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Clustering algorithms partition a dataset into groups of similar points. The cluster-
ing problem is very general, and different partitions of the same dataset could be con-
sidered correct and useful. To fully understand such data, it must be considered at a 
variety of scales, ranging from coarse to fine. We introduce the Multiscale Environ-
ment for Learning by Diffusion (MELD) data model, which is a family of clusterings 
parameterized by nonlinear diffusion on the dataset. We show that the MELD data 
model precisely captures latent multiscale structure in data and facilitates its anal-
ysis. To efficiently learn the multiscale structure observed in many real datasets, we 
introduce the Multiscale Learning by Unsupervised Nonlinear Diffusion (M-LUND) 
clustering algorithm, which is derived from a diffusion process at a range of tempo-
ral scales. We provide theoretical guarantees for the algorithm’s performance and 
establish its computational efficiency. Finally, we show that the M-LUND clustering 
algorithm detects the latent structure in a range of synthetic and real datasets.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Unsupervised machine learning algorithms detect structure in data given no known class labels [23]. 
Among the many branches of unsupervised learning, clustering is perhaps the most developed and widely 
used. A clustering algorithm partitions a dataset into groups. In a good partition, data points from the 
same group are “similar” to one another, while data points from distinct groups are “dissimilar” from one 
another. The specific notion of similarity used varies widely [40,52,56,59,64,69]. Often, cluster analysis is 
one of the first tasks performed by a user interested in learning more about an unexplored dataset.

Given no further information, the clustering problem is quite general. One could easily imagine cases 
in which there are multiple correct separations in a single dataset, and the most useful clustering often 
depends on the specifics of how it will be applied in practice. A coarse separation of a dataset may be 
desired in one problem setting, while another problem setting may call for finer separation within the 
data. Thus, it may make sense to consider a dataset at various scales and analyze all of the many possible 
“correct” partitions. The property of data having multiple scales of relevant structure is readily observable in 
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many empirical datasets; for example, in social networks (e.g., geographical community structures), protein-
protein interaction networks (e.g., scales of chemical secondary structures), and gene interaction networks 
(e.g., co-expressed gene clusters) [1,19,61]. Thus, to understand the structure of a dataset in its entirety, it 
is necessary to understand how it is structured at a multitude of scales.

Recent decades have brought significant advances in the development of clustering algorithms meant to 
detect multiple scales of separation [6,39,40,54]. Typically, these approaches have relied upon a data model 
allowing for latent hierarchical structure in a dataset to provide performance guarantees on clustering algo-
rithms. However, in many data models allowing for multiscale cluster structure, it is difficult to understand 
how separation at one scale relates to separation at another [40,54]. Diffusion geometry on graphs has been 
proposed to efficiently capture latent low-dimensional structure in high dimensional data, where the time 
scale of the diffusion process corresponds to a scale of separation—short time scales reflect fine, local struc-
tures in the data, while large time scales reflect coarse, global structures in the data [14,15,41,50]. It is of 
interest to understand the precise nature of this time scaling and build clustering algorithms that allow for 
all time scales of interest to be considered simultaneously.

1.1. Major contributions

This article makes two significant contributions. The first is the Multiscale Environment for Learning 
by Diffusion (MELD) data model. The MELD data model is a family of clusterings, parameterized by a 
diffusion time parameter. For each of these clusterings, we show that diffusion distances (a data-dependent 
distance metric) between clusters are bounded away from the diffusion distances within clusters during an 
interval determined by the geometric properties of the underlying data and that clustering. We show that 
clusterings with coherent and well-separated clusters are more stable in the diffusion process and emphasized 
within the MELD data model. Finally, we show that when the clusterings in the MELD data model exhibit 
hierarchical structure, the number of latent clusters is monotonically non-increasing as a function of the 
diffusion time parameter.

The second major contribution is the Multiscale Learning by Unsupervised Nonlinear Diffusion
(M-LUND) clustering algorithm. This algorithm is a multiscale generalization of the Learning by Unsu-
pervised Nonlinear Diffusion (LUND) algorithm, which leverages diffusion distances’ attractive theoretical 
properties to efficiently and accurately cluster high-dimensional data [41]. The M-LUND algorithm extracts 
all clusterings in the MELD data model using the LUND algorithm. It then chooses the clustering that 
minimizes the variation of information (VI) between nontrivial extracted clusterings [43]. In this way, it 
is able to not only suggest a few salient clusterings but also output the one that best represents all the 
others from an information-theoretic perspective. In addition to theoretical guarantees, we show the strong 
empirical performance of M-LUND on synthetic datasets associated with poor performance of many popular 
clustering algorithms [41,49], as well as a range of real data [20,27].

1.2. Notation and outline

Abbreviations are provided below.2 Notation used throughout this article appears in Table A.4 in Ap-
pendix A. In Section 2, we review preliminaries and introduce pertinent background on how graph diffusion 

2 DGM: Diffusion Geometry Model. M-LUND: Multiscale Learning by Unsupervised Nonlinear Diffusion.
DPC: Density Peak Clustering. MELD: Multiscale Environment for Learning by Diffusion.
GDM: Geometric Data Model. MMS: Multiscale Markov Stability.
HSBM: Hierarchical Stochastic Blockmodel. NMI: Normalized Mutual Information.
HSC: Hierarchical Spectral Clustering. SBM: Stochastic Blockmodel.
HSI: Hyperspectral Image SC: Spectral Clustering.
KDE: Kernel Density Estimate. SLC: Single-Linkage Clustering.
LUND: Learning by Unsupervised Nonlinear Diffusion. SL-LUND: Single-Linkage Learning by Unsupervised Nonlinear Diffusion.
M-GDM: Multiscale Geometric Data Model. VI: Variation of Information.
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is well-suited to the clustering problem. In Section 3, we introduce the MELD data model, which we will 
show efficiently captures multiscale cluster structure within a dataset. In Section 4, we present and analyze 
the M-LUND algorithm, which leverages the theory of Section 3 to detect the most representative clustering 
among the many possible latent clusterings of a dataset. In Section 5, we provide numerical corroboration 
of the theory developed in Sections 3 and 4 on synthetic data and also present comparisons of the M-LUND 
algorithm against related clustering schemes on eleven real-world benchmark datasets and one real-world 
hyperspectral image (HSI) in Section 5. In Section 6, we conclude and discuss future research.

2. Background

2.1. Background on unsupervised clustering

Clustering algorithms partition a dataset X = {xi}n
i=1 ⊂ RD into K subsets X1, . . . , XK . The partition 

{Xk}K
k=1 is called a clustering of X, while each Xk is called a cluster. Clustering algorithms are typically 

unsupervised, meaning that no expert annotations or labels are used in the partitioning of X. Thus, the 
number of clusters K is often (though not always [22,38,41]) a hyperparameter in clustering algorithms. 
Typically, we want a clustering to satisfy both a separation condition—that if k �= k′, most points in Xk

are “far” from those in Xk′—and a coherence condition—that most points in each Xk are “close.” For a 
detailed overview of important classical clustering algorithms, see Appendix B.

2.2. Background on spectral graph theory and its applications to clustering

Spectral graph theory is widely used in clustering [6,38,39,41,52,59,64]. Typically, spectral methods 
construct a local connectivity graph that stores information about the pairwise similarity between data 
points [52,59]. The spectral decomposition of the graph Laplacian can then be used to locate highly con-
nected regions within the graph [59]. Because spectral methods rely on nonlinear transformations derived 
from graph structure, they are highly effective at clustering datasets containing nonlinear or elongated 
structures [52,64]. This is in contrast to K-Means and density peak clustering (DPC) [56], which may fail 
on datasets containing these structures [41].

2.2.1. Spectral graph theory
In spectral graph theory, the points in X may be represented as nodes in a graph. Let the edge weight 

between two nodes xi and xj be Wij . Typically, Wij is computed using a symmetric, radial, and rapidly 
decaying similarity measure such as Wij = exp

(
− ‖xi − xj‖2

2/σ2) for some choice of scaling parameter 
σ > 0 that reflects the interaction radius between points [59]. If σ is large, then long-range interactions 
between points are considered, while if σ is small, only short-range interactions are emphasized.

One can construct a Markov transition matrix P ∈ Rn×n associated to W ∈ Rn×n with an appropriate 
normalization [14,52,64]. Let the degree matrix D be the diagonal matrix with Dii =

∑n
j=1 Wij . We call 

Dii the degree of the point xi ∈ X. Let P = D−1W. This matrix stores transition probabilities for a Markov 
diffusion process on the dataset, where Pij reflects the probability of transitioning from xi to xj .3 We 
assume that the Markov chain described by P is reversible, irreducible (i.e., the graph is connected), and 
aperiodic. Hence, P has a unique stationary distribution π satisfying πP = π [35]. The eigendecomposition 
of P is strongly associated with connectivity in X, making it useful for clustering. Let {ψi}n

i=1 be the 
right eigenfunctions of P with corresponding eigenvalues {λi}n

i=1. We will order eigenvalues according to 
|λi| in non-increasing order; so when we say the “first k eigenfunctions,” we refer to the k eigenfunctions 

3 We remark that, with an abuse of notation, Pij denotes the entries of P, while Pij shall denote block submatrices of P.
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ψi(x) corresponding to |λi| closest to 1. In general, the multiplicity of the unity eigenvalue is the number of 
connected components in the graph [64], which is 1 by our assumption that P is irreducible.

Each eigenfunction ψi(x) of P is also an eigenfunction of the random walk graph Laplacian
Lrw = I − D−1W corresponding to the eigenvalue 1 − λi. The graph Laplacian is a discrete approximation 
of the Laplacian operator, so the eigenvectors of Lrw (and therefore P) are discrete approximations of the 
continuous eigenfunctions of the Laplace operator [46,62]. Each eigenfunction ψi(x) has a frequency related 
to the corresponding eigenvalue λi. Hence, we will say that an eigenfunction ψi(x) of P is low-frequency if λi

is close to 1 and high-frequency if λi � 1. In particular, the K lowest-frequency eigenfunctions of the graph 
Laplacian of X tend to concentrate on the K components of the graph that are most highly connected. 
This property has been used to cluster data with nonlinear structure [32,38,52,59,64].

2.2.2. Spectral clustering
Many classical clustering algorithms perform well when applied to certain classes of well-

behaved data but fail on datasets with nonlinear structure [32,41,52,64]. Applying the eigenmap
Φ(x) = (ψ1(x), ψ2(x), . . . , ψK(x)) for K ≤ n as a preprocessing step before the application of K-Means 
often produces better separation in a new data-dependent feature space independent of nonlinear structure 
in X [52,59]. This is, in its essence, the spectral clustering (SC) algorithm. Typically (but not always [6]), 
the number of clusters K is assumed a priori and the first K eigenvectors of P are extracted to compute 
Φ(X). A simple clustering algorithm like K-Means is then applied to Φ(X) rather than X, usually after a 
normalization step [52]. Since SC was first introduced [52,59], its theoretical properties have been investi-
gated [2,57–59]. It was shown that, when K = 2, SC produces an approximate solution to the normalized 
graph cut problem [59]. However, there are some classes of data for which SC has been observed to fail; for 
example, datasets with structure varying in scale and/or density [49].

2.3. Background on diffusion geometry

The matrix P is the transition matrix for a Markov diffusion process on a graph generated from the 
dataset X. Diffusion distances capture the structure encoded in P as a data-dependent distance metric 
between points [14,15,50].

Definition 2.1. Let P be an irreducible, aperiodic Markov transition matrix on X ⊂ RD with stationary dis-
tribution π. For points xi, xj ∈ X and t ≥ 0, let pt(xi, xj) = (P t)ij . The diffusion distance at time t between 

xi and xj is defined to be Dt(xi, xj) = ‖pt(xi, :) − pt(xj , :)‖�2(1/π) =
√∑

u∈X [pt(xi, u) − pt(xj , u)]2 1
π(u) .

Importantly, diffusion distances are data-dependent, enabling the detection of nonlinear structure in 
data [14,15,50]. Moreover, diffusion distances have a natural connection with the clustering problem. The 
diffusion distance at time t can be identified as the Euclidean distance between rows of Pt, weighted 
according to 1/π. If each cluster in a clustering of X is highly-connected, irreducible, and well-separated 
from other clusters, then pt(xi, :) will be nearly equal to pt(xj , :) for any pair of points xi and xj in the same 
cluster Xk, implying a low diffusion distance between points within the same cluster. Conversely, if xi and 
xj are in distinct clusters, pt(xi, :) is expected to be very different from pt(xj , :). This will be formalized in 
Section 2.5.

Definition 2.2. Let {(ψi, λi)}n
i=1 be the right eigenvector-eigenvalue pairs of an irreducible, aperiodic tran-

sition matrix P, sorted according to |λi| in non-increasing order. The diffusion map at time t ≥ 0 is defined 
to be Ψt(x) = (ψ1(x), λt

2ψ2(x), . . . , λt
nψn(x)).

Diffusion maps and diffusion distances are related as Dt(x, y) = ‖Ψt(x) − Ψt(y)‖2 [14]. In particular, 
diffusion distances can be identified as Euclidean distances in a new data-dependent feature space consisting 
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Fig. 1. Diffusion embedding of a nonlinear dataset. We plot the second and third diffusion map coordinates, which are the first 
coordinates of Ψt(x) that depend on t and the data; λ1 = 1 and ψ1 is constant by construction. When t is small (t = t1), the 
diffusion map sends each ring in the dataset X to a different cluster. Each ring is well-separated in the new data-dependent feature 
space. When t becomes large (t = t2), the diffusion map sends the inner two rings to a one-point mass. This corresponds to a 
different scale of separation by diffusion distances. Thus, the diffusion map exhibits multiscale structure as a function of t.

of the coordinates of the diffusion map. The diffusion map can be identified as a natural extension of the 
eigenmap Φ(x) defined in Section 2.2.2. In Φ(x), each of the first K eigenfunctions is weighted equally in the 
new feature space [51,52]. Conversely, in Ψt(x), the ith eigenfunction is weighted according to λt

i. Thus, as 
t increases, the coordinates of Ψt(xi) corresponding to higher-frequency eigenfunctions become vanishingly 
small. Because lower-frequency eigenfunctions of P tend to concentrate on highly-connected regions in the 
data, this fact may facilitate the detection of different scales of structure in the data for different values of 
the time parameter t [15], as observed in Fig. 1.

2.4. Background on nearly reducible Markov chains

Suppose that X admits a latent clustering {Xk}K
k=1. Write P, possibly after permuting the indices of 

data points, as

P =

⎡
⎢⎢⎣

P11 P12 . . . P1K

P21 P22 . . . P2K

...
...

. . .
...

PK1 PK2 . . . PKK

⎤
⎥⎥⎦ , (1)

where the block Pkk′ reflects the probability of transitioning from points x ∈ Xk to points y ∈ Xk′ . Thus, 
if the mass of P is centered on its block diagonal, diffusion is unlikely to exit any given cluster in the 
latent clustering of X. Moreover, if these blocks are in some sense irreducible, diffusion will explore a cluster 
quickly and diffuse within it for a long period of time. The stochastic complement, defined below, provides 
some formalism for this intuition.

Definition 2.3. Let P be an irreducible, aperiodic Markov transition matrix on X, partitioned as 
in (1). Let Pk be the principal block submatrix generated by deleting the kth row and column of 
blocks from (1). Similarly, define the matrices P∗k = [P1,k P2,k . . . Pk−1,k Pk+1,k . . . Pn,k]� and
Pk∗ = [Pk,1 Pk,2 . . . Pk,k−1 Pk,k+1 . . . Pk,n]. The stochastic complement of the submatrix Pkk of P is 
defined to be Skk = Pkk +Pk∗(I−Pk)−1P∗k. The stochastic complement of P with respect to the clustering 
{Xk}K

k=1 is defined to be the completely reducible, row-stochastic, block-diagonal matrix consisting of the 
stochastic complements of the diagonal blocks of P:
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S =

⎡
⎢⎢⎣

S11 0 . . . 0
0 S22 . . . 0
...

...
. . .

...
0 0 . . . SKK

⎤
⎥⎥⎦ .

The stochastic complement Skk consists of two terms: Pkk and Pk∗(I −Pk)−1P∗k. The term Pkk captures 
the probability of directly transitioning between points in Xk, while the term Pk∗(I −Pk)−1P∗k captures the 
probability of transitioning into Xk indirectly after first moving through the points in other clusters. Indeed, 
(I − Pk)−1 can be expanded as 

∑∞
t=0 Pt

k. Thus, the stochastic complement of Pkk encodes the probability 
of transitioning within Xk after a path of arbitrary length from inside or outside of Xk. The stochastic 
complement can be viewed as an approximation of the transition matrix P that contains information 
about a latent clustering {Xk}K

k=1 of X. The following Theorem illustrates when this approximation is 
successful [45]. Recall ‖A‖∞ = max1≤i≤n

∑n
j=1 |Aij |.

Theorem 2.1. [45] Let P be an irreducible, aperiodic Markov transition matrix on X, partitioned as 
in (1). Let S be the stochastic complement of P with respect to the clustering {Xk}K

k=1. Suppose 
each Skk is primitive (i.e., non-negative, irreducible, and aperiodic) so that the eigenvalues of S are
1 = λ1 = · · · = λK > |λK+1| > · · · > |λn| ≥ 0. Suppose that Z diagonalizes S, let δ = ‖P − S‖∞, 
and let κ = ‖Z‖∞‖Z−1‖∞. Finally, let S∞ = limt→∞ St. Then for any t ≥ 0, ‖Pt − S∞‖∞ ≤ δt + κ|λK+1|t. 
Moreover, if for ε > 0, t ∈

[
log(2κ/ε)

log(1/|λK+1|) , ε
2δ

]
, then ‖Pt − S∞‖∞ < ε.

We will henceforth refer to the interval referenced in Theorem 2.1 as Iε =
[

log(2κ/ε)
log(1/|λK+1|) , ε

2δ

]
. The interval 

Iε is dependent not only on ε, but also on data-driven quantities derived from the transition matrix P and 
its stochastic complement S: λK+1, δ, and κ. These parameters will be of importance in Section 3, where we 
develop a theory of multiscale clustering based on graph diffusion. If we assume—as in Theorem 2.1—that 
the stochastic complement S of P is block primitive and diagonalizable [41,45], then these parameters may 
be interpreted as follows:

• λK+1: Clearly, S is primitive if and only if each Skk is primitive, so |λK+1| = max1≤k≤K |λ2(Skk)|. The 
second eigenvalue of an irreducible, row-stochastic matrix like Skk is related to the conductance of the 
subgraph Xk of X [35,60]. Indeed, if all clusters are highly connected, |λK+1| will be small [35,45,60]. 
Conversely, |λK+1| will be near 1 if any cluster is only loosely connected.

• δ: Note that δ = ‖P − S‖∞ = 2 max1≤k≤K ‖Pk∗‖∞ [45]. Thus, the parameter δ can be interpreted 
as the maximum probability across all points in X of transitioning from one cluster to another in a 
single time step. If transitions between any pair of clusters are likely, then δ will be large. Conversely, 
if transitions between all pairs of clusters are unlikely, then δ will be small. In this sense, δ measures 
the separation between clusters in X [41]. Since δ is the maximal probability of transitioning between 
clusters, it is somewhat pessimistic in datasets in which outliers from one cluster overlap with outliers 
from another [41]. In such datasets, δ will be large, but the probability of transitioning between points 
in cluster cores is still small.

• κ: By definition, κ tells us how difficult it is to diagonalize the stochastic complement S of P. Suppose 
that the latent clustering of X is the one consisting of n singletons. Clearly, the stochastic complement 
would be the identity matrix, so at this extreme κ = 1. If X is sampled from a common manifold, then 
κ = O(1) with respect to n [41]. If each cluster is sampled from a different common manifold, a similar 
result is expected to hold. However, the parameter κ is admittedly not well-studied, and research on it 
is still ongoing.
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2.5. Background on diffusion distances in clustering

Define the (worst-case) within-cluster and between-cluster diffusion distance at time t with respect to 
the clustering {Xk}K

k=1 by Din
t = max

1≤k≤K
max

x,y∈Xk

Dt(x, y) and Dbtw
t = min

1≤k<k′≤K
min

x∈Xk,y∈Xk′
Dt(x, y) respec-

tively [41]. We desire a clustering of X which will yield Din
t small (a coherence condition) and Dbtw

t large (a 
separation condition). In this section, we review a result bounding diffusion distances within and between 
clusters in terms of the underlying statistical and geometric properties of P [41]. The following piece of 
machinery will prove useful in this analysis:

Definition 2.4. Let X, P, and S∞ be as in Theorem 2.1, let pt(xi, xj) = (P t)ij , and let s∞(xi, xj) = (S∞)ij . 
Define

γ(t) = max
x∈X

(
1 − 1

2
∑
u∈X

∣∣∣∣ |pt(x, u) − s∞(x, u)|
‖pt(x, :) − s∞(x, :)‖2

− 1√
n

∣∣∣∣
2
)−1

.

For any vector u ∈ Rn, we can write ‖u‖2 = cu√
n

‖u‖1, where cu =
(
1 − 1

2
∑n

i=1
∣∣ |ui|

‖u‖2
− 1√

n

∣∣2)−1 [9]. Thus, 
γ(t) can be identified as the maximum cu, where the vectors u are chosen from the rows of Pt − S∞. In this 
sense, γ(t) indicates how much the 
1- and 
2-norms of the rows of Pt − S∞ differ. Diffusion distances are 
written using the 
2-norm, which gives the spectral decomposition. However, diffusion distances are arguably 
more natural in an 
1-norm framework: the setting of Theorem 2.1 [17,41,45]. The function γ(t) bridges 
this disconnect and enables bounding diffusion distances using results that are written in the 
1-norm (e.g., 
Theorem 2.1) [41,45].

Theorem 2.2. [41] Let {Xk}K
k=1 be a partition of X = {xi}n

i=1. Let P, δ, κ, and λK+1 be as in Theorem 2.1, 
and define s∞(xi, xj) = (S∞)ij. Then for any t ≥ 0,

Din
t ≤ 2γ(t)√

n

(
δt + κ|λK+1|t

)
, Dbtw

t ≥ 2 min
w∈X

‖s∞(w, :)‖�2(1/π) − 2γ(t)√
n

(
δt + κ|λK+1|t

)
.

Moreover, if, for ε > 0, t ∈ Iε, then

Din
t ≤ 2γ(t)√

n
ε, Dbtw

t ≥ 2 min
w∈X

‖s∞(w, :)‖�2(1/π) − 2γ(t)√
n

ε.

For ε > 0, if t ∈ Iε, all clusters are of equal size n/K, and s∞ is uniform on each Xk, then Theorem 2.2
implies that Din

t /Dbtw
t = O(ε) [41]. For ε small, this indicates that the maximum within-cluster diffusion 

distance at time t will be much less than the minimum between-cluster diffusion distance at time t. Notably, 
there is tension between the assumption that t ∈ Iε and the conclusion that diffusion distances at time t
induce a good separation among the clusters of the clustering {Xk}K

k=1 [41]. If ε is large, the assumption 
that t ∈ Iε may be lax, but the conclusion of Theorem 2.2 may be weak or even trivial. Conversely, if ε is 
small, Theorem 2.2 implies that Din

t /Dbtw
t will also be small, but this strong result comes at the expense of 

narrowing the interval of time during which it can be attained. For fixed κ, δ, and λK+1, Iε shrinks to the 
empty set as ε → 0+ [41]. In the idealized case in which there are no between-cluster transitions (so that 
δ = 0) and each cluster is a point mass (so that |λK+1| = 0), then Iε = [0, ∞) [41].

2.6. The LUND clustering algorithm

The LUND algorithm (Algorithm 1) was introduced to leverage diffusion distances to cluster data [41]. 
This clustering algorithm locates high-density points that are far in diffusion distance from other high-
density points and labels them as cluster modes. Non-modal points are then paired with a labeled point 
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Algorithm 1: Learning by Unsupervised Nonlinear Diffusion (LUND).
Input: X (dataset), σ (diffusion scale parameter), σ0 (KDE bandwidth), t (diffusion time parameter)
Output: C (clustering), K (no. clusters)
Construct transition matrix P with a Gaussian kernel and diffusion scale parameter σ;
Compute the KDE p(x) with KDE bandwidth σ0 for each x ∈ X;
Compute ρt(x) according to Definition 2.5 for each x ∈ X;
Store Dt(x) = p(x)ρt(x) for each x ∈ X;
Sort X in non-increasing order according to Dt(x). Denote this sorting {xmk

}n
k=1;

Solve K = argmax
{
Dt(xmk

)
Dt(xmk+1 )

}n−1

k=1
and label each cluster mode, xmk

(k = 1, . . . , K) by C(xmk
) = k;

Sort X in non-increasing order according to p(x). Denote this sorting {x�k
}n

k=1;
for k = 1 : n do

if C(x�k
) = 0 then

x∗ = argminy∈X {Dt(x�k
, y) | p(y) ≥ p(x�k

), y is labeled};
C(x�k

) = C(x∗);
end

end

iteratively. More precisely, the LUND algorithm captures density using a kernel density estimate (KDE) 
p(x) = 1

Z

∑
y∈NN(x,N) exp

(
− ‖x − y‖2

2/σ2
0
)
, where σ0 is a KDE bandwidth, NN(x, N) is the set of N


2-nearest neighbors of x, and Z is a normalization constant such that p(x) sums to one [41]. To capture 
diffusion geometry, we introduce a different function:

Definition 2.5. Let X and P be as in Theorem 2.1, and let p(x) be a KDE of X. Define

ρt(x) =
{

miny∈X{Dt(x, y) | p(y) ≥ p(x)} x �= argmaxy∈Xp(y),
maxy∈X Dt(x, y) x = argmaxy∈Xp(y).

Thus, ρt(x) assigns x the diffusion distance at time t between x and its Dt-nearest neighbor of higher 
density. The LUND algorithm then analyzes Dt(x) = p(x)ρt(x). The maximizers of Dt(x) tend to be high in 
empirical density and far in diffusion distance from other high-density points, making them suitable choices 
as cluster modes. The function Dt(x) can also be used to estimate the number of latent clusters in X [41]. 
While K-Means and SC can estimate the number of latent clusters K via the scree plot [10] and eigengap 
[37], respectively, these estimates of K have been shown to fail on data classes in which the LUND estimate 
succeeds (e.g., datasets with nonlinear structure for the scree plot and datasets with multimodal bottleneck 
structure for the eigengap [38,41]). It has been shown that, under plausible assumptions on cluster structure 
and density, the estimate provided by the LUND algorithm on the number of clusters in the dataset is 
accurate, even for datasets with these problematic structures [41]. We review theoretical guarantees on the 
performance of the LUND algorithm in Section 4.3.1.

The LUND algorithm relies on the diffusion time parameter t when calculating the diffusion distance 
between points. As discussed in Section 2.3, this parameter tends to affect the scale of a clustering separable 
by diffusion distances [14,50]. Thus, as t varies, the clustering that the LUND algorithm estimates will 
change. To improve the LUND algorithm, it is necessary to understand how its cluster assignments change 
as a function of t. A better theoretical understanding of how the diffusion process changes may enable the 
elimination of the dependence on t as well as a deeper understanding of which time scale yields the most 
representative clustering of X.

3. A multiscale environment for learning by diffusion

Theorem 2.2 states that diffusion distances induce strong separation on a latent clustering during an 
interval in the diffusion process. However, it is limited in that it only considers a fixed scale and a single 
latent clustering. Many datasets exhibit multiscale structure with many partitions that could be considered 
“correct” and useful [1,15,19,61]. In this section, we will generalize Theorem 2.2 by allowing multiple latent 
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clusterings, varying in scale, to exist within the same dataset [41]. We will then introduce the MELD data 
model, which parameterizes the clusterings of X by t.

Suppose there are M latent clusterings of X, denoted {X
(�)
k }K�

k=1 for 
 ∈ {1, . . . , M}. We will not require 
that these clusterings are hierarchical but consider that special case in Section 3.2. For 1 ≤ 
 ≤ M , define the 
submatrices P(�)

kk′ of the transition matrix P, possibly after permuting the indices of data points, implicitly 
by

P(�) =

⎡
⎢⎢⎢⎢⎣

P(�)
11 P(�)

12 . . . P(�)
1K�

P(�)
21 P(�)

22 . . . P(�)
2K�

...
...

. . .
...

P(�)
K�1 P(�)

K�2 . . . P(�)
K�K�

⎤
⎥⎥⎥⎥⎦ , (2)

where the block P(�)
kk′ reflects the probability of transitioning from points x ∈ X

(�)
k to points y ∈ X

(�)
k′ . In 

particular, the block matrix P(�)
kk reflects the probability of remaining in the cluster X(�)

k in the 
th latent 
clustering of X, while P(�)

kk′ reflects the probability of transitioning from the cluster X(�)
k to X(�)

k′ in the 
th

latent clustering of X.
The stochastic complement of P depends on the clustering assumed a priori. Thus, for each of the 

latent clusterings of X, a different stochastic complement can be extracted. We will refer to the stochastic 
complement of the submatrix P(�)

kk as S(�)
kk and the stochastic complement of P with respect to the 
th

clustering of X as S(�). Let S(�)
∞ = limt→∞[S(�)]t. Similar to the case in which there was only one latent 

clustering, the stochastic complement S(�)
kk may be interpreted as capturing the probability of transitioning 

into the cluster X(�)
k , either directly from inside of X(�)

k or indirectly after a path of arbitrary length starting 

outside of X(�)
k [41,45]. As before, we require S(�)

kk to be primitive and diagonalizable for each k ∈ {1, . . . , K�}
and 
 ∈ {1, . . . , M}. Denote the invertible n × n matrix that diagonalizes S(�) as Z(�) [41,45].

The interval Iε is regulated by three constants—λK+1, δ, and κ—each derived from the stochastic 
complement of P corresponding to a clustering. Therefore, the interval Iε will change as a function of the 
scale of clustering.

Definition 3.1. Let P be an aperiodic, irreducible Markov transition matrix on X, partitioned as in 
(2). Let S(�) be the stochastic complement of P with respect to the 
th clustering of X. Define
λ

(�)
K�+1 = λK�+1[S(�)], δ(�) = ‖P − S(�)‖∞ and κ(�) = ‖Z(�)‖∞‖[Z(�)]−1‖∞. For ε > 0, define the interval 

I(�)
ε =

[
log(2κ(�)/ε)

log(1/|λ(�)
K�+1|)

, ε
2δ(�)

]
.

We will refer to the maximum within-cluster and minimum between-cluster diffusion distance at time t for 
the clustering {X

(�)
k }K�

k=1 as Din
t (
) and Dbtw

t (
) respectively. We argued in Section 2.3 that the dependence 
of diffusion distances on the diffusion time parameter affects what scales of structure can be uncovered by 
diffusion distances [14,50]. Thus, for any fixed t, the ratio Din

t (
)/Dbtw
t (
) may be large for some 
 and small 

for others. In the following definition, the notion of strong separation by diffusion distances at a given time 
scale is formalized.

Definition 3.2. Let ε > 0. A clustering {X
(�)
k }K�

k=1 is ε-separable by diffusion distances at time t if
Din

t (�)
Dbtw

t (�) ≤ ε
1/

√
n−ε

.

The criterion for ε-separation by diffusion distances is related to the notion of a perfect clustering. A 
clustering {Xk}K

k=1 is said to be perfect under the metric m(:, :) if there is an r > 0 for which the maximum 
within-cluster distance is at most r and the minimum between-cluster distance is at least 4r, where distance 
is measured using m [42,65]. More precisely, if 0 < ε ≤ 1√ , a clustering that is ε-separable by diffusion 
5 n
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distances at time t is also perfect under the metric Dt. In datasets with a perfect partition, cluster structure 
may be detected with K-Means using the metric Dt (if r is unknown) or by thresholding a minimum 
spanning tree (if r is known) [42,65].

Let γ(�)(t) be the multiscale extension of γ(t), where s∞(xi, xj) is replaced by s(�)
∞ (xi, xj) = (S(�)

∞ )ij in 
Definition 2.4. This function measures how much the 
1-norm of rows in Pt − S(�)

∞ differs from the 
2-norm 
of rows in Pt − S(�)

∞ . As was the case for γ(t), 1 ≤ γ(�)(t) ≤ √
n for any t and 
 ∈ {1, . . . , M}. Using the 

established notation, we are able to provide the following Corollary, which serves as a multiscale extension 
of Theorem 2.2.

Corollary 3.1. Let P be an aperiodic, irreducible Markov transition matrix on a dataset X, partitioned as 
in (2). Let 
 ∈ {1, . . . , M} be a fixed clustering scale, and let S(�) be the stochastic complement of P
with respect to the clustering {X

(�)
k }K�

k=1. Let δ(�), κ(�), and λ(�)
K�+1 be the geometric constants introduced in 

Definition 3.1, and let s(�)
∞ (xi, xj) = (S(�)

∞ )ij.

(a) For any t ≥ 0,

Din
t (
) ≤ 2γ(�)(t)√

n

(
δ(�)t + κ(�)|λ(�)

K�+1|t
)
;

Dbtw
t (
) ≥ min

w∈X
‖s(�)

∞ (w, :)‖�2(1/π) − 2γ(�)(t)√
n

(
δ(�)t + κ(�)|λ(�)

K�+1|t
)
.

Moreover, if, for ε > 0, t ∈ I(�)
ε , then

Din
t (
) ≤ 2γ(�)(t)√

n
ε; Dbtw

t (
) ≥ 2 min
w∈X

‖s(�)
∞ (w, :)‖�2(1/π) − 2γ(�)(t)√

n
ε.

(b) If ε < 1/
√

n, then the clustering {X
(�)
k }K�

k=1 is ε-separable by diffusion distances at times t ∈ I(�)
ε .

Proof. Theorem 2.2 gives (a) immediately [41]. To obtain (b), note first that minw∈X ‖s
(�)
∞ (w, :)‖�2(1/π) can 

be bounded from below: 1√
n

= 1√
n

minw∈X ‖s
(�)
∞ (w, :)‖1 ≤ minw∈X ‖s

(�)
∞ (w, :)‖2 ≤ minw∈X ‖s

(�)
∞ (w, :)‖�2(1/π). 

The assumption ε < 1√
n

implies ε < 1√
n

≤ 1
γ(�)(t) ≤

√
n

γ(�)(t) minw∈X ‖s
(�)
∞ (w, :)‖�2(1/π). Rearranging yields 

2 minw∈X ‖s
(�)
∞ (w, :)‖�2(1/π) > 2γ(�)(t)√

n
ε, so the lower bound on Dbtw

t (
) given in (a) is positive for t ∈ I(�)
ε . 

Thus,

Din
t (
)

Dbtw
t (
)

≤ 2γ(�)(t)ε/
√

n

2 minw∈X ‖s
(�)
∞ (w, :)‖�2(1/π) − 2γ(�)(t)ε/

√
n

= γ(�)(t)ε
√

n minw∈X ‖s
(�)
∞ (w, :)‖�2(1/π) − γ(�)(t)ε

≤ ε

minw∈X ‖s
(�)
∞ (w, :)‖�2(1/π) − ε

≤ ε

1/
√

n − ε
,

where γ(�)(t) ≤ √
n was used to obtain the second to last inequality and minw∈X ‖s

(�)
∞ (w, : )‖�2(1/π) ≥ 1/

√
n

was used to obtain the last inequality. �
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The proof of Corollary 3.1 suggests that the notion of ε-separation by diffusion distances is some-
what pessimistic, as it relies on worst-case assumptions on the behavior of the parameters γ(�)(t) and 
minw∈X ‖s

(�)
∞ (w, :)‖�2(1/π). In practice, if t ∈ I(�)

ε , the rows of Pt − S(�)
∞ tend to be nearly uniform, so 

γ(�)(t) = O(1) with respect to n [41]. Similarly, minw∈X ‖s
(�)
∞ (w, :)‖�2(1/π) ≥ 1/

√
n is a worst-case lower 

bound. If the rows of Pt − S(�)
∞ are completely uniform, then γ(�)(t) = 1 [41]. Assuming this is the case for 

each t ∈ I(�)
ε , where ε ∈ (0, 1), the lower bound of Dbtw

t (
) in (a) of Corollary 3.1 is positive. Hence,

Din
t (
)

Dbtw
t (
)

≤ γ(�)(t)ε
√

n minw∈X ‖s
(�)
∞ (w, :)‖�2(1/π) − γ(�)(t)ε

= ε
√

n minw∈X ‖s
(�)
∞ (w, :)‖�2(1/π) − ε

≤ ε

1 − ε
,

where we have used minw∈X ‖s
(�)
∞ (w, :)‖�2(1/π) ≥ 1/

√
n to obtain the last inequality. This is clearly a tighter 

bound than the one required for ε-separation and is notably independent of n. For ε � 1, this new inequality 
implies that diffusion distances at times t ∈ I(�)

ε will induce excellent separation on the clusters in the 
th

clustering.
By Corollary 3.1, there are M intervals in the diffusion process, during each of which a different clustering 

is ε-separable by diffusion distances. If two distinct intervals I(�)
ε and I(�′)

ε ever overlapped for some fixed
ε ∈
(

0, 1√
n

)
, time steps t would exist during which multiple clusterings are ε-separable by diffusion distances 

at the same time. We therefore make the simplifying assumption that, if 
 �= 
′ and ε are fixed, I(�)
ε
⋂
I(�′)

ε =∅

so that the intervals I(�)
ε do not intersect. Thus, at times t ∈ I(�)

ε , {X
(�)
k }K�

k=1 is the unique clustering that 
is ε-separable by diffusion distances as a result of Corollary 3.1. This is the basis of the MELD data model, 
wherein the unique latent partitions of X are parameterized by the diffusion time parameter.

Definition 3.3. Let X be a dataset with M distinct latent clusterings {X
(�)
k }K�

k=1 for 1 ≤ 
 ≤ M . Fix 

ε ∈
(

0, 1√
n

)
, and assume that the intervals I(�)

ε are nonintersecting. For each t ≥ 0, if t ∈ I(�)
ε for some 


 ∈ {1, . . . , M}, then we define Ct = {X
(�)
k }K�

k=1 to be the clustering that is ε-separable by diffusion distances 
at time t as a result of Corollary 3.1. Define the Multiscale Environment for Learning by Diffusion (MELD)
data model for this choice of ε to be MELDε(X) =

{
Ct

∣∣ t ∈ I(�)
ε for some 
 ∈ {1, . . . , M}

}
.

The MELD data model is similar in spirit to the diffusion geometry model (DGM ), which also assumes 
the existence of M latent clusterings of X: {C(�)}M

�=1 [17]. In the DGM, the stochastic complement of P
with respect to each of the M clusterings is extracted, along with the corresponding geometric constants: 
{(λ(�)

K�+1, δ(�), κ(�))}M
�=1. The DGM was used to aggregate information about the many latent scales of struc-

ture in the dataset into a single distance metric [17]. On the other hand, the MELD data model provides a 
fine-scale view of how latent cluster structure changes as a function of the diffusion process. Corollary 3.1
guarantees that a clustering Ct ∈ MELDε(X) is ε-separable by diffusion distances at time t. In this sense, 
a clustering Ct in the MELD data model can be interpreted as the latent clustering of X at time t in the 
diffusion process.

Notably, the union of the intervals I(�)
ε may not be [0, ∞). If there are time steps t not contained in any 

interval I(�)
ε , then diffusion distances at those time steps may not induce an ε-separation on any clustering 

whatsoever. The time steps between any two intervals I(�)
ε and I(�′)

ε can be thought of as transition regions 
between two latent clusterings. Transition regions are, in datasets with very well-defined multiscale cluster 
structure, short intervals during which P is rapidly mixing and transitioning between states. During these 
transition regions, there is not necessarily a “true” latent clustering of X. Therefore, the MELD data model 
naturally only captures the time steps at which diffusion distances yield strong separation of clusters in 
a clustering of X. We will refer to the time steps during which a latent clustering of X is ε-separable by 
diffusion distances as Aε =

⋃M I(�)
ε .
�=1
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3.1. Stability in the MELD data model

A cluster can be viewed as a region of the graph on which diffusion is unlikely to exit [44]. The duration 
the random walk is “trapped” on the cluster, aggregated across clusters, can be interpreted as a clustering’s 
stability.

Definition 3.4. Fix ε ∈
(

0, 1√
n

)
and let MELDε(X) be as in Definition 3.3. Let Ct and Cs be clusterings in 

MELDε(X) with t ∈ I(�)
ε and s ∈ I(�′)

ε . We say that Ct is more ε-stable than Cs if

log
[

ε

2δ(�) − log(2κ(�)/ε)
log(1/|λ(�)

K�+1|)

]
≥ log

[
ε

2δ(�′) − log(2κ(�′)/ε)
log(1/|λ(�′)

K�′ +1|)

]
.

Thus, a clustering Ct is considered more ε-stable than Cs if the interval of time during which Ct is ε-
separable by diffusion distances is longer on a logarithmic scale than the interval of time during which Cs

is ε-separable by diffusion distances. We examine stability on a logarithmic scale because of the exponential 
dependence of diffusion distances on the spectrum of P. Transitions between clusterings of X typically occur 
after a component of Ψt(x) is sent to zero. Because each component of Ψt(x) converges exponentially to 
zero, the length of intervals I(�)

ε later in the diffusion process tends to be exponentially longer than that 
of intervals early in the diffusion process. Thus, if we choose to examine stability on a linear scale (rather 
than logarithmic), a clustering that is ε-separable by diffusion distances later in the diffusion process will 
tend to be more ε-stable than a clustering that is ε-separable by diffusion distances early in the diffusion 
process. Taking logarithms allows for a more fair comparison between clusterings that are ε-separable at 
different stages in the diffusion process. The connection between the stability and geometry of a clustering 
is explored in Proposition 3.1.

Proposition 3.1. Fix ε ∈
(

0, 1√
n

)
, and let Ct, Cs ∈ MELDε(X) for t ∈ I(�)

ε and s ∈ I(�′)
ε . If

|λ(�)
K�+1| ≤ |λ(�′)

K�′ +1|, δ(�) ≤ δ(�′), and κ(�) = κ(�′), then Ct is more ε-stable than Cs.

Proof. If δ(�) ≤ δ(�′), then ε
2δ(�) ≥ ε

2δ(�′) . Similarly, if |λ(�′)
K�′ +1| ≥ |λ(�)

K�+1|, then
1

log(1/|λ(�′)
K

�′ +1|)
≥ 1

log(1/|λ(�)
K�+1|)

. By our assumption that κ(�) = κ(�′), this implies that

log(2κ(�′)/ε)
log(1/|λ(�′)

K
�′ +1|)

≥ log(2κ(�)/ε)
log(1/|λ(�)

K�+1|)
. Thus, ε

2δ(�) − log(2κ(�)/ε)
log(1/|λ(�)

K�+1|)
≥ ε

2δ(�′) − log(2κ(�′)/ε)
log(1/|λ(�′)

K
�′ +1|)

. Taking logarithms on 

both sides yields the result. �
Proposition 3.1 implies that if the clusters in a clustering Ct ∈ MELDε(X) with t ∈ I(�)

ε are better 
separated (so that δ(�) is small) and more coherent (so that |λ(�)

K�+1| is small) than the clusters in a different 
clustering Cs ∈ MELDε(X), then Ct will be more ε-stable and appear more frequently than Cs in the MELD 
data model. This implies that clusterings with well-separated, coherent clusters are emphasized within the 
MELD data model.

3.2. Applications of the MELD data model to hierarchical clustering

In this section, we investigate the relationship between the clusterings in the MELD data model and the 
diffusion time parameter in the case that the MELD data model exhibits hierarchical structure.

Definition 3.5. Let C = {Xk}K
k=1 and C′ = {X ′

k}K′

k=1 be clusterings of X. The clustering C is a refinement of 
the clustering C′ if K ≥ K ′ and if, for every cluster X ′

k ∈ C′, X ′
k =

⋃m
Xkj

for some subsequence {kj}m
j=1
j=1
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of {1, 2 . . . , K}. The family of clusterings C = {Cα}α∈A exhibits hierarchical structure if, for each pair Cα

and Cβ in C , either Cα is a refinement of Cβ or Cβ is a refinement of Cα.

Thus, the MELD data model exhibits hierarchical structure if, for each pair of coarse and fine clusterings 
in the model, any cluster in the coarse clustering can be expressed as the union of clusters from the 
fine clustering. In general, the MELD data model does not assume hierarchical structure because not all 
multiscale cluster structure is hierarchical. Indeed, one of the advantages of the MELD data model is its 
ability to capture non-hierarchical multiscale structure in data. Nevertheless, the assumption that the MELD 
data model exhibits hierarchical structure does provide us with the ability to provide concrete analysis about 
the structure of the MELD data model.

Lemma 3.1. Fix ε ∈
(

0, 1√
n

)
, and let Ct, Cs ∈ MELDε(X), where t ∈ I(�)

ε and s ∈ I(�′)
ε . If Ct is a refinement 

of Cs, then δ(�) ≤ δ(�′).

Proof. Let P(�)
k∗ = [P(�)

k,1 P(�)
k,2 . . . P(�)

k,k−1 P(�)
k,k+1 . . . P(�)

k,n] for each k ∈ {1, . . . , K�} and 
 ∈ {1, . . . , M}. By 

assumption, the clusters in {X
(�)
k }K�

k=1 can be merged to form the any of the clusters in {X
(�′)
k }K�′

k=1. So, for all 
block rows k, any P(�)

k∗ is a submatrix of some P(�′)
j∗ . Therefore, for each k ∈ {1, . . . , K�}, ‖P(�)

k∗ ‖∞ ≤ ‖P(�′)
j∗ ‖∞

for some j ∈ {1 . . . , K�′}. Thus, δ(�′) = 2 max1≤k≤K�′ ‖P(�′)
k∗ ‖∞ ≤ 2 max1≤k≤K�

‖P(�)
k∗ ‖∞ = δ(�). �

As diffusion progresses, diffusion distances separate ever coarser structure within the dataset. Because the 
ith component of the diffusion map Ψt(x) is weighted by λt

i, each eigenfunction’s contribution to diffusion 
distances will decay exponentially with t. As low-frequency eigenfunctions are annihilated, different meso-
scopic equilibria will arise, during which diffusion distances induce different clusterings on X. Moreover, 
because fewer low-frequency eigenfunctions contribute to diffusion distances as t increases, it is reasonable 
to expect the latent structure separated by diffusion distances to go from fine to coarse in scale.

Proposition 3.2. Fix ε ∈
(

0, 1√
n

)
and let Kt denote the number of clusters in the clustering Ct ∈ MELDε(X). 

If MELDε(X) exhibits hierarchical structure, then Kt is monotonically non-increasing during Aε.

Proof. Let Ct, Cs ∈ MELDε(X) be any two distinct clusterings of X. We will show that if Kt > Ks, then 

t < s. Because Ct, Cs ∈ MELDε(X), there are intervals I(�)
ε and I(�′)

ε such that t ∈ I(�)
ε and s ∈ I(�′)

ε . 
Since MELDε(X) exhibits hierarchical structure and Kt > Ks, Ct is a refinement of Cs. By Lemma 3.1, 
δ(�′) ≥ δ(�), which reduces to ε

2δ(�) ≤ ε
2δ(�′) . By the assumption that I(�)

ε ∩ I(�′)
ε = ∅, this implies that I(�)

ε

is earlier in the diffusion process than I(�)
ε . In particular, t < s, as desired. Thus, for any pair of clusterings 

Ct, Cs ∈ MELDε(X), if Ks < Kt, then Ct is ε-separable by diffusion distances earlier in the diffusion process 
than Cs. We conclude that Kt is monotonically non-increasing as a function of the diffusion time parameter 
t during Aε, as desired. �
3.3. Comparison to related models

In order to understand MELD in greater detail, we compare to two related data models.

3.3.1. Geometric data model
The geometric data model (GDM) models X by assuming points are sampled from a probability measure 

μ =
∑K

k=1 wkμk, where each μk is itself a probability measure on X and 
∑K

k=1 wk = 1. Each μk is assumed 
to be supported on some subset of RD, which is allowed to be nonlinear, nonconvex, and multimodal. 
Typically, separation and coherence conditions are imposed on {μk}K

k=1 (e.g., if k �= k′, the support of μk
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does not overlap too much with that of μk′), but connections are strong between data points sampled from 
each μk. The GDM is non-parametric and assumes very little about the distributions {μk}K

k=1. Moreover, the 
assumption that each cluster is sampled from a different distribution leads to a simple interpretation of the 
clustering problem: to recover the correct index of the distribution μk from which each xi ∈ X was sampled 
given solely the information provided by the dataset. However, the GDM requires there to be but one latent 
clustering to be learned, even though many datasets exhibit multiscale structure in practice. In contrast, the 
MELD data model allows for many different scales of cluster analysis, in some sense generalizing the GDM. 
Moreover, the GDM assumes a latent distribution on the data itself. While this generality offers significant 
theoretical advantages, it is also not always clear which clustering algorithm can best recover the correct 
distribution μk from which each data point was sampled [3,4,12,58,63,67,68].

We note that the assumptions of the GDM can be modified to allow for multiscale structure. Indeed, 
suppose that for scales 
 ∈ {1, 2, . . . M} that μ =

∑K�

k=1 w
(�)
k μ

(�)
k for measures {μ

(�)
k }K�

k=1 where, naturally, ∑K�

k=1 w
(�)
k = 1. Hierarchical structure can be accounted for by requiring, for each 1 ≤ 
 < M − 1 and each 

k ∈ {1, . . . , K�+1},

μ
(�+1)
k =

∑
k′∈I

(�+1)
k

⎛
⎝ w

(�)
k′∑

k′∈I
(�+1)
k

w
(�)
k′

⎞
⎠μ

(�)
k′ , w

(�+1)
k =

∑
k′∈I

(�+1)
k

w
(�)
k′

for some index set I
(�+1)
k ⊂ {1, 2, . . . , K�}, where {I

(�+1)
k }K�+1

k=1 is a partition of {1, 2, . . . , K�}. The map 

(k, 
) 
→ I
(�+1)
k may be understood as mapping the parent k at scale 
+1 to the children I

(�+1)
k at scale 
. 

We will call this data model the multiscale geometric data model (M-GDM ). The M-GDM gives an avenue 
for understanding a continuous analogue to the MELD data model, where the concentration of each μ(�)

k

is related to the cluster coherence parameter λ
(�)
K�+1 and the separation between the support of pairs of 

μ
(�)
k and μ(�)

k′ is related to the cluster separation parameter δ(�). More precisely, for a positive, symmetric, 
rapidly decaying kernel function K : RD × RD (e.g., a Gaussian kernel), continuum notions of coherence 
and separation may be defined [58] as

Δ(�) = max
k,k′=1,...,K�,k �=k′

∫
RD

∫
RD K(x, y)dμ

(�)
k (x)dμ

(�)
k′ (y)∫

RD

∫
RD K(x, y)dμ(x)dμ

(�)
k′ (y)

,

Λ(�) = min
k=1,...,K�

inf
S⊂RD

|X|K,k,�

∫
S

∫
RD\S

K(x, y)dμ
(�)
k (x)dμ

(�)
k (y)

|S|K,k,� |RD \ S|K,k,�
,

where |S|K,k,� =
∫

S

∫
S
K(x, y)dμ

(�)
k (x)dμ

(�)
k (y) is a kernelized notion of volume associated to a subset S ⊂ RD

with respect to the measure μ(�)
k and the measures are all supported in the compact set X ⊂ RD. Then Δ(�)

is comparable to δ(�) and Λ(�) is like a continuum notion of conductance minimized across each μ(�)
k , which 

by Cheeger’s inequality is comparable to λ(�)
K�+1 [11,13].

Developing a continuum limit theory for MELD that allows for performance guarantees in terms of 
{Δ(�)}M

�=1 and {Λ(�)}M
�=1 or similar quantities would separate the statistical aspects (dependence on the 

sample of size n) from the underlying geometric structure of the measure μ. We conjecture this can be 
done by relating the decay in the kernel K (e.g. the scaling parameter in the case of Gaussian kernels) 
to the time parameter t in an associated diffusion operator [14], which would allow precise analogues of 
the intervals of Definition 3.1, but in the continuum setting. The Γ-convergence framework [18,25] would 
then allow for high-probability results—depending on n and structural properties of the μ(�)

k such as their 
intrinsic dimensionality—showing the comparability of performance in the discrete and continuum settings. 
This is a topic of ongoing research.
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3.3.2. The stochastic blockmodel
Another class of data models that remains widely used in clustering models the points in X as nodes 

in a random network. The edges between nodes typically are sampled independently according to some 
probability distribution. The stochastic blockmodel (SBM) [29] is a random network model that assumes K
latent clusters X1, . . . , XK exist in the graph and that there is a K × K matrix Q storing between-cluster 
edge probabilities. More precisely, an edge will exist between x ∈ Xi and y ∈ Xj with probability Qij , 
independently of other edges. The SBM is a useful tool for proving performance guarantees on clustering 
algorithms because of its statistical construction [57].

By its definition, however, the SBM assumes a single scale of latent structure. The hierarchical stochastic 
blockmodel (HSBM) is a multiscale extension of the SBM [40]. The HSBM is similar to the SBM in that 
points are modeled as the nodes of a graph, the edges between which are sampled according to a probability 
distribution. However, unlike the SBM, the HSBM allows for multiple scales of separation to exist within 
the same graph. The benefits of the HSBM result from its statistical framework, which facilitates the 
analysis of hierarchical clustering algorithms. However, it is difficult to gain a geometric interpretation of 
the communities in HSBMs, because edges are generated independently.

4. Multiscale learning by unsupervised nonlinear diffusion

An advantage of the MELD data model is that it encapsulates a range of scales of separation within 
a single dataset. The possible separations range from coarse to fine, and we have shown that there is a 
natural relationship between the scale of latent cluster structure and the time parameter in a diffusion 
process. An important implication is that there are many “correct” clusterings of the same dataset. It is 
then natural to ask: which among the many latent clusterings of a dataset contains the most information 
about its underlying structure? In this section, we introduce the M-LUND algorithm: a multiscale extension 
of the LUND algorithm. The M-LUND algorithm chooses the partition of X that best represents all latent 
multiscale structure. In particular, it finds the barycenter among all nontrivial clusterings of X learned by 
the LUND algorithm, where distance is measured using variation of information (VI ) [43].

4.1. Background on the variation of information between clusterings

Let C = {Xk}K
k=1 and C′ = {X ′

k}K′

k=1 be two clusterings of X with cluster sizes |Xk| = nk for 1 ≤ k ≤ K

and |X ′
k| = mk for 1 ≤ k ≤ K ′ respectively. A data point sampled from a uniform distribution over X

has probability nk/n of being a point from Xk. Hence, the clustering C can be associated with a discrete 
random variable taking K values. A similar discrete random variable taking K ′ values can be constructed 
for the clustering C′ [43].

The uncertainty associated with a random variable can be quantified by its entropy. The entropy of the 
clustering C is identified as the entropy of the random variable associated to C: H(C) = −

∑K
i=1

ni

n log
(

ni

n

)
[43]. The entropy of a clustering will be zero whenever there is no uncertainty whatsoever about which 
cluster each point belongs to (i.e., the single-cluster clustering). Conversely, the entropy of C is maximal 
when it consists of n singleton clusters.

The random variables associated with C and C′ also have a joint distribution: P (x ∈ Xi

⋂
X ′

j) = nij/n, 
where nij = |Xi

⋂
X ′

j |. Define the mutual information between the clusterings C and C′ by the mutual infor-
mation between the random variables associated with them: I(C, C′) = − 

∑K
i=1
∑K′

j=1
nij

n log
(

nij/n
(ni/n)(mj/n)

)
[43]. Mutual information quantifies the information gained about one random variable by observing another. 
In the context of clustering, I(C, C′) quantifies the information gained about the clustering C of X from the 
observation of a different clustering C′ of X [43].



J.M. Murphy, S.L. Polk / Appl. Comput. Harmon. Anal. 57 (2022) 58–100 73
The VI between C and C′ can be defined in terms of the entropy of and mutual information between the 
clusterings C and C′. The VI comparison scheme has the advantageous property of being a distance metric 
measuring how much information is maintained across two clusterings of the same dataset [43].

Definition 4.1. The VI between two clusterings C and C′ of X is defined to be V I(C, C′) = H(C) + H(C′) −
2I(C, C′).

4.2. The M-LUND clustering algorithm

In Section 3, we noted that a clustering Ct ∈ MELDε(X) can be interpreted as the latent clustering of X
at time t. Under assumptions on cluster density and diffusion at time t, the LUND algorithm with input t is 
guaranteed to recover the latent clustering Ct [41]. Thus, the MELD data model and the LUND algorithm 
are closely linked, and the LUND algorithm can be interpreted as an algorithm to find the MELD clustering 
at a fixed time step. In this section, we leverage this relationship for a multiscale extension of the LUND 
algorithm based on the MELD data model.

We begin by considering how the LUND algorithm’s cluster assignments behave at very large time. We 
note that, when diffusion is close to stationarity, these clusterings become independent of t. Indeed, for 
x, y ∈ X,

Dt(x, y)2 = λ2t
2 (ψ2(x) − ψ2(y))2 +

n∑
k=3

λ2t
k (ψk(x) − ψk(y))2

= λ2t
2

[
(ψ2(x) − ψ2(y))2 +

n∑
k=3

(
λk

λ2

)2t

(ψk(x) − ψk(y))2
]
.

If there is a gap between |λ2| and |λ3|, then 
∣∣λk

λ2

∣∣ < 1 for each k ≥ 3. Therefore, while all eigenfunctions’ 
contributions to diffusion distances converge to zero as t → ∞, they do not do so at the same rate. When 
diffusion is near stationarity, higher-frequency eigenfunctions’ contributions to diffusion distances are nearly 
zero relative to the contribution of the second eigenfunction. This implies that the clustering generated by 
the second eigenfunction of P will persist until diffusion distances are numerically zero. The persistence of 
that clustering, however, does not reflect its stability, as the diffusion process will have effectively arrived 
at stationarity.

To avoid artificially increasing the stability of the clustering generated by the second eigenfunction 
of P, we choose to terminate cluster analysis at a maximum time step. We will cluster X using the 
LUND algorithm for all t in the set {0, 1, β, . . . , βT }, where β > 1 is an exponential sampling rate and 
T =

⌈
logβ

[
log|λ2|

(
τπmin

2
)]⌉

is a maximum time index depending on the quantity πmin = minu∈X π(u) and 
a stationarity threshold τ ∈ (0, 1). Intuitively, smaller β corresponds to a finer sampling and more precision 
when recovering latent multiscale structure in X. However, each additional time sample would correspond to 
another run of the LUND algorithm, so β should be tuned according to the size of the dataset and available 
computational resources. The quantity τ is a threshold for how close to stationarity diffusion should be to 
end cluster analysis and is typically small (τ � 10−2) in practice. The quantity T will be justified further 
in our theoretical guarantees in Section 4.3.3.

We remark that there is possibly be a more data-driven method of choosing time steps at which the 
LUND algorithm should be evaluated. For example, one reasonable modification is to generate an adaptive 
sampling of the diffusion process based on the spectrum of P. In this scheme, the LUND algorithm would 
be implemented using the time steps t at which the lowest-frequency eigenfunctions are annihilated in the 
diffusion map. This modification is, in many cases, likely to produce the same clusterings of the dataset and 
may result in a reduction in the computational complexity by a constant multiple. Nevertheless, it is not 
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Algorithm 2: Multiscale Learning by Unsupervised Nonlinear Diffusion (M-LUND).
Input: X (dataset), σ (diffusion scale), σ0 (KDE bandwidth), β (sampling rate), τ (stationarity threshold)
Output: {Cti

|ti = 0, 1, β, . . . , βT } (multiscale clusterings), Ct∗ (optimal clustering), Kt∗ (optimal no. clusters)
Construct the transition matrix P and its stationary distribution π with a Gaussian kernel and diffusion scale σ;
Calculate T =

⌈
logβ

[
log|λ2(P)|

( τ min(π)
2

)]⌉
;

for ti ∈ {0, 1, β, β2, . . . , βT } do
[Cti

, Kti
] = LUND(X, σ0, σ, ti);

end
J = {ti |1 < Kti

< n
2 } ;

for ti ∈ J do
VI(tot)(Cti

) = ∑
s∈J VI(Cti

, Cs);
end
Ct∗ = argmin

{
VI(tot)(Cti

)
∣∣ti ∈ J

}
;

Kt∗ = number of unique clusters in Ct∗ ;

clear that this modification reduces the computational complexity of clustering extraction asymptotically. 
In Section 4.4, we will argue that the value T is O(1) with respect to sample size n. Thus, any reduction in 
the number of times that the LUND algorithm is implemented in a multiscale extension must be a reduction 
by a constant multiple with respect to n.

To find the optimal clustering of X, we solve Ct∗ = argmin
{

VI(tot)(Ct)
∣∣t ∈ J

}
, where

the total VI of the clustering Ct is defined to be VI(tot)(Ct) =
∑

s∈J VI(Ct, Cs) and
J =

{
t = βj |j ∈ {−∞, 0, 1, . . . , T }, Kt ∈ [2, n2 )

}
. We restrict our analysis to clusterings sampled during 

J because it is possible that some clusterings extracted by the LUND algorithm are not meaningful; for 
example if the LUND algorithm is evaluated during a transition region. We will refer to a clustering Ct

as nontrivial if Kt ∈ [2, n2 ) and trivial otherwise. Thus, J corresponds to the time steps during which 
the LUND algorithm extracts a nontrivial clustering. We choose a lower bound of Kt = 2 because the 
single-cluster clustering yields no meaningful information about the dataset. We choose an upper bound of 
Kt = n

2 to avoid singleton clusters. Thus, the clustering Ct∗ is the partition of X that best represents the 
nontrivial multiscale structure detected by the LUND algorithm across the diffusion process. The M-LUND 
algorithm is provided in Algorithm 2.

The clustering Ct∗ is the barycenter of all nontrivial clusterings of X learned by the M-LUND algorithm, 
where distances between clusterings are measured using VI. In this sense, Ct∗ incorporates information from 
clusterings of all scales into a single representative partition. Importantly, however, VI minimization is not 
a simple average; clusterings may appear multiple times if they are extracted by the M-LUND algorithm at 
multiple time steps in the diffusion process. To see this, we must introduce new notation. Suppose M unique 
nontrivial clusterings are learned by the M-LUND algorithm, and let J� = {s ∈ J | Cs = C�} be the set of 
time steps during which a clustering C� is extracted by the M-LUND algorithm for 
 ∈ {1, 2, . . . , M}. Using 
this new notation, the total VI of a clustering Ct can be rewritten V I(tot)(Ct) =

∑M
�=1 |J�|V I(Ct, C�). We 

remark that |J�| can be interpreted as an approximation of the size of I(�)
ε on a logarithmic scale. Indeed, if C�

is extracted at only times within I(�)
ε , as β → 1+, it can be shown that |J�| → log

[
ε

2δ(�) − log(2κ(�)/ε)
log(1/|λK�+1|(�))

]
: the 

log-length of I(�)
ε . In particular, stable clusterings are emphasized by the M-LUND minimization scheme. 

Stability in the diffusion process is highly related to desirable properties in a clustering. For example, 
Proposition 3.1 implies that clusterings that consist of well-separated and coherent clusters are, all else 
equal, ε-separable by diffusion distances for a longer interval of time on a logarithmic scale. Therefore, 
by emphasizing clusterings’ stability in its optimization, the M-LUND algorithm weights representative 
clusterings with coherent and well-separated clusters higher.

In our performance guarantees (Section 4.3), we show that, under assumptions on entropy and mutual 
information of the clusterings in the MELD data model, the V I(tot)-minimizer will be in MELDε(X). In 
this sense, the M-LUND algorithm chooses the stability-weighted VI barycenter of the MELD data model.
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Fig. 2. A mixture of Gaussians example considered in this section. In the leftmost panel, the distances δ1, δ2, and δ3 are indicated 
on the dataset, with between-cluster Euclidean distance minimizer indicated in red. The clusterings C1, C2, and C3 are visualized 
in the right three panels. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

4.2.1. Relationship of the LUND and M-LUND algorithms
In this section, we highlight some key differences between the LUND and M-LUND clustering algorithms. 

The most significant of these differences, perhaps, is the difference between the standard clustering problem 
(where only one clustering at a fixed scale is learned) and the multiscale clustering problem (where many 
scales of latent clusterings are learned). In the LUND algorithm, the user must input a time parameter t. As 
we have discussed in Section 3, the value of t corresponds to the scale of cluster structure that can be learned 
using the LUND algorithm. Because the choice of the scale of t is not unsupervised, the LUND algorithm 
itself cannot be completely unsupervised. In contrast, the M-LUND algorithm eliminates the dependence on 
t by varying it across all relevant scales. After extracting all scales of latent cluster structure, the M-LUND 
algorithm then offers a way to incorporate all scales of latent cluster structure into a single representative 
clustering of the dataset. In this way, the M-LUND algorithm is able to cluster the dataset in a truly 
unsupervised fashion.

In addition, we remark that the dependence of the LUND algorithm on the time parameter t leaves 
it prone to user error. For two different datasets, the same value of t may not correspond to the same 
scale of clustering. This is because the intervals on which diffusion distances separate a given clustering are 
inherently dependent on the geometry of the dataset and that specific clustering. It is thus difficult to give 
guidance to the user about how to use the LUND algorithm to cluster at a preset scale on a general dataset. 
In contrast, the M-LUND algorithm varies the time parameter t across all scales of interest and finds the 
clustering of the dataset that is most representative of all underlying cluster structure. In this sense, the 
issues faced by the LUND algorithm in its reliance on the user inputting t are mitigated entirely by the 
proposed M-LUND algorithm. By eliminating the dependence on t by clustering a dataset at all relevant 
time scales, the M-LUND algorithm is also easier to use by a user unfamiliar with graph-based clustering 
algorithms.

4.2.2. The role of diffusion stability in the output of the M-LUND algorithm
Consider four well-separated clusters in RD of equal size n/4, arranged on the vertices of a trapezoid (see 

Fig. 2). Mathematically, we let X =
⋃4

k=1 Xk, where Xk consists of points from the kth cluster. We define 
δ1 = minx∈X1,y∈X2 ‖x − y‖2, δ2 = minx∈X3,y∈X4 ‖x − y‖2, and assume that δ3 = minx∈X1,y∈X3 ‖x − y‖2 =
minx∈X2,y∈X4 ‖x − y‖2 so that the clusters X1 and X3 are as well-separated as the clusters X2 and 
X4. Supposing 0 � δ1 < δ2 < δ3, consider three distinct nontrivial clusterings: C1 = {X1, X2, X3, X4}, 
C2 = {X1

⋃
X2, X3, X4}, and C3 = {X1

⋃
X2, X3

⋃
X4}.

The separation parameters δk are related to the stability of the clusterings C�. If the δk are large and 
nearly equal, then transitions between any pair of clusters will tend to be unlikely. In this case, C1 will be 
more stable in the diffusion process than C2 and C3. Conversely, if δ1 and δ2 are very small compared to 
δ3, then C3 will be more stable in the diffusion process than C1 and C2. The M-LUND algorithm learns 
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multiscale cluster structure by evaluating the LUND algorithm at an exponential sampling of the diffusion 
process. Thus, more stable clusterings will be extracted more frequently and weighted higher in the M-LUND 
minimization problem. We can explicitly derive when the M-LUND algorithm will choose one clustering 
over another as a function of the stability of those clusterings to graph diffusion.

Proposition 4.1. For 
 = 1, 2, 3, assume that a fraction p� ∈ [0, 1] of the nontrivial clusterings extracted by 
the M-LUND algorithm are C� and that p1 + p2 + p3 = 1 so that C1, C2, and C3 are the only nontrivial 
clusterings extracted by the M-LUND algorithm. Then,

1. C1 is chosen by the M-LUND algorithm if and only if p1 ≥ p2 + p3.
2. C2 is chosen by the M-LUND algorithm if and only if p2 ≥ |p1 − p3|.
3. C3 is chosen by the M-LUND algorithm if and only if p3 ≥ p1 + p2.

Proof. By the stated assumptions, p� = m�/(m1 + m2 + m3), where m� is the number of times that C� is 
extracted by the M-LUND algorithm. Since no other nontrivial clustering is extracted by the M-LUND algo-
rithm, V I(tot)(C�) =

∑3
k=1 m�V I(C�, Ck). By Definition 4.1, V I(C1, C2) = 0.5 log(2), V I(C1, C3) = log(2), 

and V I(C2, C3) = 0.5 log(2). Since V I(C�, C�) = 0 for all 
, total VI is calculated to be

V I(tot)(C1) = m2V I(C1,C2) + m3V I(C1,C3) = 0.5 log(2)[m2 + 2m3]

V I(tot)(C2) = m1V I(C1,C2) + m3V I(C2,C3) = 0.5 log(2)[m1 + m3]

V I(tot)(C3) = m1V I(C1,C3) + m2V I(C2,C3) = 0.5 log(2)[2m1 + m2].

Algebra comparing V I(tot)(C�) across 
 ∈ {1, 2, 3} yields the result. �
Proposition 4.1 suggests that stability in the diffusion process is critical in the M-LUND algorithm’s 

optimization scheme. If p� = p�′ for all 1 ≤ 
, 
′ ≤ 3, Proposition 4.1 implies that the M-LUND algorithm 
will output the intermediate clustering C2. Conversely, if C1 is extracted m > 2 times more frequently than 
C2 and C3 so that p1 > mp� for 
 = 2, 3, then C1 will be the minimizer of total VI. Thus, even though C2 is 
an intermediate clustering closest in VI to both C1 and C3, the M-LUND algorithm chooses C1 because of 
its relatively higher stability in the diffusion process. We remark that, in the limiting case that β → 1+, the 
set {p1, p2, p3} tends to converge to a distribution that is a function of the stability of the clusterings C1, C2, 
and C3. More precisely, assuming that each C� can only be learned during the interval I(�)

ε , then in the limit 
of β → 1+, p� tends towards the log-length of interval I(�)

ε , divided by the sum of the log-lengths of I(1)
ε , 

I(2)
ε , and I(3)

ε . Thus, Proposition 4.1 is robust to the choice of β when the value of β is taken sufficiently 
small.

4.3. Performance guarantees for unsupervised clustering

In this section, we provide performance guarantees on the M-LUND algorithm. We begin by reviewing 
guarantees on the performance of the LUND algorithm in Section 4.3.1 and extend these to performance 
guarantees of the M- LUND algorithm in Section 4.3.2. In Section 4.3.3, we provide theoretical justification 
for the termination of the first for-loop in the M-LUND algorithm at time βT by showing that, for any 
t > βT and pair of points x, y ∈ X, Dt(x, y) < τ .

4.3.1. Performance guarantees on the LUND clustering algorithm
In this section, we review previously-introduced guarantees on the performance of the LUND algorithm 

at recovering latent cluster structure at a fixed time step [41]. We will assume that there is a latent clustering 
Ct = {X

(t)}Kt of X at time t ≥ 0 and refer to the maximum within-cluster and minimum between-cluster 
k k=1
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diffusion distance at time t for the clustering Ct as Din
t (Ct) and Dbtw

t (Ct) respectively. We aim to show that, 
under plausible assumptions on density and diffusion at time t, the LUND algorithm with input t recovers 
the latent clustering Ct [41].

Definition 4.2. For a latent clustering Ct = {X
(t)
k }Kt

k=1 of X at time t ≥ 0, define the set of cluster density 

maxima at time t by Mt =
{

p(x)
∣∣∣∃k ∈ {1, . . . , Kt} : x = argmax

x∈X
(t)
k

p(x)
}

.

The LUND algorithm estimates the modes of clusters in the latent clustering at time t ≥ 0 as the 
maximizers of Dt(x). The following theorem guarantees that the cluster modes learned by the LUND 
algorithm are the highest-density points within clusters in the latent clustering at time t [41].

Theorem 4.1. [41] For a latent clustering Ct = {X
(t)
k }Kt

k=1 of X at time t ≥ 0, denote the Kt maximizers 
of Dt(x) as 

{
x

(t)∗
i

}Kt

k=1. If Din
t (Ct)

Dbtw
t (Ct) < min(Mt)

max(Mt) , there is a permutation (k1, . . . , kKt
) of (1, . . . , Kt) such that 

x
(t)∗
i maximizes empirical density among points in the cluster X(t)

ki
.

Thus, the cluster modes estimated by the LUND algorithm are cluster-wise empirical density maximizers. 
The LUND algorithm estimates the number of clusters at time t using the ratio of the sorted values taken 
by Dt(x).

Corollary 4.1. [41] For a latent clustering Ct = {X
(t)
k }Kt

k=1 of X at time t ≥ 0, let {x
(t)
mi}n

i=1 be the points 

in X sorted in non-increasing order by Dt(x). Then, for j < Kt, 
Dt(x(t)

mj
)

Dt(x
(t)
mj+1 )

≤ max(Mt)
min(Mt)

max1≤k≤K ρt(x(t)
mk

)

min1≤k≤K ρt(x
(t)
mk

)
. 

Conversely, 
Dt(x(t)

mKt
)

Dt(x
(t)
mKt+1 )

≥ min(Mt)
max(Mt)

Dbtw
t (Ct)

Din
t (Ct) .

By Corollary 4.1, under reasonable assumptions on the data and the latent clustering, Dt(x(t)
mk )/Dt(x(t)

mk+1)
will be small for the first Kt values and large thereafter, yielding an accurate estimation of the number of 
clusters at time t. In Corollary 4.2, these assumptions imply that the LUND algorithm perfectly recovers 
the latent clustering at time t [41].

Corollary 4.2. For a latent clustering Ct = {X
(t)
k }Kt

k=1 of X at time t ≥ 0, let {x
(t)
mi}n

i=1 be the points in X
sorted in non-increasing order by Dt(x). The LUND algorithm with input t will recover the latent clustering 
Ct if

Din
t

Dbtw
t

< min
{

min1≤i≤Kt
ρt(x(t)

mi)
max1≤i≤Kt

ρt(x(t)
mi)

(
min(Mt)
max(Mt)

)2

,
miny∈X p(y)

max(Mt)
min1≤k≤Kt

min
x�=y∈X

(t)
k

Dt(x, y)
Din

t (Ct)

}
.

Proof. First, we prove that the LUND algorithm correctly recovers the number of clusters in Ct, denoted 
Kt. For j < Kt,

Dt(x(t)
mj )

Dt(x(t)
mj+1)

≤ max(Mt)
min(Mt)

max1≤k≤Kt
ρt(x(t)

mk )
min1≤k≤Kt

ρt(x(t)
mk )

<
min(Mt)
max(Mt)

Dbtw
t (Ct)

Din
t (Ct)

≤
Dt(x(t)

mKt
)

Dt(x(t)
mKt+1)

,

where Corollary 4.1 was used to gain the first and last inequalities and
Din

t (Ct)
Dbtw

t (Ct)
max1≤i≤Kt

ρt(x(t)
mi

)

min1≤i≤Kt
ρt(x

(t)
mi )

<
(

min(Mt)
max(Mt)

)2
was used to gain the second. Next, let j > Kt. Because Din

t ≤ Dbtw
t

and p(x(t)
mj ) ≤ min(Mt) by Theorem 4.1, we clearly have that 

ρt(x(t)
mj

)

ρt(x
(t)
m )

≤ Din
t (Ct)

min1≤k≤Kt
min (t) Dt(x,y) . Thus,
j+1 x,y∈X
k
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Dt(x(t)
mj )

Dt(x(t)
mj+1)

≤ min(Mt)
miny∈X p(y)

Din
t (Ct)

min1≤k≤Kt
min

x,y∈X
(t)
k

Dt(x, y) <
min(Mt)
max(Mt)

Dbtw
t (Ct)

Din
t (Ct)

≤
Dt(x(t)

mKt
)

Dt(x(t)
mKt+1)

,

where Din
t (Ct)

min1≤k≤Kt
min

x�=y∈X
(t)
k

Dt(x,y) <
miny∈X p(y)

max(Mt)
Dbtw

t (Ct)
Din

t (Ct) was used to gain the second inequality, and Corol-

lary 4.1 was used to gain the last. So, the LUND algorithm correctly estimates
Kt = argmax1≤k≤n−1Dt(x(t)

mk )/Dt((x(t)
mk+1) and labels cluster modes C(x(t)

mk) = k (k = 1, . . . , Kt). Lastly, 
we show that non-modal labels are assigned correctly. Let x ∈ X

(t)
k be any unlabeled, non-modal point. 

Because Din
t (Ct) ≤ Dbtw

t (Ct), x∗ = argminy∈X{Dt(x, y)|p(y) ≥ p(x), y is labeled} must be a point in X(t)
k . 

So, C(x) = C(x∗) = k. By induction, all non-modal points are labeled correctly. �
Corollary 4.2 relies on a technical assumption that is sufficient (though not necessary) for successful recov-

ery of Ct by LUND. The first assumption, that Din
t (Ct)

Dbtw
t (Ct) <

min1≤i≤Kt
ρt(x(t)

mi
)

max1≤i≤Kt
ρt(x

(t)
mi )

(
min(Mt)
max(Mt)

)2
, holds if p(x) yields 

comparable values for cluster modes and between-cluster mode diffusion distances are roughly constant. For 
such datasets, min1≤i≤Kt

ρt(x(t)
mi)/ max1≤i≤Kt

ρt(x(t)
mi) will be insignificant, and min(Mt)/ max(Mt) will be 

close to 1. The second assumption, that Din
t (Ct)

Dbtw
t (Ct) <

miny∈X p(y)
max(Mt)

min1≤k≤Kt
min

x�=y∈X
(t)
k

Dt(x,y)

Din
t (Ct) , holds for datasets 

in which p(x) has low variance and for which Ψt(x) sends each cluster approximately to a point mass (e.g., 
in Fig. 1). For such datasets, within-cluster diffusion distances are nearly constant, so Din

t (Ct)/Dbtw
t (Ct) is 

small compared to min1≤k≤Kt
min

x�=y∈X
(t)
k

Dt(x, y)/Din
t (Ct).

4.3.2. Performance guarantees on the M-LUND clustering algorithm
We now provide performance guarantees for the M-LUND algorithm, all of which rely on the following 

setup:

Definition 4.3. We refer to the following as the usual setup: let ε ∈
(

0, 1√
n

)
, β > 1, and τ ∈ (0, 1). For each 

t ∈
{

0, 1, β, . . . , βT } 
⋂

Aε, let Ct ∈ MELDε(X) be the latent clustering of X at time t, and let {x
(t)
mi}n

i=1

be the points in X sorted in non-increasing order by Dt(x). Assume min
1≤�≤M

δ(�) >
ε

2 log τπmin
2

(|λ2|) and that, 

for each t ∈
{

0, 1, β, . . . , βT } 
⋂

Aε,

ε

1/
√

n − ε
< min

{
min1≤i≤Kt

ρt(x(t)
mi)

max1≤i≤Kt
ρt(x(t)

mi)

(
min(Mt)
max(Mt)

)2

,
miny∈X p(y)

max(Mt)
min1≤k≤Kt

min
x�=y∈X

(t)
k

Dt(x, y)
Din

t (Ct)

}
.

(3)

There are two main assumptions in the usual setup. The first, that min
1≤�≤M

δ(�) >
ε

2 log τπmin
2

(|λ2|), requires 
that the separation between clusters not be too strong. To gain some intuition for this condition, consider the 
idealized case in which, for some clustering scale 
, δ(�) = 0 so that the clusters X(�)

k are perfectly separated. 
Then, the upper limit of I(�)

ε is infinite; to accurately estimate I(�)
ε , the M-LUND algorithm would need 

to sample an infinite number of time steps. Thus, separation must not be so strong that diffusion spreads 
within clusters of a single clustering ad infinitum.

Lemma 4.1. Let ε > 0, β > 1, and τ ∈ (0, 1). If min
1≤�≤M

δ(�) >
ε

2 log τπmin
2

(|λ2|), then Aε ⊂ [0, βT ].

Proof. If min
1≤�≤M

δ(�) >
ε

2 log τπmin
2

(|λ2|), then max
1≤�≤M

ε

2δ(�) < log|λ2|

(τπmin

2

)
≤ βT . Since

Aε ⊂
[
0, max ε

(�)

]
, it follows that Aε ⊂ [0, βT ]. �
1≤�≤M 2δ
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The M-LUND algorithm extracts the latent clusterings of X by implementing the LUND algorithm at 
different choices of t. However, because cluster analysis is terminated at time t = βT , the cluster extraction 
stage of the M-LUND algorithm may end before the end of the last interval I(�)

ε . In this case, important 
information about the latent structure of X will be lost, and the performance of the M-LUND algorithm 
will correspondingly worsen. Lemma 4.1 guarantees that M-LUND samples all relevant time scales in the 
diffusion process when extracting cluster structure. We remark that, if there exists a δ(�) near zero, the 
th

MELD clustering would be easy to find by conventional means; e.g., running K-Means on the rows of Pt

for t very large. Moreover, the technical assumption of Lemma 4.1 is lax (e.g. if λ2 = 1 − 10−5, τ = 10−5, 
πmin = 10−2, and ε = 10−2, it holds if min1≤�≤M δ(�) > 10−8).

The second major assumption, that (3) holds for each t sampled from Aε, links the MELD data model and 
the M-LUND clustering algorithm. Indeed, when this condition holds, it implies that diffusion distances at 
any sampled t ∈ Aε will induce sufficiently strong separation on the clusterings Ct ∈ MELDε(X) that these 
clusterings can be learned by the M-LUND algorithm. In this sense, the M-LUND clustering algorithm is 
guaranteed to recover the MELD data model. The condition (3) is easier to satisfy when the variance of p is 
low and diffusion maps send clusters of MELD clusterings to coherent, well-separated clusters. For example, 
if density is uniform and Ψt(x) maps each cluster in Ct to a point mass for t ∈ {0, 1, β, . . . , βT } 

⋂
Aε, the 

right hand side of (3) will be 1. In this idealized case, (3) will be satisfied by any ε ∈
(

0, 1
2

√
n

)
. Conversely, 

(3) is more difficult to satisfy when the variance of p is high, or if diffusion distances do not separate cluster 
structure well. Proposition 4.2 summarizes the recovery of the MELD data model under the usual setup.

Proposition 4.2. Under the usual setup, the M-LUND algorithm extracts a superset of an exponential sam-
pling of MELDε(X).

Proof. By Lemma 4.1, Aε ⊂ [0, βT ]. For each t ∈
{

0, 1, β, . . . , βT } 
⋂

Aε, Din
t (Ct)

Dbtw
t (Ct) ≤ ε

1/
√

n−ε
by Corol-

lary 3.1, so the assumptions of Corollary 4.2 are satisfied. Hence, the LUND algorithm perfectly recovers 
Ct ∈ MELDε(X). This yields a superset of an exponential sampling of MELDε(X). �

In the M-LUND algorithm, the ε-stability of a clustering is approximated by exponentially sampling the 
interval [0, βT ]. In particular, if a clustering {X

(�)
k }K�

k=1 is more ε-stable, the interval I(�)
ε will be sampled more 

frequently. The M-LUND algorithm may obtain a fine-scale perspective of the ε-stability of the clusterings 
in MELDε(X) by decreasing the exponential sampling rate β. However, this requires implementations of 
the LUND algorithm at more time steps, increasing computational complexity. On the other hand, if β is 
too large, the M-LUND algorithm may not sample a MELD clustering of X. It is important to understand 
what choices of β are suitable for the M-LUND algorithm.

Proposition 4.3. Let ε ∈
(

0, 1√
n

)
and β ∈

(
1, ε

2δ(�∗)

/
log(2κ(�∗)/ε)

log(1/|λ(�∗)
K�∗ +1|)

]
, where 
∗ = argmin

1≤�≤M

[
logβ

(
ε

2δ(�)

)
−

logβ

(
log(2κ(�)/ε)

log(1/|λ(�)
K�+1|)

)]
. Then under the usual setup, the M-LUND algorithm extracts each of the clusterings 

in MELDε(X) at least once.

Proof. By Lemma 4.1, I(�)
ε ⊂ [0, βT ] for each 
 ∈ {1, . . . , M}. It therefore suffices to show that there exists 

a sample βk� ∈ I(�)
ε (k� ∈ {0, . . . , T }) for every scale 
 ∈ {1, . . . , M}. If β ∈

(
1, ε

2δ(�∗)

/
log(2κ(�∗)/ε)

log(1/|λ(�∗)
K�∗ +1|)

]
, then 

for each 
 ∈ {1, . . . , M},

1 ≤ logβ

( ε

2δ(�∗)

)
− logβ

(
log(2κ(�∗)/ε)

log(1/|λ(�∗) |)

)
≤ logβ

( ε

2δ(�)

)
− logβ

(
log(2κ(�)/ε)

log(1/|λ(�) |)

)
.

K�∗ +1 K�+1
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Thus, for each 
 ∈ {1, . . . , M}, there is a k� ∈ {0, . . . , T} such that logβ

(
log(2κ(�)/ε)

log(1/|λ(�)
K�+1|)

)
≤ k� ≤ logβ

(
ε

2δ(�)

)
, 

implying βk� ∈ I(�)
ε . �

Proposition 4.3 illustrates that there is a tension between finding a β that will sample all intervals I(�)
ε

and satisfying (3) for all time steps t ∈ Aε

⋂
{0, 1, β, . . . , T}. If ε is large, then there will be a wide range 

of exponential sampling rates β that can be used to sample all intervals I(�)
ε . However, if ε is too large, 

ε-separation by diffusion distances might not guarantee strong enough separation of clusters to satisfy (3)
at all sampled time steps. On the other hand, if ε is small, then (3) is easier to satisfy because of strong 
ε-separation by diffusion distances. However, because the intervals I(�)

ε shrink as ε becomes smaller, β must 
be decreased to guarantee that the M-LUND algorithm samples each interval I(�)

ε . Proposition 4.3 also 
illustrates how ε-stability affects the range of suitable choices of β. For fixed ε ∈

(
0, 1√

n

)
, if each interval 

I(�)
ε is large on a logarithmic scale, β can be chosen to be large and the M-LUND algorithm will still 

recover all clusterings in MELDε(X). On the other hand, if one of the clusterings {X
(�)
k }K�

k=1 in MELDε(X)
is unstable so that I(�)

ε is small on a logarithmic scale, β must be decreased to guarantee that the M-LUND 
algorithm samples I(�)

ε .
Because the intervals I(�)

ε are not known a priori, the entire time domain [0, βT ] must be sampled to 
learn the clusterings in the MELD data model. Thus, it is possible that the minimizer of total VI is not 
within MELDε(X) and is instead a clustering obtained during a transition region, i.e. intervals of time 
during which the transition matrix is rapidly mixing, and there is no “true” latent clustering. Because no 
latent clustering exists during transition regions, the VI between a clustering sampled during a transition 
region and a MELD clustering is expected to be high. Proposition 4.4 provides a lax technical assumption 
that guarantees a MELD clustering is the minimizer of total VI.

Proposition 4.4. Assume the usual setup, and let Bε = [0, βT ] \ Aε be the transition regions be-
tween clusterings in MELDε(X). If there is a t ∈ J

⋂
Aε such that for any r ∈ J

⋂
Bε,

1
|J|
∑

s∈J

[
I(Cr, Cs) − I(Ct, Cs)

]
< 1

2
[
H(Cr) − H(Ct)

]
, then the M-LUND algorithm outputs a clustering 

from MELDε(X) as the minimizer of total VI.

Proof. By Lemma 4.1, Bε is well-defined. Moreover, by Corollary 4.2, at each time step
t ∈ {0, 1, β, . . . , βT }

⋂
Aε, the LUND algorithm extracts the latent clustering at time t: Ct ∈ MELDε(X). 

It suffices to show that the total VI will be lower for a clustering sampled during Aε than for any sampled 
during Bε. By the stated assumption, there is a t ∈ J

⋂
Aε such that for any r ∈ J

⋂
Bε,

1
|J |
∑
s∈J

[
I(Cr,Cs) − I(Ct,Cs)

]
<

1
2
[
H(Cr) − H(Ct)

]

⇐⇒ |J |H(Ct) − 2
∑
s∈J

I(Ct,Cs) < |J |H(Cr) − 2
∑
s∈J

I(Cr,Cs)

⇐⇒
∑
s∈J

[
H(Ct) + H(Cs) − 2I(Ct, Cs)

]
<
∑
s∈J

[
H(Cr) + H(Cs) − 2I(Cr,Cs)

]

⇐⇒
∑
s∈J

V I(Ct,Cs) <
∑
s∈J

V I(Cr,Cs).

Since the total VI of Ct is less than that of Cr where r ∈ Bε, the minimizer of total VI must be sampled 
during Aε. �

Proposition 4.4 relies on a technical assumption on the entropy of and mutual information between 
nontrivial clusterings extracted by the LUND algorithm. The quantity 1 ∑ [

I(Cr, Cs) − I(Ct, Cs)
]

is 
|J| s∈J
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the average difference in mutual information encoded in Cr and Ct, where the average is across all nontrivial 
extracted clusterings Cs. The assumption of Proposition 4.4 is easier to satisfy if this quantity is small; i.e., 
if a clustering in MELDε(X) stores more information about the latent structure in X than the clusterings 
sampled during transition regions. On the other hand, the quantity 1

2
[
H(Cr) − H(Ct)

]
is half the difference 

in entropy between Cr and Ct. The assumption of Proposition 4.4 is easier to satisfy if this quantity is 
large. The entropy of a clustering is maximal if it consists of n singleton clusters, so the constraint on the 
entropy of Ct can be viewed as regularization: downweighting complicated clusterings that may not actually 
correspond to meaningful structure. Thus, a simple partition that shares high levels of mutual information 
with the other nontrivial extracted clusterings of X tends to satisfy the assumption of Proposition 4.4.

4.3.3. Diffusion near equilibrium
In this section, we will justify the termination of the first for-loop of the M-LUND algorithm at time t=βT . 

If |λ2| > |λ3|, then for any η >0, there exists t such that maxx,y∈X |Dt(x, y) − |λ2|t|ψ2(x) − ψ2(y)||≤η. This 
leads the LUND algorithm to continue to label the clustering generated by the second eigenfunction of P
until diffusion distances are numerically zero. However, the persistence of that clustering may not reflect its 
stability, as the diffusion process will have effectively arrived at its stationary distribution. For this reason, 
cluster analysis is terminated once diffusion is sufficiently close to stationarity in the M-LUND scheme. 
The following quantity will prove useful in measuring how close the diffusion process is to its stationary 
distribution:

Definition 4.4. Let P be a reversible, irreducible, and aperiodic transition matrix of a Markov chain on 
state space X with stationary distribution π. The relative pointwise distance of Pt to π at time t is 
Δ(t) = max1≤i,j≤n |(P t)ij − πj |/πj .

It is known that Δ(t) ≤ |λ2(P)|t/πmin [30,60]. This yields a uniform bound on Dt.

Proposition 4.5. For any τ ∈ (0, 1) and x, y ∈ X, if t > log|λ2|
(

τπmin
2
)
, then Dt(x, y) < τ .

Proof. Let ε > 0 and x, y ∈ X be given. By the definition of diffusion distances,

Dt(x, y) = ‖pt(x, :) − pt(y, :)‖�2(1/π)

≤ ‖pt(x, :) − π‖�2(1/π) + ‖pt(y, :) − π‖�2(1/π)

≤ 2
√∑

u∈X

max
z∈X

|pt(z, u) − π(u)|2
π(u)2 π(u)

≤ 2Δ(t)
√∑

u∈X

π(u)

= 2Δ(t)

≤ 2|λ2|t/πmin.

Thus, if t > log|λ2|
(

τπmin
2
)
, then Dt(x, y) < τ . �

The value log|λ2|
(

τπmin
2
)

is determined by quantities pertaining to the original graph and how diffusion 
spreads on it. In a graph with coherent components that have few edges between each other, |λ2| is close to 
0. Hence, coherent cluster structure in the dataset indicates that a longer time horizon is needed. Similarly, 
a smaller τ indicates that more time is needed before the threshold for stationarity is met. One can interpret 
the dependence of T on πmin as capturing the fact that more time is needed for diffusion to reach points of 
lower degree.
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4.4. Computational complexity

We will now analyze the computational complexity of the M-LUND algorithm, which is essentially linear 
when nearest neighbor searches are performed using the cover tree indexing structure [7,41]. Often, high-
dimensional datasets X ⊂ RD lie on or near intrinsically low-dimensional sets (e.g. subspaces or manifolds). 
The doubling dimension of X quantifies this notion of latent low-dimensionality [7]. Let c > 0 be the 
minimum value such that any ball B(p, r) = {q ∈ X | ‖p − q‖2 ≤ r} can be covered by c balls of half 
the radius. The doubling dimension of X is defined to be d = log2 c. Note that a uniform sample on a 
d-dimensional manifold has doubling dimension d. If X ⊂ RD has doubling dimension d, the calculation of 
all N nearest neighbors for X using cover trees has a computational complexity of O(NDCdn log(n)) [7]
with C a constant independent of n, N, d, D.

Theorem 4.2. Let d be the doubling dimension of X. Suppose P is built using a KNN graph with O(log(n))
nearest neighbors, cover trees are used for nearest neighbor searches, and O(1) eigenfunctions are used to 
compute diffusion distances. If T =

⌈
logβ

[
log|λ2|

(
τπmin

2
)]⌉

, the complexity of the M-LUND algorithm is 
O(TDCdn log2(n) + T 2n log(n)) with C a constant independent of n, N, d, D.

Proof. Under the stated assumptions, a single run of the LUND algorithm has complexity O(DCd log(n)2n)
[7,41]. Thus, the first for-loop in the M-LUND algorithm has complexity O(TDCdn log2(n)). Comput-
ing V I(Ct, Cs) costs O(n log(n)) operations [43]. Since |J | ≤ T + 2, the complexity of the second for-
loop in the M-LUND algorithm is O(T 2n log(n)). Combining these two results, the overall complexity is 
O(TDCdn log(n)2 + T 2n log(n)). �

Note that if β is replaced with β1/m, the complexity of the first for-loop increases by a factor of m, 
and the complexity of the second increases by a factor of m2. This is because a finer sampling frequency 
is used; i.e., the LUND algorithm must be evaluated more frequently. Similarly, τ indicates how close to 
stationarity Pt is required to be before terminating cluster analysis. So, if τ is decreased, the M-LUND 
algorithm’s complexity will increase. More precisely, if τ is replaced by τm, the value of T will increase 
slightly to 

⌈
logβ

[
log|λ2|

(
πmin

2
)

+ m log|λ2| τ
]⌉

.
We expect that T = O(1) with respect to n because T reflects the length of the interval for which diffusion 

distances remain bounded away from τ . If T = O(1) with respect to n, the following simplification holds:

Corollary 4.3. Under the assumptions of Theorem 4.2, if T = O(1) with respect to n, M-LUND has com-
plexity O(DCd log(n)2n).

Thus, no further complexity (with respect to n) is added to a single implementation of the LUND 
algorithm in its multiscale extension. Importantly, because the T +2 implementations of the LUND algorithm 
are independent of each other, the dominant for-loop in which the LUND clusterings are computed is 
embarrassingly parallelizable, as is computing total VI in the second dominant for-loop.

4.5. Comparisons with other multiscale clustering algorithms

In this section, we compare the M-LUND algorithm to related hierarchical and multiscale clustering 
schemes.

4.5.1. Comparison with dendrogram-based hierarchical clustering algorithms
In Appendix B.2, we describe classical hierarchical clustering algorithms, which extract a family of parti-

tions of the dataset using a linkage function and express them as a dendrogram. Most linkage functions use 
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Algorithm 3: Hierarchical Spectral Clustering (HSC) [6].
Input: X (dataset), σ (diffusion scale), Tmax (maximum time step)
Output: M partitions of X with stability measure and eigengap {(C(�), α�, β�)}M

�=1
Construct transition matrix P with a Gaussian kernel and diffusion scale σ;
Calculate the eigenvalues of P: {λi}n

k=1;
For t ∈ {1, 2, . . . , Tmax}, compute Δt = max1≤k≤n−1 |λt

k − λt
k+1| and Kt = argmax1≤k≤n−1|λt

k − λt
k+1|;

Find the M local maxima of Δt and denote them Δt1 , Δt2 . . . , ΔtM
. Set t0 = 0.;

for � = 1 : M do
C(�) = SC[X, σ, Kt�

];
Store (C(�), α�, β�), where α� = (t� − t�−1)/Tmax and β� = Δt�

;
end

Euclidean distances to compare clusters, causing poor performance on outliers. Conversely, because LUND 
relies on the function Dt(x) = p(x)ρt(x) to compute modes, it downweights low-density points that are high 
in diffusion distance from their Dt-nearest neighbor. Thus, the M-LUND algorithm is able to capture latent 
multiscale structure while remaining robust to outliers. Moreover, linkage-based clustering algorithms are 
typically greedy, optimizing for the best split at each iteration. This makes the output of these algorithms 
prone to small perturbations in the data. Conversely, all scales of clusterings extracted by the M-LUND 
algorithm arise from the same graph, making it more robust to minor variations in the data.

4.5.2. Comparison with hierarchical spectral clustering
SC has the disadvantage of requiring a priori knowledge of the number of clusters K. However, K may be 

estimated from P using the number of eigenvalues close to 1 [64]. A similar fact is true of Pt: the number of 
eigenvalues with |λi|t near 1 may be descriptive of the number of latent clusters at time t [6]. Hierarchical 
Spectral Clustering (HSC) leverages this property of P in a multiscale adaptation of classical SC [6]. Define 
St = {λt

k−λt
k+1}n−1

k=1 . If each of the K clusters in a latent clustering of X is a complete graph of equal size and 
if the effective rank of Pt is K, then the first K−1 entries of St will be small because λt

1 ≈ λt
2 ≈ · · · ≈ λt

K ≈ 1. 
Similarly, the last n − K − 1 entries of St will be small because λt

K+1 ≈ λt
K+2 ≈ . . . , λt

n ≈ 0. Thus, St is 
expected to be a sequence of nearly-zero numbers in all but the Kth entry. The quantity λt

K −λt
K+1 is called 

the eigengap at time t [6,64]. As t varies, Kt = argmaxk(λt
k − λt

k+1) varies as well, so t can be interpreted 
as a scaling parameter [6]. HSC finds the Kt corresponding to local maxima of Δt = max

1≤k≤n−1
{λt

k − λt
k+1}

and uses these as inputs for the SC algorithm (Section 2.2.2). HSC is provided in Algorithm 3.
There are similarities between the M-LUND algorithm and HSC. For example, both algorithms rely on 

a Markov diffusion process to extract multiscale cluster structure. However, there are some key differences 
between them, the most important being that HSC does not directly incorporate density into predictions. 
SC exhibits fundamental limitations on datasets with clusters that are not of uniform density and scale [49]; 
these limitations persist in the multiscale implementation of SC. In contrast, the M-LUND algorithm has 
performance guarantees for recovering the correct clusterings on datasets of varying scale and density.

Another difference between the M-LUND algorithm and HSC is the latter algorithm’s reliance on the 
eigengap to estimate the number of clusters at time t. While the eigengap is effective at uncovering the 
effective rank of Pt in some idealized cases, it may fail when Euclidean distances are used to extract P
from a dataset that does not consist of well-separated spherical clusters [2,38]. Conversely, there is strong 
empirical and theoretical evidence to support the use of the function Dt(x) to measure the number of latent 
clusters at time t [41].

4.5.3. Comparison with multiscale Markov stability clustering
Another diffusion-based approach to multiscale community detection uses the Markov stability of a clus-

tering at time t as a quality measure for multiscale clustering [33,34,39]. Markov stability is derived from the 
autocovariance matrix B(t) = ΠPt−π�π, where Π is the diagonal matrix with Πii = πi [33,34]. The quantity 
B(t) reflects the probability of a random walk beginning in a cluster Xk and being in that cluster after t steps, 
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Algorithm 4: Single-Linkage Learning by Unsupervised Nonlinear Diffusion (SL-LUND).
Input: X (dataset), σ (diffusion scale), σ0 (KDE bandwidth), β (sampling rate), τ (stationarity threshold)
Output: {C(�)}K1

�=1 (multiscale clusterings)
Construct the transition matrix P and its stationary distribution π with a Gaussian kernel and diffusion scale σ;
Calculate T =

⌈
logβ

[
log|λ2(P)|

( τ min(π)
2

)]⌉
;

for ti ∈ {0, 1, β, β2, . . . , βT } do
[{X

(1)
k }K1

k=1, K1] = LUND(X, σ0, σ, ti);
if 2 ≤ K1 < n/2 then

Set t = ti and C(1) = {X
(1)
k }K1

k=1;
break

end
end
for � = 2, 3, . . . , K1, do

Solve [X(�−1)
k1

, X(�−1)
k2

] = argmin1≤k<k′≤K�−1LSL-LUND(X
(�−1)
k , X(�−1)

k′ );
Merge X(�−1)

k1
and X(�−1)

k2
in C(�−1) to obtain C(�);

end

minus the probability that two independent random walks end in Xk, evaluated at stationarity [39]. Thus, 
B(t) is expected to be large for stable clusterings and nearly zero for intermediate, less stable clusterings. 
Nevertheless, to our knowledge, this relationship is more an intuition than a theoretical result. The Markov 
stability of a clustering C = {Xk}K

k=1 of X is defined to be r(t, C) =
∑K

k=1
∑

xi,xj∈Xk
B(t)ij [33,34,39]. The 

Markov stability r(t, C) will be large if a t-step random walk is likely to terminate in the cluster in which it 
began, and it is likely to be small if a between-cluster transition is likely [39].

The Multiscale Markov Stability (MMS) clustering algorithm optimizes r(t, C) across partitions C using 
a modified Louvain algorithm: Ct = argmax

{
r(t, Z) 

∣∣ Z is a partition of X
}

[8,39]. This optimization is 
performed across an exponential sampling of the diffusion process to learn multiscale structure. For each 
pair of times s and t, V I(Cs, Ct) is calculated [39,43]. If Ct is stable in the diffusion process, it is likely to 
be close in VI to other extracted clusterings [39]. The authors therefore look for large diagonal blocks with 
small values in the V I(Cs, Ct) matrix.

The M-LUND clustering algorithm is similar in some crucial ways to the MMS algorithm [39]. Both 
algorithms rely on a Markov diffusion process to indicate scale [39,41]. Similarly, both algorithms use the VI 
between clusterings to determine which partition is most representative of the dataset on a whole [39,43]. The 
main difference between the M-LUND and MMS algorithms is how clusterings are derived and the theoretical 
guarantees both clustering algorithms provide. The M-LUND algorithm uses the LUND algorithm to extract 
Kt and Ct at times t ≥ 0. In Corollary 4.2, we showed that under reasonable assumptions on cluster density 
and diffusion at time t, the LUND algorithm will perfectly recover Kt and Ct. While Markov stability-based 
clustering has been shown to perform well on many benchmark datasets, it does not enjoy similar theoretical 
backing.

4.5.4. Comparison with single-linkage learning by unsupervised nonlinear diffusion
In this section, we compare the M-LUND algorithm against the single-linkage learning by unsupervised 

nonlinear diffusion (SL-LUND) algorithm (Algorithm 4), which is a simpler multiscale extension of the 
LUND algorithm based in part on single-linkage clustering (SLC). In the first for-loop of the SL-LUND 
algorithm, an initial LUND clustering is obtained. Once that clustering, denoted C(1), is found, the SL-LUND 
algorithm treats this clustering as the finest-scale clustering in a dendrogram. To generate intermediate, 
coarser-scale clusterings, the SL-LUND algorithm iteratively merges clusters based on a diffusion distance-
based linkage function: LSL-LUND(X1, X2) := minx1∈X1,x2∈X2 Dt(x1, x2), which is identical to the one used 
in SLC (see Appendix B.2), except that diffusion distances at time t—the time step at which C(1) was 
extracted by the LUND algorithm—are used, rather than Euclidean distances.

In the best-case scenario—when a nontrivial clustering with few latent clusters is extracted early in the 
diffusion process—the SL-LUND algorithm has a computational complexity that is a factor of T less than 
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that of the M-LUND algorithm. However, the worst-case complexity of the SL-LUND algorithm is actually 
greater than or equal to that of the M-LUND algorithm. In the worst-case scenario, only trivial clusterings 
are extracted until time t = βT : a time at which a clustering with K1 = �n/2 − 1� is extracted. In this case, 
the computational complexity of the first for-loop is identical to the cluster extraction stage of the M-LUND 
algorithm. Moreover, assuming cover trees are used to compute LSL-LUND, the computational complexity 
of a single iteration of the second for-loop in the SL-LUND algorithm is O(mCdn log(n)), where m is the 
number of eigenfunctions used to compute diffusion distances and d is the doubling dimension of X. In this 
worst-case scenario, K1 = O(n), so the second for-loop has complexity O(mCdn2 log(n)), which is a factor 
of n greater than the worst-case computational complexity of the M-LUND algorithm.

Finally, the method by which clusters are merged in the SL-LUND algorithm is necessarily limited. As 
we have discussed in Section 3, for any fixed t, diffusion distances at time t can generally only separate one 
clustering. In the SL-LUND algorithm, however, we fix the time parameter t. In particular, all subsequent 
steps of merging clusters rely on diffusion distances at a fixed value of t. Thus, the SL-LUND algorithm 
in some sense is attempting to learn multiscale cluster structure from a snapshot of the graph at a fixed 
scale. In contrast, the M-LUND algorithm relies on the graph directly to build multiscale clusterings of 
the dataset. By relying upon diffusion at many time steps to enable multiscale clustering detection, we 
incorporate all scales of hierarchical clustering into the proposed M-LUND clustering algorithm.

5. Numerical experiments

In this section, we illustrate the performance of the M-LUND algorithm. We compute a number of 
statistics on its performance on four synthetic datasets (overlapping Gaussians, concentric rings, data with 
bottlenecks, and Gaussians on the unit sphere S1), eleven real, benchmark datasets, and the Salinas A 
HSI. Discussion on how the synthetic datasets and Salinas A HSI exhibit multiscale structure is provided 
in Appendix C. For synthetic datasets, we implemented the M-LUND algorithm on 100 samples of the 
latent distribution and provide detailed analysis of its performance on a representative sample. Weight 
matrices were calculated using a Gaussian kernel with diffusion scale σ > 0. KDEs were computed (as 
described as in Section 2.6) with KDE bandwidth σ0 and N 
2-nearest neighbors. Diffusion maps were 
truncated to only include the first 10 eigenfunctions. Because the transition matrices analyzed in this 
section were approximately low rank, this resulted in a much-reduced computational complexity for the M-
LUND algorithm while retaining high levels of accuracy in diffusion distance computations. For all numerical 
experiments, we used a stationarity threshold of τ = 10−5 and sampling rate β = 2, but we used different 
choices of N , σ, and σ0 for different datasets.

We computed the stochastic complements of P with respect to the clusterings extracted using the LUND 
algorithm in order to measure the geometric constants λ(�)

K�+1, δ(�), and κ(�) and the intervals I(�)
ε . In the 

fifth column of the figures in this section, the lower and upper limits of the interval I(�)
ε are plotted as a 

function of ε. The blue curve corresponds to the lower limit of I(�)
ε , while the red curve corresponds to its 

upper limit. If, for a fixed ε > 0, the value taken by the blue curve is greater than the value taken by the 
red, then I(�)

ε = ∅ and the clustering is not guaranteed to be ε-separable by diffusion distances at any time 
in the diffusion process. On the other hand, if the red curve takes a greater value than the blue for some 
ε ∈

(
0, 1√

n

)
, a range of time exists during which the clustering can be ε-separable by diffusion distances. 

Hence, from the clusterings of X extracted by the M-LUND algorithm, we recovered the MELD data model 
of X. We remark that the condition t ∈ I(�)

ε for ε ∈
(

0, 1√
n

)
is sufficient for the 
th MELD clustering to be 

ε-separable by diffusion distances at time t but not necessary. Thus, even if I(�)
ε is empty, it is possible for 

the clustering {X
(�)}K� to be ε-separable by diffusion distances.
k k=1
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Fig. 3. Diffusion on four three-dimensional Gaussians of variable density (n = 4000). Red points indicate cluster modes. To generate 
plots of Dt(x), we project the points in X onto two dimensions. The number of estimated clusters monotonically decreases with t. 
Because of poor separation between Gaussians, MELDε(X) is empty for all choices of ε.

5.1. Synthetic Gaussians in R3

In this section, we analyze a dataset sampled from four overlapping Gaussians in R3. The outer Gaus-
sians have larger radii than the inner Gaussians, which are higher density. We implemented the M-LUND 
algorithm using a KNN graph with edges weighted with a Gaussian kernel. The parameters we used were 
N = 25 nearest neighbors, diffusion scale σ = 3.10 and KDE bandwidth σ0 = 1.45. In Fig. 3, we show how 
the labels assigned by the LUND algorithm change as a function of the diffusion time parameter. Early 
in the diffusion process, higher-frequency eigenfunctions still contribute to diffusion distance computations 
and the LUND algorithm assigns a trivial singleton clustering (Fig. 3a, t ∈ [0, 25]). Later in the diffusion 
process, only the first four eigenfunctions contribute significantly to diffusion distances, and each of the four 
Gaussians is assigned to its own cluster (Fig. 3b, t ∈ [26, 29]). Finally, each large-radius Gaussian is merged 
with the nearest small-radius Gaussian (Fig. 3c, t ∈ [210, 216]). The M-LUND algorithm assigns a total VI 
of 6.00 to the 4-cluster clustering and a total VI of 4.00 to the 2-cluster clustering, which is more stable and 
thus the total VI minimizer.

Fig. 3 makes clear that the MELD data model is highly sensitive to cluster overlap. If outliers of one 
cluster are close to outliers of another, then δ will be large [41]. Because of the significant overlap between 
the four Gaussians in this dataset, the interval I(�)

ε is empty for both clusterings of X across all choices of 
ε > 0. The numerical experiments given in this section therefore imply that the reliance of MELDε(X) on 
the separation parameter δ is somewhat pessimistic, and the M-LUND algorithm is able to detect latent 
structure at a variety of scales even when ε-separation is not necessarily achieved.
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Fig. 4. Diffusion on three nested circles in R2 (n = 5380). Red points indicate cluster modes. Nonlinear structure is detected. The 
number of estimated clusters monotonically decrease with t. Clusterings are observed to transition as a function of when a given 
component of the diffusion map is annihilated. Notably, the intervals I(�)

ε do not intersect for any choice of ε > 0.

5.2. Synthetic nonlinear data in R2

In this section, we analyze a dataset sampled from three nested rings of uniform density. We implemented 
the M-LUND algorithm using a complete graph. Edges were weighted using a Gaussian kernel with diffusion 
scale σ = 0.21. The parameters we used for the KDE were N = 200 nearest neighbors and a KDE bandwidth 
of σ0 = 3.00. The distance between the middle and inner rings is smaller than the distance between the 
outer and middle rings. In Fig. 4, we show how the labels assigned by the LUND algorithm change as a 
function of time. Many classical clustering algorithms (e.g., K-Means, K-medoids, DPC [23,56]) may not 
perform well on data with nonlinear structure, but the LUND algorithm returns reasonable clusterings for 
much of the diffusion process. For t small (Fig. 4a, t ∈ [0, 215]), diffusion has not passed a critical point at 
which enough higher-frequency eigenfunctions have been annihilated that diffusion distances can accurately 
separate cluster structure in the outer rings. Notably, because of poor separation between clusters, the 
interval I(�)

ε = ∅ for any choice of ε > 0. In particular, this clustering is not included in MELDε(X) for any 
ε > 0.

When t is sufficiently large, only the first four eigenfunctions contribute significantly to diffusion distances, 
and the LUND algorithm assigns each ring to its own cluster (Fig. 4b, t ∈ [216, 232]). Later in the diffusion 
process, the third and fourth coordinates of the diffusion map decay to zero as well, and the middle and 
inner ring clusters merge (Fig. 4c, t ∈ [233, 235]). Notice that, in Figs. 4b-4c, Dt(x) returns relatively small 
values on all x ∈ X except cluster modes. On modal points, the value taken by Dt(x) is several orders of 
magnitude larger than that which is taken on the surrounding dataset, implying that the LUND estimate 
for Kt is highly robust for these clusterings. Total VI was minimized for the 3-cluster clustering, which 
was assigned a total VI of 1.79. Conversely, the 2-cluster clustering was assigned a total VI of 3.80. For 
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Fig. 5. Diffusion on data with bottlenecks in R2 (n = 6550). Red points indicate cluster modes. The number of estimated clusters 
monotonically decreases with t, and clusterings are observed to transition as components of the diffusion map are annihilated. The 
clusterings in Figs. 5c-5d are ε-separable by diffusion distances for choices of ε > 0. The intervals I(�)

ε do not intersect for any 
choice of ε > 0.

ε sufficiently large, there are non-intersecting intervals of time I(�)
ε during which each of these clusterings 

is ε-separable by diffusion distances. In this sense, the MELD data model recovered from this nonlinear 
dataset consists of the 3-cluster and 2-cluster clusterings (Figs. 4b-4c).

5.3. Synthetic bottleneck data in R2

In this section, we analyze a dataset with bottlenecks. Each bottleneck consists of two Gaussians of the 
same radius, connected by data sampled from a uniform distribution. Density is the same for all Gaussians 
but is higher than the density of data sampled from uniform distributions. We have added an additional 
Gaussian that is slightly closer to the right bottleneck. We implemented the M-LUND algorithm using a 
complete graph with a Gaussian kernel and diffusion scale σ = 0.86. The parameters we used for the KDE 
were N = 200 nearest neighbors and a KDE bandwidth of σ0 = 0.50. We visualize the performance of 
the M-LUND algorithm in Fig. 5. For t small, many higher-frequency eigenfunctions contribute to diffusion 
distance computations, and the LUND algorithm estimates seven latent clusters with significant overlap 
(Fig. 5a, t ∈ [0, 21]). As t becomes larger, fewer higher-frequency eigenfunctions contribute to diffusion 
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distances, and X is partitioned into five clusters (Fig. 5b, t ∈ [22, 28]). Both of these clusterings have I(�)
ε

empty due to poor separation between clusters.
Once higher-frequency components of the diffusion map decay to zero, the LUND algorithm detects a 

3-cluster clustering in which each bottleneck is assigned to a cluster and the separated Gaussian is assigned 
to a cluster (Fig. 5c, t ∈ [29, 223]). After the third diffusion map coordinate is annihilated, the LUND 
algorithm groups the separated Gaussian with the right bottleneck (Fig. 5d, t ∈ [224, 225]). The minimizer 
of total VI is the 3-cluster clustering, which is assigned a total VI of 14.63. The clusterings in Figs. 5c-5d
are well-separated within the original graph, and we observe that there are choices ε ∈

(
0, 1√

n

)
for which 

the intervals I(�)
ε are nonempty. In this sense, the unique clusterings in MELDε(X), for ε sufficiently large, 

consist of the 2-cluster and 3-cluster clusterings of X. As was the case for the nonlinear dataset discussed 
in Section 5.2, the intervals I(�)

ε do not intersect for any choice of ε ∈
(

0, 1√
n

)
.

5.4. Synthetic manifold data

In this section, we analyze results on a dataset that consists of points sampled from a manifold. More 
precisely, we sampled the angular coordinate of points on the manifold S1 from a mixture of five Gaussian 
distributions on [0, 2π). One Gaussian has mean 0 rad and standard deviation 0.64 rad. The other four 
Gaussians each have standard deviation 0.11 rad and means 21

32 π rad, 27
32 π rad, 37

32 π rad, and 43
32 π rad 

respectively. The M-LUND algorithm was implemented using a complete graph, and edges between points 
were weighted using a Gaussian kernel with diffusion scale σ = 0.358. We used a KDE with N = 20 nearest 
neighbors and σ0 = 0.006.

In Fig. 6, we show how labels assigned by the LUND algorithm vary as a function of the time parameter 
t. Early in the diffusion process, the M-LUND algorithm assigns a trivial K = 1 clustering of X (Fig. 6a, 
t ∈ [0, 1]). Once higher-frequency eigenfunctions have been annihilated in the diffusion map, the LUND 
algorithm assigns a K = 5 clustering, successfully recovering the latent distribution from which each data 
point was sampled (Fig. 6b, t ∈ [21, 22]). After some progression in the diffusion process, the neighboring 
Gaussians in quadrants 2 and 3 of S1 are merged, yielding a K = 3 clustering (Fig. 6c, t ∈ [23, 28]). Once 
just the second eigenfunction contributes to diffusion distance computations, the LUND algorithm merges 
the clusters in quadrants 2 and 3 in a final K = 2 clustering (Fig. 6c, t ∈ [29, 212]). Due to poor separation 
between Gaussian distributions on the manifold, I(�)

ε is empty for all clusterings. The minimizer of total VI 
is the highly-stable K = 3 clustering, which was assigned the a total VI of 3.77.

5.5. Benchmark real data

In this section, we present analysis of multiscale clustering algorithms on eleven publicly-available, real-
world datasets that are frequently used as benchmarks for clustering. These datasets and their ground truth 
labels (denoted CG) were obtained from the University of California, Irvine’s Machine Learning Reposi-
tory [20]. This choice of eleven real datasets was proposed by [39], wherein MMS clustering was compared 
against conventional clustering schemes. Attributes of these datasets and the parameters used to generate 
P and p(x) are summarized in Table 1.

The normalized mutual information (NMI ) between an estimated clustering and the ground truth labels 
is used as the performance measure of the clusterings in the dataset in this section. NMI, which is defined 

by NMI(C, C′) =
√

I(C,C′)2

H(C)H(C′) , is a measure of similarity between two clusterings, ranging [0, 1]. NMI is 
closely related to VI, and it can be shown that NMI(C, C′) = 1 if and only if V I(C, C′) = 0 (i.e., C = C′). 
Thus, if NMI(C, CG) is near 1, the clustering C is very close in VI to the ground truth labels. Conversely, 
NMI(C, C′) = 0 if and only if the random variables associated with the clusterings C and C′ are independent; 
i.e., observing C yields no new information about the clustering C′. Thus, if NMI(C, CG) is near 0, there is 
only a weak relationship between C and the ground truth labels, and VI(C, CG) will be large.
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Fig. 6. Diffusion on data sampled from Gaussians on the manifold S1 in R2 (n = 2100). Red points indicate cluster modes. The 
number of estimated clusters monotonically decreases with t, and clusterings are observed to transition as components of the 
diffusion map are annihilated. Because of poor separation between clusters, MELDε(X) is empty for all choices of ε.

We first compare M-LUND against related algorithms (MMS, HSC, SLC, K-Means, and LUND) [23,39,
41,52]) at a fixed scale by setting the number of clusters K to be the number of ground truth classes in 
CG. Diffusion-based algorithms (M-LUND, MMS, HSC, LUND) were implemented using the same KNN 
graph with edges weighted with a Gaussian kernel. In our implementation of the LUND algorithm, the 
time parameter t is set to be the first value at which nontrivial cluster structure is extracted. Graph 
parameters are summarized in Table 1, and the results of this analysis are provided in Table 2. We compared 
performances using the two-sided paired-sample t-test [55], which tests the null hypothesis that the difference 
in performance between the M-LUND algorithm and its competitors is distributed normally with mean zero. 
Under this null hypothesis, the test statistic (denoted tS) follows a Student’s t-distribution with nD − 1
degrees of freedom, where nD reflects the number of datasets on which these algorithms were evaluated. 
We rejected the null hypothesis when comparing the M-LUND algorithm against each of MMS, HSC, SLC, 
K-Means, and LUND at the α = 0.05 significance level. Thus, the M-LUND algorithm produces clusterings 
that are significantly closer to ground truth labels than those produced by the other four algorithms.

We next compare the M-LUND algorithm against related algorithms (MMS, HSC, SLC, and SL-
LUND [23,39,52]) in a multiscale setting. As before, diffusion-based algorithms were implemented using 
the same graph as well as the same exponential time sampling of the diffusion process. To evaluate 
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Table 1
Summary of the eleven benchmark datasets analyzed. All datasets were obtained from the University of California, Irvine’s Machine 
Learning Repository [20]. Graph and KDE parameters for this section’s analysis are stored in the rightmost column. Here, N denotes 
the number of nearest neighbors, while σ and σ0 are the diffusion scale and KDE bandwidth respectively.

Dataset Number of 
samples, n

Ambient data 
dimensionality, D

Number of ground 
truth classes, K

Parameters
N σ σ0

Breast Tissue 106 9 6 5 16 140 1230
Control Chart 600 60 6 200 58.97 45.05
Glass 214 9 6 5 1.07 0.41
Image Seg. 2310 19 7 5 748 15.50
Iris 150 4 3 50 1.34 0.457
Parkinsons 195 22 2 5 111 9.96
Seeds 210 7 3 100 0.91 1.09
Vertebral 310 6 3 5 18.15 12.39
WBCD 569 30 2 20 234 283
Wine 178 13 3 50 78.57 117.56
Yeast 1484 8 10 10 33.66 0.78

an algorithm’s performance, we compare the optimal clustering it outputs to the ground truth labels. 
For M-LUND, MMS, and HSC, we select the clustering that minimizes total VI as the optimal out-
putted clustering. SLC does not rely on a diffusion process to generate its clusterings, so we select 
C(�∗) = argmin2≤�<n/2Lin

SLC(C(�))/Lbtw
SLC(C(�)), where Lin

SLC(C(�)) = max1≤k≤� max
x,y∈X

(�)
k

‖x − y‖2
is the maximum within-cluster Euclidean distance for the 
-cluster clustering in the dendogram, denoted 
C(�), and Lbtw

SLC(C(�)) = min1≤k<k′≤�LSLC(X(�)
k , X(�)

k′ ) is the minimum between-cluster value taken by the 
SLC linkage function. Similarly, SL-LUND does not directly rely on varying a diffusion time parameter 
to generate multiscale clusterings, so we select C(�∗) = argmin2≤�≤K1

Lin
SL−LUND(C(�))/Lbtw

SL−LUND(C(�)), 
where Lin

SL−LUND(C(�)) = max1≤k≤� max
x,y∈X

(�)
k

Dt(x, y) is the maximum within-cluster diffusion dis-
tance for the 
th SL-LUND clustering in the dendogram, denoted C(�), and
Lbtw

SL−LUND(C(�)) = min1≤k<k′≤�LSL−LUND(X(�)
k , X

(�)
k′ ) is the minimum between-cluster value taken by 

the SL-LUND linkage function.
Table 3 indicates that the M-LUND algorithm generates clusterings that are, on average, closer to the 

ground truth labels than those assigned by the algorithms it is compared against. Indeed, the performance 
achieved by the M-LUND algorithm is greater than or equal to that of its competitors across all datasets. 
We remark that, on six datasets, the SL-LUND algorithm achieves equal performance to the M-LUND 
algorithm, reflecting that the first nontrivial clustering extracted by the LUND algorithm is the total VI 
minimizer for these datasets. Regardless, the SL-LUND algorithm’s use of a single time step to analyze 

Table 2
Comparison of clustering algorithms’ performance on eleven benchmark datasets when K is fixed to be the number of clusters in 
CG. MMS clustering did not learn a K-cluster clustering from the Control Chart and Parkinsons datasets, so we did not include 
performances on these datasets in averages or statistical tests. We used the NMI between the outputted K-cluster clustering and 
ground truth labels to measure performance on a dataset. Thus, a high value reflects more similarity to the ground truth labels 
in the dataset. On average, the K-cluster M-LUND clustering is significantly closer to the ground truth labels than the K-cluster 
clusterings produced by the algorithms we compare against: MMS (p = 0.03, tS = 2.66), HSC (p = 0.001, tS = 4.94), 
SLC (p = 7.45 × 10−5, tS = 7.45), K-Means (p = 0.001, tS = 4.75), and LUND (p = 0.03, tS = 2.55).

Dataset M-LUND MMS HSC SLC K-means LUND
Breast Tissue 0.415 0.402 0.355 0.122 0.294 0.164
Control Chart 0.806 — 0.713 0.695 0.749 0.806
Glass 0.427 0.400 0.254 0.0724 0.378 0.427
Image Seg. 0.644 0.638 0.474 0.366 0.507 0.644
Iris 0.901 0.743 0.766 0.717 0.742 0.735
Parkinsons 0.039 — 0.001 0.005 0.001 0.001
Seeds 0.739 0.732 0.667 0.066 0.710 0.739
Vertebral 0.574 0.550 0.515 0.009 0.403 0.532
WBCD 0.498 0.403 0.473 0.005 0.465 0.326
Wine 0.450 0.435 0.405 0.062 0.423 0.450
Yeast 0.351 0.284 0.276 0.066 0.244 0.253

Average 0.555 0.510 0.465 0.165 0.463 0.475



Table 3
Comparison of clustering algorithms’ performance on eleven benchmark datasets. We used the NMI between the optimal outputted 
clustering and the ground truth labels to measure an algorithm’s performance on a dataset. Thus, a high value reflects more 
similarity to the ground truth labels in the dataset. The highest NMI for each dataset is marked in bold. On average, the optimal 
M-LUND clustering is significantly closer to the ground truth labels than the optimal clusterings produced by the algorithms we 
compare against: MMS (p = 0.02, tS = 2.75), HSC (p = 0.004, tS = 3.68), SLC (p = 2.47 × 10−4, tS = 5.54), and SL-LUND 
(p = 0.05, tS = 2.20).

Dataset M-LUND MMS HSC SLC SL-LUND
Breast Tissue 0.480 0.378 0.00 0.016 0.480
Control Chart 0.760 0.760 0.712 0.571 0.760
Glass 0.467 0.365 0.034 0.034 0.463
Image Seg. 0.630 0.029 0.480 0.009 0.630
Iris 0.734 0.734 0.734 0.734 0.734
Parkinsons 0.193 0.113 0.001 0.013 0.193
Seeds 0.739 0.551 0.635 0.397 0.578
Vertebral 0.623 0.465 0.515 0.004 0.501
WBCD 0.443 0.357 0.374 0.005 0.326
Wine 0.448 0.375 0.379 0.314 0.448
Yeast 0.301 0.195 0.035 0.035 0.035

Average 0.529 0.393 0.354 0.194 0.468

multiscale cluster structure forces it to perform, on average, worse on the eleven datasets we considered. As 
before, we compared performances using the two-sided, paired-sample t-test [55], testing the null hypothesis 
that the difference in performance between the M-LUND algorithm and its competitors is distributed 
normally with mean zero. We again rejected this null hypothesis when comparing the M-LUND algorithm 
against each of MMS, HSC, and SLC at the α = 0.05 significance level. Thus, in both the fixed-scale and 
multiscale settings, the M-LUND algorithm produces clusterings that are significantly closer to the ground 
truth labels compared to those generated by related algorithms.

5.6. Salinas A hyperspectral image

HSIs are images of a scene, typically generated by airborne sensors or satellites in orbit, that encode infor-
mation about a hundred or more bands of electromagnetic activity. While HSIs are very high-dimensional and 
encode rich information about a scene, they often exhibit intrinsically low-dimensional structure [47,48,71]. 
In this section, we show that the M-LUND algorithm detects latent multiscale structure in the Salinas A 
HSI [27]. The Salinas scene was generated using the Airborne Visible/Infrared Imaging Spectrometer Sen-
sor over Salinas Valley, California, United States in 1998. We examined the Salinas A subset of the Salinas 
scene, which is 83 × 86 pixels with D = 224 spectral bands per pixel. To differentiate two pixels exhibiting 
the same exact value in each spectral band, we added Gaussian noise with variance = 10−4 to the Salinas 
A HSI as a preprocessing step [48]. In Fig. 7, we visualize the ground truth labels for the Salinas A image 
and the spectra of a random subset of the image. Black pixels reflect bare soil, while other colors reflect 
different crop types. Notably, the spectra of broccoli greens pixels, which are the dark blue crop type, is 
highly distinct from the spectra of all other ground truth classes.

In Fig. 8, we show how the pixel labels assigned by the LUND algorithm change as a function of the 
diffusion time parameter. The parameters we used were N = 75 nearest neighbors, diffusion scale σ = 1.90
and KDE bandwidth σ0 = 4.25 × 10−3. Early in the diffusion process, broccoli greens pixels are grouped 
together, while all other pixels are assigned singleton clusters (Fig. 8a, t ∈ [0, 211]). Once higher-frequency 
coordinates of the diffusion map have been annihilated, the LUND algorithm detects 5 clusters (Fig. 8b, 
t ∈ [212, 213]), reflecting fine-scale structure in the HSI. The clusters in this clustering correspond to broccoli 
greens, corn-senesced greens grouped with 5-week maturity romaine lettuce crops, 6-week maturity romaine 
lettuce crops, 7-week maturity romaine lettuce crops, and 8-week maturity romaine lettuce crops. Later in 
the diffusion process, mature romaine lettuce (7-8 week maturity) clusters merge in a 4-cluster clustering 
with total VI = 5.47 (Fig. 8c, t = 214). Finally, all romaine lettuce clusters merge, leaving only the broccoli 
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Fig. 7. Visualization of Salinas A scene. In the left panel, the ground truth labels for the pixels are provided. Black indicates 
bare soil and other colors indicate crop type. Specifically, dark blue indicates broccoli greens, teal indicates corn senesced greens, 
green indicates 5-week romaine, orange indicates 6-week romaine, yellow indicates 7-week romaine, and light blue indicates 8-week 
romaine. In the right panel, the spectra of a random subset of the Salinas A HSI are provided. Each pixel is colored by its ground 
truth label.

Fig. 8. Diffusion process on the Salinas A HSI (n = 7138) [27]. Red points indicate cluster modes. Multiscale structure is detected. 
The number of estimated clusters monotonically decreases with t. Data indices in P are ordered by their ground truth class to 
illustrate multiscale structure.
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Fig. 9. Comparison of the K = 5 and K = 2 clusterings extracted by the M-LUND algorithm from the Salinas A HSI [27] against 
the K = 5 and K = 2 clusterings assigned by HSC and SLC [6,23,26].

greens crops separated (Fig. 8d, t ∈ [215, 218]). This highly stable, 2-cluster clustering is the total VI 
minimizer for the HSI (total VI = 2.86). Due to poor separation between clusters, no clustering of the HSI 
is guaranteed to be ε-separable by diffusion distances at any interval in the diffusion process.

As in Section 5.5, we compare the performance of the M-LUND clustering algorithm against MMS 
clustering, HSC, SLC, and SL-LUND. The same KNN graph with Gaussian kernel and same exponential 
sampling of the diffusion process were used for diffusion-based algorithms (M-LUND, MMS, and HSC, 
SL-LUND). All algorithms except for MMS clustering produce 5-cluster and 2-cluster clusterings of the 
Salinas A image (Fig. 9). The clusterings produced by SLC do not meaningfully correspond to ground truth 
labels. In contrast, the M-LUND algorithm, SL-LUND, and HSC extract clusterings that can be related 
to the ground truth labels in Fig. 7. The K = 5 clusterings generated by the three algorithms are similar, 
but romaine lettuce clusters estimated by the M-LUND (and hence SL-LUND) algorithm are slightly more 
coherent than those estimated by HSC (Fig. 9a). M-LUND, and HSC, and SL-LUND produce identical 
K = 2 clusterings, wherein broccoli greens pixels are separated from all else in the scene (Fig. 9b). We 
observe a different trend in the outputs of MMS clustering (Fig. 10). Indeed, clusterings rapidly transition 
early in the diffusion process from K = 12 to K = 6. This different trend may be due to MMS clustering 
not explicitly relying on the spectral decomposition of P. In contrast, the M-LUND algorithm, HSC, and 
SL-LUND directly rely on the eigenfunctions of P to learn multiscale structure from X. Regardless, it is 
clear from the results of this section that a nonlinear diffusion-based clustering scheme is able to extract 
latent multiscale structure from the Salinas A HSI.

6. Conclusions and future work

We have shown that Markov chains derived from a data-generated graph facilitate the detection of 
clusterings at many scales, and the specific scale at which one wishes to cluster is tightly linked to the 
diffusion time parameter. With this in mind, we introduced the Multiscale Environment for Learning by 
Diffusion (MELD) data model: a family of latent clusterings of the dataset, parameterized by the diffusion 
time parameter. We have shown that each clustering in the MELD data model can be separated by diffusion 
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Fig. 10. Nontrivial clusterings of the Salinas A HSI [27] extracted by MMS clustering [39]. Fine-scale multiscale structure is extracted 
from the HSI, but MMS clusterings did not return any clusterings coarser than the K = 6 clustering in the rightmost panel.

distances during an interval of time that depends on the geometry of the dataset and that clustering. We 
showed that clusterings that consist of well-separated, coherent clusters are more stable in the diffusion 
process and will occur more frequently in the MELD data model.

We introduced the Multiscale Learning by Unsupervised Nonlinear Diffusion (M-LUND) clustering algo-
rithm. The M-LUND algorithm is a multiscale extension of the LUND algorithm, which was introduced to 
leverage the attractive theoretical properties of diffusion distances [14,15,41,50]. The M-LUND algorithm 
learns multiscale cluster structure from data by varying a time parameter in the LUND algorithm across 
an exponential sampling of the diffusion process. It was proved that under reasonable assumptions on den-
sity and cluster structure, the M-LUND algorithm is guaranteed to extract an exponential sampling of the 
MELD data model from the dataset and choose a clustering from it as the minimizer of total VI. Our 
theoretical results were corroborated on synthetic and real data experiments.

The reliance of the MELD data model on ε results in a tension between the choice of an exponential 
sampling rate β that will sample the intervals during which MELD clusterings are ε-separable by diffusion 
distances and the guarantee that diffusion distances produce strong enough separation for the M-LUND 
algorithm to recover the MELD data model. For ε small, diffusion distances are guaranteed to provide 
strong separation on MELD clusterings during MELD intervals, but the range of β that is guaranteed to 
sample these intervals is small. On the other hand, for ε large, there is a wide range of β that are suitable 
for sampling these intervals, but in this case, ε-separation by diffusion distances may not be strong enough 
to guarantee that the M-LUND algorithm will recover the MELD data model.

A limitation of the MELD data model is its reliance on the geometric constant δ(�): the maximum 
probability, across all points in X, of transitioning between clusters in a single time step. In a dataset in 
which outliers in one cluster overlap with outliers in another, δ(�) can be quite pessimistic. For such a dataset, 
δ(�) will be large, but diffusion is not likely to spread between cluster cores [41]. Indeed, in Section 5.1, we 
showed that the LUND algorithm performed well on overlapping Gaussians even though the separation 
parameter δ(�) was large across the extracted clusterings. This suggests that the reliance of the MELD data 
model on the geometric constant δ(�) forces it to exclude latent partitions of X that lack sufficiently strong 
separation within the original graph. Thus, the MELD data model may be improved by future work to allow 
for weaker separation between clusters.

To capture all scales of latent structure in a dataset, the M-LUND algorithm implements the LUND 
algorithm across an exponential sampling of the diffusion process. However, our numerical experiments 
suggest that latent clusterings are only extracted during a subset of the diffusion process. If this subset 
could be more precisely estimated before cluster analysis, the LUND algorithm could be implemented at 
those time steps alone, resulting in a decrease in complexity for the M-LUND algorithm. We hope to study 
this problem in future work as well.

All results in the present manuscript are for finite samples, and there is a dependence on n in many results. 
It is natural to consider continuum formulations of the data model and associated clustering algorithms, 
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which may necessitate new models for multiscale mixtures of manifold data; see Section 3.3.1 for a more 
technical discussion.
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Appendix A. Notation

In Table A.4 we provide a table for easy referencing of the notation used throughout this article.

Appendix B. Background on classical clustering algorithms

Here, we review pertinent classical hierarchical clustering algorithms: K-Means, SLC, and DPC.

B.1. K-means clustering

The K-Means algorithm is a classical clustering algorithm that remains widely used. This algo-
rithm estimates clusters {Xk}K

k=1 by optimizing the distance of points to within-cluster means: C =
argmin{Xk}K

k=1

∑K
k=1
∑

x∈Xk
‖x −x̄k‖2

2, where x̄k denotes the mean data point of a cluster Xk. Many variants 
of K-Means exist [5,36,53,66]. However, it is easy to see that K-Means is sensitive to outliers because of 
its use of Euclidean distances. One extension of K-Means that is less sensitive to outliers is the K-medoids 
clustering algorithm, which replaces the cluster mean with a cluster medoid [53]. Nevertheless, K-Means and 
its variants exhibit poor performance on data that do not resemble well-separated, near-spherical clusters 
of the same size [52].

B.2. Dendrogram-based hierarchical clustering

Dendrogram-based clustering algorithms extract a family of partitions from a dataset X, varying from 
fine to coarse in scale, that can be expressed in a dendrogram: a diagram representing a tree of cluster-
ings [23,26]. More formally, a dendrogram represents a family of n clusterings 

{
{X

(�)
k }�

k=1
}n

�=1 such that 
{X

(n)
k }n

k=1 is the clustering consisting of n singletons and {X
(1)
k }1

k=1 is the clustering consisting of a single 
cluster. Agglomerative hierarchical clustering algorithms initialize at 
 = n and create intermediate clus-
terings {X

(�)
k }�

k=1 by merging two clusters in {X
(�+1)
k }�+1

k=1 found to minimize a linkage function [23,26]. 
On the other hand, divisive hierarchical clustering algorithms initialize at 
 = 1 and create intermediate 
clusterings {X

(�+1)
k }�+1

k=1 by splitting a cluster at each scale. One of the more popular hierarchical clustering 
algorithms is the SLC algorithm, which builds a hierarchy of partitions by iteratively merging clusters using 
LSLC(X1, X2) = minx1∈X1,x2∈X2 ‖x1 − x2‖2 as its linkage function [23,26]. Despite its widespread use 
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Table A.4
Notation used in the article listed in order of its first appearance. We refer to the multiscale analogues of certain notations after a 
back-slash.

Notation Interpretation

X = {xi}n
i=1 ⊂ RD Data points to cluster

Xk / X
(�)
k The kth cluster of the clustering {Xk}K

k=1 / {X
(�)
k }K�

k=1
C Estimated cluster assignments
W Weight matrix
σ Diffusion scale parameter
D Degree matrix
P Markov transition matrix
π Stationary distribution of P
{(ψi, λi)}n

i=1 Right eigenvectors and eigenvalues of P, sorted according to |λi| in non-increasing order
Φ(x) Laplacian eigenmap, evaluated at x ∈ X
Dt(x, y) Diffusion distance between points x and y at diffusion time step t
Ψt(x) Diffusion map at time t, evaluated at x ∈ X

S / S(�) Stochastic complement of P with respect to the clustering {Xk}K
k=1 / {X

(�)
k }K�

k=1
S∞ / S(�)

∞ limt→∞ St / limt→∞[S(�)]t

Z / Z(�) Invertible matrix diagonalizing S / S(�)

λK+1 / λ
(�)
K�+1 First non-unity eigenvalue of S / S(�)

δ / δ(�) ‖P − S‖∞ / ‖P − S(�)‖∞
κ / κ(�) Infinity-norm condition number of diagonalizing S / S(�)

Iε / I(�)
ε Interval of time during which {Xk}K

k=1 / {X
(�)
k }K�

k=1 is ε-separable by diffusion distances
Din

t / Din
t (�) Maximum within-cluster diffusion distance for the clustering {Xk}K

k=1 / {X
(�)
k }K�

k=1
Dbtw

t / Dbtw
t (�) Minimum between-cluster diffusion distance for the clustering {Xk}K

k=1 / {X
(�)
k }K�

k=1
γ(t) / γ(�)(t) Measure of how the �1- and �2-norm differ across rows of Pt − S∞ / Pt − S(�)

∞
p(x) Kernel density estimate, evaluated at x ∈ X
σ0 KDE bandwidth
NN(x, N) Set of N �2-nearest neighbors of x in the dataset X
ρt(x) Diffusion distance between x and that data point’s Dt-nearest neighbor of higher density
Dt(x) p(x)ρt(x)
M Number of distinct latent clusterings of X
Ct Latent clustering at time t

MELDε(X) The MELD data model of X for ε ∈
(

0, 1√
n

)
Aε

⋃M
�=1 I

(�)
ε

H(C) Entropy of the clustering C
I(C,C′) Mutual information between clusterings C and C′

V I(C,C′) Variation of information between clusterings C and C′

β Exponential sampling rate
T

⌈
logβ

(
log|λ2|

(
τπmin

2

))⌉
τ Stationarity threshold
J Time samples during which nontrivial clusterings are extracted by the LUND algorithm
VI(tot)(Ct)

∑
s∈J VI(Ct, Cs)

Mt Cluster-wise empirical density maximizers for the latent clustering at time t

{x(t)
mk

}n
k=1 The points in X, sorted according to Dt(x)

Bε Transition regions between clusterings in MELDε(X)
Δ(t) Relative pointwise distance of Pt to its stationary distribution π
d Doubling dimension of the dataset
NMI(C,C′) Normalized mutual information between clusterings C and C′

in practice, SLC has been shown to be statistically inconsistent if the dimension of the dataset is greater 
than 1 [28]. Moreover, its linkage function’s reliance on Euclidean distances makes it sensitive to small 
perturbations and outliers.

B.3. Density peak clustering

Density-based clustering algorithms learn regions of high and low empirical density to cluster a 
dataset [16,21,24,31,70]. DPC is a widely-utilized example of a mode-based clustering algorithm [56]. DPC 
labels high-density points that are far in Euclidean space from other high-density points as modes of clusters 
in the dataset. Non-modal points are then paired with a labeled nearest neighbor iteratively. Due to its use 
of Euclidean distances, DPC often fails on data with nonlinear structure [41].
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Fig. C.11. Multiscale ground truth labels for synthetic datasets analyzed in Sections 5.1-5.4. We remark that there is a K = 2
clustering missing for the Manifold data, where the first and fourth quadrants of S1 are separated from the second and third; see 
Fig. 6d.

Appendix C. Multiscale labels of synthetic and hyperspectral data

In this appendix, visualizations are provided for the multiscale labels of the datasets analyzed in the 
numerical experiments presented in Section 5. The multiscale labels for the synthetic datasets analyzed in 
Sections 5.1-5.4 are given in Fig. C.11. In the first row of Fig. C.11, each point is colored according to the 
distribution from which it was been sampled, yielding fine-scale ground truth labels. In the second row of 
Fig. C.11, data points from nearby clusters are grouped together, yielding a coarser scale of ground truth 
labels. The multiscale labels for the Salinas A HSI analyzed in Section 5.6.are provided in Fig. C.12. The 
ground truth labels for the HSI are given in Fig. C.12a; similar ground truth classes were combined to obtain 
the coarser ground truth clusterings visualized in Figs. C.12b-C.12c. Specifically, in Fig. C.12b, broccoli 
greens (visualized in yellow) are separated from corn-senesced greens (visualized in green) and romaine 
lettuce of all maturity (visualized in light blue). On the other hand, in Fig. C.12c, the corn-senesced greens 
class is combined with the romaine lettuce classes (visualized in teal) but broccoli greens remain separate.

Fig. C.12. Multiscale labels for the Salinas A HSI [27] analyzed in Section 5.6.
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