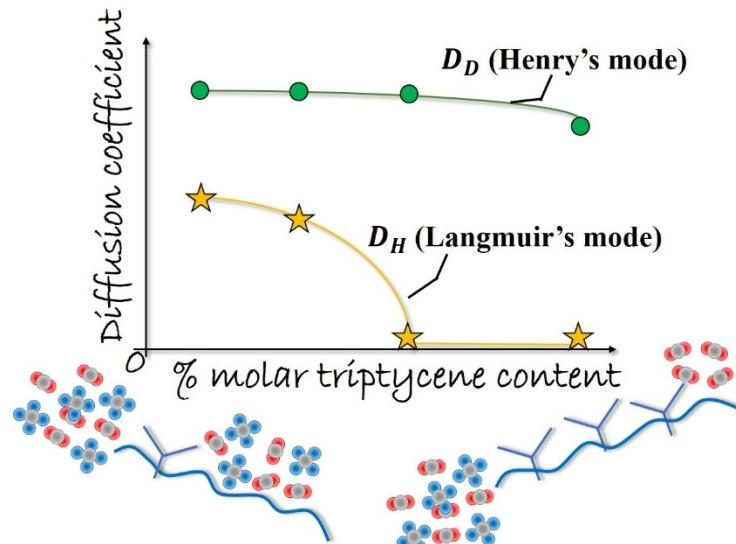


1
2
3
4 **The mechanism of light gas transport through configurational free volume in glassy**
5 **polymers**

6
7 William J. Box¹, Zihan Huang², Ruilan Guo² and Michele Galizia^{1*}

8
9 ¹ *School of Chemical, Biological and Materials Engineering, University of Oklahoma, 100 E. Boyd Street,*
10 *Norman 73019, OK, USA*

11 ² *Department of Chemical and Biomolecular Engineering, University of Notre Dame, 205 McCourtney*
12 *Hall, Notre Dame 46556, IN, USA*


13
14
15
16
17 Submission to the Journal of Membrane Science, **REVISED MANUSCRIPT**

18
19
20 *Corresponding Author: Prof. Michele Galizia, *mgalizia@ou.edu*

29 Graphical Abstract

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48 **Abstract**

49 A possible mechanism of small molecule transport in glassy polymer membranes containing
50 configurational free volume (i.e., triptycene moieties) is proposed. To this aim, a family of
51 triptycene-containing polybenzoxazoles (TPBOs) exhibiting systematically varied molar amount
52 of triptycene units, ranging from 25% to 100%, was selected to perform a light gas (N_2 , CH_4 and
53 CO_2) fundamental sorption-transport study. The dual mode sorption-mobility model was used
54 to isolate the effect of configurational free volume on penetrant transport. CO_2 and CH_4 Henry's
55 and Langmuir's mode diffusion coefficients were estimated and used to quantify the Henry's and
56 Langmuir's contributions to CO_2/CH_4 diffusivity-selectivity as a function of the triptycene molar
57 content in TPBOs. Interestingly, while the Henry's CO_2/CH_4 diffusivity-selectivity changes little
58 with increasing amount of configurational free volume, the Langmuir's CO_2/CH_4 diffusivity-
59 selectivity increases up to infinity when the molar triptycene concentration in the polymer is 75%
60 or higher, showing that the diffusion of larger molecules (i.e., CH_4) is increasingly hindered
61 relative to smaller molecules (i.e. CO_2) diffusion when more configurational free volume is
62 incorporated in the polymer. In sharp contrast, pure- and mixed-gas sorption, as well as
63 solubility-selectivity, is essentially unaffected by the triptycene molar content. According with
64 this physical picture, the analysis of isosteric heats of CO_2 sorption indicates that TPBOs
65 plasticization resistance is independent of triptycene content.

66

67 **Keywords:** configurational free volume; triptycene; Henry's diffusivity-selectivity; Langmuir's
68 diffusivity-selectivity; solubility-selectivity

69 **1. Introduction**

70 Since 1991, the introduction of advanced polymer synthesis strategies allowed membrane
71 separations to become competitive with traditional thermal-based separation technologies. A
72 plethora of novel functional polymers, purposely designed to achieve specific molecular
73 separations, were synthesized with the scope of addressing three major issues: the
74 selectivity/permeability trade-off, physical aging and plasticization [1-15].

75 Although it was originally reported solely for gas separation membranes, the existence of a
76 selectivity/permeability trade-off has also recently been observed in liquid separation
77 membranes, including water purification and organic solvents separation [16-19]. For this reason,
78 most of research in the field has focused on the discovery and development of advanced
79 membrane materials that can surpass the upper bound while achieving an economically attractive
80 performance. As a consequence, most of the gas separation upper bounds first reported by
81 Robeson in 1991 [3], were updated in 2008 [4] taking in consideration new materials appeared in
82 the market in the previous seventeen years: perfluoropolymers, which were the subject of intense
83 research in the late '90s, were essentially responsible for this improvement [4, 20]. In 2019, the
84 discovery of a new class of polymers of intrinsic microporosity (PIMs) bearing benzotriptycene
85 moieties allowed to further push up and re-define the upper bound in several gas separation
86 applications [21].

87 Since the pioneering study reported by Park in 2011 [22], glassy polymers containing triptycene
88 units and their derivatives emerged as an interesting platform of materials [5, 8, 23-26]. Triptycene
89 groups, made of three benzene rings arranged in a 3D paddlewheel-like configuration, provide
90 their unique configurational free volume, which promotes high permeability while maintaining

91 it stable over long-term operation [5, 23, 27, 28]. Moreover, while the size of excess conformational
92 free volume pockets in conventional glassy polymers is randomly distributed [29], the size of
93 configurational free volume elements is highly uniform and it is comparable to the size of a single
94 molecule, which promotes high selectivity [5, 30, 31]. Thermally-rearranged polybenzoxazoles
95 containing triptycene units, reported by Guo et al. [25], outperform the 2008 upper bound in
96 several gas separations involving hydrogen and carbon dioxide, and maintain their performance
97 unchanged even after a harsh thermal pre-treatment [32].

98 Most of the newly reported membrane materials are glassy, due to their higher selectivity
99 compared to rubbery polymers. However, conformational free volume available for small
100 molecule transport in conventional glassy polymers, which comes from frustrated chain packing,
101 makes these materials susceptible to physical aging [1, 2, 8, 33-36]. The latter issue, i.e., the non-
102 equilibrium excess free volume relaxation, represents an important limitation for using glassy
103 polymers in membrane applications [8, 34]. Triptycene-based polymers may offer an attractive
104 solution to this issue. Unlike the conformational free volume provided by conventional glassy
105 polymers, which originates from inefficient chain packing, the internal free volume provided by
106 the triptycene units is related to the molecular configuration and, as such, it is non collapsible,
107 similar to inorganic (e.g., zeolites) or hybrid (e.g., MOFs) materials [5, 8, 23, 26, 31, 32]. As shown
108 in recent studies [23, 24, 26, 32], glassy polymers exhibiting configurational free volume (i.e.,
109 triptycene and pentiptycene groups) exhibit reduced physical aging propensity compared to
110 conventional glassy polymers exhibiting only conformational free volume.

111 Although preliminary studies reported a reduced hysteresis upon subsequent sorption-
112 desorption CO_2 cycles at high pressure in triptycene-based polymers [37, 38], additional research
113 efforts are needed to investigate in detail the plasticization propensity of these materials.
114 For all of the reasons listed above, iptycene-based materials are garnering increasing attention in
115 membrane science. However, despite the current progress, fundamental understanding of small
116 molecule transport in glassy polymers exhibiting configurational free volume is still poor and
117 incomplete. Only recently, Box et al. reported that the transport of bulky vapor molecules in
118 thermally rearranged triptycene-based polybenzoxazoles (TPBOs) is limited by entropic factors,
119 with both sorption and diffusion being controlled by penetrant size [39]. To fill this fundamental
120 knowledge gap, in this study we provide a detailed description of the molecular mechanism of
121 light gas transport in polymers exhibiting configurational free volume. A series of thermally
122 rearranged polybenzoxazoles (TPBOs) exhibiting systematically varied molar amounts of
123 triptycene units was selected as a platform to develop structure-property correlations, with the
124 final goal of understanding the mechanism by which configurational free volume regulates
125 selectivity in membrane separations.

126

127 **2. Theoretical background**

128 *2.1 Gas sorption and transport in polymers.* Gas transport in dense (i.e., non-porous) polymer
129 membranes is described by the solution-diffusion model, according to which the permeability
130 coefficient, ϕ , is given by the product of the diffusion and sorption coefficients [40]:

131 $\phi = \bar{D} \times S$ (Eq. 1)

132 where the apparent solubility coefficient, S , is defined as C/f , C being the penetrant concentration
133 in the upstream membrane face and f the feed penetrant fugacity [1, 2, 40]. \bar{D} is the effective,
134 concentration-averaged penetrant diffusion coefficient [41].

135 A Van't Hoff-type relationship describes the temperature dependence of gas sorption in polymers
136 [42, 43]:

137
$$S = S_0 \exp\left(-\frac{\Delta H_s}{RT}\right) \quad (\text{Eq. 2})$$

138 where ΔH_s is the enthalpy of sorption and S_0 is a pre-exponential constant. The enthalpy of
139 sorption is given by the sum of the penetrant condensation enthalpy, ΔH_{cond} , and the
140 penetrant/polymer mixing enthalpy, ΔH_{mix} , which takes into account *i*) the polymer-penetrant
141 interactions and *ii*) the deformation work needed to open gaps between polymer chains to
142 accommodate penetrant molecules in the Henry's mode [43, 44].

143 The analysis of sorption isotherms at multiple temperatures provides the isosteric heat of
144 sorption, that is, the concentration dependence of ΔH_s [42]:

145
$$\left[\frac{d(\ln p)}{d\left(\frac{1}{T}\right)} \right]_C = \frac{\Delta H_s}{ZR} \quad (\text{Eq. 3})$$

146 where p is the pressure corresponding at each concentration (i.e., C) at a given temperature T , and
147 Z is the compressibility factor [42].

148 The membrane ideal (i.e., pure-gas) selectivity, which is defined as the ratio of pure gas
149 permeabilities at the same temperature and pressure, can be expressed as the product of the
150 diffusivity-selectivity, which quantifies the polymer size-sieving ability, and the solubility-
151 selectivity, which quantifies the polymer's ability to separate molecules based on their
152 condensability and thermodynamic affinity with the membrane material [40, 45]:

153 $\alpha_{ij}^{id} = \frac{\varphi_i}{\varphi_j} = \frac{\bar{D}_i}{\bar{D}_j} \times \frac{S_i}{S_j} = \alpha_D^{id} \times \alpha_S^{id}$ (Eq. 4)

154

155 *2.2 Dual Mode Sorption-Transport Model.* The Dual Mode Sorption-Transport model provides a
 156 phenomenological, although physically sound quantitative description of small molecule
 157 sorption and diffusion in glassy polymers as a function of the pressure and temperature, enabling
 158 a direct correlation of the transport properties with the membrane structure [46-49]. According to
 159 the dual mode approach, the penetrant concentration in the polymer, C , is given by the sum of
 160 concentration in the equilibrium, rubber-like polymer phase (Henry's population) and the
 161 concentration in pre-existing free volume pockets (Langmuir's population) [46, 50]:

162 $C = k_D f + \frac{C'_H b f}{1 + b f}$ (Eq. 5)

163 where k_D is the Henry's constant, C'_H is the Langmuir sorption capacity, b is the Langmuir affinity
 164 parameter and f is the penetrant fugacity in the external gas phase.

165 Using the solution-diffusion model, the dual mode model can be promptly extended to describe
 166 not only equilibrium sorption, but also small molecule transport in glassy polymers [50]. This can
 167 be done by assigning a non-zero mobility to both the Henry's and the Langmuir's populations,
 168 giving rise to the dual sorption-mobility model [46, 50]:

169 $\varphi = k_D D_D \left(1 + \frac{K F}{1 + b f} \right)$ (Eq. 6)

170 where D_D and D_H are the diffusion coefficients of the Henry's and Langmuir's population,
 171 respectively, assumed constant, and F and K are constants defined as $F = D_H/D_D$ and $K =$
 172 $C'_H b / k_D$, respectively [50]. All the remaining parameters have the usual physical meaning and are
 173 taken from the analysis of single gas sorption data at the same temperature.

174 When considering the sorption of a mixture of n components in a glassy polymer at a given
175 temperature, the dual mode theory provides the following expression for the concentration of
176 species i in the polymer [51]:

177
$$C_i = k_{D,i} f_i + \frac{C'_{H,i} b_i f_i}{1 + \sum_{i=1}^n b_i f_i} \quad (\text{Eq. 7})$$

178 where the fugacity of the i -th component, f_i , is a function of pressure and gas mixture
179 composition. Remarkably, the dual mode parameters appearing in Eq. 7 are those retrieved from
180 the analysis of pure gas sorption at the same temperature as the mixture, therefore, absent
181 polymer swelling and specific penetrant-penetrant and penetrant-polymer interactions, the dual
182 mode model can reliably predict mixed gas sorption [51]. According to Eq. 7, competitive sorption
183 into the Langmuir sites, due to the presence of the multiple components, reduces the
184 concentration of species i in the polymer compared to pure species sorption at the same
185 temperature and fugacity [51, 52].

186 At any given pressure, temperature and mixed-gas composition, the mixed-gas sorption
187 coefficient of species i and the i -to- j real solubility-selectivity are given by Eqs. 8 and 9,
188 respectively [37]:

189
$$S_i^{mix} = \frac{C_i^{mix}(f_i)}{f_i} \quad (\text{Eq. 8})$$

190
$$\alpha_S^{mix} = \frac{S_i^{mix}}{S_j^{mix}} \quad (\text{Eq. 9})$$

191 **3. Experimental**

192 *3.1 TPBO synthesis and membrane fabrication.* To investigate the effect of configurational free
193 volume on the mechanism of small molecule transport in polymers, co-polyimides containing
194 systematically varied molar amount of triptycene units (25, 50, 75, 100%) were synthesized

195 according to the protocol described in ref. [25] and briefly summarized in the Supporting
 196 Information. Flat, free standing films of the triptycene-containing co-polyimides were thermally
 197 rearranged at 300°C for 2h and then at 450°C for 30 min, under nitrogen purge, to form fully
 198 converted triptycene-based polybenzoxazoles (TPBOs). The TPBOs structure is shown in Table 1,
 199 along with some relevant structural and physical properties.

200

201 *Table 1. Structure and physical properties of TPBOs.*

<i>triptycene molar content</i> (xx)	<i>density</i> [*] (g/cm ³)	<i>T_g</i> (°C)	<i>FFV</i> [§] (%)	<i>d-spacing</i> [†] (Å)	<i>%TR</i> <i>conversion</i> [‡]
25%	1.393 ± 0.002	> 400	22.6	6.4	100
50%	1.369 ± 0.015	> 400	20.5	6.6	100
75%	1.346 ± 0.016	> 400	18.9	7.0	100
100%	1.324 ± 0.004	> 400	17.4	7.2	100

202 * density was determined at room temperature using an Archimede's balance and water as the buoyant
 203 fluid. The experimental uncertainty was calculated from the standard deviation of 6-8 independent
 204 measurements.

205 [§] FFV was calculated using the group contribution method [53].

206 [†] d-spacing was calculated from WAXD experiments [25].

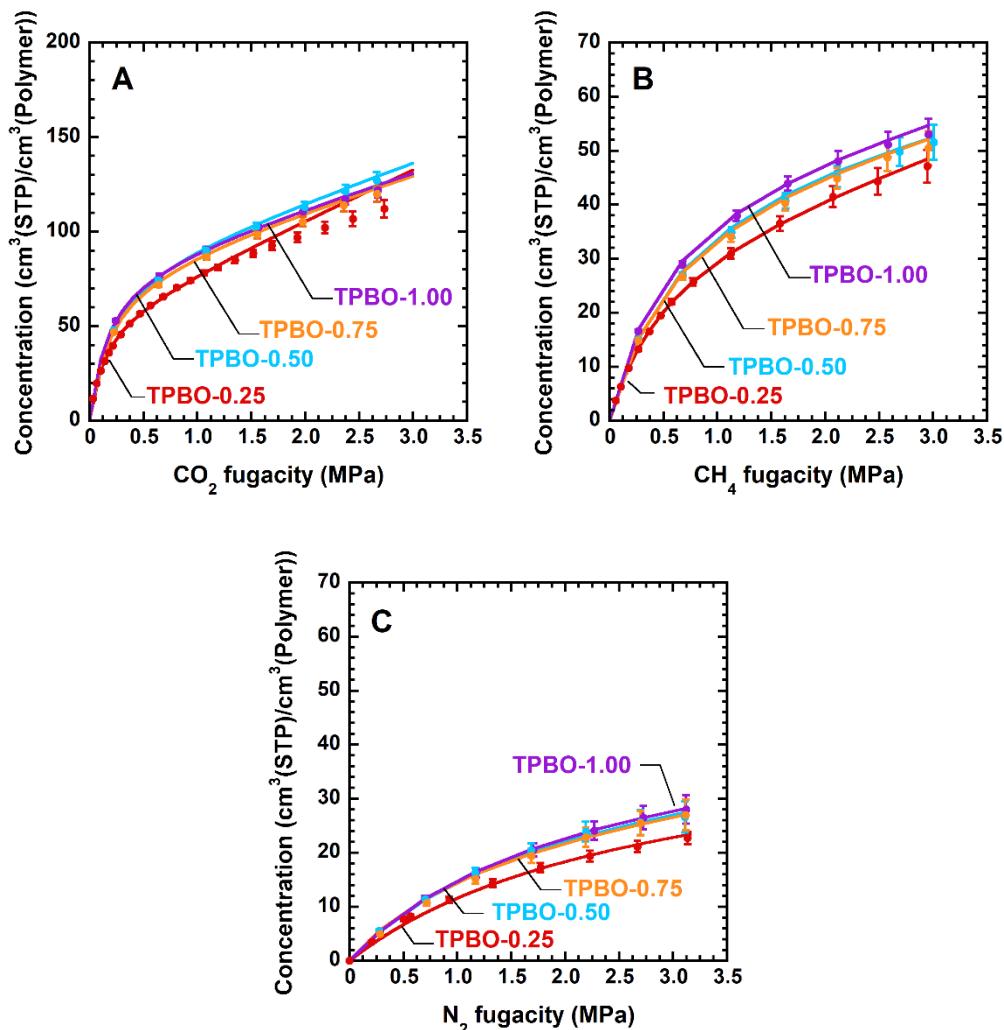
207 [‡] full (i.e., 100%) thermal conversion to TPBOs was confirmed by FTIR spectroscopy [25].

208

209 3.2 Sorption and transport measurements. Pure gas N₂, CH₄ and CO₂ sorption isotherms at multiple
 210 temperatures (20, 27, 35 and 50°C for TPBO-0.50, TPBO-0.75, TPBO-1.00; 5, 20, 35 and 50°C for

211 TPBO-0.25) and up to 35 atm were measured using a dual volume barometric apparatus, whose
212 main features are summarized in Fig. S1, Supporting Information. The Peng-Robinson equation
213 of state was used to solve the molar balances needed to generate the sorption isotherms [54].
214 Pure gas N₂, CH₄ and CO₂ permeability data at 35°C were taken from ref. [25]. Diffusion
215 coefficients at 35°C were calculated via the solution-diffusion model [40], using experimental
216 solubility and permeability data.

217

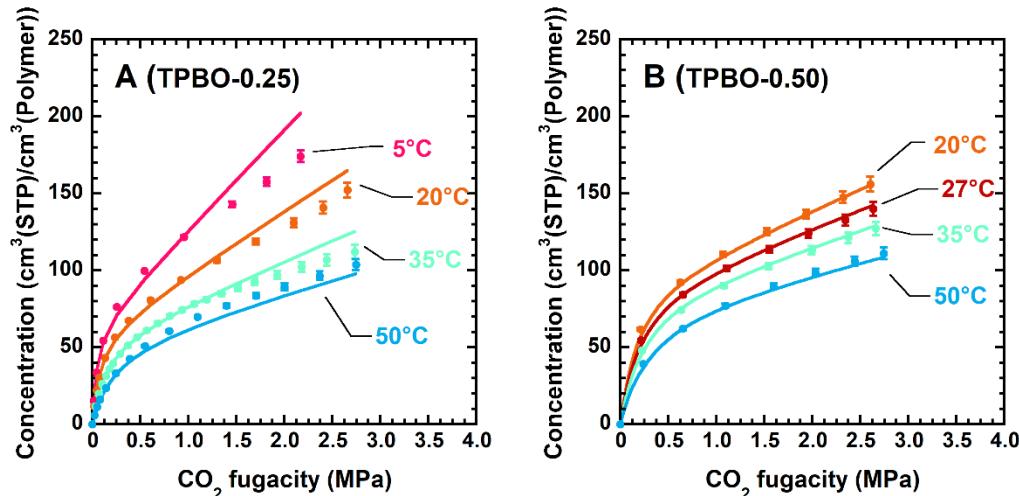

218 **4. Results and Discussion**

219 *4.1. Pure-gas sorption as a function of temperature and triptycene molar content.* Pure-gas CO₂ sorption
220 isotherms at 35°C in TPBOs exhibiting systematically varied molar amount of triptycene units
221 (i.e., 25, 50, 75, 100%) are shown in Fig. 1A, in the units of cm³(STP)/cm³(polymer), as a function
222 of CO₂ fugacity. Experimental uncertainty was estimated using linear error propagation [55],
223 taking into account the uncertainty of *i*) the volumes of the sorption and charge chambers, *ii*) the
224 pressure transducers reading, *iii*) the temperature controller reading and *iv*) the polymer density.
225 Pure gas fugacity was calculated at any temperature and pressure using the Peng-Robinson
226 equation of state (cf. Table S1, Supporting Information) [54].

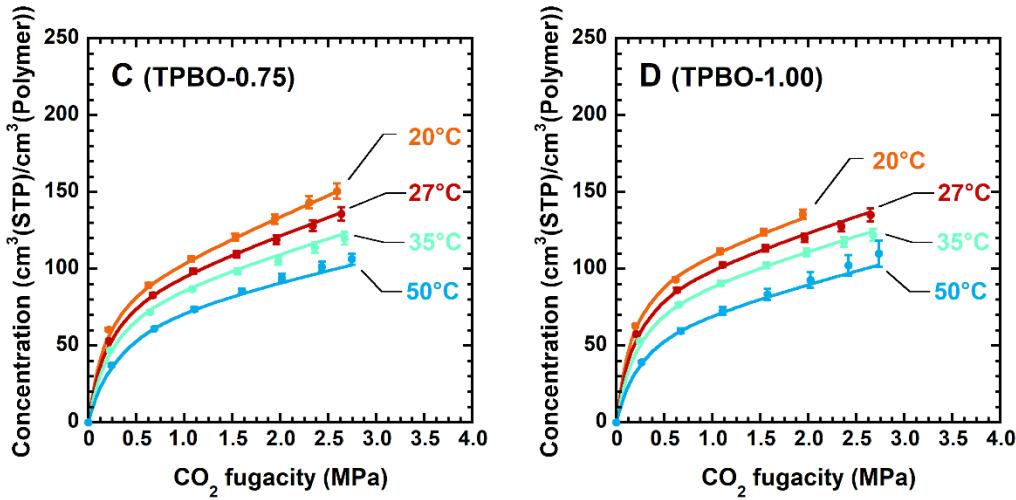
227 All the isotherms, at all temperatures and for all TPBO samples, exhibit the typical dual mode
228 shape. CO₂ sorption isotherms in TPBOs at 35°C are, within the experimental uncertainty,
229 superimposed over each other (cf. Fig.1A), which indicates that gas solubility in TPBOs is
230 essentially independent of the triptycene content, despite the free volume decreases from 22.6%
231 to 17.4% with increasing the triptycene molar content from 25% to 100% (cf. Table 1). Similar

232 results were obtained at the other temperatures inspected, 20, 27 and 50°C (cf. Fig. S2, Supporting
233 Information).

234 Similar to CO_2 , CH_4 and N_2 solubility in TPBOs at any temperature is essentially independent of
235 the triptycene molar content. For the sake of brevity, CH_4 and N_2 sorption isotherms in TPBOs at
236 35°C are shown in Fig. 1B-C, respectively, while isotherms at other temperatures are shown in
237 Fig. S3-S4, Supporting Information.



238


239

240 *Figure 1.* CO_2 (A), CH_4 (B) and N_2 (C) sorption isotherms at 35°C in TPBO samples exhibiting different
241 molar amount of triptycene units. Continuous lines represent the dual mode fitting. Experimental
242 uncertainty was calculated using linear error propagation [55].

243 Sorption isotherms in TPBO-0.25 apparently deviate from those collected for other TPBO samples
 244 (i.e., TPBO-0.50, TPBO-0.75, TPBO-1.00). It is worth mentioning that sorption data in TPBO-0.25
 245 were measured in a previous study from this laboratory [37], using samples from a previous
 246 synthesis batch, which explains the origin of this slight deviation. However, if we take the
 247 experimental uncertainty into account (cf., Figs. 1), these differences turn out to not be significant.
 248 CO₂ sorption isotherms at multiple temperatures (20-50°C for TPBO-0.50, TPBO-0.75 and TPBO-
 249 1.00, 5-50°C for TPBO-0.25) and given triptycene molar content are shown in Fig. 2. For the sake
 250 of brevity, CH₄ and N₂ sorption data in the same temperature range are shown in the Supporting
 251 Information (cf. Fig S5 and S6). Consistently with the typical behavior of glassy polymers, at any
 252 given external fugacity, gas sorption in TPBOs decreases with increasing temperature [42].

253

254

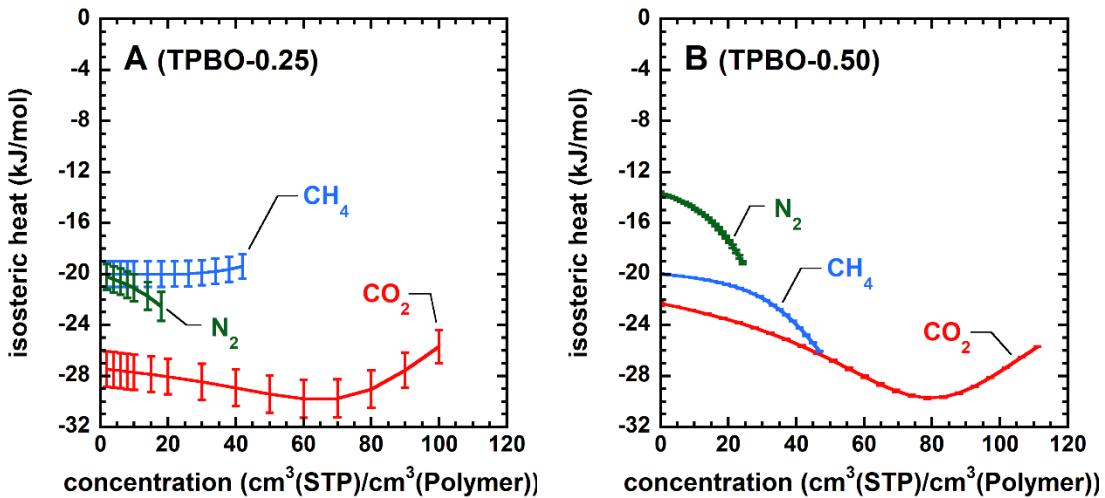
255 **Figure 2.** CO_2 sorption isotherms at multiple temperatures in A) TPBO-0.25, B) TPBO-
 256 0.50, C) TPBO-0.75 and D) TPBO-1.00. Solid symbols: experimental data. Continuous lines: dual mode fitting.
 257 Experimental uncertainty was calculated using linear error propagation [55].

258

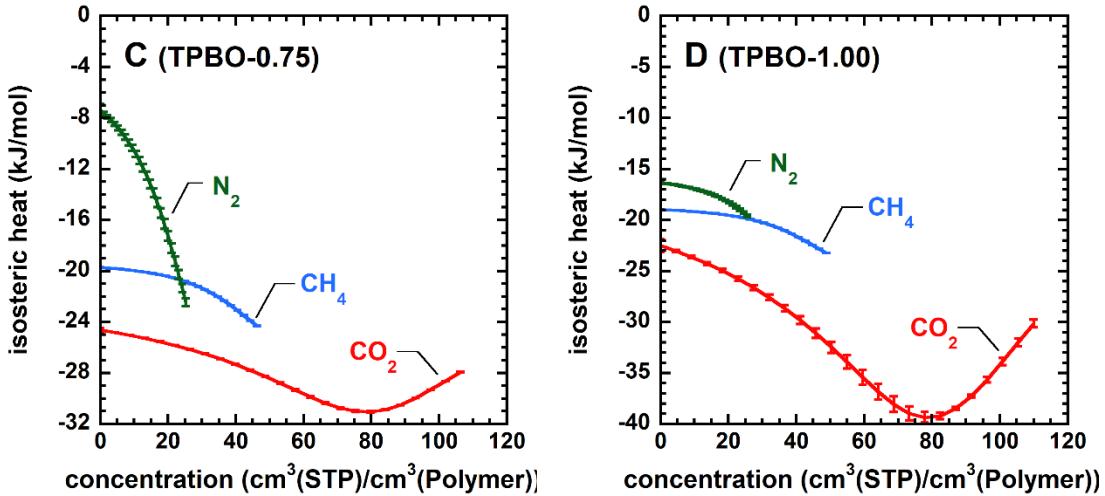
259 As shown in Figs. 1 and 2, the dual mode model was used to correlate the experimental sorption
 260 isotherms. Since different sets of dual mode parameters can describe a given set of experimental
 261 data [37, 56], the fitting was performed with constraints on K_D , C'_H and b as a function of
 262 temperature (cf. Table 2).

263

264 **Table 2.** Constraints used for the dual mode fitting of sorption data at multiple temperatures in TPBOs.


<i>dual mode parameter</i>	<i>constraint</i>		<i>introduced parameters</i>
K_D	$K_D = K_{D0} \exp\left(-\frac{\Delta H_{K_D}}{RT}\right)$	<i>Van't Hoff relationship</i>	K_{D0} , ΔH_{K_D}
C'_H	$C'_H = C'_{H0} - mT$	<i>temperature dependence of C'_H</i>	C'_{H0} , m
b	$b = b_0 \exp\left(-\frac{\Delta H_b}{RT}\right)$	<i>Van't Hoff relationship</i>	b_0 , ΔH_b

265


266 Specifically, we assumed: *i*) a Van't Hoff dependence of the Henry's parameter, K_D , on
267 temperature [37, 56]; *ii*) a linear decrease of the Langmuir's sorption capacity, C'_H , with increasing
268 temperature, according to the physical picture that C'_H vanishes when T approaches T_g [57]; *iii*) a
269 Van't Hoff dependence of the Langmuir's affinity parameter, b , on temperature [37, 56]. The six
270 introduced fitting parameters (i.e., K_{D0} , ΔH_{K_D} , C'_{H0} , m , b_0 and ΔH_b) provide a good
271 parametrization of the sorption isotherms collected for each TPBO sample at multiple
272 temperatures. No significant difference in fitting accuracy was observed in the constrained fitting
273 compared to that of the individual dual mode fittings. The complete set of dual mode parameters
274 for N_2 , CH_4 and CO_2 sorption in TPBOs are shown in Tables S2-S5, Supporting Information, along
275 with the uncertainty analysis, which was carried out through linear error propagation [55]. For
276 the sake of brevity, a general discussion of the results of dual mode modeling is reported in the
277 Supporting Information. For example, consistently with the dual mode analysis of gas sorption
278 in triptycene-free thermally rearranged polymers proposed by Stevens et al. [56], ΔH_{K_D} and ΔH_b
279 are negative, indicating that K_D and b decrease with increasing temperature. Moreover, at any
280 given temperature and in all TPBO samples, the logarithm of K_D increases linearly with penetrant
281 critical temperature (i.e., $\ln(K_D) = MT_C + N$) with a slope of 0.015K^{-1} , which is consistent with
282 previous literature reports (cf. Fig. S7, Supporting Information) [37, 56, 58]. Remarkably, the latter
283 feature is captured by the model without imposing any additional constraints, which confirms
284 that the model fitting is self-consistent and physically meaningful.

285

286 4.2. *Isosteric heats of sorption.* The isosteric heat of sorption, that is, the enthalpy of N_2 , CH_4 and
287 CO_2 sorption as a function of penetrant concentration in TPBOs, is shown in Figs. 3.

288

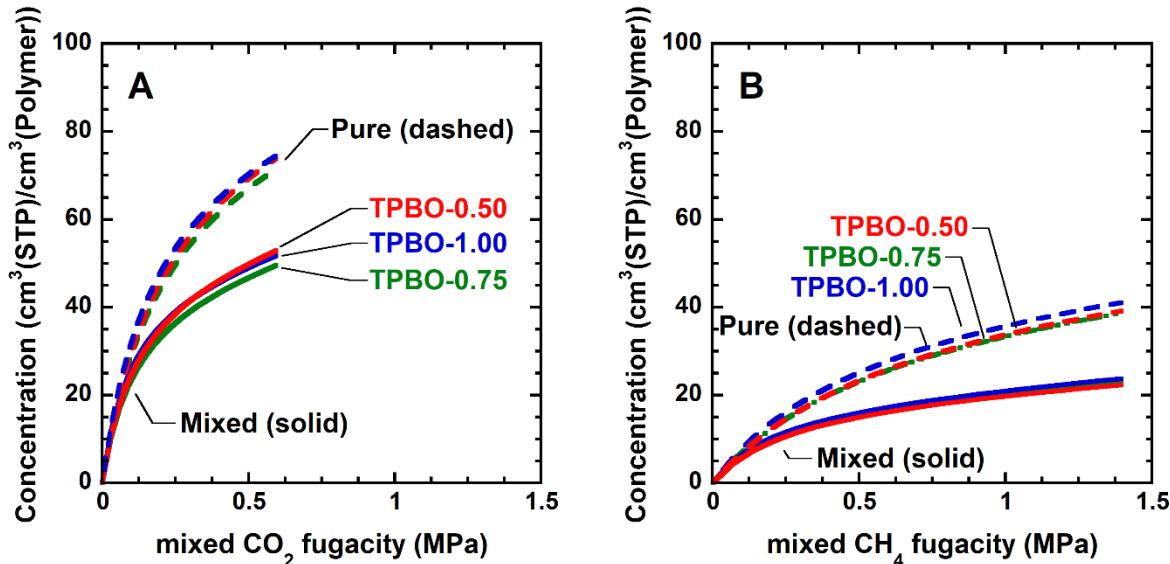
289

290 *Figure 3. Isosteric heat of N_2 , CH_4 and CO_2 sorption in TPBO-0.25 (A), TPBO-0.50 (B), TPBO-0.75 (C)*
 291 *and TPBO-1.00 (D) as a function of penetrant concentration in the polymer. Error bars were estimated*
 292 *using the standard error of weighted linear regression [55]. Continuous lines are drawn to guide the eye.*

293

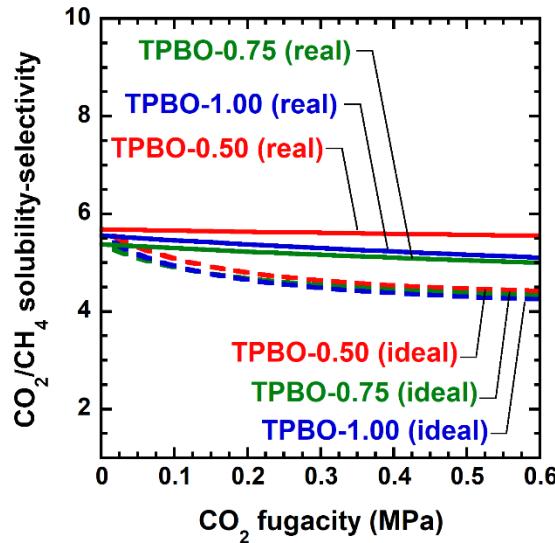
294 As noted in previous studies, taking into account the compressibility factor in Eq. 3 (i.e., Z ,
 295 estimated using the Peng-Robinson equation of state) does not produce any relevant effect on the
 296 calculated isosteric heats, therefore Z was assumed equal to one [37, 43]. As expected, in all the
 297 TPBO samples and at any given concentration, sorption becomes more exothermic with

298 increasing penetrant condensability [59], that is, $|\Delta H_s^{CO_2}|$ (critical temperature = 304.19K) >
299 $|\Delta H_s^{CH_4}|$ (critical temperature = 190.8K) > $|\Delta H_s^{N_2}|$ (critical temperature = 126.2K) [60].
300 In all of the TPBO samples and within the experimental uncertainty, the isosteric heat of CH_4 and
301 N_2 sorption slightly decreases or remains essentially constant with increasing penetrant
302 concentration in the polymer. This behavior, which has been observed several times in glassy
303 polymers, is consistent with the relatively low methane and nitrogen solubility in polymers, and
304 their poor swelling ability [43]. In this condition, most of penetrant molecules are sorbed in the
305 Langmuir's mode and, as long as more penetrant is sorbed in the matrix, the overall environment
306 becomes more affine to penetrant molecules, which makes the sorption process more
307 thermodynamically favorable (i.e., more exothermic) [37, 43]. In striking contrast, the isosteric
308 heat of CO_2 sorption exhibits a well detectable minimum at the concentration of about 80
309 $cm^3(STP)/cm^3(polymer)$ in all of the TPBO samples. At concentrations below 80
310 $cm^3(STP)/cm^3(polymer)$, swelling is negligible as the vast majority of CO_2 molecules are sorbed
311 in the Langmuir's mode. Above this concentration, sorption in the Henry's mode becomes
312 significant and polymer swelling begins taking place [44]. This behavior is indicated by the
313 sorption process becoming less exothermic at high CO_2 concentration, as the positive contribution
314 of the deformation work needed to open transient gaps between polymer chains (i.e, ΔH_{mix})
315 partially overwhelms the largely negative contribution of the condensation enthalpy (i.e, ΔH_{cond}),
316 according to the relationship [37, 43, 44]:


317 $\Delta H_s = \Delta H_{cond} + \Delta H_{mix}$ (Eq. 10)

318 The fact that the position of the minimum is the same in all TPBO samples (i.e., ≈ 80
319 $cm^3(STP)/cm^3(polymer)$), is consistent with sorption being independent of triptycene content.

320 Moreover, this result indicates that triptycene units, while suppressing the membrane aging
321 propensity, do not help reduce swelling. In fact, if triptycene units were able to reduce swelling
322 and plasticization, the position of the minimum of isosteric heat of CO₂ sorption should
323 progressively shift to higher CO₂ concentration in TPBO samples containing higher molar amount
324 of triptycene units. Some recent permeability data in iptycene-containing polymers confirm this
325 picture, although a systematic study of plasticization and swelling in these materials is still
326 lacking [8].


327 Although the isosteric heat of sorption for any given penetrant is fairly independent of the
328 triptycene molar content (cf. Fig. S8, Supporting Information), the minimum in the isosteric heat
329 of CO₂ sorption becomes slightly more exothermic with increasing triptycene content. This result
330 might reflect an increased affinity between CO₂ molecules and the triptycene units. Moreover,
331 quadrupole interactions between polar CO₂ molecules and electron-rich triptycene clefts, as well
332 as the larger concentration of ether groups at higher molar triptycene content, may contribute to
333 this effect. Interestingly, these results are corroborated from the fact that while the isosteric heats
334 of N₂ and CH₄ sorption in TPBOs are similar, in absolute value, to the corresponding values
335 reported by Stevens et al. [56] in the case of polybenzoxazoles without triptycene groups, the
336 isosteric heat of CO₂ sorption in TPBOs is up to 40% larger than in triptycene-free
337 polybenzoxazoles. As mentioned above, however, this behavior could alternatively be ascribed
338 to the larger concentration of ether groups in TPBO samples exhibiting larger triptycene molar
339 content. Molecular simulations are underway to explain the fundamental origin of this behavior.
340

341 4.3 Pure- and mixed-gas solubility-selectivity. As shown in previous studies, the dual mode model
 342 provides a reliable prediction of mixed-gas sorption, as well as mixed-gas solubility-selectivity,
 343 using the three parameters, K_D , C'_H and b , retrieved from the analysis of experimental pure-gas
 344 sorption isotherms at the same temperature [61, 62]. Therefore, using Eqs. 7 and 9, mixed gas CO_2 -
 345 CH_4 sorption isotherms in TPBOs from a 30%mol CO_2 /70%mol CH_4 gas mixture were predicted
 346 at 35°C as a function of mixed-gas penetrant fugacity and compared to pure-gas sorption
 347 isotherms (cf., Fig.4). Mixed-gas CO_2 and CH_4 fugacity at 35°C and at the composition of interest
 348 was calculated, at multiple total pressures, with the Peng-Robinson equation of state, using a CO_2 -
 349 CH_4 interaction parameter, k_{ij} , equal to 0.09 [63].

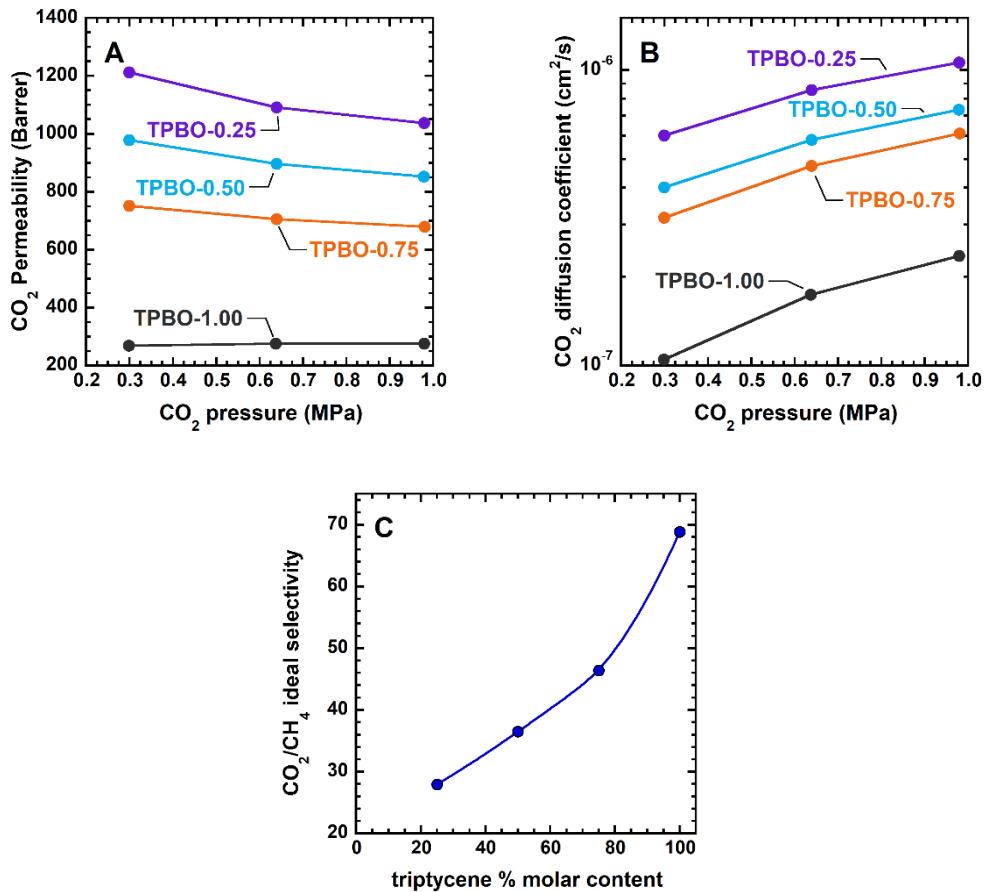
350
 351 **Figure 4.** Dual mode prediction of CO_2 (A) and CH_4 (B) mixed-gas isotherms from a 30% mol CO_2 / 70%
 352 mol CH_4 gas mixture in TPBOs as a function of mixed-gas fugacity at 35°C (solid lines), and comparison
 353 with pure gas sorption isotherms at the same temperature (dashed lines). Estimated uncertainty is shown
 354 in the Supporting Information (cf., Fig S9).
 355

356 As expected, in all TPBOs, sorption of the less condensable component (i.e., CH₄) in mixed-gas
357 conditions is suppressed much more than that of the more condensable component (i.e., CO₂)
358 relative to the pure gas conditions at the same temperature and fugacity. Specifically, at mixed
359 gas fugacity of 0.6 MPa and 1.4 MPa for CO₂ and CH₄, respectively, sorption was reduced by 24-
360 31% for CO₂ and 40-43% for CH₄ relative to pure gas at the same fugacity, with no substantial
361 difference among TPBO samples, that is, irrespective of the triptycene molar content (cf. Fig. 4).
362 Therefore, competitive sorption is essentially independent of triptycene content, indicating that
363 configurational free volume has little or no effect on pure- and mixed-gas solubility and
364 solubility-selectivity. To avoid any confusion and make the reading easier, error bars are not
365 shown in Fig. 4. The uncertainty of predicted mixed-gas sorption data is provided in the
366 Supporting Information (cf., Fig. S9-S10).
367 The results discussed above indicate that competitive sorption enhances mixed-gas CO₂/CH₄
368 solubility-selectivity relative to ideal solubility-selectivity. As shown in Fig. 5, for any TPBO
369 sample, the predicted mixed-gas sorption-selectivity exceeds the experimental pure-gas sorption-
370 selectivity by $18.3\% \pm 4\%$ at a CO₂ fugacity of 0.5 MPa. As discussed above, however, the increase
371 in mixed-gas solubility-selectivity relative to ideal solubility-selectivity is fairly independent of
372 polymer's triptycene molar content. To compare pure-gas and mixed-gas sorption selectivity on
373 a more realistic basis, ideal (i.e, pure-gas) solubility-selectivity shown in Fig. 5 was calculated
374 using pure-gas solubility data at the same fugacity as the mixed-gas case at any given pressure.

375

376 **Figure 5.** Dual mode prediction of mixed-gas CO_2/CH_4 solubility-selectivity for a 30%mol CO_2 / 70% mol
 377 CH_4 mixture in TPBOs as a function of mixed-gas CO_2 fugacity at 35°C (solid line), and comparison with
 378 pure-gas CO_2/CH_4 solubility-selectivity (dashed line). Estimated uncertainty is shown in the Supporting
 379 Information (cf., Fig S10).

380


381 Using the dual mode parameters estimated from the analysis of experimental pure-gas sorption
 382 isotherms, CO_2/CH_4 solubility-selectivity at CO_2 and CH_4 fugacity of 0.3 MPa and 0.7 MPa,
 383 respectively, is predicted to increase with decreasing temperatures (cf. Fig. S11, Supporting
 384 Information).

385 The most relevant result of this pure- and mixed-gas sorption study is that the incorporation of
 386 configurational free volume does not influence sorption and sorption-selectivity, therefore,
 387 according to the solution-diffusion model, diffusivity-selectivity is the only property affected by
 388 changes in triptycene content. This aspect will be discussed in section 4.4.

389

390 4.4 *Mechanism of light gas transport through configurational free volume.* Pure-gas CO₂ and CH₄
391 permeability data at 35°C collected by Luo et al. [25] and solubility data at 35°C from this study
392 were used to estimate pure-gas diffusivity in TPBOs at 35°C up to 1 MPa. At given pressure, pure-
393 gas permeability and diffusivity decrease with increasing triptycene molar content (cf., Fig. 6A-
394 B). In contrast, pure-gas CO₂/CH₄ selectivity at 35°C and given pressure (i.e., 1MPa) increases
395 with increasing triptycene content in TPBOs (cf., Fig. 6C). Since, as discussed in section 4.1, light
396 gas solubility in TPBOs is essentially independent of triptycene molar content, we can conclude
397 that, based on the solution-diffusion model, the permeability decrease and selectivity increase
398 with increasing triptycene molar content are ascribed to a change in the diffusion behavior only,
399 which means that incorporation of triptycene unity on the polymer backbone only influences the
400 membrane size-sieving ability, with negligible or no effect on sorption and sorption-selectivity.
401 This physical picture, however, is limited to light gasses. As shown in a previous study from this
402 laboratory [39], when the penetrant kinetic diameter exceeds the size of the configurational free
403 volume elements, i.e., for bulky vapor molecules, sorption becomes size-controlled, meaning that
404 triptycene groups reduce the sorption of vapor molecules whose size exceeds their internal size.
405 In Fig. 6A-B, experimental CO₂ pure-gas permeability [25] and diffusivity isotherms (calculated
406 as $\frac{P}{S}$) at 35°C in TPBOs exhibiting increasing molar amount of triptycene units are shown as a
407 function of pressure. At any given pressure, the decrease in gas permeability with increasing
408 triptycene molar content mirrors the parallel decrease in diffusivity.

409

410

411 **Figure 6.** Pure-gas CO₂ permeability (A) [25] and diffusivity (B) in TPBOs as a function of triptycene
 412 molar content and pressure at 35°C; pure-gas CO₂/CH₄ selectivity at 35°C and 1 MPa as a function of
 413 triptycene molar content (C). Similar results were obtained at other pressure values. Solid symbols are
 414 experimental data, and lines are drawn to guide the eye.

415

416 As demonstrated below, this behavior is due to the strong size-sieving ability of triptycene units.
 417 To put these results in perspective, in Table 3 CO₂, CH₄ and N₂ permeability, diffusion coefficients
 418 and CO₂/CH₄ diffusivity-selectivity in TPBOs at 35°C and 1 MPa (i.e., 10 atm) are compared to
 419 benchmark polymers. Interestingly, TPBOs exhibit much larger diffusivity-selectivity compared
 420 to other polymers, which confirms that the size-sieving ability benefits much more than
 421 solubility-selectivity from configurational free volume.

422 **Table 3.** Pure-gas permeability and diffusion coefficients, selectivity and diffusivity-selectivity in TPBOs
423 and conventional polymer membrane materials at 35°C and 1 MPa (i.e., 10 atm).

polymer	permeability (Barrer)			diffusion coefficient (10 ⁸ cm ² /s)			α_{CO_2/CH_4} (ideal)	$\alpha_{D_{CO_2}/D_{CH_4}}$ (ideal)
	CO ₂	CH ₄	N ₂	CO ₂	CH ₄	N ₂		
TPBO-0.25	1042	37	57	125	9.3	37	28.2	13.4
TPBO-0.50	853	23	38	86	5.3	20	37.1	16.2
TPBO-0.75	680	15	27	69	3.3	14	45.3	20.9
TPBO-1.00	276	4.0	8.5	23	0.86	4.3	69.0	26.7
PTMSP [64]	21432	12192	5882	3300	3600	4300	1.75	0.9
PDMS [65]	3978	1200	380	2200	2200	3200	3.3	1.0
PIM-1 [66]	4419	388.5	288	360	73	130	11.4	4.9
cellulose acetate [67]	4.8	0.15	/	1.8	0.45	/	32.0	4
Teflon® AF2400 [43]	2332	383.4	475.7	678	290	600	6.1	2.3
PEO [68]	15.9	0.70	0.22	31	6.6	5.1	22.7	4.7

424

425 Moreover, if the logarithm of permeability is plotted versus 1/FFV (cf. Fig. S12, Supporting
426 Information), significant deviations from the expected linear trend are observed, which provides
427 further evidence of the unique role played by configurational free volume in regulating small
428 molecule transport in TPBOs.

429 To provide a more fundamental analysis of small molecule transport through configurational free
430 volume-based polymers, the Henry's (i.e., D_D) and Langmuir's (i.e., D_H) mode contributions to
431 CO₂ and CH₄ diffusion coefficients in TPBOs at 35°C were calculated using the dual-mode
432 mobility model [50, 66]. To do so, for each penetrant and TPBO sample, permeability was plotted
433 as a function of $\frac{c'_H b}{1+b f'}$ to obtain a nice linear correlation, whose slope and intercept provide D_H and
434 D_D , respectively. Details are provided in Fig. S13, Supporting Information. N₂ was excluded from
435 this analysis, due to the larger uncertainty of permeability and solubility data relative to CH₄ and
436 CO₂.

437 In Table 4, D_H and D_D values are compared among several glassy polymers of interest in gas
 438 separation. Uncertainties, calculated using the error propagation method, are shown in Figs. 7-
 439 A-B. Interestingly, while for any given penetrant in conventional glassy polymers D_D exceeds D_H
 440 by, at maximum, one order of magnitude, in TPBOs D_D exceeds D_H by at least two orders of
 441 magnitude [66], which highlights the superior size-sieving ability offered by triptycene units (i.e.,
 442 configurational free volume).

443

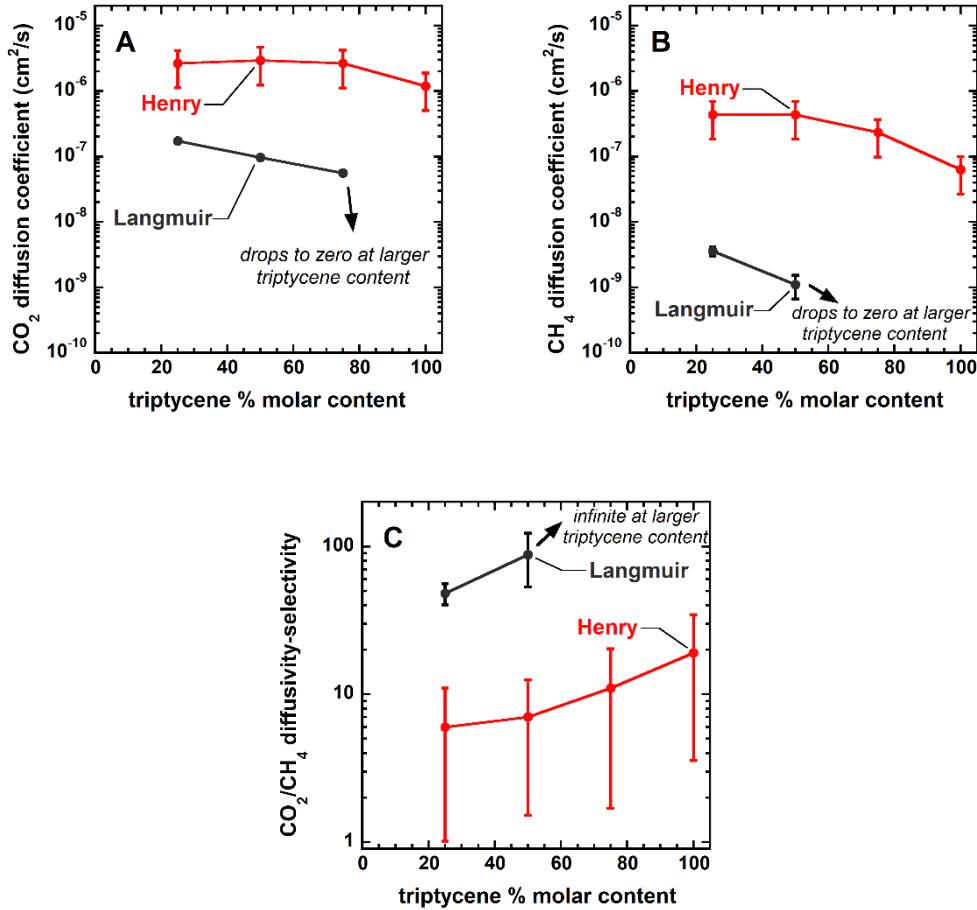
444 **Table 4.** Dual-mode mobility parameters for CO_2 , CH_4 , and N_2 in TPBOs, PIM-1, polysulfone (PSF),
 445 polycarbonate (PC) and 6FDA-6FpDA polyimide (PI). Data are at 35°C for all polymers except PIM-1, for
 446 which they are available at 25°C. Uncertainty of D_D and D_H values for TPBOs are shown in Figs. 7A-B.

<i>polymer</i>	<i>gas</i>	$D_D (10^8 \text{ cm}^2/\text{s})$	$D_H (10^8 \text{ cm}^2/\text{s})$	<i>F</i>
TPBO-0.25	CO_2	265.0	17.15	0.065
	CH_4	43.43	0.359	0.008
TPBO-0.50	CO_2	293.2	9.64	0.033
	CH_4	43.73	0.110	0.003
TPBO-0.75	CO_2	265.4	5.60	0.021
	CH_4	23.30	0.000	0.000
TPBO-1.00	CO_2	119.2	0.000	0.000
	CH_4	6.31	0.000	0.000
PIM-1 [66]	CO_2	1296.6	34.12	0.026
	CH_4	364	3.344	0.009
PSF [69]	CO_2	4.53	0.535	0.118
	CH_4	0.69	0.120	0.174
PC [69]	CO_2	6.22	0.485	0.078
	CH_4	1.09	0.125	0.115
6FDA-6FpDA [70]	CO_2	25.5	1.530	0.060
	CH_4	2.78	0.236	0.085

447

448 Reporting D_H and D_D as a function of the molar triptycene content in TPBOs provides an
 449 opportunity to isolate and evaluate quantitatively the role of configurational free volume on light

450 gas transport. Interestingly, for both CO_2 and CH_4 , the ratio D_H/D_D (referred to as F , cf. Eq. 6) in
451 TPBOs systematically decreases with increasing the triptycene molar content, that is, with
452 increasing the amount of configurational free volume (cf. Table 4). This result indicates that
453 penetrant molecules trapped in the configurational free volume exhibit a very low mobility or no
454 mobility at all as long as more triptycene units are incorporated in the polymer, which is
455 consistent with the internal size of triptycene units being comparable to the penetrants size. This
456 physical picture is further confirmed by the fact that the CO_2 and CH_4 Henry's (i.e., D_D) diffusion
457 coefficients in TPBOs at 35°C are fairly constant, within the uncertainty, with increasing
458 triptycene molar content, although a decrease is observed in the case of CH_4 in the TPBO-1.00
459 sample (cf., Fig. 7A-B) compared to the average of the other TPBO samples exhibiting lower
460 triptycene molar content. This decrease, however, is not significant if we consider the uncertainty
461 associated to D_D (cf. Fig. 7A-B). In contrast, the Langmuir's diffusion coefficient (i.e., D_H) decreases
462 steadily with increasing triptycene molar amount. Interestingly, the decrease of CH_4 Langmuir's
463 diffusivity with increasing triptycene content is steeper than the corresponding decrease of CO_2
464 Langmuir's diffusivity, which is consistent with CH_4 being a bulkier penetrant (kinetic diameter
465 = 3.8 Å) than CO_2 (kinetic diameter = 3.3 Å) [71]. Therefore, the CH_4 size-exclusion becomes more
466 effective with increasing amount of configurational free volume in the polymer. According to this
467 physical picture, while $D_H^{\text{CO}_2}$ drops to zero (i.e. $F = 0$) in TPBO-1.00, $D_H^{\text{CH}_4}$ drops to zero already in
468 TPBO-0.75, which, again, is consistent with CH_4 being a larger molecule than CO_2 .
469 Different approaches have been used to estimate the size of the internal free volume of triptycene
470 units. For example, PALS (Positron Annihilation Lifetime Spectroscopy) measurements suggest
471 that the average free volume size is about 7 Å [25]. However, due to the nature of PALS


472 measurements, this number provides the average size of all the free volume elements, including
473 conformational and configurational free volume elements. Molecular simulations provide, for a
474 single triptycene unit, an internal size less than 4 Å [26]. Finally, if we consider the space between
475 two arene blades of triptycene units as a prism whose internal volume has been estimated to be
476 31 Å³, the diameter of the corresponding sphere would be about 3.9 Å [26]. All these
477 considerations indicate that the internal size of triptycene units is comparable to that of CH₄
478 molecules (kinetic diameter = 3.8 Å), therefore triptycene units exclude CH₄ much more efficiently
479 than CO₂ (kinetic diameter = 3.3 Å), which supports the fact that $D_H^{CH_4}$ decreases faster than
480 $D_H^{CO_2}$ with increasing molar amount of triptycene units in the polymer backbone.

481 The most relevant conclusion of this transport study is that penetrant ability to move within
482 Langmuir sites of TPBOs is severely inhibited as the amount of triptycene increases. This result
483 unequivocally demonstrates that the high size-sieving ability of TPBOs is essentially ascribed to
484 configurational free volume, whose size is well-defined, stable and comparable to the size of one
485 single molecule. In sharp contrast, the size of conformational free volume pockets generated by
486 inefficient chain packing is randomly distributed and unstable over long-term operation [25, 33].

487 To provide a more quantitative evaluation of the enhanced size-sieving ability provided by
488 configurational free volume, the Henry's (i.e., $D_D^{CO_2}/D_D^{CH_4}$) and Langmuir's (i.e., $D_H^{CO_2}/D_H^{CH_4}$)
489 contributions to pure-gas CO₂/CH₄ diffusivity-selectivity have been estimated (cf. Fig. 7C).

490 Although Henry's mode CO₂/CH₄ ideal diffusivity-selectivity at 35°C is essentially constant,
491 within the experimental uncertainty, with increasing triptycene molar contents from 25 to 100%,
492 the Langmuir's mode diffusivity-selectivity ranges from 48 in TPBO-0.25 to 88 in TPBO-0.50, and
493 it becomes practically infinite in TPBO-0.75 and TPBO-1.00. This result further supports the idea

494 that triptycene units can finely regulate small molecule transport based on their size, indicating
 495 that the superior TPBOs' size-sieving ability is due primarily to configurational free volume, with
 496 other possible effects being negligible or at least less relevant.

498

499 **Figure 7.** Henry's and Langmuir's mode CO_2 (A) and CH_4 (B) diffusion coefficients, as well as CO_2/CH_4
 500 Henry's (i.e., $D_{\text{D}}^{\text{CO}_2}/D_{\text{D}}^{\text{CH}_4}$) and Langmuir's (i.e., $D_{\text{H}}^{\text{CO}_2}/D_{\text{H}}^{\text{CH}_4}$) diffusivity-selectivity (C) in TPBOs at 35 °C
 501 as a function of triptycene molar content. $D_{\text{H}}^{\text{CO}_2}$ drops to zero in TPBO-1.00. $D_{\text{H}}^{\text{CH}_4}$ drops to zero when the
 502 triptycene molar content in the polymer is equal to 75% mol or larger. The Langmuir's diffusivity-
 503 selectivity, $D_{\text{H}}^{\text{CO}_2}/D_{\text{H}}^{\text{CH}_4}$, approaches infinite when the triptycene molar content is equal to 75% mol or larger.
 504 Uncertainty was calculated using linear error propagation [55].

505

506

507 **5. Conclusions**

508 A class of polybenzoxazoles (TPBOs) with systematically varied molar amount of triptycene units
509 (i.e., configurational free volume) was selected to propose a possible mechanism of small
510 molecule transport in glassy polymers exhibiting configurational free volume. At given
511 temperature and pressure, pure-gas permeability decreases and ideal selectivity increases with
512 increasing triptycene molar content in TPBOs. The analysis of pure-gas N₂, CH₄ and CO₂ sorption
513 isotherms indicates that gas solubility and solubility-selectivity are essentially independent of
514 triptycene molar content. Similarly, mixed-gas CO₂/CH₄ sorption isotherms predicted using the
515 dual mode model show that competitive sorption (i.e., mixed-gas solubility-selectivity) is
516 independent of triptycene molar content. Therefore, the decrease in gas permeability with
517 increasing triptycene content in TPBOs mirrors the parallel decrease in diffusion coefficient, and
518 the increase in selectivity with increasing molar amount of triptycene units mirrors the parallel
519 increase in diffusivity-selectivity (i.e., size-sieving ability).

520 The dual mode sorption-mobility analysis indicates that small molecule diffusion in TPBOs is
521 progressively hindered with increasing triptycene molar content (that is, with increasing
522 configurational free volume), with a stronger hinderance offered to the transport of larger
523 molecules. Interestingly, while the Henry's CO₂/CH₄ diffusivity-selectivity (i.e., $D_D^{CO_2}/D_D^{CH_4}$)
524 changes little with increasing triptycene molar content, the Langmuir's CO₂/CH₄ diffusivity-
525 selectivity (i.e., $D_H^{CO_2}/D_H^{CH_4}$) rapidly increases with increasing amount of configurational free
526 volume, to become infinite when the molar amount of triptycene units in the polymer is equal to
527 75% or larger. Therefore, configurational free volume provides a unique opportunity to precisely
528 control diffusivity-selectivity in a predictable fashion. Equally important, in contrast with

529 conformational free volume, configurational free volume exhibits excellent resistance to physical
530 aging, which makes configurational diffusivity-selectivity highly stable over long-term operation.
531 This physical picture, however, is limited to light gasses. As shown in a previous study [39], when
532 the penetrant kinetic diameter exceeds the size of the configurational free volume elements,
533 sorption becomes size-controlled, meaning that triptycene units influence both sorption and
534 diffusion coefficients.

535 Finally, the analysis of isosteric heats of sorption reveals that the TPBOs plasticization resistance
536 does not increase with increasing triptycene molar content. Ongoing and future work will
537 investigate the effect of configurational free volume content on the simultaneous transport of gas
538 (i.e., small) and vapor (i.e., bulky) molecules.

539

540 **Acknowledgements**

541 Financial support from the US National Science Foundation (NSF) under the grant CBET-1926868
542 (*Interfacial Engineering*) is gratefully acknowledged. ZH and RG also acknowledge partial support
543 from the National Science Foundation under Cooperative Agreement No. EEC-1647722.

544

545 **References**

- 546 [1] J. Deng, Z. Huang, B.J. Sundell, D.J. Harrigan, S.A. Sharber, K. Zhang, R. Guo, M. Galizia, State
547 of the art and prospects of chemically and thermally aggressive membrane gas separations:
548 Insights from polymer science, *Polymer*, 229 (2021) 123988.
- 549 [2] M. Galizia, W.S. Chi, Z.P. Smith, T.C. Merkel, R.W. Baker, B.D. Freeman, 50th anniversary
550 perspective: polymers and mixed matrix membranes for gas and vapor separation: a review and
551 prospective opportunities, *Macromolecules*, 50 (2017) 7809-7843.
- 552 [3] L.M. Robeson, Correlation of separation factor versus permeability for polymeric membranes,
553 *J. Membr. Sci.*, 62 (1991) 165-185.
- 554 [4] L.M. Robeson, The upper bound revisited, *J. Membr. Sci.*, 320 (2008) 390-400.

555 [5] J.R. Weidman, R. Guo, The use of iptycenes in rational macromolecular design for gas
556 separation membrane applications, *Ind. Eng. Chem. Res.*, 56 (2017) 4220-4236.

557 [6] P.M. Budd, B.S. Ghanem, S. Makhseed, N.B. McKeown, K.J. Msayib, C.E. Tattershall, Polymers
558 of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials,
559 *Chemical communications*, (2004) 230-231.

560 [7] P.M. Budd, N.B. McKeown, D. Fritsch, Polymers of intrinsic microporosity (PIMs): high free
561 volume polymers for membrane applications, in: *Macromolecular Symposia*, Wiley Online
562 Library, New York, 2006, pp. 403-405.

563 [8] T.J. Corrado, Z. Huang, D. Huang, N. Wamble, T. Luo, R. Guo, Pentiptycene-based ladder
564 polymers with configurational free volume for enhanced gas separation performance and
565 physical aging resistance, *Proceedings of the National Academy of Sciences*, 118 (2021).

566 [9] H.B. Park, C.H. Jung, Y.M. Lee, A.J. Hill, S.J. Pas, S.T. Mudie, E. Van Wagner, B.D. Freeman,
567 D.J. Cookson, Polymers with cavities tuned for fast selective transport of small molecules and
568 ions, *Science*, 318 (2007) 254-258.

569 [10] C.H. Lau, P.T. Nguyen, M.R. Hill, A.W. Thornton, K. Konstas, C.M. Doherty, R.J. Mulder, L.
570 Bourgeois, A.C. Liu, D.J. Sprouster, Ending aging in super glassy polymer membranes,
571 *Angewandte Chemie International Edition*, 53 (2014) 5322-5326.

572 [11] H. Lin, E. Van Wagner, B.D. Freeman, L.G. Toy, R.P. Gupta, Plasticization-enhanced
573 hydrogen purification using polymeric membranes, *Science*, 311 (2006) 639-642.

574 [12] T.C. Merkel, I. Pinna, R. Prabhakar, B.D. Freeman, Gas and vapor transport properties of
575 perfluoropolymers, *Materials science of membranes for gas and vapor separation*, 1 (2006) 251.

576 [13] M. Yavari, M. Fang, H. Nguyen, T.C. Merkel, H. Lin, Y. Okamoto, Dioxolane-based
577 perfluoropolymers with superior membrane gas separation properties, *Macromolecules*, 51
578 (2018) 2489-2497.

579 [14] Y. Okamoto, H.-C. Chiang, M. Fang, M. Galizia, T. Merkel, M. Yavari, H. Nguyen, H. Lin,
580 Perfluorodioxolane polymers for gas separation membrane applications, *Membranes*, 10 (2020)
581 394.

582 [15] B.D. Freeman, Basis of permeability/selectivity tradeoff relations in polymeric gas separation
583 membranes, *Macromolecules*, 32 (1999) 375-380.

584 [16] Z. Ali, B.S. Ghanem, Y. Wang, F. Pacheco, W. Ogieglo, H. Vovusha, G. Genduso, U.
585 Schwingenschlögl, Y. Han, I. Pinna, Finely tuned submicroporous thin-film molecular sieve
586 membranes for highly efficient fluid separations, *Adv. Mater.*, 32 (2020) 2001132.

587 [17] A.M. Tandel, W. Guo, K. Bye, L. Huang, M. Galizia, H. Lin, Designing organic solvent
588 separation membranes: polymers, porous structures, 2D materials, and their combinations,
589 *Materials Advances*, 2 (2021) 4574-4603.

590 [18] G.M. Geise, H.B. Park, A.C. Sagle, B.D. Freeman, J.E. McGrath, Water permeability and
591 water/salt selectivity tradeoff in polymers for desalination, *J. Membr. Sci.*, 369 (2011) 130-138.

592 [19] P. Marchetti, M.F. Jimenez Solomon, G. Szekely, A.G. Livingston, Molecular separation with
593 organic solvent nanofiltration: a critical review, *Chem. Rev.*, 114 (2014) 10735-10806.

594 [20] Y. Yampolskii, N. Belov, A. Alentiev, Perfluorinated polymers as materials of membranes for
595 gas and vapor separation, *J. Membr. Sci.*, 598 (2020) 117779.

596 [21] B. Comesaña-Gándara, J. Chen, C.G. Bezzu, M. Carta, I. Rose, M.-C. Ferrari, E. Esposito, A.
597 Fuoco, J.C. Jansen, N.B. McKeown, Redefining the Robeson upper bounds for CO₂/CH₄ and

598 CO₂/N₂ separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic
599 microporosity, *Energy & Environmental Science*, 12 (2019) 2733-2740.

600 [22] Y.J. Cho, H.B. Park, Gas separation properties of triptycene-based polyimide membranes, in:
601 I. Escobar, B. Van der Bruggen (Eds.), *Modern Applications in Membrane Science and*
602 *Technology*, ACS Publications, Washington DC, 2011, pp. 107-128.

603 [23] T. Corrado, Z. Huang, J. Aboki, R. Guo, Microporous polysulfones with enhanced separation
604 performance via integration of the triptycene moiety, *Ind. Eng. Chem. Res.*, 59 (2019) 5351-5361.

605 [24] S. Luo, J.R. Wiegand, P. Gao, C.M. Doherty, A.J. Hill, R. Guo, Molecular origins of fast and
606 selective gas transport in pentiptycene-containing polyimide membranes and their physical
607 aging behavior, *J. Membr. Sci.*, 518 (2016) 100-109.

608 [25] S. Luo, Q. Zhang, L. Zhu, H. Lin, B.A. Kazanowska, C.M. Doherty, A.J. Hill, P. Gao, R. Guo,
609 Highly selective and permeable microporous polymer membranes for hydrogen purification and
610 CO₂ removal from natural gas, *Chem. Mater.*, 30 (2018) 5322-5332.

611 [26] J.R. Weidman, S. Luo, C.M. Doherty, A.J. Hill, P. Gao, R. Guo, Analysis of governing factors
612 controlling gas transport through fresh and aged triptycene-based polyimide films, *J. Membr.*
613 *Sci.*, 522 (2017) 12-22.

614 [27] L. Zhao, Z. Li, T. Wirth, Triptycene derivatives: synthesis and applications, *Chem. Lett.*, 39
615 (2010) 658-667.

616 [28] Y. Jiang, C.F. Chen, Recent developments in synthesis and applications of triptycene and
617 pentiptycene derivatives, *European Journal of Organic Chemistry*, 2011 (2011) 6377-6403.

618 [29] Y. Jiang, F.T. Willmore, D. Sanders, Z.P. Smith, C.P. Ribeiro, C.M. Doherty, A. Thornton, A.J.
619 Hill, B.D. Freeman, I.C. Sanchez, Cavity size, sorption and transport characteristics of thermally
620 rearranged (TR) polymers, *Polymer*, 52 (2011) 2244-2254.

621 [30] S. Luo, J.R. Wiegand, B. Kazanowska, C.M. Doherty, K. Konstas, A.J. Hill, R. Guo, Finely
622 tuning the free volume architecture in iptycene-containing polyimides for highly selective and
623 fast hydrogen transport, *Macromolecules*, 49 (2016) 3395-3405.

624 [31] J.R. Wiegand, Z.P. Smith, Q. Liu, C.T. Patterson, B.D. Freeman, R. Guo, Synthesis and
625 characterization of triptycene-based polyimides with tunable high fractional free volume for gas
626 separation membranes, *Journal of Materials Chemistry A*, 2 (2014) 13309-13320.

627 [32] R.D. Crist, Z. Huang, R. Guo, M. Galizia, Effect of thermal treatment on the structure and gas
628 transport properties of a triptycene-based polybenzoxazole exhibiting configurational free
629 volume, *J. Membr. Sci.*, 597 (2020) 117759.

630 [33] Y. Huang, D.R. Paul, Physical aging of thin glassy polymer films monitored by gas
631 permeability, *Polymer*, 45 (2004) 8377-8393.

632 [34] M.M. Merrick, R. Sujanani, B.D. Freeman, Glassy polymers: Historical findings, membrane
633 applications, and unresolved questions regarding physical aging, *Polymer*, 211 (2020) 123176.

634 [35] S.J. Smith, R. Hou, K. Konstas, A. Akram, C.H. Lau, M.R. Hill, Control of physical aging in
635 super-glassy polymer mixed matrix membranes, *Acc. Chem. Res.*, 53 (2020) 1381-1388.

636 [36] Z.-X. Low, P.M. Budd, N.B. McKeown, D.A. Patterson, Gas permeation properties, physical
637 aging, and its mitigation in high free volume glassy polymers, *Chem. Rev.*, 118 (2018) 5871-5911.

638 [37] V. Loianno, S. Luo, Q. Zhang, R. Guo, M. Galizia, Gas and water vapor sorption and diffusion
639 in a triptycene-based polybenzoxazole: effect of temperature and pressure and predicting of
640 mixed gas sorption, *J. Membr. Sci.*, 574 (2019) 100-111.

641 [38] V. Loianno, Q. Zhang, S. Luo, R. Guo, M. Galizia, Modeling gas and vapor sorption and
642 swelling in triptycene-based polybenzoxazole: Evidence for entropy-driven sorption behavior,
643 *Macromolecules*, 52 (2019) 4385-4395.

644 [39] W.J. Box, Z. Huang, R. Guo, M. Galizia, Evidence for Size-Sieving Driven Vapor Sorption and
645 Diffusion in a Glassy Polybenzoxazole Exhibiting Configurational Free Volume, *Ind. Eng. Chem.*
646 *Res.*, 60 (2021) 13326-13337.

647 [40] J.G. Wijmans, R.W. Baker, The solution-diffusion model: a review, *J. Membr. Sci.*, 107 (1995)
648 1-21.

649 [41] K.P. Bye, V. Loianno, T.N. Pham, R. Liu, J.S. Riffle, M. Galizia, Pure and mixed fluid sorption
650 and transport in Celazole® polybenzimidazole: Effect of plasticization, *J. Membr. Sci.*, 580 (2019)
651 235-247.

652 [42] W. Koros, D. Paul, G. Huvard, Energetics of gas sorption in glassy polymers, *Polymer*, 20
653 (1979) 956-960.

654 [43] T. Merkel, V. Bondar, K. Nagai, B. Freeman, Y.P. Yampolskii, Gas sorption, diffusion, and
655 permeation in poly (2, 2-bis (trifluoromethyl)-4, 5-difluoro-1, 3-dioxole-co-tetrafluoroethylene),
656 *Macromolecules*, 32 (1999) 8427-8440.

657 [44] V. Loianno, K.P. Bye, M. Galizia, P. Musto, Plasticization mechanism in polybenzimidazole
658 membranes for organic solvent nanofiltration: Molecular insights from in situ FTIR spectroscopy,
659 *J. Polym. Sci.*, 58 (2020) 2547-2560.

660 [45] M. Omidvar, H. Nguyen, J. Liu, H. Lin, Sorption-enhanced membrane materials for gas
661 separation: a road less traveled, *Current Opinion in Chemical Engineering*, 20 (2018) 50-59.

662 [46] R. Felder, C. Patton, W. Koros, Dual-mode sorption and transport of sulfur dioxide in kapton
663 polyimide, *J. Polym. Sci.: Polym. Phys. Ed.*, 19 (1981) 1895-1909.

664 [47] R. Barrer, Diffusivities in glassy polymers for the dual mode sorption model, *J. Membr. Sci.*,
665 18 (1984) 25-35.

666 [48] R. Chern, W. Koros, E. Sanders, S. Chen, H. Hopfenberg, Implications of the dual-mode
667 sorption and transport models for mixed gas permeation, in, ACS Publications, 1983.

668 [49] J. Petropoulos, On the dual mode gas transport model for glassy polymers, *J. Polym. Sci. B: Polymer Physics*, 26 (1988) 1009-1020.

669 [50] D. Paul, W. Koros, Effect of partially immobilizing sorption on permeability and the diffusion
670 time lag, *J. Polym. Sci.: Polym. Phys. Ed.*, 14 (1976) 675-685.

671 [51] W. Koros, Model for sorption of mixed gases in glassy polymers, *J. Polym. Sci.: Polym. Phys.*
672 *Ed.*, 18 (1980) 981-992.

673 [52] Q. Liu, M. Galizia, K.L. Gleason, C.A. Scholes, D.R. Paul, B.D. Freeman, Influence of toluene
674 on CO₂ and CH₄ gas transport properties in thermally rearranged (TR) polymers based on 3, 3'-
675 dihydroxy-4, 4'-diamino-biphenyl (HAB) and 2, 2'-bis-(3, 4-dicarboxyphenyl) hexafluoropropane
676 dianhydride (6FDA), *J. Membr. Sci.*, 514 (2016) 282-293.

677 [53] D.W. Van Krevelen, K. Te Nijenhuis, Properties of polymers: their correlation with chemical
678 structure; their numerical estimation and prediction from additive group contributions, Elsevier,
679 Amsterdam, 2009.

680 [54] D.-Y. Peng, D.B. Robinson, A new two-constant equation of state, *Ind. Eng. Chem. Fund.*, 15
681 (1976) 59-64.

683 [55] P.R. Bevington, D.K. Robinson, Data reduction and error analysis, McGraw-Hill, New York,
684 (2003).

685 [56] K.A. Stevens, Z.P. Smith, K.L. Gleason, M. Galizia, D.R. Paul, B.D. Freeman, Influence of
686 temperature on gas solubility in thermally rearranged (TR) polymers, *J. Membr. Sci.*, 533 (2017)
687 75-83.

688 [57] W. Koros, D. Paul, CO₂ sorption in poly (ethylene terephthalate) above and below the glass
689 transition, *J. Polym. Sci.: Polym. Phys. Ed.*, 16 (1978) 1947-1963.

690 [58] R.S. Prabhakar, B.D. Freeman, I. Roman, Gas and vapor sorption and permeation in poly (2,
691 2, 4-trifluoro-5-trifluoromethoxy-1, 3-dioxole-co-tetrafluoroethylene), *Macromolecules*, 37 (2004)
692 7688-7697.

693 [59] F. Körösy, Two rules concerning solubility of gases and crude data on solubility of krypton,
694 *Transactions of the Faraday Society*, 33 (1937) 416-425.

695 [60] R.C. Reid, J.M. Prausnitz, B.E. Poling, *The properties of gases and liquids*, (1987).

696 [61] E. Sanders, W. Koros, H. Hopfenberg, V. Stannett, Mixed gas sorption in glassy polymers:
697 Equipment design considerations and preliminary results, *J. Membr. Sci.*, 13 (1983) 161-174.

698 [62] E. Sanders, W.J. Koros, H. Hopfenberg, V. Stannett, Pure and mixed gas sorption of carbon
699 dioxide and ethylene in poly (methyl methacrylate), *J. Membr. Sci.*, 18 (1984) 53-74.

700 [63] S.I. Sandler, *Chemical, biochemical, and engineering thermodynamics*, John Wiley & Sons,
701 2017.

702 [64] T. Merkel, V. Bondar, K. Nagai, B. Freeman, Sorption and transport of hydrocarbon and
703 perfluorocarbon gases in poly (1-trimethylsilyl-1-propyne), *Journal of Polymer Science Part B: Polymer Physics*, 38 (2000) 273-296.

704 [65] T. Merkel, V. Bondar, K. Nagai, B. Freeman, I. Pinnau, Gas sorption, diffusion, and
705 permeation in poly (dimethylsiloxane), *J. Polym. Sci. B: Polymer Physics*, 38 (2000) 415-434.

706 [66] P. Li, T.-S. Chung, D. Paul, Gas sorption and permeation in PIM-1, *J. Membr. Sci.*, 432 (2013)
707 50-57.

708 [67] A. Houde, B. Krishnakumar, S. Charati, S. Stern, Permeability of dense (homogeneous)
709 cellulose acetate membranes to methane, carbon dioxide, and their mixtures at elevated
710 pressures, *J. Appl. Polym. Sci.*, 62 (1996) 2181-2192.

711 [68] H. Lin, B.D. Freeman, Gas solubility, diffusivity and permeability in poly (ethylene oxide), *J.*
712 *Membr. Sci.*, 239 (2004) 105-117.

713 [69] T. Barbari, W. Koros, D. Paul, Gas transport in polymers based on bisphenol-A, *J. Polym. Sci.*
714 *B: Polymer Physics*, 26 (1988) 709-727.

715 [70] R. Wang, C. Cao, T.-S. Chung, A critical review on diffusivity and the characterization of
716 diffusivity of 6FDA-6FpDA polyimide membranes for gas separation, *J. Membr. Sci.*, 198 (2002)
717 259-271.

718 [71] L.M. Robeson, M.E. Dose, B.D. Freeman, D.R. Paul, Analysis of the transport properties of
719 thermally rearranged (TR) polymers and polymers of intrinsic microporosity (PIM) relative to
720 upper bound performance, *J. Membr. Sci.*, 525 (2017) 18-24.

722