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Bayesian Sparse Spiked Covariance Model with
a Continuous Matrix Shrinkage Prior∗

Fangzheng Xie†,¶, Joshua Cape‡, Carey E. Priebe§, and Yanxun Xu¶

Abstract. We propose a Bayesian methodology for estimating spiked covariance
matrices with a jointly sparse structure in high dimensions. The spiked covariance
matrix is reparameterized in terms of the latent factor model, where the load-
ing matrix is equipped with a novel matrix spike-and-slab LASSO prior, which
is a continuous shrinkage prior for modeling jointly sparse matrices. We estab-
lish the rate-optimal posterior contraction for the covariance matrix with respect
to the spectral norm as well as that for the principal subspace with respect to
the projection spectral norm loss. We also study the posterior contraction rate of
the principal subspace with respect to the two-to-infinity norm loss, a novel loss
function measuring the distance between subspaces that is able to capture entry-
wise eigenvector perturbations. We show that the posterior contraction rate with
respect to the two-to-infinity norm loss is tighter than that with respect to the
routinely used projection spectral norm loss under certain low-rank and bounded
coherence conditions. In addition, a point estimator for the principal subspace is
proposed with the rate-optimal risk bound with respect to the projection spectral
norm loss. The numerical performance of the proposed methodology is assessed
through synthetic examples and the analysis of a real-world face data example.

MSC2020 subject classifications: Primary 62H25, 62C10; secondary 62H12.

Keywords: joint sparsity, latent factor model, matrix spike-and-slab LASSO,
rate-optimal posterior contraction, two-to-infinity norm loss.

1 Introduction

In contemporary statistics, datasets are typically collected with high-dimensionality,
where the dimension p can be significantly larger than the sample size n. For example,
in genomics studies, the number of genes is typically much larger than the number of
subjects (The Cancer Genome Atlas Network et al., 2012). In computer vision, the num-
ber of pixels in each image can be comparable to or exceed the number of images when
the resolution of these images is relatively high (Georghiades et al., 2001; Lee et al.,
2005). When dealing with such high-dimensional datasets, covariance matrix estimation
plays a central role in understanding the complex structure of the data and has received
significant attention in various contexts, including latent factor models (Geweke and
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Zhou, 1996; Bernardo et al., 2003), Gaussian graphical models (Wainwright and Jor-
dan, 2008; Liu et al., 2012), etc. However, in the high-dimensional setting, additional
structural assumptions are often necessary in order to address challenges associated
with statistical inference (Johnstone and Lu, 2009). For example, sparsity is introduced
for sparse covariance/precision matrix estimation (Friedman et al., 2008; Cai and Zhou,
2012; Cai et al., 2016), and low-rank structures are enforced in spiked covariance models
(Johnstone, 2001; Cai et al., 2015). The readers can refer to Cai et al. (2016) for a recent
literature review.

In this paper, we focus on the sparse spiked covariance models under the Gaussian
sampling distribution assumption. The spiked covariance models, originally named in
Johnstone (2001), are a class of models that can be described as follows: The obser-
vations y1, . . . ,yn are independently collected from a p-dimensional mean-zero normal
distribution with covariance matrix Σ of the form

Σ = UΛUT + σ2Ip, (1.1)

where U is a p× r matrix with orthonormal columns, Λ = diag(λ1, · · · , λr) is an r × r
diagonal matrix with λ1 ≥ . . . ≥ λr > 0, and r < p. Since the eigenvalues of the covari-
ance matrix are λ1 + σ2 ≥ . . . ≥ λr + σ2 > σ2 = · · · = σ2 and λr > 0, there exists an
eigen-gap λr(Σ) − λr+1(Σ) = (λr + σ2) − σ2 = λr > 0, where λk(Σ) denotes the k-th
largest eigenvalue of Σ for k = 1, . . . , p. Therefore, the first r leading eigenvalues of Σ
can be regarded as “spike” or signal eigenvalues, and the remaining p − r eigenvalues
may be treated as “bulk” or noise eigenvalues. We further assume that the eigenvector
matrix U is jointly sparse, the formal definition of which is deferred to Section 2.1.
Roughly speaking, the joint sparsity refers to a significant amount of rows in U being
zero, which allows for feature selections and brings straightforward interpretation in
many applications. For example, in the analysis of face images, a classical method to
extract common features among different facial characteristics, expressions, illumination
conditions, etc., is to obtain the eigenvectors of these face data, referred to as eigen-
faces. Each coordinate of these eigenvectors corresponds to a specific pixel in the image.
Nonetheless, the number of pixels (features) is typically much larger than the number
of images (samples). It is often desirable to gain insights into the face information via
a relatively small number of pixels, referred to as key pixels.

The literature on sparse spiked covariance matrix estimation in high-dimensions
from a frequentist perspective is quite rich. In Johnstone and Lu (2009), it is shown
that the classical principal component analysis can fail when p � n. In Cai et al. (2013)
and Vu and Lei (2013), the minimax estimation of the principal subspace (i.e., the
linear subspace spanned by the eigenvector matrix U) with respect to the projection
Frobenius norm loss under various sparse structures on U is considered. Under the joint
sparsity assumption, Cai et al. (2015) further provide minimax estimation procedures
of the principal subspace with respect to the projection spectral norm loss.

In contrast, there is comparatively limited literature on Bayesian estimation of sparse
spiked covariance matrices that provides theoretical guarantees. Recently, Pati et al.
(2014), Gao and Zhou (2015), and Ning (2021) explore the posterior contraction rates
for Bayesian estimation of sparse spiked covariance models. In particular, in Pati et al.
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(2014), the authors discuss the posterior contraction behavior of the covariance matrix
Σ with respect to the spectral norm loss under the Dirichlet-Laplace shrinkage prior
(Bhattacharya et al., 2015), but the contraction rates are sub-optimal when the number
of spikes r grows with the sample size; In Gao and Zhou (2015), the authors propose
a carefully designed prior on U that yields the rate-optimal posterior contraction of
the principal subspace with respect to the projection Frobenius norm loss, but their
approach is computationally intractable except for the posterior mean as a point es-
timator. Some efficient computation algorithms are developed in Ning (2021) with a
spike-and-slab prior, including the expectation-maximization algorithm and the varia-
tional inference algorithm. Ning (2021) also discuss the contraction rate of the exact
posterior and the variational posterior.

We propose a continuous matrix shrinkage prior, referred to as the matrix spike-
and-slab LASSO prior, to model the joint sparsity of the eigenvector matrix U of the
spiked covariance matrix. The matrix spike-and-slab LASSO prior is a novel continuous
shrinkage prior that generalizes the classical spike-and-slab LASSO prior for vectors
(Rockova, 2018; Rockova and George, 2018) to jointly sparse rectangular matrices. The
major contribution of this work is two-fold: Firstly, we establish the rate-optimal pos-
terior contraction for the entire covariance matrix Σ with respect to the spectral norm
loss as well as that for the principal subspace with respect to the projection spectral
norm loss; Secondly, we also focus on the two-to-infinity norm loss, a novel loss func-
tion measuring the entrywise behavior between linear subspaces. This loss function can
detect entrywise perturbations of the eigenvector matrix U spanning the principal sub-
space. Under certain low-rank and bounded coherence conditions on U, we obtain a
tighter posterior contraction rate for the principal subspace with respect to the two-to-
infinity norm loss than that with respect to the projection spectral norm loss. Besides
the contraction of the full posterior distribution, the Bayes procedure also leads to a
point estimator for the principal subspace with a rate-optimal risk bound.

The rest of the paper is organized as follows. In Section 2, we briefly review the sparse
spiked covariance models, introduce the relevant loss functions, and propose the matrix
spike-and-slab LASSO prior. Section 3 elaborates on our theoretical contributions of the
matrix spike-and-slab LASSO prior and the posterior contraction rates under various
loss functions. The numerical performance of the proposed methodology is presented in
Section 4 through synthetic examples and the analysis of a real-world computer vision
dataset. Further discussion is included in Section 5.

Notations Let p and r be positive integers. We adopt the shorthand notation [p] =
{1, . . . , p}. For any finite set S, we use |S| to denote the cardinality of S. The symbols
� and � mean the inequality up to a universal constant, i.e., a � b (a � b, resp.) if
a ≤ Cb (a ≥ Cb) for some absolute constant C > 0. We write a � b if a � b and a � b.
The p× r zero matrix is denoted by 0p×r and the p-dimensional zero column vector is
denoted by 0p. When the dimension is clear, the zero matrix is simply denoted by 0.
The p × p identity matrix is denoted by Ip and the subscript p is sometimes omitted
when the dimension is clear. An orthonormal r-frame in R

p is a p × r matrix U with
orthonormal columns, i.e., UTU = Ir×r. The set of all orthonormal r-frames in R

p is
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denoted by O(p, r). When p = r, we write O(r) = O(r, r). For a p-dimensional vector
x ∈ R

p, we use xj to denote its jth component, ‖x‖1 =
∑p

j=1 |xj | to denote its �1-
norm, ‖x‖2 to denote its �2-norm, and ‖x‖∞ = maxj∈[p] |xj | to denote its �∞-norm.
For a symmetric square matrix Σ ∈ R

p×p, we use λk(Σ) to denote the kth-largest
eigenvalue of Σ. For a matrix A ∈ Rp×r, we use Aj∗ to denote the row vector formed
by the jth row of A, A∗k to denote the column vector formed by the kth column of A,

the lower case letter aij to denote the (i, j)-th element of A, ‖A‖F =
√∑p

j=1

∑r
k=1 a

2
jk

to denote the Frobenius norm of A, ‖A‖2 =
√
λ1(ATA) to denote the spectral norm

of A, ‖A‖2→∞ = max‖x‖2=1 ‖Ax‖∞ to denote the two-to-infinity norm of A, and
‖A‖∞ = max‖x‖∞=1 ‖Ax‖∞ to denote the (matrix) infinity norm of A. We remark that
the matrix infinity norm can be equivalently written as ‖A‖∞ = maxj∈[p]

∑r
k=1 |ajk|,

which differs from the maximum absolute value of the entries of A. The prior and
posterior distributions appearing in this paper are denoted by Π. The density of Π with
respect to the underlying sigma-finite measure is denoted by π.

2 Sparse Bayesian spiked covariance models

2.1 Background and loss functions

In the spiked covariance model (1.1), the matrix Σ has the form Σ = UΛUT+σ2Ip. We
focus on the case where the leading r eigenvectors of Σ (the columns of U) are jointly
sparse (Cai et al., 2015; Vu and Lei, 2013). Formally, the row support of U is defined
as supp(U) =

{
j ∈ [p] : (Uj∗)

T 	= 0r

}
. We say U is jointly s-sparse if |supp(U)| ≤ s.

Heuristically, this assumption asserts that the signal comes from at most s features
among all p features. Geometrically, the joint sparsity has the interpretation that at
most s coordinates of yi generate the subspace Span{U∗1, . . . ,U∗r} (Vu and Lei, 2013).
We also remark that s ≥ r due to the orthonormal constraint on the columns of U.

This paper studies a Bayesian approach for estimating the covariance matrix Σ. We
quantify how well the proposed methodology can estimate the entire covariance matrix
Σ and the principal subspace Span{U∗1, · · · ,U∗r} in a high-dimensional and jointly
sparse setup. Leaving the Bayesian methodology for a moment, we first introduce some
necessary background and the related loss functions for the sparse spiked covariance
models in general. Throughout the paper, we write Σ0 = U0Λ0U

T
0 +σ0Ip to be the true

covariance matrix that generates the data Y = [y1, . . . ,yn]
T from the p-dimensional

multivariate Gaussian distribution Np(0p,Σ0), where Λ0 = diag(λ01, · · · , λ0r), λ01 ≥
. . . ≥ λ0r > 0, and σ2

0 > 0. The parameter space for Σ is

Θ(p, r, s) =
{
UΛUT + σ2Ip : U ∈ O(p, r), |supp(U)| ≤ s, λ1 ≥ . . . ≥ λr > 0, σ2 > 0

}
.

When (s log p)/n → 0 and λ01, λ0r are bounded away from 0 and +∞, Cai et al. (2015)
establish the minimax rate of convergence for estimating Σ ∈ Θ(p, r, s):

inf
Σ̂

sup
Σ0∈Θ(p,r,s)

EΣ0‖Σ̂−Σ0‖22 � s log p

n
. (2.1)
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For the estimation of the principal subspace Span{U∗1, . . . ,U∗r}, a standard loss func-

tion is the projection spectral norm loss ‖ÛÛT −U0U
T
0 ‖2, which is equivalent to the

spectral sine-theta distance between subspaces (Stewart and Sun, 1990). The corre-
sponding minimax rate of convergence for UUT is given by Cai et al. (2015):

inf
Û

sup
Σ0∈Θ(p,r,s)

EΣ0‖ÛÛT −U0U
T
0 ‖22 � s log p

n
. (2.2)

Motivated by the recent papers Cape et al. (2019a) and Cape et al. (2019b), which
presents a collection of technical tools for the analysis of entrywise eigenvector pertur-
bation bounds, we also focus on the following two-to-infinity norm loss

‖Û−U0WU‖2→∞ (2.3)

for estimating Span{U∗1, . . . ,U∗r} in addition to the projection spectral norm loss,

where WU = arg infW∈O(r) ‖Û − U0W‖F. Here, WU corresponds to the orthogonal

alignment ofU0 so that Û andU0WU are close in the Frobenius norm sense. As pointed
out in Cape et al. (2019b), the use ofWU as the orthogonal alignment matrix is preferred

over the alignment matrix W2→∞ = arg infW∈O(r) ‖Û − U0W‖2→∞ because W2→∞
is not analytically computable in general, whereas WU can be explicitly computed
(Stewart and Sun, 1990). Specifically, if UT

0 Û admits the singular value decomposition

UT
0 Û = ŨΣ̃ṼT, then WU = ŨṼT.

The following lemma formalizes the connection between the projection spectral norm
loss and the two-to-infinity norm loss.

Lemma 2.1. Let U and U0 be two orthonormal r-frames in R
p, where 2r < p. Then

there exists an orthonormal 2r-frame VU in R
p depending on U and U0, such that

‖U−U0WU‖2→∞ ≤ ‖VU‖2→∞
(
‖UUT −U0U

T
0 ‖2 + ‖UUT −U0U

T
0 ‖22
)
,

where WU = arg infW∈O(r) ‖U−U0W‖F is the Frobenius orthogonal alignment matrix.

When the projection spectral norm loss ‖UUT−U0U
T
0 ‖2 is much smaller than one,

Lemma 2.1 states that the two-to-infinity norm loss ‖U −U0WU‖2→∞ can be upper
bounded by the product of the projection spectral norm loss and ‖VU‖2→∞, where
VU ∈ O(p, 2r) is an orthonormal 2r-frame in R

p. In particular, under the sparse spiked
covariance models in high dimensions, the number of spikes r can be much smaller than
the dimension p (i.e., VU is a “tall and thin” rectangular matrix), and hence the factor
‖VU‖2→∞ can be much smaller than maxV∈O(p,2r) ‖V‖2 = 1.

2.2 A continuous matrix shrinkage prior for joint sparsity

The recent decade has witnessed the development of a collection of continuous shrinkage
priors that introduce sparse structures in various statistical contexts. For an incomplete
list of references, see Bhattacharya et al. (2015), Pati et al. (2014), Carvalho et al.
(2010), Rockova and George (2018), Rockova and George (2016), Rockova (2018), Shin
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et al. (2018), and Shin et al. (2020). In this section, we first illustrate the general
Bayesian strategies in modeling the sparsity occurring in high-dimensional models and
then elaborate on the proposed prior model. Consider a simple yet canonical sparse
normal mean problem. Suppose we observe independent normal data yi ∼ N(βi, 1),
i = 1, . . . , n and want to estimate the mean vector βn = (βi)

n
i=1, which is assumed to

be sparse in the sense that
∑n

i=1 1(|βi| 	= 0) ≤ sn with the sparsity level sn = o(n) as
n → ∞. To model the sparsity of β, classical Bayesian methods impose the following
spike-and-slab prior on β: for any measurable set A ⊂ R,

Π(βi ∈ A | λ, ξi) = (1− ξi)δ0(A) + ξi

∫
A

ψ(β | λ)dβ, (2.4)

(ξi | θ) ∼ Bernoulli(θ),

where ξi is the indicator that βi 	= 0, θ ∈ (0, 1) represents the prior probability of βi

being non-zero, δ0 is the point-mass at 0 (called the “spike” distribution), and ψ(· | λ)
is the density of an absolutely continuous distribution (called the “slab” distribution)
with respect to the Lebesgue measure on R governed by some hyperparameter λ. The-
oretical justifications for the use of the spike-and-slab prior (2.4) for the sparse normal
means and the sparse Bayesian factor models have been established in Castillo and
van der Vaart (2012) and Pati et al. (2014), respectively. Therein, the spike-and-slab
prior (2.4) involves point-mass mixtures, which can be daunting in terms of the pos-
terior simulations (Pati et al., 2014). To address this issue, the spike-and-slab LASSO
prior (Rockova, 2018) is designed as a continuous relaxation of (2.4):

π(βi | λ0, λ, ξi) = (1− ξi)ψ(βi | λ0) + ξiψ(βi | λ), (2.5)

(ξi | θ) ∼ Bernoulli(θ),

where ψ(β | λ) = (λ/2) exp(−λ|β|) is the Laplace distribution with mean 0 and variance
2/λ2. When λ0 � λ, the spike-and-slab LASSO prior (2.5) closely resembles the spike-
and-slab prior (2.4). The continuity feature of the spike-and-slab LASSO prior (2.5), in
contrast to the classical spike-and-slab prior (2.4), is highly desired in high-dimensional
settings in terms of the computational efficiency.

Motivated by the spike-and-slab LASSO prior, we propose a continuous matrix
shrinkage prior to model the joint sparsity in the sparse spiked covariance models (1.1).
The orthonormal constraint on the columns of U makes it challenging to incorporate
prior distributions. Instead, we consider the following reparameterization of Σ:

Σ =
(
UΛ1/2VT

)(
UΛ1/2VT

)T
+ σ2Ip = BBT + σ2Ip, (2.6)

where B = UΛ1/2VT ∈ R
p×r, and V ∈ O(r) is an arbitrary orthogonal matrix. Clearly,

in contrast to the orthonormal constraint on U, there is no constraint on B except that
rank(B) = r. Furthermore, B inherits the joint sparsity from U: For |supp(U)| = s ≥ r,
there exists some permutation matrix P ∈ R

p×p and U� ∈ O(s, r), such that

U = P

[
U�

0(p−s)×r

]
.
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It follows directly that

B = UΛ1/2VT = P

[
U�

0(p−s)×r

]
Λ1/2VT = P

[
U�Λ1/2VT

0(p−s)×r

]
,

implying that |supp(B)| ≤ s. Therefore, working with B allows us to circumvent the
orthonormal constraint while maintaining the jointly sparse structure of U.

We are now in a position to formalize the proposed continuous matrix shrinkage
prior on B = [bjk]p×r. Here we assume that the rank r of UΛUT is known. When r
is unknown, one can apply the diagonal thresholding method in Cai et al. (2013) to
estimate r consistently. For any α, λ > 0, let ψα(x | λ) be the density function of the
following double Gamma distribution:

ψα(x | λ) = λ1/α

2Γ(1/α)
|x|1/α−1 exp(−λ|x|), −∞ < x < ∞.

For each j ∈ [p], we assign the following hierarchical prior distribution on B1∗, . . . ,Bp∗:

(B1∗, . . . ,Bp∗ | λ0, θ)
i.i.d.∼ (1− θ)

r∏
k=1

ψr(bjk | λ+ λ0) + θ

r∏
k=1

ψ1(bjk | λ),

λ0 ∼ IG(1/p2, 1),

θ ∼ Beta
(
1, p1+κ

)
,

(2.7)

where IG(a, b) is the inverse Gamma distribution with density π(λ0)∝λ−a−1
0 exp(−b/λ0),

and κ, λ > 0 are tuning parameters. Clearly, with probability 1 − θ, each row Bj∗
follows a multivariate distribution with density

∏r
k=1 ψr(bjk | λ + λ0), and hence,

‖Bj∗‖1 ∼ Exp(λ + λ0) for each j with probability 1 − θ. The exponential distribu-
tion Exp(λ+ λ0) with a large λ0 shrinks the entire row Bj∗ towards zero and therefore
promotes the joint sparsity on B.

We refer to the hierarchical prior (2.7) on B as the matrix spike-and-slab LASSO
prior and denote B ∼ MSSLp×r(λ, 1/p

2, p1+κ). The hyperparameter λ is fixed through-
out. In the single-spike case (r = 1), we observe that ψ1(bjk | λ) = (λ/2) exp(−λ|bjk|)
reduces to the density function of the Laplace distribution, and hence the matrix spike-
and-slab LASSO prior coincides with the spike-and-slab LASSO prior (Rockova, 2018).
Here, 1 − θ represents the proportion of the rows Bj∗’s that are close to zero. There-
fore, θ ∼ Beta(1, p1+κ) indicates that the matrix spike-and-slab LASSO prior favors
a large proportion of rows of B being close to 0. We also remark that the first term∏r

k=1 ψr(bjk | λ + λ0) closely resembles the “spike” component in the spike-and-slab
distribution (2.4), whereas the second term

∏r
k=1 ψ1(bjk | λ) is a multivariate gen-

eralization of the “slab” component in (2.4). We complete the prior specification by
imposing σ2 ∼ IG(aσ, bσ) for some aσ, bσ > 0 for the sake of conjugacy.

Lastly, we remark that the parameterization (2.6) of the spiked covariance mod-
els (1.1) has the following interpretation. The sampling model yi ∼ Np(0p,Σ) can be
equivalently represented in terms of the latent factor model

yi = Bzi + εi, zi ∼ Nr(0r, Ir), εi ∼ Np(0p, σ
2Ip), i = 1, . . . , n, (2.8)
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where zi, i = 1, . . . , n, are independent and identically distributed (i.i.d.) r-dimensional
latent factors, B is a p × r factor loading matrix, and εi, i = 1, . . . , n are i.i.d. noisy
vectors. Since B is also sparse by our earlier discussion, this formulation is related to the
sparse Bayesian factor models presented in Bhattacharya and Dunson (2011) and Pati
et al. (2014), the differences being the sparsity pattern of B and the prior specification.
In addition, the latent factor formulation (2.8) is convenient for the posterior simulation
through a Markov chain Monte Carlo (MCMC) sampler, as discussed in Section 3.1 of
Bhattacharya and Dunson (2011).

3 Theoretical properties

3.1 Properties of the matrix spike-and-slab LASSO prior

The theoretical properties of the classical spike-and-slab LASSO prior have been par-
tially explored by Rockova (2018) and Rockova and George (2018) in the context of the
sparse linear models and the sparse normal means problems, respectively. It is not clear
whether the properties of the spike-and-slab LASSO priors adapt to other statistical
contexts, including the sparse spiked covariance matrix models, the high-dimensional
multivariate regression (Bai and Ghosh, 2018), etc. In this subsection, we present a
collection of theoretical properties of the matrix spike-and-slab LASSO prior that not
only are useful for deriving posterior contraction under the spiked covariance matrix
models but also may be of independent interest for other statistical tasks, e.g., sparse
Bayesian linear regression with multivariate response (Ning and Ghosal, 2018).

Let B ∈ R
p×r be a p × r matrix and let B0 ∈ R

p×r be a jointly s-sparse p × r
matrix with r ≤ s ≤ p. Here B0 corresponds to the underlying truth. In the sparse
spiked covariance matrix models, B represents the scaled eigenvector matrix UΛ1/2 up
to an orthonormal matrix in O(r), but for the sake of generality, we do not impose the
statistical context in this subsection. A fundamental measure of goodness for various
prior models with high dimensionality is the prior mass assignment on a small neigh-
borhood around the true but unknown value of the parameter. This is referred to as the
prior concentration in the literature of Bayes theory. Formally, we consider the prior
probability of the non-centered ball {‖B −B0‖F < η} under the prior distribution for
small values of η.

Lemma 3.1. Suppose B ∼ MSSLp×r(λ, 1/p
2, p1+κ) for some fixed positive constants λ

and κ, and B0 ∈ R
p×r is jointly s-sparse, where 1 ≤ r ≤ s ≤ p/2. Then for small values

of η ∈ (0, 1) with η ≥ 1/pγ for some γ > 0, it holds that

Π(‖B−B0‖F < η) ≥ exp

[
−C1 max

{
λ2s‖B0‖22→∞, sr

∣∣∣∣log λη√
sr

∣∣∣∣ , s log p}]
for some absolute constant C1 > 0.

We next formally characterize how the matrix spike-and-slab LASSO prior promotes
the joint sparsity of B using a probabilistic argument. Unlike the classical spike-and-
slab prior, which enables exact zeros in the mean vector with a positive probability,
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the matrix spike-and-slab LASSO prior is absolutely continuous with respect to the
Lebesgue measure on R

p×r, implying that |supp(B)| = p with prior probability one.
Rather than forcing the elements of B to be exactly zero, the matrix spike-and-slab
LASSO prior shrinks the elements ofB toward zero. This behavior suggests the following
generalization of the row support of a matrix B: For δ > 0 taken to be small, we define
suppδ(B) = {j ∈ [p] : ‖Bj∗‖2 > δ}. Namely, suppδ(B) consists of the row indices of B
whose Euclidean norms are greater than δ. Intuitively, one should expect that under the
matrix spike-and-slab LASSO prior, |suppδ(B)| should be small with large probability.
The following lemma formally confirms this intuition.

Lemma 3.2. Suppose B ∼ MSSLp×r(λ, 1/p
2, p1+κ) for some fixed positive constants

λ and κ ≤ 1, 1 ≤ r ≤ p. Let δ ∈ (0, 1) be a small number with δ > 1/pγ for some
γ > 0, and let s be an integer such that (s log p)/p is sufficiently small. Then for any
β > 4γ exp(1), it holds that

Π(|suppδ(B)| > βs) ≤ 2 exp

{
−min

(
βκ

2
,
β

2e
− 2γ

)
s log p

}
.

Lastly, we provide the following tail probability inequality for the matrix spike-and-
slab LASSO prior.

Lemma 3.3. Suppose B ∼ MSSLp×r(λ, 1/p
2, p1+κ) for some fixed positive λ and κ < 1,

and B0 ∈ Rp×r is jointly s-sparse, where r log n � log p, and (s log p)/p is sufficiently
small. Let (δn)

∞
n=1 and (tn)

∞
n=1 be positive sequences such that 1/pγ ≤ δn ≤ 1 and

tn/(sr) → ∞. Then for sufficiently large n and for all β > 4γ exp(1), it holds that

Π

⎡⎣ p∑
j=1

‖Bj∗‖11{j ∈ suppδn(B) ∪ supp(B0)} ≥ tn

⎤⎦
≤ 2 exp

[
−C2 min

{(
tn
βsr

)2

,

(
tn
r

)2

,
tn
r

}]
+ 3 exp

{
−min

(
βκ

2
,
β

2e
− 2γ

)
s log p

}
for some absolute constant C2 > 0.

3.2 Posterior contraction for the sparse Bayesian spiked covariance
model

We now elaborate on the posterior contraction rates for the proposed Bayesian sparse
spiked covariance models with respect to various loss functions, which are the main
results of this paper. We first present a collection of necessary assumptions.

Assumption 3.1 (Joint sparsity). |supp(U0)| ≤ s and 1 ≤ r ≤ s ≤ p.

Assumption 3.2 (Bounded spectra). λ01 and λ0r are bounded away from 0 and ∞.

Assumption 3.3 (High-dimensionality and consistency). p/n → ∞, (s log p)/n → 0.

Assumption 3.4 (Low-rank assumption). r logn � log p.
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Assumption 3.5 (Prior specification). B ∼ MSSLp×r(λ, 1/p
2, p1+κ) with some λ > 0

and κ ≤ 1, and σ2 ∼ IG(aσ, bσ) for some aσ, bσ ≥ 1.

Remark 3.1. Several remarks concerning the assumptions above are in order. Assump-
tions 3.1 and 3.2 are standard for the sparse spiked covariance models. Assumption 3.3
states the high-dimensional nature of the problem (namely, a large p small n scenario)
and ensures the consistency with regard to the spectral norm ‖Σ − Σ0‖2. Assump-
tion 3.4 is a mild low-rank condition that also appeared in Gao and Zhou (2015) and
Ning (2021). Loosely speaking, it guarantees that the posterior contraction rate under
the intrinsic metric of the normal covariance model is equivalent to the spectral norm.
Assumption 3.5 specifies the prior distribution of Σ through the priors of B and σ2.

Below, Theorem 3.1 and Theorem 3.2 state that the posterior contraction rates with
respect to ‖Σ−Σ0‖2 and ‖UUT −U0U

T
0 ‖2 are minimax-optimal, respectively.

Theorem 3.1. Let y1, . . . ,yn ∼ Np(0p,Σ0) independently with Σ0 = U0Λ0U
T
0 + σ2

0Ip
and assume Assumptions 3.1–3.5 hold. Then there exists some constants M0, R0, C0 > 0
depending on σ0, λ01, λ0r, and the hyperparameters, such that

E0

{
Π

(
‖Σ−Σ0‖2 > M

√
s log p

n

∣∣∣∣ Yn

)}
≤ R0 exp(−C0s log p) (3.1)

for all M ≥ M0 when n is sufficiently large.

Theorem 3.2. Let y1, . . . ,yn ∼ Np(0p,Σ0) independently with Σ0 = U0Λ0U
T
0 + σ2

0Ip
and assume Assumptions 3.1–3.5 hold. Let M0, R0, C0 > 0 be the constants given by
Theorem 3.1. For each B, let UB ∈ O(p, r) be the left-singular vector matrix of B.
Then the following holds for all M ≥ M0 and sufficiently large n:

E0

{
Π

(
‖UBU

T
B −U0U

T
0 ‖2 >

2M

λ0r

√
s log p

n

∣∣∣ Yn

)}
≤ R0 exp(−C0s log p). (3.2)

Remark 3.2. We briefly compare the posterior contraction rates obtained in Theo-
rem 3.1 and Theorem 3.2 with some related results in the literature. In Pati et al.
(2014), the authors consider the posterior contraction with respect to the spectral norm
loss ‖Σ−Σ0‖2 of the entire covariance matrix, while in Gao and Zhou (2015), the au-
thors consider the posterior contraction with respect to the projection Frobenius norm
loss ‖UUT−U0U

T
0 ‖F for estimating Span{U∗1, . . . ,U∗r}. Our result is similar to Ning

(2021), who derive the posterior contraction rates with a spike-and-slab prior on the
entries of the loading matrix B. This differs from the current work as we adopt a con-
tinuous matrix shrinkage prior. In Pati et al. (2014), the notion of sparsity is slightly
different than the joint sparsity notion presented here. They assume that under the
latent factor model representation (2.8), the individual supports of columns of B are
not necessarily the same. When r = O(1), the assumption in Pati et al. (2014) coincides
the joint sparsity and our rate εn =

√
(s log p)/n improves the rate

√
(s log p log n)/n

obtained in Pati et al. (2014) by a logarithmic factor. The assumptions in Gao and Zhou
(2015) are the same as those in Pati et al. (2014), and Gao and Zhou (2015) focus on
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designing a prior that yields the rate-optimal posterior contraction with respect to the
Frobenius norm loss of the projection matrices as well as the adaptation to the sparsity
level s and the rank r. Our result in equation (3.2), which focuses on the projection
spectral norm loss, serves as a complement to the rate-optimal posterior contraction for
the principal subspace under the joint sparsity assumption in contrast to Gao and Zhou
(2015).

The posterior contraction rate (3.2) also leads to the following risk bound for a point
estimator of the principal subspace Span{U∗1, . . . ,U∗r}:

Theorem 3.3. Assume the conditions in Theorem 3.1 hold. Let

Ω̂ =

∫
UBU

T
BΠ(dB | Yn)

be the posterior mean of the projection matrix UBU
T
B and Û ∈ O(p, r) be the orthonor-

mal r-frame in Rp with columns being the eigenvectors corresponding to the first r-largest
eigenvalues of Ω̂. Let M0, R0 be the constants in Theorem 3.1. Then the following risk
bound holds for Û for sufficiently large n:

E0

(
‖ÛÛT −U0U

T
0 ‖2
)
≤
(
4M0

λ0r
+ 4
√
R0

)√
s log p

n
.

To derive the posterior contraction rate for the principal subspace with respect to
the two-to-infinity norm loss, we need the posterior contraction result for Σ with respect
to the stronger matrix infinity norm. This contraction rate is obtained in the following
lemma.

Lemma 3.4. Assume the conditions in Theorem 3.1 hold. Further assume that the
eigenvector matrix U0 exhibits the bounded coherence: ‖U0‖2→∞ ≤ Cμ

√
r/s for some

constant Cμ ≥ 1, and the number of spikes r is sufficiently small in the sense that
r3/s = O(1). Let R0, C0 be the constants in Theorem 3.1. Then there exists some
constant M∞ > 0 depending on σ0, λ01, λ0r, and the hyperparameters, such that the
following posterior contraction for Σ = BBT + σ2Ip holds for all M ≥ M∞ when n is
sufficiently large:

E0

{
Π

(
‖Σ−Σ0‖∞ > Mr

√
s log p

n

∣∣∣∣ Yn

)}
≤ R0 exp(−C0s log p). (3.3)

We are now in a position to present the posterior contraction of the principal sub-
space with regard to the two-to-infinity norm loss in Theorem 3.4 below.

Theorem 3.4. Assume the conditions in Lemma 3.4 hold. Let R0, C0 be the constants
in Theorem 3.1. For each B, let UB ∈ O(p, r) be the left-singular vector matrix of B.
Then there exists some large constant M2→∞ > 0 depending on σ0, λ01, λ0r, and the
hyperparameters, such that the following posterior contraction for UB holds for all M ≥
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M2→∞:

E0

[
Π

{
‖UB −U0WU‖2→∞ > M

(√
r3 log p

n
∨ s log p

n

)}]
≤ 2R0 exp(−C0s log p),

(3.4)

where WU = arg infW∈O(r) ‖UB −U0W‖F is the Frobenius orthogonal alignment ma-
trix.

Remark 3.3. The bounded coherence condition that ‖U0‖2→∞ ≤ Cμ

√
r/s originates

from the delocalization of eigenvectors in low-rank matrix recovery (Candès and Recht,
2009). Loosely speaking, when U0 is a tall-and-thin rectangular matrix, the bounded
coherence of U0 states that the orthonormal columns of U0 are different from the
highly localized standard basis vectors. The bounded coherence condition is also related
to the pervasive assumption appearing in the econometrics and financial applications
(Fan et al., 2008; Pati et al., 2014). Specifically, U0 represents the left singular vector

matrix of the factor loading matrix B0 := U0Λ
1/2
0 VT under the latent factor model

representation (2.8) for some V ∈ O(r). By the random matrix theory, B0 is pervasive
when the non-zero rows of B0 are random realizations from a bounded random vector
(Fan et al., 2013). By Proposition 3 in Fan et al. (2016), U0 satisfies the bounded
coherence condition when B0 is pervasive. In addition, the assumption that r3/s = O(1)
also appeared in the (dense) covariance estimation problem in Cape et al. (2019b).

Remark 3.4. We also present some remarks concerning the posterior contraction with
respect to the two-to-infinity norm loss ‖U −U0WU‖2→∞. Cape et al. (2019b) show
that

‖U−U0WU‖2→∞ ≤ ‖U−U0WU‖2 ≤
√
2‖UUT −U0U

T
0 ‖2,

meaning that ‖U − U0WU‖2→∞ can be coarsely upper bounded by the projection
spectral norm loss ‖UUT −U0U

T
0 ‖2. This naive bound immediately yields

E0

{
Π

(
‖UB −U0WU‖2→∞ > M

√
s log p

n

∣∣∣ Yn

)}
≤ R0 exp(−C0s log p)

for some appropriately selected large constant M , which is the same as (3.2). Our
result (3.4) improves this rate by a factor of {

√
r3/s∨

√
(s log p)/n}, resulting in a tighter

posterior contraction rate with respect to the two-to-infinity norm loss. In particular,
when r � s (i.e., U0 is a “tall and thin” rectangular matrix), the factor

√
r3/s can be

much smaller than 1.

4 Numerical examples

4.1 Synthetic examples

We evaluate the numerical performance of the proposed Bayesian method for estimating
the sparse spiked covariance models via simulation studies. We set the sample size
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n = 100 and the number of features p = 200. The support size s of the eigenvector
matrix U0 ranges over {8, 12, 20, 40} and the number of spikes r takes values in {1, 4}.
The indices of the non-zero rows of U0 are uniformly sampled from {1, . . . , p} and we set
the diagonal elements of Λ0 to be equally spaced over the interval [10, 20], with λ01 = 20
and λ0r = 10 if r = 4. The non-zero rows of U0, themselves forming an orthonormal
r-frame in R

s, denoted by U�
0, are taken as the left singular vector matrix of a s × r

matrix L whose entries are generated from Unif(1, 2) independently.

The posterior inference is carried out using a standard Metropolis-within-Gibbs sam-
pler. We take the first 1000 iterations of the MCMC sampler as the burn-in phase
and collect the subsequent 4000 iterations as the post-burn-in samples. We set λ = 1,
aσ = bσ = 1, and κ = 1 in all numerical examples. The convergence diagnostics of the
MCMC chains are provided in the Supplementary Material (Xie et al., 2022). We then

take the posterior mean Σ̂ of Σ as the point estimator for Σ, and Span(Û) given by
Theorem 3.3 as the point estimator for the principal subspace Span{U∗1, . . . ,U∗r}.

For comparison, several competitors are considered, including the sparse Bayesian
factor model with the multiplicative Gamma process shrinkage prior (MGPS, Bhat-
tacharya and Dunson, 2011), the principal orthogonal complement thresholding method
(POET, Fan et al., 2013), the sparse principal component analysis (SPCA, Zou et al.,
2006), and the adaptive sparse principal component analysis (ASPCA, Cai et al., 2013).
In each simulation setup (i.e., each (r, s) pair), 50 independent replicates of the synthetic

datasets are generated. For each synthetic dataset, we compute the point estimators Σ̂,
Û as well as those offered by the three competing approaches, the spectral norm loss
(‖Σ̂−Σ0‖2), the two-to-infinity norm loss (‖Û−U0WU‖2→∞), and the projection spec-

tral norm loss (‖ÛÛT−U0U
T
0 ‖2). We then compute the medians of these losses across

the 50 replicates. The exception here is ASPCA, which only provides a point estimator
for the principal subspace rather than the whole covariance matrix. We only obtain
the projection spectral norm loss and the two-to-infinity norm loss for the principal
subspace for ASPCA. The results are tabulated in Table 1.

The numerical results in Tables 1(a) and 1(b) indicate that the proposed Bayesian
approach yields the smallest spectral norm losses for Σ and the smallest projection
spectral norm losses for the subspace estimation, respectively, among others, except
for ASPCA. While ASPCA outperforms the proposed Bayesian method in terms of
the projection spectral norm loss for small values of s (s ∈ {8, 12}) when r = 4, its
performance deteriorates rapidly as soon as the number of non-zero rows of U0 increases
(s ∈ {20, 40}) when r = 1. In terms of the two-to-infinity norm loss for the subspace

estimation, Table 1(c) shows that the point estimates Û using the proposed approach
yield smaller losses compared to the competitors when s ∈ {8, 12, 20} for both r = 1
and r = 4, while POET is more accurate for the single-spike cases when s = 40.
The comparison between the two losses for the subspace estimation is also visualized
in Figure 1, suggesting that the two-to-infinity norm loss is less sensitive to the row
support size s than the projection spectral norm loss as s increases.

We further evaluate the estimation performance for the principal subspace when
s = 20, r = 1 and s = 40, r = 4 through a single replicate in Figures 2, 3, and 4,
respectively. For the visualization of recovering U0 across different methods, we rotate
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(a) The spectral norm loss ‖Σ̂−Σ0‖2
s 8 12 20 40
r 1 4 1 4 1 4 1 4

MSSL 1.81 6.48 2.06 6.37 2.80 7.55 4.63 9.62
MGPS 9.86 16.63 9.88 17.63 9.88 18.56 9.89 19.04
POET 7.54 11.17 7.47 11.10 7.61 11.60 7.60 10.97
SPCA 8.08 18.03 8.09 18.04 8.11 18.07 8.17 18.10

(b) The squared projection spectral norm loss ‖ÛÛT −U0U
T
0 ‖22

s 8 12 20 40
r 1 4 1 4 1 4 1 4

MSSL 0.010 0.028 0.014 0.032 0.029 0.038 0.10 0.060
MGPS 0.18 0.29 0.19 0.33 0.18 0.29 0.19 0.22
POET 0.18 0.21 0.18 0.20 0.19 0.20 0.18 0.20
SPCA 0.05 0.092 0.068 0.11 0.10 0.15 0.18 0.22
ASPCA 0.022 0.015 0.083 0.027 0.24 0.057 0.82 0.11

(c) The squared two-to-infinity norm loss ‖Û−U0WU‖22→∞

s 8 12 20 40
r 1 4 1 4 1 4 1 4

MSSL 0.0037 0.012 0.0044 0.011 0.0061 0.010 0.017 0.011
MGPS 0.0088 0.12 0.0088 0.085 0.0082 0.080 0.0088 0.055
POET 0.0082 0.013 0.0082 0.013 0.0086 0.012 0.0088 0.013
SPCA 0.024 0.027 0.022 0.040 0.022 0.039 0.025 0.038
ASPCA 0.0079 0.0067 0.048 0.012 0.046 0.018 0.090 0.029

Table 1: Loss functions for the simulation study: The spectral norm loss ‖Σ̂ − Σ0‖2,
the squared projection spectral norm loss ‖ÛÛT − U0U

T
0 ‖22, and the squared two-to-

infinity norm loss ‖Û − U0WU‖22→∞. The medians of the loss function values across
50 replicates of synthetic datasets are tabulated. MSSL stands for the sparse Bayesian
spiked covariance matrix model with the matrix spike-and-slab LASSO prior; MGPS
refers the sparse Bayesian factor model with the multiplicative Gamma process shrink-
age prior; POET refers to the principal orthogonal complement thresholding method;
SPCA refers to the sparse principal component analysis; ASPCA refers to the adaptive
sparse principal component analysis.

the estimates according to the Frobenius orthogonal alignment. To be more specific, for a
point estimator Û obtained using a frequentist method, we first compute the orthogonal
alignment matrix WÛ = arg infW ∈ O(r)‖Û − U0W‖F and then use ÛWT

Û
as the

estimator for U0. For the Bayesian method, we compute the orthogonal alignment
WUB = arg infW∈O(r) ‖UB − U0W‖F for each posterior sample UB and then take

UBW
T
UB

as the posterior estimate for U0. It can clearly be seen that POET is able
to capture the signal but fails to recover the row support of the principal subspace,
whereas SPCA is able to recover the subspace support but is not accurate in estimating
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Figure 1: Comparison of the two-to-infinity norm loss (‖Û−U0WU‖2→∞) and the pro-

jection spectral norm loss (‖ÛÛT −U0U
T
0 ‖2) for the synthetic examples. MSSL refers

to the posterior means of Σ under the matrix spike-and-slab LASSO prior; MGPS
refers the sparse Bayesian factor model with the multiplicative Gamma process shrink-
age prior; POET refers to the principal orthogonal complement thresholding method;
SPCA refers to the sparse principal component analysis; ASPCA refers to the adaptive
sparse principal component analysis.

the signal. MGPS performs similarly to POET but results in wider credible intervals
than those using the proposed approach. The performance of ASPCA is satisfactory
when r = 4 but it severely under-estimates the number of non-zero rows of U0 when
r = 1 and results in unsatisfactory estimates.

In addition, we report the running times of the five methods using one synthetic
dataset for each setup in Table 2. The proposed MSSL is faster than the other Bayesian
method, MGPS. Although POET is significantly faster than the proposed approach and
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s 8 12 20 40
r 1 4 1 4 1 4 1 4

MSSL 6.79 s 12.35 s 6.55 s 12.41 s 6.93 s 13.82 s 7.81 s 13.07 s
MGPS 8.82 s 26.26 s 8.83 s 25.59 s 8.27 s 25.60 s 7.99 s 25.34 s
POET 2.14 s 1.83 s 1.75 s 1.77 s 1.78 s 1.82 s 1.82 s 1.83 s
SPCA 0.18 s 3.76 s 0.08 s 5.56 s 0.11 s 8.60 s 0.14 s 17.21 s
ASPCA 0.01 s 0.008 s 0.005 s 0.004 s 0.006 s 0.004 s 0.006 s 0.005 s

Table 2: Runtime comparison for the simulation study. MSSL refers to the posterior
means of Σ under the matrix spike-and-slab LASSO prior; MGPS refers the sparse
Bayesian factor model with the multiplicative Gamma process shrinkage prior; POET
refers to the principal orthogonal complement thresholding method; SPCA refers to
the sparse principal component analysis; ASPCA refers to the adaptive sparse principal
component analysis.

MGPS when r = 4, and sparse PCA outperforms all the other methods when r = 1,
we will see in Section 4.2 that when the dimension p becomes large, POET and sparse
PCA fail to produce results within 20 hours. ASPCA is the fastest approach among
all methods considered here. However, it is not stable when r = 1, as presented in
Table 1 and Figure 2. Overall, the proposed sparse Bayesian spiked covariance model
is able to estimate the signals accurately and efficiently, recover the row support of U0,
and provide better uncertainty quantification with narrower credible intervals for the
synthetic datasets.

4.2 A face data example

The joint sparsity of the eigenvector matrix U is often desired in the feature extraction
for some high-dimensional data. In this subsection, we illustrate how the proposed
Bayesian approach is able to extract the key features through a real data example in
computer vision.

We consider a subset of the Extended Yale Face Database B (Georghiades et al.,
2001; Lee et al., 2005). It consists of the face images for 38 subjects, and for each subject,
64 aligned images of size 192 × 168 are taken under different illumination conditions.
Here we focus on the 22nd subject and reduce the size of each image to 96× 84 (8064
pixels in total), following the preprocessing step in She (2017). In doing so, we obtain a
data matrix Y = [y1, . . . ,yn]

T of size 64× 8064.

In computer vision, the principal component analysis has been broadly applied to
obtain the low-dimensional features, known as the eigenfaces, from high-dimensional face
image data. Under the proposed Bayesian framework, we perform the posterior inference
by implementing a Metropolis-within-Gibbs sampler with 1000 burn-in iterations and
4000 post-burn-in samples. The number of spikes r is estimated using the diagonal
thresholding method proposed in Cai et al. (2013). For comparison, we also implement
MGPS (Bhattacharya and Dunson, 2011). Instead of obtaining the eigenfaces, we focus
on the extraction of the key pixels via thresholding the obtained estimated eigenvector
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Figure 2: Simulation performance for a single replicate with s = 20 and r = 1. The
estimates are rotated to the simulation truth U0 according to the Frobenius orthogonal
alignment. The red bars in the top two panels are estimated 95% credible intervals using
the proposed approach and MGPS, respectively.

matrix Û. Specifically, for the proposed approach, the estimate Û can be computed
according to Theorem 3.3, and for MGPS, Û can be obtained by computing the left
singular vectors of the loading matrix. The key pixels are then obtained by finding {j ∈
[8064] : ‖Ûj∗‖1/r > τ} for some small tolerance τ > 0. The other three competitors are
unable to produce valid results for the following reasons. Neither POET nor sparse PCA
was able to produce results within 20 hours. ASPCA encountered numerical instability
when we attempted to implement it and reported errors.
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Figure 3: Simulation performance for a single replicate with s = 40 and r = 4. The
estimates are rotated to the simulation truth U0 according to the Frobenius orthogonal
alignment. The green bars in the four panels are estimated 95% credible intervals using
the proposed approach.

We present the sample images of the 22nd subject in the first row of Figure 5. The

key pixels of sample image #1 extracted using the two models with different threshold

values of τ are provided in the second and the third rows of Figure 5. We recover the

pixels with higher values (corresponding to eyes, lips, and nose tips of the subject)

using the proposed model and MGPS. This observation is also in accordance with

the conclusion from She (2017). Nevertheless, as the threshold value τ increases, the
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Figure 4: Simulation performance for a single replicate with s = 40 and r = 4. The
estimates are rotated to the simulation truth U0 according to the Frobenius orthogonal
alignment. The red bars in the four panels are estimated 95% credible intervals for
MGPS.

number of key pixels captured using MGPS decreases significantly, whereas the proposed

approach is more robust to the threshold value τ and maintains the key pixels that

are sensitive to illumination. This phenomenon is expected since, unlike the matrix

spike-and-slab LASSO prior, MGPS is not designed to model the joint sparsity and

the feature extraction but rather column-specific sparsity for each individual factor

loading.
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Figure 5: The face data example: The first row corresponds to sample images of the 22nd
subject (image number 1, 20, and 50, respectively). The second and the third rows are
the key pixels of the #1 image using the proposed Bayesian approach with the matrix
spike-and-slab LASSO prior (MSSL) and MGPS with different threshold values τ .

5 Discussion

We have shown that the two-to-infinity norm loss for the principal subspace estimation
can capture the entrywise perturbations of the eigenvector matrix U in contrast to
the routinely used projection spectral norm loss. A novel matrix shrinkage prior that
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extends the continuous spike-and-slab LASSO due to Rockova and George (2018) and
Rockova (2018) has been developed. We have obtained the contraction rate of the full
posterior distribution for the principal subspace under the two-to-infinity norm loss,
which is sharper than the rate under the usual projection spectral norm loss, provided
that U exhibits certain low-rank and bounded coherence conditions.

In future work, we intend to study whether a point estimator can be found from the
posterior distribution with a risk bound that coincides with the posterior contraction
rate under the two-to-infinity norm loss. In addition, it is also worth exploring the
minimax-optimal rates of convergence with respect to the two-to-infinity norm loss.
Throughout the paper, we assume that the number of spikes r is known. When r is
unknown, a convenient approach is to estimate r using a frequentist method (e.g., the
diagonal thresholding method as in Cai et al., 2013) first and then apply our Bayesian
method using the estimated r. Alternatively, it is feasible to adaptively estimate r in the
literature of Bayesian latent factor models (see, for example, Bhattacharya and Dunson,
2011; Gao and Zhou, 2015; Pati et al., 2014). Hence, exploring a rank-adaptive Bayesian
procedure and obtain attractive theoretical properties or computation tractability could
be interesting extensions as well.

The low-rank assumption (Assumption 3.4) requires that r logn � log p and guaran-
tees that the minimax rate for estimating the covariance matrix Σ under the Frobenius
norm coincides with that under the spectral norm. More precisely, the minimax rate with
regard to ‖Σ−Σ0‖F is

√
(rs+ s log p)/n, whereas the minimax rate under ‖Σ−Σ0‖2

is
√

(s log p)/n and does not depend on the rank r. When Assumption 3.4 is violated,
the two rates differ from each other, and the proof technique adopted in this work is
no longer applicable to establish the rate-optimal posterior contraction under the (non-
intrinsic) spectral norm (Hoffmann et al., 2015). In the recent technical report (Xie,
2021), the author partially addressed the rate-optimal posterior contraction under the
spectral norm without assuming r logn � log p, but the other assumptions there were
more restrictive. The posterior contraction rates under non-intrinsic metrics in general
high-dimensional models remain relatively underexplored.

Markov chain Monte Carlo can be computationally intensive for high-dimensional
settings in general. In this paper, we applied a standard Metropolis-within-Gibbs sam-
pler for Bayesian computation of the sparse spiked covariance models. Inspired by Ning
(2021), it would be desirable to develop computationally efficient methods, such as an
expectation-maximization algorithm for the maximum a posteriori estimation instead
of computing the full posterior distribution (Rockova and George, 2016) or a penalized
least squares method (She, 2017), and explore the underlying theoretical guarantees.

Supplementary Material

Supplementary Material for “Bayesian Sparse Spiked Covariance Model With a Contin-
uous Matrix Shrinkage Prior” (DOI: 10.1214/21-BA1292SUPP; .pdf). The supplemen-
tary material contains the proofs of the theoretical results, additional technical results,
and additional numerical results.

https://doi.org/10.1214/21-BA1292SUPP
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