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Optimal Non-Adaptive Probabilistic Group

Testing in General Sparsity Regimes

Wei Heng Bay, Eric Price, and Jonathan Scarlett

Abstract

In this paper, we consider the problem of noiseless non-adaptive probabilistic group testing, in which
the goal is high-probability recovery of the defective set. We show that in the case of n items among
which k are defective, the smallest possible number of tests equals min{Ck,nk log n, n} up to lower-order
asymptotic terms, where Ck,n is a uniformly bounded constant (varying depending on the scaling of
k with respect to n) with a simple explicit expression. The algorithmic upper bound follows from a
minor adaptation of an existing analysis of the Definite Defectives (DD) algorithm, and the algorithm-
independent lower bound builds on existing works for the regimes k ≤ n1−Ω(1) and k = Θ(n). In
sufficiently sparse regimes (including k = o( n

logn
)), our main result generalizes that of Coja-Oghlan et

al. (2020) by avoiding the assumption k ≤ n1−Ω(1), whereas in sufficiently dense regimes (including
k = ω( n

log n
)), our main result shows that individual testing is asymptotically optimal for any non-zero

target success probability, thus strengthening an existing result of Aldridge (2019) in terms of both the
error probability and the assumed scaling of k.

1 Introduction

The group testing problem was originally studied in the context of testing blood samples for rare diseases [13],
with the key idea being to reduce the required number of tests via pooling. Group testing has since found
applications in communications [16], information retrieval [12], compressed sensing [19], and most recently,
COVID-19 testing [30].

The problem is formally defined as follows: There are n items [n] = {1, 2, . . . , n}, a subset S ¦ [n] of
which is defective, with |S|= k. A number of tests are performed, each taking as input a subset of items, and
returning positive if and only if the subset contains at least one defective item. A group testing algorithm
specifies the number of tests T , the items included in each test, and a decoder that returns an estimate Ŝ
of the defective set given the test outcomes. We are interested in the required number of tests to attain
asymptotically vanishing error probability, i.e., limn³> P[Ŝ �= S] = 0.

We focus on the non-adaptive setting, in which all tests must be specified prior to observing any outcomes;
this is often highly desirable in applications, since it permits the tests to be implemented in parallel. In this
setting, the tests can be represented as a test matrix X * {0, 1}T×n, where the (i, j)-th entry is 1 if and only
if the i-th test contains the j-th item. The test outcomes are then given by the element-wise “OR” of the k
columns corresponding to the defective items. Mathematically, the i-th outcome is given by

Y (i) =
∨

j*S

X
(i)
j , (1.1)

where X
(i)
j is the (i, j)-th entry of X.
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We place a random model on the defective set S. Throughout the majority of the paper, we assume that
each item is included in S (i.e., is defective) independently with some probability p (possibly depending on
n), referred to as the prevalence. We also consider a closely-related model in which k is fixed, and S is a
uniformly random subset of [n] of cardinality k. We refer to these models as the i.i.d. prior and combinatorial
prior respectively. The two are closely related, since under the i.i.d. model we have k = np(1 + o(1)) with
probability approaching one as long as np = Ë(1). See [5, Sec. 1.A] for a more detailed summary of the
connections between these models.

Throughout the paper, we make the mild assumption that p f 1
2 (i.i.d. prior) or k f n

2 (combinatorial
prior). Otherwise, the problem fails to be sparse, and it is already well-established that individual (one-by-
one) testing is optimal even when adaptivity is allowed [2,25,29]. In addition, our analysis applies essentially
unchanged when this factor of 1

2 is replaced by any fixed constant less than one.

2 Existing Results and Contributions

Here we state the most relevant existing results on probabilistic non-adaptive group testing, and state our
own main results in the context of these existing ones. For consistency with the vast majority of existing
works, we express the previously-known results in terms of k and n, corresponding to the combinatorial
prior. However, the same results apply under the i.i.d. prior when k is replaced by k := np throughout,
under the mild assumption that k ³> as n³>.

2.1 Main Existing and New Results

A simple counting-based (or entropy-based) argument reveals that the number of tests for the high-probability
recovery of S must satisfy T g (1 2 o(1)) log2

(
n
k

)
, or more simply T = Ω(k log n

k
) [6–8, 24]. Moreover, this

scaling is order-optimal in the following widely-considered regimes:

• If k f n12Ω(1), then we have k log n
k
= Θ(k logn), and thus, the lower bound matches the ubiquitous

O(k logn) upper bound obtained via random testing [4, 8, 18, 24] or certain explicit designs [21].

• If k = Θ(n), then we have k log n
k
= Θ(n), and thus, the lower bound matches the trivial O(n) upper

bound corresponding to testing each item individually.

While these observations cover the majority of scaling regimes, there remain “mildly sublinear” regimes in
which the existing upper and lower bounds do not match, namely, k = Θ( n

f(n)) for any f(n) satisfying

f(n) = Ë(1) and f(n) = o(nc) for all c > 0. A notable example of such a regime is k = n
poly(logn) . Our first

main result, stated below, closes this gap by showing that the correct scaling is always Θ(min{k logn, n}).
Before stating the result, we introduce the following threshold:

T 7(n, k) = max
{
k log2

n

k
,
k log2 k

ln 2

}
. (2.1)

While the above discussion focuses on scaling laws, recent refined analyses [1, 10, 11, 22] have nailed down
the precise constants in the above-mentioned scaling regimes:

• When k f n12Ω(1), the optimal threshold for non-adaptive group testing is T 7 [11]. Specifically,
there exists a strategy using T f (1 + ë)T 7 tests that succeeds with probability approaching one and
has decoding time polynomial in n, whereas any algorithm requires T g (1 2 ë)T 7 to have a success
probability bounded away from zero.

• When k = Θ(n), the optimal threshold for non-adaptive group testing is n [1]. Specifically, with T = n
one can trivially use one-by-one testing, whereas any strategy attaining success probability arbitrarily
close to one must have T g n2 1.1

1The subtraction of one is merely due to the fact that under the combinatorial prior, knowing the status of n− 1 items also
implies knowing the status of the remaining item.



Based on these results, a reasonable guess is that the optimal threshold for group testing in general scaling
regimes is min{T 7(n, k), n} (which scales as Θ(min{k logn, n}), consistent with the above discussion). Our
main result, stated as follows, reveals that this is indeed the case.

Theorem 2.1. In the non-adaptive group testing problem with n items and prevalence p (possibly depending
on n) under the i.i.d. prior with p = Ë( 1

n
) and p f 1

2 ,
2 we have the following for any ë > 0:

• There exists a test design and polynomial-time decoding algorithm using T f min{(1 + ë)T 7(n, np), n}
tests and having a success probability approaching one as n³>.

• Any group testing strategy having success probability bounded away from zero as n ³ > must use at
least T g (12 ë)min{T 7(n, np), n} tests.

While we find it most convenient to establish this result for the i.i.d. prior, we can use known connections
between the two priors to establish the following analog for the combinatorial prior.

Corollary 2.1. In the non-adaptive group testing problem with n items and k f n
2 defectives under the

combinatorial prior, we have the following for any ë > 0:

• There exists a test design and polynomial-time decoding algorithm using T f min{(1 + ë)T 7(n, k), n}
tests and having a success probability approaching one as n³>.

• Any group testing strategy having success probability bounded away from zero as n ³ > must use at
least T g (12 ë)min{T 7(n, k), n} tests.

These results not only show that optimal non-adaptive group testing requires T = Θ(min{k logn, n})
tests in general sparsity regimes, but also provide the precise underlying constants.

The algorithmic upper bounds in Theorem 2.1 and Corollary 2.1 are already known in the regime k f
n12Ω(1) [11, 22], and follow trivially from one-by-one testing when min{(1 + ë)T 7, n} = n. Hence, it suffices
to establish success using (1 + ë)T 7 tests in the regime k = n12o(1). Fortunately, although the analysis of
the Definite Defectives (DD) algorithm in [22] was formally only stated for k f n12Ω(1), the analysis can
be adapted to the regime k = n12o(1) with only minor modifications. We detail the required changes in
Appendix A.

As for the algorithm-independent lower bounds, with the regime k f n12Ω(1) having been solved in [11],
we can again focus on the regime k = n12o(1) (including k = Θ(n)). In this case, we were unable to directly
infer the desired result from [11], and we thus provide a detailed proof in Section 3, though we still naturally
re-use the main tools and ideas proposed in [11].

Specialization to dense regimes. As hinted above, when the min{T 7, n} term is attained by n,
our results indicate that one-by-one testing is asymptotically optimal. This is consistent with the above-
mentioned result of [1], but also strengthens it in two ways:

• Individual testing is not only asymptotically optimal when the goal is to succeed with probability
approaching one, but also when the goal is attaining any strictly positive target success probability.

• Individual testing is not only asymptotically optimal when k = Θ(n), but also when k = Ë( n
logn

), or

even more generally, when k > n ln 2
log2 n

.

On the other hand, it is worth noting that our result only indicates failure when T < (1 2 ë)n, whereas
that of [1] handles the more general scenario T < n 2 1. This distinction is necessary when establishing
high-probability failure and/or handling the regime k = o(n), since otherwise one could consider a strategy
that (e.g.) tests the first n2 2 items one-by-one and then guesses the remaining two to be non-defective.

Note on partially concurrent work. In the initial version of our work, we focused only on the lower
bound, and provided a weaker result with an unspecified coefficient to the k logn term in the min{k logn, n}
scaling. After releasing the initial version, the important case of k = Θ( n

logn
) was studied in more detail

2The assumption p = Ë( 1
n
) ensures that k = np = Ë(1), and hence the number of defectives concentrates around k. The

theorem cannot be true as stated when p ≤ O( 1
n
); for example, even the trivial strategy of declaring every item non-defective

has Ω(1) probability of succeeding, in contrast to the second part of the theorem. In addition, our main novel contribution is
handling the significantly denser regime k = n1−o(1).



in [17], giving upper and lower bounds with explicit constants. The updated version of our work was
developed in parallel with [17], and establishes the precise constants. Our upper bound in fact matches that
of [17] (and is proved similarly), whereas a refinement of the main proof technique is needed to obtain our
tight lower bound (see the stopping condition of Step 4(a), Procedure 3.1).

2.2 Further Existing Results

Before proceeding, we provide a brief summary of some further existing works. Since these are less directly
related to our work, we omit the details, and refer the reader to [5, 14] for more detailed surveys.

For certain variants of group testing, the optimal number of tests is Θ(k log n
k
), as opposed to

Θ(min{k logn, n}) under the setup we consider. Specifically, two notable cases with scaling Θ(k log n
k
)

are (i) the adaptive setting, in which each test can be designed based on previous outcomes [2, 3, 20], and
(ii) the approximate recovery criterion, in which Θ(k) false positives and Θ(k) false negatives are allowed in
the reconstruction [27, 28].

In contrast to the noiseless setting that we consider in this paper, in the noisy setting, the number of
tests is at least Ω(k logn) even if k lognk n, and even if adaptivity is allowed [26].

Finally, while the focus of our work is on high-probability recovery, extensive results have been established
for the stronger guarantee of uniform recovery, i.e., a single test matrix that uniquely recovers any defective
set of cardinality at most k, without allowing any error probability (e.g., see [9,14,15,23] and the references
therein). This stronger guarantee comes at the price of requiring significantly more tests, with a quadratic
dependence on k instead of a linear dependence. In addition, the associated proof techniques are very
different.

3 Proofs of Algorithm-Independent Lower Bounds

We first consider Theorem 2.1 regarding the i.i.d. prior, and then turn to Corollary 2.1 regarding the com-
binatorial prior.

3.1 Proof of the Lower Bound for Theorem 2.1

Our analysis builds on the ideas of [1, 11], both of which identify totally disguised items (see Definition 3.1
below) whose defectivity status can be flipped without changing the test outcomes. In [1], one such item
suffices for attaining the weak converse (i.e., P[Ŝ �= S] �³ 0) in the linear regime. To obtain a stronger
statement of the form P[Ŝ �= S]³ 1 and also handle sublinear sparsity regimes, we follow the idea from [11]
of identifying many such items.

Specifically, we follow the high-level steps of [11] and utilize certain auxiliary results therein, but modify
the details in order to handle the regime k = n12o(1) instead of k f n12Ω(1). The key idea is to identify
many items that are disguised independently of one another. We then apply an auxiliary result of [1] (see
Lemma 3.2 below) along with some “clean-up” steps to ensure that its assumptions remain valid each time
it is invoked.

In the following, we let q = 12 p for convenience. The following useful definition was introduced in [1].

Definition 3.1. [1] We say that an item i is disguised in test t if at least one of the other items in the test
is defective. We say that an item is totally disguised if it is disguised in every test it is included in. Let Di

denote the event that item i is totally disguised.

It is noted in [1] that if an item is totally disguised, then it remains totally disguised even if it is changed
from defective to non-defective or vice versa. Thus, under the i.i.d. prior, the tests do not reveal any
information about that item’s defectivity status, and we have the following.

Lemma 3.1. (Implicit in [1] and [11, Sec. 3]) For any given test matrix X, and a defective set S generated
according to the i.i.d. prior, we have the following: Conditioned on a given item i being totally disguised,
that item is defective with conditional probability p (i.e., the same as the prior defectivity probability).



It follows that for any totally disguised item, the best the algorithm can do is choose the more likely
outcome, and succeed with probability max {p, 12 p} = 1 2 p (recalling that we focus on the case that
p f 1

2 ).
The following result from [1] is crucial for characterizing the probability of items being totally disguised.

Lemma 3.2. [1, Eq. (1)] Define L(p) = minx=2,3,...,n x ln(12 qx21), where q = 12 p. If the test design X

has no tests with 0 or 1 items, then

1

n

n∑

i=1

lnP[Di] g
T

n
· L(p) (3.1)

Hence, there exists an item i with lnP[Di] g T
n
· L(p).

At a high level, this lemma is proved by directly calculating P[Di] in terms of the i-th test size (which x
plays the role of in the definition of L(p)), then averaging over the resulting log-values and applying some
simple lower bounding techniques.

In the linear regime (i.e., k = Θ(n)), one has L(p) = Θ(1), and consequently, Lemma 3.2 directly implies
that the success probability is bounded away from one, after removing all tests with 0 or 1 items [1]. More
generally, it is natural to ask whether there are, in fact, many items i with lnP[Di] close to the the right-hand
side of (3.1) [11]. If we can find a “large” set W of such items such that these items are totally disguised
independently from each other, then we may apply standard binomial distribution concentration bounds to
conclude that many totally disguised items exist, with high probability.

Following [11], we interpret the testing strategy as a bipartite graph GX in which there is a vertex vi
for each item i and a vertex vt for each test t, with an edge between vi and vt if item i is placed in test
t. Before constructing the desired set (denoted by W ), we present two simple lemmas (which are analogous
to [11, Lemmas 3.7 and 3.8]) and two subroutines that will be useful.

Lemma 3.3. Let z = 2
ln 1

q

, and suppose that T f n. Then, the probability that there exists a negative test

containing more than z lnn items is at most 1
n
.

Proof. Recalling that q = 1 2 p, a given test containing at least z lnn items is negative with probability at
most

qz lnn = ez ln q lnn =
1

n2
(3.2)

by the definition of z. Since T f n, a union bound yields the desired result.

We henceforth assume that no test contains more than z lnn items, since Lemma 3.3 implies that the
decoder may declare all such tests to be positive without increasing the error probability by more than
1
n
³ 0.

Lemma 3.4. Fix ¿ > 0, and define an item to be very-present if it appears in more than n¿ tests. If T f n
and no test contains more than z lnn items, then there are no more than zn12¿ lnn very-present items.

Proof. We count the number P of pairs (i, t) such that item i is in test t. By assumption, P f Tz lnn f
nz lnn. Letting nvp be the number of very-present items, it follows that nvpn

¿ f P < nz lnn, and rearranging
yields the desired result.

We are now in a position to describe the construction of the desired set W , namely, a set of items that
are disguised independently of one another. To establish a hardness result, we would like to ensure that the
size of W and the probability of each i * W being disguised are both large enough, so that the resulting
error probability is high.

Towards achieving this goal, we introduce Subroutines 3.1 and 3.2. Clean removes all tests with 0 or 1
items, allowing us to apply Lemma 3.2, and Extract adds an item to W . Both will be called multiple times
in the construction of W , and their calls will reduce the effective T and/or n.

The full procedure for constructing W is described in Procedure 3.1, which depends on a generic constant
¿ > 0; although its use in step 4(a) is not directly related to its used in Lemma 3.4, we find it sufficient to



Subroutine 3.1: Clean(X).

1. Identify the set of tests Tf1 containing 0 or 1 items, and the set of items I contained in at least one
test in Tf1.

2. Return Xg2, defined to be X with the rows and columns indexed by Tf1 and I removed.

Subroutine 3.2: Extract(X,W ).

1. Let D̃i be the event that i is totally disguised with respect to X. Let the item with the highest P[D̃i]
be denoted by i0, and set Wnext = W * {i0}.

2. Let Tclose and Iclose denote the sets of tests and items within distance at most 4 from i0 in GX.

3. Set Xpruned to be X with the rows and columns indexed by Tclose and Iclose removed.

4. Return (Xpruned,Wnext)

use the same constant in both cases. To justify step 1, we momentarily imagine that there exists a “genie”
that tells the decoder the identity of the very-present items. Let the test results for G0 and G1 be y0 and
y1 respectively; then, knowing X, we see that y0 can be derived from y1 and the genie information. If we
can prove that the error probability tends to one even with the help of the genie (and knowing y1), then it
certainly tends to one without it, so step 1 is justified. After step 1, each item is contained in at most n¿

tests.
Let wi denote the i-th item placed in W . Let Dwi

be the event that wi is totally disguised with respect

to X1, and let D̃wi
be the event that wi is totally disguised with respect to Xtmp,i (see Procedure 3.1 for the

definitions of X1 and Xtmp,i). Since the totally disguised event Dwi
only depends on the 2-neighborhood of

wi in G1, and the 2-neighborhoods of items in W are pairwise disjoint by construction (due to the Extract

subroutine), the events {Dw : w * W} are independent (this independence property for nodes having distance
greater than 4 was also used in [11]).

Next, we state the following simple lemma relating the events Dwi
and D̃wi

, both of which represent
events of being totally disguised, but with respect to different test matrices.

Lemma 3.5. Under the preceding setup, we have P[Dwi
] g P[D̃wi

].

Proof. In each Clean/Extract step, whenever we remove a test, we remove all of its items. It follows that
wi is contained in the same tests in X1 and Xtmp,i, except that each such test in Xtmp,i has fewer items.
Since a disguised item always remains disguised when further items are added to its tests, it follows that
D̃wi

implies Dwi
.

In addition, we have the following lower bound on |W |, the total number of extracted items. Here and
subsequently, we recall that to prove Theorem 2.1, it suffices to consider the regime p = n2o(1), since for any
smaller p (i.e. p = n2Ω(1)), Theorem 2.1 was already established in [11].

Lemma 3.6. Under the preceding setup, if p = n2o(1) and T f (12 ë)n, then the size of the set W returned
by Procedure 3.1 satisfies the following:

|W | g n123¿. (3.3)

Proof. We first count the number of removed items as follows:

• No more than T items alone in some test are removed by Clean.

• Lemma 3.4 implies that we removed at most zn12¿ lnn very-present items, and this scales as o(n) due
to the fact that z = 2

ln 1
1−p

= Θ(1
p
) = no(1) (by the assumption p = n2o(1)).



Procedure 3.1: ConstructSet(X).

1. Let G0 = GX, and let (n, T ) be the number of items and tests in X. Remove all very-present items
from G0 to obtain G1. Let G = G1.

2. Initialize W0 = ', i = 1.

3. Set Xi ± test design represented by Gi. Set Xtmp,i ± Clean(Xi), and let (ni, Ti) be the corresponding
number of items and tests in Xtmp,i.

4. Perform the following:

(a) If ni > 0 and Ti

ni
f (1 + ¿)T

n
, then set (Xi+1,Wi) ± Extract(Xtmp,i,Wi21), Gi+1 ± GXi+1 , and

i± i+ 1, and return to Step 3.

(b) Otherwise, terminate the procedure and return W = Wi21.

• By the assumption stated following Lemma 3.3 and the removal of very-present items, each call to
Extract removes at most z2n2¿ ln2 n items.

We now argue by contradiction that (3.3) must hold. Suppose to the contrary that Procedure 3.1 terminates
at some iteration i7 f n123¿. Then, the above calculations imply that

ni∗ g n2 T 2 zn12¿ lnn2 n123¿ · z2n2¿ ln2 n (3.4)

g ën2 o(n), (3.5)

where we used the fact that T f (12 ë)n and z = no(1). This means that the stopping condition met in step
4(a) cannot have been ni reaching zero, so it must have been Ti∗

ni∗
exceeding (1 + ¿)T

n
.

While (3.5) indicates that the majority of items could eventually be removed in principle, this is only
due to the subtraction of T in (3.4); the other two terms behave as o(n), and we conclude that the removal
of very-present items and the calls to Extract collectively only remove o(n) items. Any further removal
of items can only be due to the tests containing one item in Clean; removing these causes Ti and ni to
be reduced by the same amount. However, as long as Ti

ni
< 1 (which holds by assumption for i = 0, and

subsequently for all i f i7 due to the stopping condition), reducing Ti and ni by the same amount can only
make the ratio smaller (i.e., Ti2c

ni2c
f Ti

ni
for any c * [0, Ti]).

More formally, suppose that up to index i7, a total of c items and tests are removed due to tests containing
a single item, and a total of c2 items are removed for the other reasons mentioned above. Then, we have

Ti∗

ni∗
f T 2 c

n2 c2 c2
. (3.6)

As established above, we have 0 f c f T f n(1 2 ë) and c2 = o(n). However, since T
n
< 1 by assumption,

substituting these findings into (3.6) reveals that Ti∗

ni∗
f T

n
(1 + o(1)), which gives the desired contradiction

to the stopping condition Ti∗

ni∗
> (1 + ¿)T

n
.

Recall that all of the extracted items have independent totally disguised events, each with probability
lower bounded according to Lemma 3.2. We need to consider applying this lemma with possibly smaller
choices of T and n than the original values (namely, Ti and ni), but the stopping condition in step 4(a) of
Procedure 3.1 ensures that Ti

ni
f (1 + ¿)T

n
. As a result, Lemmas 3.2 and 3.5 guarantee for any extracted

item i that

P[Di] g exp

(
T (1 + ¿)

n
· L(p)

)
, (3.7)

where we recall that L(p) = minx=2,3,...,n x ln(12 qx21) with q = 12 p. Note that x ln(12 qx21) < 0, so this
minimum is to be interpreted as “most negative”. This minimum is characterized in the following lemma,
which is similar to [11, Claim 3.12].



Lemma 3.7. For any p f 1
2 satisfying p = n2o(1), we have the following: (i) If p = o(1), then 2L(p) =

(ln 2)2

p
(1 + o(1)); (ii) If p = Θ(1), then 2L(p) = Θ(1).

Proof. We provide a simple generalization of the argument from [11, Claim 3.12], which focuses on the regime
k f n12Ω(1). We first write

2 L(p) = max
x=2,3,...,n

x ln
1

12 qx21
. (3.8)

This quantity is lower bounded by the argument corresponding to x = + 1
p
+ + 1, which readily yields

ln 1
12qx−1 = Θ(1) and hence an Ω( 1

p
) lower bound on 2L(p).

For the upper bound, we note that for x = o( 1
p
) we have qx21 = (12 p)x21 = 12Θ(px), so the objective

function behaves as O(x ln 1
px
), which is o( 1

p
) (since px ln 1

px
³ 0 as px³ 0). On the other hand, if x = Ë(1

p
),

then qx21 = (1 2 p)x21 ³ 0, so the objective behaves as O(x(1 2 p)x21) = O(xe2px), which is o( 1
p
) (since

pxe2Θ(px) ³ 0 as px ³ >). Hence, the optimal choice of x must scale as Θ(1
p
), and in this case, we have

ln 1
12qx−1 = Θ(1), yielding an O( 1

p
) upper bound on 2L(p).

The second part of the lemma follows immediately, whereas for the first part, a refined analysis is needed.
For p = o(1) and x = Θ(1

p
), we have

x ln
1

12 (12 p)x21
= x ln

1

12 e2px(1 +O(p))
(3.9)

= 2x ln(12 e2px) +O(px) (3.10)

by standard Taylor expansions. Since O(px) = O(1) is asymptotically negligible compared to the Θ(1
p
)

scaling derived above, it suffices to consider maximizing the first term. As noted in [11], we can define
d = px and write this term as 1

p
( 2 d ln(1 2 e2d)), and it is a simple differentiation exercise to verify that

2d ln(12 e2d) is maximized at d = ln 2, with maximum value (ln 2)2. While the corresponding choice x = d
p

may not be integer-valued, the effect of rounding is asymptotically negligible for p = o(1) by the continuity
of the function 2d ln(1 2 e2d).

Combining Lemma 3.7 with (3.7), we obtain for some cp = Θ(1) that

P[Di] g exp

(
2 (1 + ¿)cpT

np

)
, (3.11)

and moreover, when p = o(1) we specifically have cp = (ln 2)2(1 + o(1)).
Since the events {Di}i*W are mutually independent by construction, and |W |g n123¿ according

to Lemma 3.6, we deduce that the number of totally disguised items is stochastically dominated by

Binomial(n123¿, e2
(1+ξ)cpT

np ). In particular, the average number of totally disguised items is

n123¿e2
(1+ξ)cpT

np , (3.12)

and by simple re-arrangements, this is lower bounded by n¿ whenever

T f np(12 4¿)

(1 + ¿)cp
lnn. (3.13)

Thus, by the multiplicative form of the Chernoff bound, the actual number is at least Nmin := 1
2n

¿ with
probability approaching one when (3.13) holds.

By Lemma 3.1 and the assumption p f 1
2 , for any item that is disguised, the optimal algorithm can do

no better than declare it to be non-defective, and the resulting probability of being correct is at most

(1 2 p)Nmin f e2pNmin = e2
p
2n

ξ

= o(1), (3.14)

where the last step follows from the assumption p = n2o(1). Thus, we have proved that P[Ŝ = S] = o(1)
whenever T f (1 2 ë)n and (3.13) holds.



When p = Θ(1) (or more generally p = Ë( 1
logn

)), the stricter of these two conditions is T f (12 ë)n, and

the constant cp in (3.13) is inconsequential. On the other hand, when p = o(1), we have established that
cp = (ln 2)2(1+o(1)). Since ¿ can be arbitrarily small, it follows that (3.13) reduces to T f (12 ë2) np

(ln 2)2 lnn

for arbitrarily small ë2 > 0. Finally, since lnn
ln 2 = log2 n, and the assumption p = n2o(1) implies that

log2 n = (log2 k)(1 + o(1)), we obtain the desired threshold corresponding to the second term of T 7 in (2.1).

3.2 Proof of the Lower Bound for Corollary 2.1

We utilize an approach from [11, Lemma 3.6] for transferring the key auxiliary results on the number of
disguised items from the i.i.d. prior to the combinatorial prior. Despite the high level of similarity, we
provide the main details for completeness.

The idea is to show that with too few tests, the number of totally disguised defectives and totally
disguised non-defectives both grow unbounded with high probability. When this occurs, interchanging the
statuses among these items would not impact the test results, and hence, there exist an unbounded number of
candidate defective sets of cardinality k consistent with the test outcomes. The decoder cannot do any better
than guess one of these at random, failing with high probability. This intuition is easily made precise [11],
giving the following.

Lemma 3.8. [11, Facts 3.1 and 3.3] Under the combinatorial prior, the conditional error probability of
any group testing strategy given that there are ñ0 totally disguised non-defectives and ñ1 totally disguised
defectives is at least 12 1

ñ0ñ1
. In particular, if ñ0 = Ë(1) and ñ1 = Ë(1), then the conditional error probability

is 12 o(1).

Consider the combinatorial prior with n12o(1) f k f n
2 , where the condition k g n12o(1) is safe to

assume since Corollary 2.1 is already well-known when k f n12Ω(1) (see Section 2). We consider generating
S according to the following procedure:

1. Let S0 ¦ [n] include each item independently with probability p0 = k2
:
k lnn
n

. That is, S0 follows the
i.i.d. prior with parameter p0.

2. Form S by adding max{k 2 |S0|, 0} elements of [n] \ S0 to S0, chosen uniformly at random.

By the symmetry of this construction, conditioned on the event |S0|f k, the resulting set S is indeed
distributed according to the combinatorial prior. While |S0|> k has a non-zero probability, for the purposes
of proving a converse, we can simply assume that this event always leads to successful recovery. Since we
assume that k g n12o(1), a simple concentration argument (e.g., the Chernoff bound or central limit theorem)
gives with probability 12 o(1) that

k 2 2
:
k lnn f |S0|f k, (3.15)

so the resulting contribution to the success probability is asymptotically negligible.
We now introduce the terminology that an item i is totally disguised in the first step if the defectives

from S0 alone are enough to disguise i in every test it is included in. Clearly, being totally disguised in the
first step is sufficient for being totally disguised after the second step, since the second step only involves
marking more items as defective.

Hence, trivially, the number of totally disguised defective items only increases (or stays the same) after
the second step. The number of totally disguised non-defectives may in principle decrease due to non-
defectives being changed to defective, but conditioned on (3.15), any given non-defective is only changed

with probability O(
:
k lnn
n

) = o(1). As a result, if there are Ë(1) totally disguised non-defectives, the same
still remains true with probability 12 o(1) after the second step.

Hence, in accordance with Lemma 3.8, it suffices to show that under the i.i.d. prior with parameter

p0 = k2
:
k lnn
n

, the number of totally disguised defectives and totally disguised non-defectives both behave

as Ë(1) with probability 12 o(1). Note that the assumption n12o(1) f k f n
2 ensures that n2o(1) f p0 f 1

2 ,
as was assumed in the later parts of Section 3.1.

We already argued that when (3.13) holds, the average number of totally disguised items is at least
n¿. Since n2o(1) f p0 f 1

2 , it follows that the average number of totally disguised defectives and totally



disguised non-defectives are both at least n¿2o(1) on average. Again, the multiplicative form of the Chernoff
bound implies the same with high probability, and we have the desired Ë(1) scaling. This establishes that
the condition on T from Theorem 2.1 with p0 in place of p is necessary for attaining a success probability
bounded away from zero, and since np0 = k(1 + o(1)) by definition, Corollary 2.1 follows.

4 Conclusion

We have proved that the optimal number of tests for probabilistic noiseless non-adaptive group testing is
Θ(min{k lnn, n}), as well as establishing the precise underlying constant factors. This closes gaps exhibited
by existing bounds in the in the case that k is “mildly” sublinear in n, so that the optimal thresholds
are now known for arbitrary scaling regimes. Perhaps the main challenge remaining in this setting is to
understand how the number of tests increases when the target error probability decreases to zero at a given
rate depending on n.

A Proofs of Algorithmic Upper Bounds

Under the combinatorial prior, the algorithmic upper bound for Theorem 2.1 in the regime k f n12Ω(1) is
proved in [22] using the following strategy:

• Test design. Generate the T × n test matrix X according to the near-constant tests-per item design:
For each item i = 1, . . . , n, select L = +T ln 2

k
+ tests uniformly at random with replacement, and set the

corresponding entries in the i-th column of X to one.

• Decoding algorithm. Given the test outcomes, estimate the defective set using the Definite Defec-
tives (DD) algorithm:

(i) Mark all items in negative tests as definitely non-defective, and all remaining items as possibly
defective (PD);

(ii) For any PD item appearing in some (necessarily positive) test without any other PD items,
mark it as definitely defective (DD).

(iii) Return the set of DD items as the final estimate.

The main result of [22] states that when k = Θ(n») with » * (0, 1) and the number of tests satisfies

T g max{», 12 »}
ln 2

(k log2 n)(1 + ë) (A.1)

for some ë > 0, the resulting error probability approaches zero as n ³ >. Our goal is to generalize this
result to denser sparsity regimes.

The condition (A.1) ensures that L = +T ln 2
k
+ scales as Ë(1). Hence, the effect of rounding is negligible,

in the sense that L = T ln 2
k

(1 + o(1)). As in [22], we subsequently work with the exact expression L = T ln 2
k

for notational convenience, since the o(1) term does not affect the final result.
With the regime k f n12Ω(1) having been handled in [22], it suffices to consider k = n12o(1). In this

regime, it holds that T 7(n, k) = k log2 k

ln 2 . For convenience, we apply the fact that log2 k = (log2 n)(1 + o(1))

(whenever k = n12o(1)), meaning that it suffices to show that the success probability approaches one when

T g k log2 n

ln 2
(1 + ë). (A.2)

Observe that this matches (A.1), but with the quantity

m = max{», 12 »} (A.3)

replaced by m = 1.



Analysis. We start with the following bound which is central to the analysis of [22], and is conveniently

non-asymptotic so can can also be used here: For any defective i * S, denoting the final estimate by Ŝ, we
have

P[i /* Ŝ] f
∑

w*[w−,w+]

P[W (S\i) = w]

L∑

j=0

P[Mi = j|W (S\i) = w]Çj(1/w2, g
7L)

︸ ︷︷ ︸
:=Ψ1

+ P[W (S\i) /* [w2, w+]]︸ ︷︷ ︸
:=Ψ2

+P[G > g7|W (S\i) /* [w2, w+]]︸ ︷︷ ︸
:=Ψ3

, (A.4)

where:

• W (S\i) denotes the number of (necessarily positive) tests containing at least one item in S \ {i}, i.e.,
a defective item differing from i;

• Mi denotes the number of tests containing i * S and no other defectives;

• G denotes the number of non-defectives that do not appear in any negative tests;

• w2 and w+ are arbitrary thresholds, but should be chosen to ensure that W (S\i) * [w2, w+] with high
probability;

• g7 is an arbitrary threshold, but should be chosen to ensure that G f g7 with high probability;

• Çj(s, V ) =
∑j

3=0(21)3
(
j
3

)
(12 3s)V is a quantity arising from applying the inclusion-exclusion principle

to a union of events in a coupon collector problem [22, Appendix B].

We set w2, w+, and g7 in the same way as [22]:

w2 =
T

2
(12 ·) (A.5)

w+ =
T

2
(1 + ·) (A.6)

g7 = n
(1
2
+ ·

)L

, (A.7)

for some · > 0 to be specified later. The interaction between · and ë (see (A.2)) turns out to be slightly
delicate, and choosing them appropriately is the main difference here compared to [22].

The analysis of [22] focuses on the case that (A.1) holds with equality. This is without loss of generality,
since additional tests can only ever help the DD algorithm. We similarly assume that (A.2) holds with
equality. In view of the union bound over the k defectives, the goal is to show that kΨ¿ ³ 0 for ¿ * {1, 2, 3}
in (A.4). We proceed as follows:

1. For Ψ1, it is shown in [22, Eq. (39)] that if L = m(1 + ë) lnn
ln 2 (which holds via L = T ln 2

k
and equality

holding in (A.1)) and k f cnm for some constant c (with m given in (A.3)), then

kΨ1 f c exp
( L2

4w2

)
exp

(
2
(
ë2 1 + ë

ln 2

(
· +

g7L

w2
(1 2 ·)

))
m lnn

)
. (A.8)

Recall that we are adopting the choice m = 1; this means that the condition k f cnm is trivially

satisfied with c = 1. Hence, if we can further establish that L2

4w−

= o(1) and g∗L
w−

= o(1), it will follow

from (A.8) that

kΨ1 f (1 + o(1)) exp

(
2
(
ë2 1 + ë

ln 2
(· + o(1))

)
lnn

)
. (A.9)

This approaches zero as n³ > when · is strictly smaller than ë ln 2
1+ë

. For concreteness, we set · = 2
3ë

(note that 2
3 < ln 2), so that the preceding requirement holds when ë is sufficiently small.



The above-mentioned requirement L2

4w−

= o(1) follows immediately from the fact that L = Θ(logn)

and w2 = Θ(T ) = Θ(k logn) (with k = n12o(1)). As for g∗L
w−

, the steps in [22, Eq. (31)] turn out to be

too loose for our purposes, but are easily modified: Combining L = T ln 2
k

with (A.5) gives L
w−

= 2 ln 2
k(12·) ,

and further combining with (A.7) gives

ln
g7L

w2
= ln

n

k
+ L ln

(1
2
+ ·

)
+ ln

2 ln 2

12 ·
. (A.10)

The assumption k = n12o(1) gives ln n
k
= o(log n), and combining this with L = Θ(logn) and ln ( 12 +

·) < 0 (for small enough ·), it follows that the right-hand side of (A.10) approaches 2>, and hence
g∗L
w−

= o(1) as desired.

2. For Ψ2, we can directly use the following finding from [22] based on McDiarmid’s inequality:

kΨ2 f k exp
( ·2T

4 ln 2
(1 + o(1))

)
. (A.11)

This approaches zero as n³>, since T = Θ(k logn).

3. For Ψ3, we use the following bound [22, Eq. (42)] based on Bernstein’s inequality, which holds provided
that L³> (which we already established) and · f 1

4 :

kΨ3 f k exp

(
2 n

(1/2 + ·)L

2/3 + o(1)

)
. (A.12)

Recall that L = T ln 2
k

; substituting T equaling the right-hand side of (A.2) gives L = (1 + ë) log2 n.
We proceed by considering the logarithm (base 2) of n(1/2 + ·)L:

log2

(
n(1/2 + ·)L

)
= log2 n+ L log2

(1
2
+ ·

)
(A.13)

= ( log2 n)

[
1 + (1 + ë) log2

(1
2
+ ·

)]
. (A.14)

Using the above choice · = 2
3ë, a simple Taylor expansion yields the following as ë³ 0:3

(1 + ë) log2

(1
2
+

2

3
ë
)
= 21 + ë

(2
3
· 2

ln 2
2 1

)
+ o(ë). (A.15)

Hence, since 2
3 · 2

ln 2 j 1.92 > 1, we have for sufficiently small ë that (A.14) is positive and scales as

Θ(logn), and substituting into (A.12) gives kΨ3 f k exp (2 nΘ(1))³ 0, as desired.

Since the above analysis holds for arbitrarily small ë > 0 (and hence arbitrarily small · > 0 via · = 2
3ë) when

the number of tests satisfies (A.2) with equality, the upper bound in Theorem 2.1 follows.
Handling the i.i.d. prior. While [22] only considers the combinatorial prior with a fixed value of k, the

analogous result follows essentially immediately for the i.i.d. prior, in which k is a random variable. This is
because by a simple concentration argument (e.g., Hoeffding’s inequality), as long as np³>, it holds that
k = np(1 + o(1)) with probability approaching one. We can therefore replace the choice L = T ln 2

k
(1 + o(1))

by L = T ln 2
np

(1 + o(1)), and under the high-probability event k = np(1 + o(1)), the two are equivalent up to

a change in the o(1) term. Since conditioning on any particular value of k under the i.i.d. prior brings us
back to the combinatorial prior, the desired result follows.
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