

Given 1, we choose R, p according to Lemma 4.4 so that Algorithm 3

[ae]
2log A

is good w.h.p. For the first result, we set n =

244y 2/[ea) 2
(KATa log?n)/(en) < O(A——1Alog n

we set p = 1/2; the bound on R is completely analogous. O

giving R =

). For the second result,

4.2 Putting Everything Together

The following result now summarizes the situation after applying
Algorithm 3. The runtime bounds follow from Theorem 4.1 and the
bounds on R given in Theorem 4.2.

THEOREM 4.5. If every edge has a palette of size [(1 + €)a], then
w.h.p. Algorithm 3 generates a partial list-forest decomposition, such
that the uncolored edges have pseudo-arboricity at most [ea]. It has
the following complexity:

, L o AT log Allog?
o With no restriction on ea, complexity is O(%

).

o Ifea > log A, complexity is O(@)‘

o Ifea > Q(logn), complexity is O(@).

o Ifea > Q(logn) for forest decomposition, complexity is O(@)

We now need to combine the forest decomposition of the main
graph with a forest decomposition on the leftover graph. For ordi-
nary coloring, this is straightforward; we summarize it as follows:

THEOREM 4.6. We can obtain an (1 + €)a-FD of G of diameter D,
under the following conditions:

2 4
e Ifea > 3, then D < n, and the complexity is O(M).

lo,

e [f4 < ea < logA, then D < O(
o(A?/1e€1 Jog Alog n).

ag?
Ifea > log A, then D < O(IOgn), and the complexity is O(

£

gn o
==), and the complexity is

log*n
e)

4
Ife?a > Q(log A), then D < O(%), and the complexity isO(bng).

log®n
e)

Ifea > Q(logn), then D < O(%), and the complexity is O(

Proor. Applying Theorem 4.5 with ¢’ = £/10 in place of ¢ gives
a partial [a(1+ ¢/10)]-FD of G, where the uncolored edges E” have
a*(E’) < [ea/10]. Theorem 1.3(3) then yields a | 2.01a*(E”)]-FD of
E’. Taken together, these give a k-FD of G for k = a+[2.01[ea/10]]+
[ea/107; since ea > 3, this is at most a(1 + ¢). For the next four
results, we apply Proposition 1.5 to convert this into a k + [¢’a/10]-
FD of G, with the given bounds on the diameter. O

For list-coloring, we piece together the main graph and leftover
graph by partitioning the color-space C for each vertex. See the
full paper for details. We summarize the results here:

303

PODC 21, July 26-30, 2021, Virtual Event, Italy

THEOREM 4.7. Suppose that G is a multigraph where each edge
has a palette of size (1+¢)a. We can obtain a list-forest-decomposition
of G of diameter D w.h.p., under the following conditions:

U log* n _ logn
o Ifea > Q(logn), the complexity is O() and D = O(=-).

£

4
o Ife?a > Q(log A), the complexity is O(log ") and D = O(lngn

&2 &

).

5 STAR-FOREST DECOMPOSITION FOR
SIMPLE GRAPHS

Consider a simple graph G of arboricity a which is equipped with
a t-orientation for t = [(1 + ¢)a]. Let us consider the following
process: each vertex v in the graph selects a color set C, € C. For
¢ € Cy, we say that v is a c-leaf and for ¢ ¢ C, we say thatv is a
c-center. For each vertex v, we construct an associated bipartite
graph H,(C), whose left-nodes correspond to C and whose right
nodes correspond to the out-neighbors A(v), and there is an edge
from left-node i to right-node u iff i € C, \ Cy, and i € Q(uv).

ProrosITION 5.1. If each graph Hy(C) has a matching of size
at least t — 8, then in O(1) rounds we can partition the edges as
E = Ey U E; and obtain a LSFD ¢¢ of Eo, such that E1 has pseudo-
arboricity at most é.

Proor. For each edge (i, u) in the matching M, of H,(C), we set
¢(vu) = i. Thus, all color-i edges have the form vu fori € C, \ Cy
and (i,u) € M,. Since M, is a matching, the edges of each color i
are a collection of stars on the i-centers (nodes u with i ¢ C,,) and
i-leaves (nodes u with i € Cy). The residual uncolored graph has a
d-orientation, by orienting each vertex v to each unmatched vertex
u € A(v), hence its pseudo-arboricity is at most 8. O

So we need to choose C so that every graph H,(C) has a large
matching. The following two results show that an appropriately
chosen random coloring has this property with good probability.

LEMMA 5.2. Suppose that ac > 100(+/log A +loga). If C = [t]
and each set Cy, is chosen uniformly at random among a-element
subsets of C, then for any vertex v there is a probability of at least
1—1/A' that Hy(C) has a matching of size at least a(1 — ¢).

LEMMA 5.3. Suppose that ¢ < 107 and ae > 10°log A and each
edge has a palette of size a(1 + 200¢). If we form each set C, by
selecting each color independently with probability 1 — ¢, then for any
vertex v there is a probability of at least 1 — 1/A1° that H,(C) has a
matching of size t.

This leads to our main results for star-forest decomposition:
THEOREM 5.4. Let G be a simple graph with arboricity a. If ae >

3
Q(+/log A +loga), we get an a(1+ ¢€)-SFD in O(log %Y rounds w.h.p.

&

3
Ifae > Q(log A), we get an a(1 + ¢)-LSFD in O(long) rounds w.h.p.

Proor. For the first result, we apply Theorem 1.1 to obtain the
required t-orientation in O(log® n/¢) rounds. Next, use the Lovész
Local Lemma algorithm of [17] to choose C such that every graph
Hy(C) has a matching of size at least ¢t — 2ae. Each vertex v cor-
responds to a bad-event that the matching size is too small. By
Lemma 5.2, this event has probability at most p = A™10 and de-
pends on d = A? other such events (u and v can only affect each

Session 5: Local Graph Problems

other if they have distance at most 2). Thus, the criterion pd? < 1
is satisfied and the LLL algorithm runs in O(log n) rounds.

Given the choice of sets C,, for all v, we then apply Proposition 5.1
to geta (1+¢)a-SFD of G, plus a left-over graph of pseudo-arboricity
at most 2ae. We finish by applying Theorem 1.3 to get a 6.01ae-SFD
of the left-over graph. Overall, we get a (1+ 7.01¢)a-SFD; the result
then holds by reparametrizing with ¢’ = £/100 in place of ¢.

The second result is completely analogous, except we use
Lemma 5.3 to obtain the matchings of Hy. In this cases, there is no
left-over graph to recolor. O

We remark that the main algorithmic bottleneck for Theorem 5.4
is obtaining the t-orientation. For example, we could alternatively
use the algorithm of [55] to obtain the t-orientation, and hence
obtain the a(1 + ¢)-LSFD, in (3(10g2 n/€?) rounds.

6 LOWER BOUNDS ON ROUND COMPLEXITY

For parameters a > 2 and ¢t > 1, we construct multigraph G as
follows. We begin with four named vertices x1, x3, Y1, x2. There are
La/2] parallel edges from x1 to x2 and |a/2] parallel edges from
Y1 to yo. We construct a path P; of ¢ vertices arranged from x; to
y1, with k parallel edges between successive vertices on the path
(including x; and y; themselves). We construct another path P, of
t vertices arranged in a line from x3 to y» with k parallel edges.
From G, we can form a related graph G’ by contracting x; to x to a
single vertex x, as well as y; to yz to a single vertex y. See Figure 4.

(b)

Figure 4: An illustration of G and G’ when k =4 and ¢ = 4.

It can be seen that the graph G has arboricity a, has n = 2t + 4
vertices and has maximum degree A = O(a). We have the following
crucial observation for these graphs:

LEMMA 6.1. Suppose thatr < t/2 and { < 2a. Then for any
r-round algorithm A for {-forest-decomposition on G with success
probability p, which does not use information about vertex ID’s, there

2
is a probability oflzg—_p2 that there are at least p®a/64 colors ¢ such
that (x1,x2) and (y1,y2) both have a c-colored edge.

Proor. For any color i, let X; denote the event that (x1, x2) has
an i-colored edge and Y; denote the event that (y1,y2) has an i-
colored edge, after we run algorithm A on the graph.

Since the edges (x1,x2) and (yi,y2) have distance ¢ in either
graph, the random variables X;, Y; are independent for each i.

304

PODC 21, July 26-30, 2021, Virtual Event, Italy

Furthermore, since the view from (xi,x2) is isomorphic to the
view from (y1,y2), they follow the same distribution. Thus, if
we let p; denote the probability of Xj, then we have E [X;Y;] =
E[X;|E[Y;] = pl.z. Hence, letting Z denote the number of colors
appearing on both (x1,y1) and (x3,y2), we have E [Z] = Zle pl.z.
On the other hand, whenever A returns a forest-decomposition,
we have Zf:l X; = Zle Y; = |a/2]. Taking expectations, it can
then be shown that E [Z] = Zle pf > p%a/32. Markov’s inequality
applied to £ — Z gives Pr(Z < p®a/64)2 — TI/IZS' O
Putting these results together, we obtain the following:

THEOREM 6.2. Leta,n > 2 be an arbitrary integers and ¢ € (0,1).
Any randomized algorithm for (1 + ¢)a-forest-decomposition on n-
node graphs of arboricity a with success probability at least 0.993
requires Q(min{n, 1/¢}) rounds. This bound holds even on graphs of
maximum degree A = O(a).

Proor. It suffices to show this under the assumption that 1/¢ <
0.0001n. Also, we can assume without loss of generality that A
does not depend upon any vertex ID’s; if A does so, we simply
choose new independent random vertex ID’s at the beginning of
the process. Now suppose for contradiction that A runs in fewer
than 0.001/¢ rounds and, with probability p = 0.993, produces a
forest-decomposition ¢ on G.

% > 0.00776
that there at least p%a/32 > 0.03a colors ¢ such that (x1,x2) and
(y1, y2) both have c-colored edges. By a counting argument, it can
be shown that whenever i is a forest-decomposition, then there are
atmost 4tea < 0.004a colors such that that induced coloring on G’ is
acyclic. But note that if color ¢ has edges on (x1, x2) and (y1, y2) and
the induced coloring on G’ is cyclic, then also color ¢ on G is cyclic.
Hence, with probability at least 0.00776, at least 0.03a — 0.004a > 0
colors induce a cycle. In particular, ¢ is a forest decomposition with

probability at most 1 — 0.00776 < 0.993, contradiction. O

By Lemma 6.1, there is a probability of at least

PROPOSITION 6.3. In simple graphs with arboricity 2, computing
a 2-forest-decomposition with success probability at least 0.5 requires
Q(n) rounds.

Proor. Construct G with parameters a =2and ¢t = [(n — 2)/8],
and replace every set of parallel edges by a copy of the complete
graph Ky. The resulting simple graph H has 2(4t + 1) < n nodes
and it has arboricity 2. Along similar lines to Proposition 6.2, it can
be shown that any algorithm for 2-forest-decomposition with more
than 0.5 probability requires at least n/100 rounds. O

7 ACKNOWLEDGMENTS

Hsin-Hao Su is supported by NSF Grant No. CCF-2008422.
Thanks to Vladimir Kolmogorov, for suggesting how to set the
parameters for Lemma 5.2. Thanks to Noga Alon, for explaining
some lower bounds for star arboricity. Thanks to Louis Esperet for
some suggestions on notations and terminology. Thanks to anony-
mous conference reviewers for helpful comments and suggestions.

REFERENCES

[1] Ilan Algor and Noga Alon. 1989. The star arboricity of graphs. Discrete Mathe-
matics 43, 1-3 (1989), 11-22.

Session 5: Local Graph Problems

[10]

(1

[12]

[13

[14]

[15

[16]

[17

(18]

[19

[20]

[21

[22]

[23

[24]

[25

[26]

[27

[28

[29]

[30

[31]

[33]

[34]

Noga Alon, Colin McDiarmid, and Bruce Reed. 1992. Star arboricity. Combina-
torica 12, 4 (1992), 375-380.

Yasukazu Aoki. 1990. The star-arboricity of the complete regular multipartite
graphs. Discrete Mathematics 81, 2 (1990), 115-122.

Baruch Awerbuch, Bonnie Berger, Lenore Cowen, and David Peleg. 1996. Fast
Distributed Network Decompositions and Covers. J. Parallel and Distrib. Comput.
39, 2 (1996), 105-114.

Bahman Bahmani, Ashish Goel, and Kamesh Munagala. 2014. Efficient Primal-
Dual Graph Algorithms for MapReduce. In WAW (Lecture Notes in Computer
Science 8882). 59-78.

Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii. 2012. Densest Subgraph
in Streaming and MapReduce. Proc. VLDB Endowment 5, 5 (2012), 454-465.
Leonid Barenboim and Michael Elkin. 2010. Sublogarithmic distributed MIS
algorithm for sparse graphs using Nash-Williams decomposition. Distributed
Computing 22, 5-6 (2010), 363-379.

Leonid Barenboim and Michael Elkin. 2011. Deterministic Distributed Vertex
Coloring in Polylogarithmic Time. J. ACM 58, 5 (2011), Article #23.

Leonid Barenboim and Michael Elkin. 2013. Distributed Graph Coloring: funda-
mentals and Recent Developments. Synthesis Lectures on Distributed Computing
Theory 4,1 (2013), 1-171.

Soheil Behnezhad, Sebastian Brandt, Mahsa Derakhshan, Manuela Fischer, Mo-
hammadTaghi Hajiaghayi, Richard M. Karp, and Jara Uitto. 2019. Massively
Parallel Computation of Matching and MIS in Sparse Graphs. In PODC. 481-490.
Edvin Berglin and Gerth Stelting Brodal. 2020. A Simple Greedy Algorithm for
Dynamic Graph Orientation. Algorithmica 82, 2 (2020), 245-259.

Anton Bernshteyn. 2020. A Fast Distributed Algorithm for (A+1)-Edge-Coloring.
arXiv preprint arXiv:2006.15703 (2020).

Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalam-
pos E. Tsourakakis. 2015. Space- and Time-Efficient Algorithm for Maintaining
Dense Subgraphs on One-Pass Dynamic Streams. In STOC. 173-182.

Gerth Stelting Brodal and Rolf Fagerberg. 1999. Dynamic Representations of
Sparse Graphs. In WADS. 342-351.

Y.-]. Chang, Q. He, W.Li, S. Pettie, and J. Uitto. 2018. The complexity of distributed
edge coloring with small palettes. In SODA. 2633-2652.

Moses Charikar. 2000. Greedy approximation algorithms for finding dense
components in a graph. In APPROX (Lecture Notes in Computer Science 1913).
84-95.

Kai-Min Chung, Seth Pettie, and Hsin-Hao Su. 2017. Distributed algorithms for
the Lovasz local lemma and graph coloring. Dist. Comp. 30, 4 (2017), 261-280.
Devdatt Dubhashi, David A Grable, and Alessandro Panconesi. 1998. Near-
optimal, distributed edge colouring via the nibble method. Theoretical Computer
Science 203, 2 (1998), 225-251.

Michael Elkin and Ofer Neiman. 2016. Distributed Strong Diameter Network
Decomposition: Extended Abstract. In PODC. 211-216.

Michael Elkin, Seth Pettie, and Hsin-Hao Su. 2015. (2A — 1)-edge-coloring is
much easier than maximal matching in the distributed setting. In SODA. 355-370.
Hossein Esfandiari, MohammadTaghi Hajiaghayi, and David P. Woodruff. 2016.
Applications of Uniform Sampling: densest Subgraph and Beyond. In SPAA. 397-
399.

Manuela Fischer, Mohsen Ghaffari, and Fabian Kuhn. 2017. Deterministic Dis-
tributed Edge-Coloring via Hypergraph Maximal Matching. In FOCS. 180-191.
Harold N. Gabow and Matthias Stallmann. 1985. Efficient algorithms for graphic
matroid intersection and parity. In ICALP. 210-220.

Harold N. Gabow and Herbert H. Westermann. 1992. Forests, frames, and games:
Algorithms for matroid sums and applications. Algorithmica 7, 1 (1992), Article
#465.

G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. 1989. A Fast Parametric Maximum
Flow Algorithm and Applications. SIAM 7. Comput. 18, 1 (1989), 30-55.
Mohsen Ghaffari, David G. Harris, and Fabian Kuhn. 2018. On Derandomizing
Local Distributed Algorithms. In FOCS. 662-673.

Mohsen Ghaffari, Juho Hirvonen, Fabian Kuhn, and Yannic Maus. 2018. Improved
distributed A-coloring. In PODC. 427-436.

Mohsen Ghaffari, Fabian Kuhn, and Yannic Maus. 2017. On the complexity of
local distributed graph problems. In STOC. 784-797.

Mohsen Ghaffari, Fabian Kuhn, Yannic Maus, and Jara Uitto. 2018. Deterministic
Distributed Edge-coloring with Fewer Colors. In STOC. 418-430.

Mohsen Ghaffari, Silvio Lattanzi, and Slobodan Mitrovi¢. 2019. Improved Parallel
Algorithms for Density-Based Network Clustering. In ICML, Vol. 97. 2201-2210.
Mohsen Ghaffari and Hsin-Hao Su. 2017. Distributed Degree Splitting, Edge
Coloring, and Orientations. In SODA. 2505-2523.

A. V. Goldberg. 1984. Finding a Maximum Density Subgraph. Technical Report
UCB/CSD-84-171. EECS Department, University of California, Berkeley.

A.D. Gore, A. Karandikar, and S. Jagabathula. 2007. On High Spatial Reuse Link
Scheduling in STDMA Wireless Ad Hoc Networks. In IEEE Global Telecommuni-
cations Conference (GLOBALCOM). 736-741.

Anupam Gupta, Amit Kumar, and Cliff Stein. 2014. Maintaining Assignments
Online: Matching, Scheduling, and Flows. In SODA. 468-479.

305

[35

(36]

[37

[38

[39

[41

[42]

[43

[44

[45]

(47]

(48]

(49]

[50

(51]

o
A

[53

[54]
[55]
[56]

[57]

PODC 21, July 26-30, 2021, Virtual Event, Italy

S Louis Hakimi. 1965. On the degrees of the vertices of a directed graph. Journal
of the Franklin Institute 279, 4 (1965), 290-308.

David G. Harris. 2020. Distributed local approximation algorithms for maximum
matching in graphs and hypergraphs. SIAM J. Comput. 49, 4 (2020), 711-746.
Hiroshi Imai. 1983. Network-Flow Algorithms For Lower-Truncated Transversal
Polymatroids. Journal of the Operations Research Society of Japan 26, 3 (1983),
186-211.

Samir Khuller and Barna Saha. 2009. On Finding Dense Subgraphs. In ICALP.
597-608.

Tsvi Kopelowitz, Robert Krauthgamer, Ely Porat, and Shay Solomon. 2014. Ori-
enting Fully Dynamic Graphs with Worst-Case Time Bounds. In ICALP. 532-543.
Lukasz Kowalik. 2006. Approximation Scheme for Lowest Outdegree Orientation
and Graph Density Measures. In ISAAC. 557-566.

Fabian Kuhn. 2020. Faster Deterministic Distributed Coloring Through Recursive
List Coloring. In SODA. 1244-1259.

Nathan Linial. 1992. Locality in Distributed Graph Algorithms. SIAM J. Comput.
21,1 (1992), 193-201.

Nathan Linial and Michael E. Saks. 1993. Low diameter graph decompositions.
Combinatorica 13, 4 (1993), 441-454.

Andrew McGregor, David Tench, Sofya Vorotnikova, and Hoa T. Vu. 2015. Densest
Subgraph in Dynamic Graph Streams. In MFCS (2) (Lecture Notes in Computer
Science, Vol. 9235). Springer, 472-482.

C. St.J. A. Nash-Williams. 1964. Decomposition of Finite Graphs Into Forests.
Journal of the London Mathematical Society s1-39, 1 (1964), 12-12.

Alessandro Panconesi and Aravind Srinivasan. 1997. Randomized Distributed
Edge Coloring via an Extension of the Chernoff-Hoeffding Bounds. SIAM
J. Comput. 26, 2 (1997), 350-368. https://doi.org/10.1137/S0097539793250767
arXiv:https://doi.org/10.1137/S0097539793250767

Jean-Claude Picard and Maurice Queyranne. 1982. A network flow solution to
some nonlinear 0-1 programming problems, with applications to graph theory.
Networks 12, 2 (1982), 141-159.

S. Ramanathan and E. L. Lloyd. 1993. Scheduling algorithms for multihop radio
networks. IEEE/ACM Transactions on Networking 1, 2 (1993), 166-177.

James Roskind and Robert E. Tarjan. 1985. A Note on Finding Minimum-Cost
Edge-Disjoint Spanning Trees. Mathematics of Operations Research 10, 4 (1985),
701-708.

Vaclav Rozhon and Mohsen Ghaffari. 2020. Polylogarithmic-Time Deterministic
Network Decomposition and Distributed Derandomization. In STOC. 350-363.
Atish Das Sarma, Ashwin Lall, Danupon Nanongkai, and Amitabh Trehan. 2012.
Dense Subgraphs on Dynamic Networks. In DISC (Lecture Notes in Computer
Science, Vol. 7611). Springer, 151-165.

Saurabh Sawlani and Junxing Wang. 2020. Near-Optimal Fully Dynamic Densest
Subgraph. In STOC. 181-193.

Paul D Seymour. 1998. A note on list arboricity. Journal of Combinatorial Theory
Series B 72 (1998), 150-151.

Jessica Shi, Laxman Dhulipala, and Julian Shun. 2020. Parallel Clique Counting
and Peeling Algorithms. arXiv:2002.10047 [cs.DS] arXiv:2002.10047.

Hsin-Hao Su and Hoa T. Vu. 2020. Distributed Dense Subgraph Detection and
Low Outdegree Orientation. In DISC. 15:1-15:18.

Hsin-Hao Su and Hoa T. Vu. 2019. Towards the Locality of Vizing’s Theorem. In
STOC. 355-364.

Vadim G. Vizing. 1964. On an estimate of the chromatic class of a p-graph.
Diskret. Analiz 3, 7 (1964), 25-30.

https://doi.org/10.1137/S0097539793250767
https://arxiv.org/abs/https://doi.org/10.1137/S0097539793250767
https://arxiv.org/abs/2002.10047

	Abstract
	1 Introduction
	1.1 Summary of Results
	1.2 Summary: Distributed Augmentation
	1.3 Pseudo-Forest Decomposition and Low Outdegree Orientation
	1.4 Star-Arboricity and (List)-Star-Forest Decomposition for Simple Graphs
	1.5 Preliminaries
	1.6 Basic Forest Decomposition Algorithms

	2 Algorithm for Low Outdegree Orientation
	3 Augmenting Sequences for List-Coloring
	4 Local Forest Decompositions via Augmentation
	4.1 Implementing CUT
	4.2 Putting Everything Together

	5 Star-Forest Decomposition for Simple Graphs
	6 Lower Bounds on Round Complexity
	7 Acknowledgments
	References

