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Abstract 22 

 Phenotypic variation in diverse organism-level traits have been studied in 23 

Caenorhabditis elegans wild strains, but differences in gene expression and the 24 

underlying variation in regulatory mechanisms are largely unknown. Here, we use natural 25 

variation in gene expression to connect genetic variants to differences in organismal-26 

level traits, including drug and toxicant responses. We performed transcriptomic analysis 27 

on 207 genetically distinct C. elegans wild strains to study natural regulatory variation of 28 

gene expression. Using this massive dataset, we performed genome-wide association 29 

mappings to investigate the genetic basis underlying gene expression variation and 30 

revealed complex genetic architectures. We found a large collection of hotspots 31 

enriched for expression quantitative trait loci across the genome. We further used 32 

mediation analysis to understand how gene expression variation could underlie 33 

organism-level phenotypic variation for a variety of complex traits. These results reveal 34 

the natural diversity in gene expression and possible regulatory mechanisms in this 35 

keystone model organism, highlighting the promise of gene expression variation in 36 

shaping phenotypic diversity.  37 

 38 

  39 
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Introduction  40 

Quantitative genetic mapping approaches, such as genome-wide association 41 

(GWA) and linkage mapping, have been used in a variety of organisms to disentangle the 42 

underlying genetic basis of gene expression variation by considering the expression level 43 

of each gene as a quantitative trait1–9. Expression quantitative trait loci (eQTL) affecting 44 

gene expression are often classified into local eQTL (located close to the genes that they 45 

influence) and distant eQTL (located further away from the genes that they influence)10,11. 46 

Local eQTL are abundant in the genome. For example, over half the genes in yeast and 47 

94.7% of all protein-coding genes in human tissues are hypothesized to have associated 48 

local eQTL7,8. Genetic variants underlying local eQTL might influence the expression of 49 

a specific gene by affecting transcription factor binding sites, chromatin accessibility, 50 

other promoter elements, enhancers, or other factors at post-transcriptional levels12. 51 

Genes encoding diffusible factors, such as transcription factors, chromatin cofactors, 52 

and RNAs, are often considered the most likely genes to underlie distant eQTL. Distant 53 

eQTL hotspots in several species have been suggested to account for the variation in 54 

expression of many genes located throughout the genome2,3,7,9,13. Although a substantial 55 

amount of eQTL have been identified in different species, it is still largely unknown how 56 

gene expression variation relates to organism-level phenotypic differences. 57 

The nematode Caenorhabditis elegans is a powerful model to study the genetic 58 

basis of natural variation in diverse quantitative traits14–16. Genome-wide gene expression 59 

variation in different developmental stages and various conditions at the whole-organism 60 

or cellular resolution have been discovered and thousands of eQTL have been identified 61 

in several studies over the past two decades3,9,17–23. However, most of these studies used 62 

two-parent recombinant inbred lines derived from crosses of the laboratory-adapted 63 

reference strain, N2, and the genetically diverse Hawaiian strain, CB4856. Consequently, 64 

the observed variation in gene expression and their identified eQTL were limited to the 65 

differences among a small number of C. elegans strains and only revealed a tiny fraction 66 

of the natural diversity of gene expression and regulatory mechanisms in this species. 67 

The C. elegans Natural Diversity Resource (CeNDR) has a collection of 540 genetically 68 

distinct wild C. elegans strains16,24,25. Variation in diverse organism-level phenotypes has 69 
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been observed among these wild strains, and many underlying QTL, quantitative trait 70 

genes (QTGs), and quantitative trait variants (QTVs) have been identified using GWA 71 

mappings15,16. Therefore, a genome-wide analysis could improve our understanding of 72 

the role of gene regulation in shaping organism-level phenotypic diversity, adaptation, 73 

and evolution of C. elegans. 74 

Here, we investigated the natural variation in gene expression of 207 genetically 75 

distinct C. elegans wild strains by performing bulk mRNA sequencing on synchronized 76 

young adult hermaphrodites. We used GWA mappings to identify 6,545 eQTL associated 77 

with variation in expression of 5,291 transcripts of 4,520 genes. We found that local eQTL 78 

explained most of the narrow-sense heritability and showed larger effects on expression 79 

variation than distant eQTL. We identified 67 hotspots that comprise 1,828 distant eQTL 80 

across the C. elegans genome. We further found a diverse collection of potential 81 

regulatory mechanisms that underlie these distant eQTL hotspots. Additionally, we 82 

applied mediation analysis to gene expression and other quantitative trait variation data 83 

to elucidate putative mechanisms that can play a role in organism-level trait variation. 84 

Our results provide an unprecedented resource of transcriptome profiles and genome-85 

wide regulatory regions that facilitate future studies. Furthermore, we demonstrate 86 

efficient methods to locate causal genes that underlie mechanisms of organism-level 87 

trait differences across the C. elegans species. 88 

Results 89 

Transcriptome profiles of 207 wild C. elegans strains 90 

We obtained 207 wild C. elegans strains from CeNDR25 (Fig. 1a). We grew and 91 

harvested synchronized populations of each strain at the young adult stage in 92 

independently grown and prepared biological replicates (Fig. 1b). We performed bulk 93 

RNA sequencing to measure expression levels and aligned reads to strain-specific 94 

transcriptomes (Fig. 1b, Supplementary Fig. 1, Supplementary Data 1). We focused on 95 

protein-coding genes and pseudogenes and filtered out those genes with low and/or 96 

rarely detected expression (See Methods). Because various hyper-divergent regions with 97 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 9, 2022. ; https://doi.org/10.1101/2022.02.06.479320doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.06.479320
http://creativecommons.org/licenses/by/4.0/


 

4 

extremely high nucleotide diversity were identified in the genomes of wild C. elegans 98 

strains26,27, RNA sequencing reads might be poorly aligned and expression abundances 99 

might be underestimated for genes in these regions. For each strain, we filtered out 100 

transcripts that fell into the known hyper-divergent regions. We also dropped outlier 101 

samples by comparing sample-to-sample expression distances (Supplementary Fig. 1). 102 

To further verify the homogeneity of developmental stages of our samples, we evaluated 103 

the age of each sample when they were harvested using our expression data and 104 

published time-series expression data28. We inferred that our animals fit an expected 105 

developmental age of 60 to 72 hours post hatching (Fig. 1c), during which time the animal 106 

is in the young adult stage. Because we harvested the animals at the first embryo-laying 107 

event, the age estimation also reflects natural variation in the duration from hatching to 108 

the beginning of embryo-laying of wild C. elegans. In summary, we obtained reliable 109 

expression abundance measurements for 25,849 transcripts from 16,094 genes (15,364 110 

protein-coding genes and 730 pseudogenes) in 561 samples of 207 C. elegans strains 111 

(Fig. 1b, Supplementary Fig. 1, Supplementary Data 1), which we used for downstream 112 

analyses. 113 

C. elegans geographic population structure has been observed previously24,27,29. 114 

Wild strains from Hawaii and other regions in the Pacific Rim harbor high genetic diversity 115 

and group into distinct clusters using genetic relatedness and principal component 116 

analysis24,27,29. Other strains that were isolated largely from Europe have relatively low 117 

genetic diversity because of the recent selective sweeps24,27,29. Similar to the previous 118 

results, the 207 strains were classified into three major groups consisting of strains from 119 

Hawaii, the Pacific coast of the United States, and Europe, respectively, in the genetic 120 

relatedness tree (Fig. 1d). Three Hawaiian strains are extremely divergent from all other 121 

strains. However, a tree constructed using transcriptome data only exhibited weak 122 

geographic relationships and no highly divergent strains (Fig. 1e), suggesting stabilizing 123 

selection has constrained variation in gene expression. 124 

 125 

 126 

 127 
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 128 

Fig. 1: Overview of species-wide expression analysis in wild C. elegans. 129 

a Global distribution of 205 of the 207 wild C. elegans strains that were obtained from 130 
CeNDR and used in this study. Strains are colored by their sampling location continent, 131 
except for Hawaiian strains (in red). The two strains missing on the map are lacking 132 
sampling locations. b Graphic illustration of the workflow to acquire C. elegans 133 
transcriptome data. Created using BioRender.com. c Estimated developmental age (y-134 
axis) of 561 well clustered samples of the 207 wild C. elegans strains (x-axis). Strains on 135 
the x-axis are sorted by their mean estimated age from two to three biological replicates. 136 
Error bars show standard deviation of estimated age among replicates of each strain. d, 137 
e Two Neighbor-joining trees of the 207 C. elegans strains using 851,105 biallelic 138 
segregating sites (d) and expression of 22,268 transcripts (e) are shown. Strains in c, d, 139 
e are colored as in a. 140 
 141 
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Complex regulatory genetic architectures in wild C. elegans strains 142 

To estimate the association between gene expression differences and genetic 143 

variation, we calculated the broad-sense heritability (H2) and the narrow-sense 144 

heritability (h2) for each of the 25,849 transcript expression traits. We observed a median 145 

H2 of 0.31 and a median h2 of 0.06 (Fig. 2a, Supplementary Data 1), indicating strong 146 

influences from environmental factors, epistasis, or other stochastic factors on transcript 147 

expression variation7,30,31. Nearly 4,000 traits have a h2 higher than 0.18, indicating a 148 

substantial heritable genetic component of the population-wide expression differences. 149 

We performed marker-based GWA mappings to investigate the genetic basis of 150 

expression variation in the 25,849 transcripts (Supplementary Data 1). We determined 151 

the 5% false discovery rate (FDR) significance threshold for eQTL detection by mapping 152 

40,000 permuted transcript expression traits using the EMMA algorithm32 and the eigen-153 

decomposition significance (EIGEN) threshold33 (See Methods). In total, we detected 154 

6,545 significant eQTL associated with variation in expression of 5,291 transcripts from 155 

4,520 genes (Fig. 2b, Supplementary Data 2). The correlation of h2 and H2 among traits 156 

with eQTL is much higher than among traits without eQTL (Kendall’s τ coefficient, 0.45 157 

and 0.27, respectively) (Fig. 2a), indicating major roles of additive genetic variation on 158 

expression variation than other genetic factors. Likely because GWA mappings mainly 159 

detect QTL that contribute additively to trait variance, eQTL were detected for 71% of 160 

the traits with h2 > 0.18, but only 11% of the remaining traits (Fig. 2a).  161 

In close agreement to previous C. elegans eQTL studies using recombinant inbred 162 

advanced intercross lines (RIAILs) derived from a cross of the N2 and CB4856 strains3,9, 163 

eQTL in this study were mostly found on chromosome arms (61%) relative to centers 164 

(33%), which is likely related to the genomic distribution of genomic variation (Table 1). 165 

Of the 4,520 genes with transcript-level eQTL, we found overrepresentation of 166 

nonessential genes (Fisher exact test, odds ratio: 1.18, p-value: 0.001) and 167 

underrepresentation of essential genes (Fisher exact test, odds ratio: 0.75, p-value: 168 

0.001), suggesting stronger selection against expression variation in essential genes 169 

than nonessential genes34. Gene set enrichment analysis (GSEA) on these 4,520 genes 170 

showed that proteolysis proteasome-related genes (Fisher Exact Test, Bonferroni FDR 171 
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corrected p = 3.76E-20), especially genes encoding E3 ligases containing an F-box 172 

domain (Fisher Exact Test, Bonferroni FDR corrected p = 3.73E-15), are the most 173 

significantly enriched class (Supplementary Fig. 2, Supplementary Data 3). Other 174 

significantly enriched gene classes include metabolism (Fisher Exact Test, Bonferroni 175 

FDR corrected p = 2.92E-12), stress response (Fisher Exact Test, Bonferroni FDR 176 

corrected p = 7.24E-12), and histones (Fisher Exact Test, Bonferroni FDR corrected p = 177 

3.23E-8). (Supplementary Fig. 2). 178 

We classified eQTL located within a two megabase region surrounding each 179 

transcript as local eQTL and all other eQTL as distant3,9 (Fig. 2b, Table 1, Supplementary 180 

Data 2). We identified local eQTL for 3,185 transcripts from 2,655 genes (Fig. 2b, Table 181 

1, Supplementary Data 2). The 2,551 local eQTL that passed the Bonferroni 5% FDR 182 

threshold explained most of the estimated narrow-sense heritability (Fig. 2c). 183 

Additionally, we found 3,360 distant eQTL for 2,553 transcripts from 2,382 genes (Fig. 184 

2b, Table 1, Supplementary Data 2). Compared to local eQTL, distant eQTL generally 185 

explained significantly lower variance (Fig. 2c, d). We found that local eQTL and up to 186 

six distant eQTL could jointly regulate the expression of transcripts (Fig. 2e). Because 187 

substantial linkage disequilibrium (LD) is observed within ( r2 > 0.6) and between ( r2 > 188 

0.2) chromosomes in wild C. elegans strains24,27,35, we calculated LD among eQTL of 189 

each of the 861 transcripts with multiple eQTL. We found low LD among most eQTL, 190 

with a median LD of r2 = 0.19 (Supplementary Fig. 3), suggesting complex genetic 191 

architectures underlying variation in expression of these transcripts are driven by 192 

independent loci. 193 

 194 

 195 
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 196 

Fig. 2: Expression QTL map of 207 wild C. elegans strains.  197 

a Heritability for 25,849 transcript expression traits with (orange) or without (black) 198 
detected eQTL. The narrow-sense heritability (h2, y-axis) for each trait is plotted against 199 
the broad-sense heritability (H2, x-axis). b The genomic locations of 6,545 eQTL peaks 200 
(x-axis) that pass the genome-wide EIGEN 5% FDR threshold are plotted against the 201 
genomic locations of the 5,291 transcripts with expression differences (y-axis). Golden 202 
points on the diagonal of the map represent local eQTL that colocalize with the 203 
transcripts that they influence. Purple points correspond to distant eQTL that are located 204 
further away from the transcripts that they influence. c The variance explained (VE) by 205 
each detected eQTL (y-axis) that passed Bonferroni (BF) 5% FDR or EIGEN 5% FDR 206 
threshold for each trait is plotted against the narrow-sense heritability h2 (x-axis). The 207 
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dashed lines on the diagonal are shown as visual guides to represent h2 = H2 (a) and VE 208 
= h2 (c). d Comparison of VE between detected local and distant eQTL shown as Violin 209 
plots. The mean VE by local or distant eQTL is indicated as red points. Statistical 210 
significance was calculated using the Wilcoxon test with p-value < 2e-16 indicated as 211 
****. e A histogram showing the number of distant eQTL detected per transcript 212 
expression trait. One to six distant eQTL were detected for 2,553 transcript expression 213 
traits, of which 447 traits also have one local eQTL. Numbers before slashes (indicated 214 
as the golden proportion of each bar) represent the number of traits with a local eQTL in 215 
addition to their distant eQTL. Numbers after each slash on top of each bar represent 216 
the total number of traits in each category.  217 
 218 

Table 1: The distribution of eQTL and SNVs.  219 

Genomic domain coordinates were defined previously36. Transcript expression traits 220 
and SNVs used for eQTL mappings were listed.  221 
 222 

Domain eQTL 
Local 

eQTL 

Distant 

eQTL 
Genome Transcripts SNVs 

Tip 
388  

(5.93%) 

224  

(7.03%) 

164  

(4.88%) 

7.37 Mb  

(7.35%) 

1,712  

(6.62%) 

1,628  

(7.76%) 

Arm 
3,966  

(60.60%) 

2,027  

(63.64%) 

1,939 

(57.71%) 

45.89 Mb 

(45.76%) 

9,503 

(36.76%) 

12,883 

(61.37%) 

Center 
2,183  

(33.35%) 

932  

(29.26%) 

1,251  

(37.23%) 

47.01 Mb 

(46.88%) 

14,622 

(56.57%) 

6,429  

(30.63%) 

MtDNA 
8  

(0.12%) 

2  

(0.06%) 

6  

(0.18%) 

0.01 Mb  

(0.01%) 

12  

(0.05%) 

51  

(0.24%) 

Total 6,545 3,185 3,360 100.29 Mb  25,849 20,991 

 223 

Diverse nature of distant eQTL hotspots 224 

Distant eQTL were not uniformly distributed across the genome. Of the 3,360 225 

distant eQTL, 1,828 were clustered into 67 hotspots, each of which affected the 226 

expression of 12 to 184 transcripts (Fig. 3). Signatures of selection (Tajima’s D values) in 227 
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hotspots are mostly negative, likely because of the recent selective sweeps 228 

(Supplementary Fig. 4)24.  229 

GSEA on genes with transcript-level distant eQTL in each hotspot revealed 230 

potential shared transcriptional regulatory mechanisms across different genes of the 231 

same class (Supplementary Fig. 5, Supplementary Data 3). For example, the hotspot at 232 

21.5 cM on chromosome II significantly affected the expression of heat stress related 233 

genes (Fisher Exact Test, Bonferroni FDR corrected p = 7.03E-7). Our results also 234 

showed that a single hotspot could regulate expression of genes in different classes. 235 

The hotspot at 2.5 cM on chromosome II significantly affected the expression of genes 236 

in three classes, including metallopeptidases (Fisher Exact Test, Bonferroni FDR 237 

corrected p = 1.31E-5), collagen proteins (Fisher Exact Test, Bonferroni FDR corrected 238 

p = 3.11E-9), and histones (Fisher Exact Test, Bonferroni FDR corrected p = 1.26E-6) 239 

(Supplementary Fig. 5, Supplementary Data 3). Furthermore, different hotspots could 240 

affect the expression of the same gene class. For example, the hotspot at 45.5 cM on 241 

chromosome III was also enriched with distant eQTL of histones (Fisher Exact Test, 242 

Bonferroni FDR corrected p = 8.2E-7) like the hotspot at 2.5 on chromosome II 243 

(Supplementary Fig. 5, Supplementary Data 3). Regulatory genes, such as transcription 244 

factors and chromatin cofactors, that are located in each hotspot could underlie the 245 

regulation of multiple genes. We found previously known or predicted genes encoding 246 

chromatin cofactors and transcription factors37–39 in 24 and 59 of the 67 hotspots, 247 

respectively (Supplementary Fig. 6).  248 

 249 

 250 
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Fig. 3: Distant eQTL hotspots.  251 

The number of distant eQTL (y-axis) in each 0.5 cM bin across the genome (x-axis) is 252 
shown. Tick marks on the x-axis denote every 10 cM. The horizontal gray line indicates 253 
the threshold of 12 eQTL. Bins with 12 or more eQTL were identified as hotspots and 254 
are colored red. Bins with fewer than 12 eQTL are colored black.  255 
 256 

To identify causal genes and variants underlying hotspots, we performed fine 257 

mapping on distant eQTL in each hotspot and filtered for the most likely candidate 258 

variants (see Methods for details) (Supplementary Data 4). Then, we focused on the 259 

filtered candidate variants that were mapped for at least four traits in each hotspot and 260 

are in genes encoding transcription factors or chromatin cofactors. In total, we identified 261 

36 candidate genes encoding transcription factors or chromatin cofactors for 34 262 

hotspots. For example, the gene ttx-1, which encodes a transcription factor necessary 263 

for thermosensation in the AFD neurons40,41, might underlie the expression variation of 264 

97 transcripts with distant eQTL in three hotspots between 44.5 cM and 45.5 cM on 265 

chromosome V. TTX-1 regulates expression of gcy-8 and gcy-18 in AFD neurons40,41, but 266 

no eQTL were detected for the two genes likely because we measured the expression 267 

of whole animals. Additionally, the linker histone gene hil-239 might underlie the 268 

expression variation of 46, 10, 17, and four transcripts with distant eQTL in the hotspots 269 

at 28 cM, 30.5 cM, 31 cM and 31.5 cM, respectively, on chromosome IV. We also 270 

performed GSEA for groups of transcripts whose expression traits were fine mapped to 271 

the 36 candidate genes encoding transcription factors or chromatin cofactors. For 272 

instance, the 17 traits that fine mapped to hil-2 in the hotspot at 31 cM on chromosome 273 

IV (Supplementary Fig. 7) were enriched in E3 ligases containing an F-box domain (Fisher 274 

Exact Test, Bonferroni FDR corrected p = 0.0003) and transcription factors of the 275 

homeodomain class (Fisher Exact Test, Bonferroni FDR corrected p = 0.002). Besides 276 

the 36 candidate genes, the hundreds of other fine mapping candidates are not as 277 

transcription factors or chromatin cofactors, suggesting other mechanisms underlying 278 

distant eQTL. Altogether, as previously implicated in other species7,11,42, our results 279 

indicate that a diverse collection of molecular mechanisms likely cause gene expression 280 

variation in C. elegans. 281 
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Mediation analysis facilitates candidate gene prioritization 282 

Mediation analysis seeks to identify the mechanism that underlies the relationship 283 

between an independent variable and a dependent variable via the inclusion of an 284 

intermediary mediating variable. Because gene expression has been found to play an 285 

intermediate role between genotypes and phenotypes, it could help to identify the causal 286 

mediating genes between genotypes and phenotypes in quantitative genetics mapping 287 

studies. We have previously identified mediation effects of scb-1 expression on 288 

responses to several chemotherapeutics and sqst-5 expression on differential responses 289 

to exogenous zinc using linkage mapping experiments9,43. To validate if our expression 290 

and eQTL data can be used to identify candidate genes, we first performed mediation 291 

analysis on one published GWA study of variation in responses to the commonly used 292 

anthelmintic albendazole (ABZ)44. 293 

Previously, wild C. elegans strains were exposed to ABZ and measured for effects 294 

on development to identify genomic regions that contribute to variation in ABZ 295 

resistance. A single-marker GWA mapping was performed first to detect two QTL on 296 

chromosomes II and V, but no putative candidate gene was identified. Using a burden 297 

mapping approach, prior knowledge of ABZ resistance in parasitic nematodes, and 298 

manually curation of raw sequence read alignment files, the gene ben-1 was found to 299 

underlie natural variation in ABZ resistance variation44. The single-marker GWA mapping 300 

was not able to detect an association between ABZ resistance and ben-1 variation 301 

because of high allelic heterogeneity caused by rare SNVs and structural variants 302 

(Supplementary Fig. 8). However, rare SNVs or structural variants might lead to changes 303 

in ben-1 expression and ABZ resistance. We found two distant eQTL, in regions 304 

overlapping with the two organism-level ABZ QTL, for ben-1 expression variation. 305 

Therefore, these results provided an excellent opportunity to test the effectiveness of 306 

mediation analysis among organism-level phenotypes, genotype, and gene expression. 307 

The mediation estimate for ben-1 expression was the second strongest hit in the analysis 308 

on the phenotype (animal length in response to ABZ), the genotype (GWA QTL of the 309 

phenotype), and the expression of 1,157 transcripts (Fig. 4a). We found a moderate 310 

negative correlation between the expression of ben-1 and animal length and almost no 311 
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correlation after we regressed animal length by the expression of ben-1 (Fig. 4b), 312 

suggesting that expression variation impacts differences in ABZ responses. We further 313 

examined genetic variants across strains and found that those strains with relatively low 314 

ben-1 expression and high ABZ resistance all harbor SNVs or structural variants with 315 

different predicted effects (Fig. 4b), suggesting that the extreme allelic heterogeneity at 316 

the ben-1 locus might affect ABZ response variation by reducing the abundance of this 317 

beta-tubulin. To test the impact of expression variation on phenotypic variation, we 318 

regressed animal length by expression of every transcript in our data and performed 319 

GWA mappings. Then, we compared the GWA mapping significance value after 320 

regression to the original GWA mapping significance value at a pseudo variant marker 321 

that represents all the variants in ben-1 (Fig. 4c, Supplementary Fig. 8)45. We found 322 

animal length regressed by the expression of ben-1 showed one of the largest drops in 323 

significance, and significance in most of the other mappings was approximately equal to 324 

the original significance value (Fig. 4c, Supplementary Fig. 8). These results indicated 325 

that increasing ben-1 expression decreases resistance to ABZ and suggested the 326 

applicability of mediation analysis using the expression and eQTL data for other C. 327 

elegans quantitative traits.  328 

 329 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 9, 2022. ; https://doi.org/10.1101/2022.02.06.479320doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.06.479320
http://creativecommons.org/licenses/by/4.0/


 

14 

 330 

Fig. 4: Mediation effects of ben-1 expression on C. elegans resistance to ABZ.  331 

a Mediation estimates (y-axis) calculated as the indirect effect that differences in 332 
expression of each gene play in the overall phenotype are plotted against the genomic 333 
position of the eQTL (x-axis) on chromosome II. The horizontal gray line represents the 334 
99th percentile of the distribution of mediation estimates. Significant mediators are 335 
colored other than gray by their genes as shown in the legend. b The correlation of ben-336 
1 expression (x-axis) to raw animal length and to animal length regressed by ben-1 337 
expression on y-axis. The Pearson's coefficient ρ for each correlation was indicated at 338 
bottom left. Strains are colored by the type of their genetic variants in ben-1. Strains 339 
without identified variants are colored gray. c Significance at the pseudo variant marker 340 
of 25,837 GWA mappings. Each point represents a GWA mapping that is plotted with its 341 
-log10(p) value (y-axis) at the pseudo variant marker (III: 3,539,640) against the genomic 342 
locations (x-axis) of the transcript of which the expression was used in regression for 343 
animal length. Points for traits regressed by expression of transcripts identified as 344 
significant mediators are colored as in (a). The orange horizontal line represents the 345 
significance at the pseudo variant marker using the raw animal length of 167 strains 346 
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(Supplementary Fig. 8). GWA mapping results of 12 traits regressed by expression of 347 
mitochondrial genes were excluded but all with significance close to the horizontal line. 348 
 349 

We further applied mediation analysis to another eight previously published 350 

studies of C. elegans natural variation and GWA mappings in diverse traits, including 351 

telomere length46 (Fig. 5a), responses to arsenic47 (Fig. 5b), zinc43 (Fig. 5c), etoposide48 352 

(Fig. 5d), propionate49 (Fig. 5e), abamectin50 (Fig. 5f), dauer formation in response to 353 

pheromone51, and lifetime fecundity52 (Fig. 5g). Causal variants and genes that partially 354 

explained the phenotypic variation in all the eight traits, except for lifetime fecundity, 355 

have been identified using fine mappings and genome-editing experiments43,46–52. Only 356 

one causal gene, dbt-1 (for arsenic response variation47), has eQTL detected and its 357 

expression was tested in mediation analysis for arsenic response variation47 (Fig. 5b). No 358 

significant mediation effects were found on arsenic response variation by the expression 359 

of dbt-1. We also did not observe significant differential expression between strains with 360 

different alleles at the previously validated causal dbt-1 QTV (II:7944817)47. Therefore, 361 

this causal variant possibly causes arsenic response variation only by affecting 362 

enzymatic activity47 and not the abundance of the dbt-1 transcript. Instead, we identified 363 

bath-15 as a significant mediator gene for arsenic response variation (Fig. 5b). For the 364 

other seven organism-level traits, putative genes whose expression likely mediated the 365 

phenotypic variation were detected for six of the traits (Fig. 5). For example, the top 366 

mediator gene for the variation in responses to abamectin was cyn-7, which is predicted 367 

to have peptidyl-prolyl cis-trans isomerase acitivity (Fig. 5f)53. For the variation in lifetime 368 

fecundity (Fig. 5g), one of the putative mediator genes was ets-4, which is known to 369 

affect larval developmental rate, egg-laying rate, and lifespan54. Mediator genes suggest 370 

candidate genes in addition to those genes identified in fine mappings or linkage 371 

mappings. Taken together, we concluded that mediation analysis using the newly 372 

generated expression and eQTL data facilitates candidate gene prioritization in GWA 373 

studies. 374 

 375 
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 376 

Fig. 5: Mediation effects of gene expression on variation in seven organism-level 377 

phenotypes of C. elegans.  378 

GWA mapping and mediation analysis results of natural variation in C. elegans telomere 379 
length (a), responses to arsenic (b), zinc (c), etoposide (d), propionate (e), abamectin (f), 380 
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and lifetime fecundity (g). Top panel: A Manhattan plot indicating the GWA mapping 381 
result for each phenotype is shown. Each point represents an SNV that is plotted with 382 
its genomic position (x-axis) against its -log10(p) value (y-axis) in mapping. SNVs that 383 
pass the genome-wide EIGEN threshold (the dotted gray horizontal line) and the 384 
genome-wide Bonferroni threshold (the solid gray horizontal line) are colored pink and 385 
red, respectively. QTL were identified by the EIGEN (c,d,e,f) or Bonferroni (a,b,g) 386 
threshold. Only chromosomes with identified QTL were shown. Bottom panel: Mediation 387 
estimates (y-axis) calculated as the indirect effect that differences in expression of each 388 
gene plays in the overall phenotype are plotted against the genomic position (x-axis) of 389 
the eQTL. The horizontal gray line represents the 99th percentile of the distribution of 390 
mediation estimates. The mediator genes with adjusted p < 0.05 and interpretable 391 
mediation estimate > the 99th percentile estimates threshold are colored other than gray 392 
and labeled in the panel (a-e) or below the panel (f, g). Tick marks on x-axes denote 393 
every 5 Mb. 394 
 395 

Discussion 396 

C. elegans was the first metazoan to have its genome sequenced and has been 397 

subjected to numerous genetic screens to identify the genes that underlie diverse traits, 398 

including programmed cell death, drug responses, development, and behaviors. Despite 399 

huge efforts by a large research community, over 60% of its genes have not been 400 

curated with functional annotations or associated with defined mutant phenotypes55. A 401 

likely reason is that most C. elegans research uses the reference strain N2 under 402 

laboratory conditions, and the functions of many genes might only be revealed in natural 403 

environments or in different genetic backgrounds56. In the last decade, wild C. elegans 404 

strains have exhibited diverse phenotypic variation in natural ecology studies16,25,29,57–59. 405 

Here, we provide an unprecedentedly large resource of transcriptome profiles from wild 406 

C. elegans strains. We used these data and GWA mappings to study gene regulation 407 

variation and detected 6,545 eQTL associated with variation in expression of 5,291 408 

transcripts of 4,520 genes. These genes are enriched in processes, including the 409 

proteasome, metabolism, stress response, etc., suggesting gene expression regulation 410 

plays an important role in adaptation of natural C. elegans strains to various 411 

environments60,61. We identified local eQTL that explained most of the narrow-sense 412 

heritability (h2) and significantly larger variance than distant eQTL, likely because of 413 
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higher possibilities of pleiotropy and thus stronger selection pressures. We also 414 

observed lower variation in gene expression than in genome sequence and 415 

underrepresentation of essential genes among all of the genes identified with eQTL, 416 

suggesting stabilizing selection against gene expression as previously observed in C. 417 

elegans and other species5,12,62,63.  418 

Although previous C. elegans eQTL studies using recombinant inbred lines have 419 

revealed rich information on the genetic basis of gene expression variation, mapping 420 

using 207 genetically distinct wild strains has the advantage of much greater genetic 421 

diversity. We reanalyzed results of one previous study that used linkage mapping to 422 

identify eQTL from the young adult stage of N2xCB4856 recombinant inbred lines3,9. We 423 

reclassified 1,208 local eQTL and 1,179 distant eQTL for 2,054 microarray probes of 424 

2,003 genes (Supplementary Fig. 9a). Both the eQTL GWA and linkage mappings 425 

detected overlapping local eQTL for 454 genes and distant eQTL for 19 genes, indicating 426 

that the CB4856 strain carries the common alternative alleles among wild C. elegans 427 

strains for these 473 loci. However, among the 6,545 eQTL that we detected, the strains 428 

N2 and CB4856 shared the same genotypes in 4,476 eQTL, which could not be 429 

discovered using N2xCB4856 recombinant inbred lines. Alternatively, RIAILs might have 430 

less linkage disequilibrium between nearby variants and thus smaller eQTL regions of 431 

interest than eQTL in wild C. elegans strains. The GWA eQTL in this study have a median 432 

region of interest of 2.1 Mb (ranged from 12 kb to 18 Mb), whereas the N2xCB4856 433 

RIAILs eQTL showed a median size of 0.55 Mb (ranged from 149 bp to 6.8 Mb), which 434 

might make the identification of underlying causal variants easier. We further found 17 435 

distant eQTL hotspots overlapped between the two studies (Supplementary Fig. 9b). 436 

However, these shared hotspots comprise different genes between the two studies, 437 

indicating that variation in regulatory factors is not common between the linkage and 438 

association mapping studies. Future research should leverage both types of mapping 439 

studies to identify common regulatory mechanisms, focusing on local eQTL. 440 

In addition to the high linkage disequilibrium across the C. elegans genome, the 441 

recently discovered hyper-divergent genomic regions made this eQTL study challenging. 442 

Approximately 20% of the genomes in some wild C. elegans strains were found to have 443 
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extremely high diversity compared to the N2 reference genome27. Short-sequence reads 444 

of wild C. elegans strains often fail to align to the N2 reference genome in these regions 445 

and showed lower coverage than in other regions27. Similarly, expression levels of genes 446 

in hyper-divergent regions could be underestimated because of the poor alignment of 447 

RNA-seq reads. Therefore, we only used expression of transcripts in non-divergent 448 

regions to map eQTL and flagged the loci that are in common hyper-divergent regions, 449 

where we are less confident in the genotypes of wild strains (Supplementary Data 2). 450 

Furthermore, we only used distant eQTL that are not in common hyper-divergent regions 451 

to identify hotspots. Because hyper-divergent regions were suggested to be under long-452 

term balancing selection, our estimates of Tajima’s D in hotspots are probably biased 453 

towards lower values. Future efforts using long-read sequencing are necessary to study 454 

the sequence, expression, natural selection, and evolution of genes in hyper-divergent 455 

regions. 456 

Variation in gene expression was suggested to impact organism-level phenotypic 457 

variation7,64–66. Combining previous GWA studies in C. elegans with expression of genes 458 

with eQTL, we used mediation analysis to search for organism-level phenotypic variation 459 

that can be explained by variation in gene expression. Compared to previous studies 460 

using mediation analysis on gene expression and eQTL data from the N2xCB4856 461 

recombinant inbred lines9,43, we added a multiple testing correction procedure to our 462 

mediation analysis. We performed mediation analysis on ABZ response variation44. The 463 

causal gene ben-1 underlying the trait was identified using a burden mapping approach44 464 

along with prior knowledge67,68 about the role of beta-tubulin in this drug response. 465 

Although two GWA QTL on chromosomes II and V were found, they were identified likely 466 

because of their interchromosomal linkage disequilibrium to variants in the ben-1 locus44 467 

(Supplementary Fig. 8). The single-marker GWA mapping could not associate ABZ 468 

response variation because of the extreme allelic heterogeneity at the ben-1 locus. 469 

However, we used mediation analysis to identify ben-1 without consideration of prior 470 

knowledge or burden mapping results, demonstrating the power of the approach (Fig. 471 

4a). We further identified significant mediators for seven other organism-level traits (Fig. 472 
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5). The expression of these mediator genes could affect the corresponding phenotypic 473 

variation, which should be validated in the future.  474 

Mediation analysis provides an efficient hypothesis-generating approach to be 475 

performed in parallel to fine mappings. Additionally, mediator genes could contribute to 476 

organism-level phenotypic variation in addition to causal genes identified using fine 477 

mappings. One limitation of fine mappings is that searching for causal genes and variants 478 

is restricted to the QTL region of interest. Mediation analysis can make statistical 479 

connections between the organism-level phenotypes and expression of genes far away 480 

from the QTL. As mentioned above, large GWA QTL regions of interest make it difficult 481 

to identify causal genes, which require validation using genome editing. Future C. 482 

elegans GWA studies should use both fine mappings and mediation analysis to prioritize 483 

candidate genes. If the candidate genes overlap between the two approaches, then 484 

validation approaches can be initiated using genome editing. In cases where the two 485 

approaches identify different candidate genes, prioritization using prior knowledge 486 

across all genes identified by both approaches can inform which genes should be tested 487 

for validation using genome editing. Previous studies using fine mappings prioritized 488 

candidate genes harboring coding variants predicted to have strong functional impacts. 489 

In mediation analysis, noncoding variants that likely affect expression of mediator genes 490 

could also be nominated as candidates. For example, upstream variants were suggested 491 

to underlie expression variation of the gene scb-1, which mediated differences in 492 

responses to bleomycin and three other chemotherapeutics9,69. To summarize, we 493 

recommend using both fine mappings and mediation analyses to nominate candidate 494 

genes and variants.  495 

The goal of quantitative genetics is to understand the genetic basis and 496 

mechanisms underlying phenotypic variation. Here, we showed that mediation analysis, 497 

which uses expression and eQTL data to search connections between genetic variants 498 

and complex traits, provides additional loci that might further explain phenotypic 499 

variation. The framework we developed for mediation analysis complements marker-500 

based GWA mappings and is also applicable using various other intermediate traits, 501 

such as small RNAs, proteins, and metabolites. Any genes and variants underlying 502 
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variation in these factors can be nominated as candidates for phenotypic validation. 503 

Furthermore, we could measure all of these data and complex traits from the exact same 504 

samples using C. elegans, which can be easily grown at large scale to have synchronized 505 

isogenic populations. Analyses using measurements of mRNAs, small RNAs, proteins, 506 

and metabolites could strengthen conclusions about causal genes and mechanisms 507 

underlying complex traits using a more holistic perspective of organismal phenotypic 508 

variation. We foresee this strategy will greatly improve the powers of quantitative genetic 509 

mappings in the future.  510 
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Methods 511 

C. elegans strains 512 

We obtained 207 wild C. elegans strains from C. elegans Natural Diversity Resource 513 

(CeNDR)25. Animals were cultured at 20°C on modified nematode growth medium 514 

(NGMA) containing 1% agar and 0.7% agarose to prevent burrowing and fed Escherichia 515 

coli (E. coli) strain OP5070. Prior to each assay, strains were grown for three generations 516 

without starvation or encountering dauer-inducing conditions70.  517 

 518 

Animal growth and harvest 519 

We grew and harvested synchronized populations of each strain at the young adult stage 520 

with independently grown and prepared biological replicates. Specifically, L4 larval stage 521 

hermaphrodites were grown to the gravid adult stage on 6 cm plates and were bleached 522 

to obtain synchronized embryos. Approximately 1,000 embryos were grown on each 10 523 

cm plate to the young adult stage and were harvested after the first embryo was 524 

observed. M9 solution was used to wash harvested animals twice to remove E. coli. 525 

Animals were then pelleted by centrifugation (2000 rpm for one minute) and Trizol 526 

reagent (Ambion) was added to maintain RNA integrity before storage at -80°C. 527 

 528 

RNA extraction 529 

Frozen samples in Trizol were thawed at room temperature and 100 µL acid-washed 530 

sand (Sigma, catalog no. 274739) was added to help to disrupt animal tissues. Then 531 

chloroform, isopropanol, and ethanol were used for phase separation, precipitation, and 532 

washing steps, respectively. Total RNA pellets were resuspended in nuclease-free water. 533 

The concentration of total RNA was determined using the Qubit RNA XR Assay Kit 534 

(Invitrogen, catalog no. Q33224). RNA quality was measured using the 2100 Bioanalyzer 535 

(Agilent). RNA samples with a minimum RNA integrity number (RIN) of 7 were used to 536 

construct Illumina sequencing libraries. 537 

 538 

RNA library construction and sequencing 539 
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Illumina RNA-seq libraries were prepared in 96-well plates. Replicates of the same strain 540 

were prepared in different 96-well plates. For each sample, mRNA was purified and 541 

enriched from 1 µg of total RNA using the NEBNext Poly(A) mRNA Magnetic Isolation 542 

Module (New England Biolabs, catalog no. E7490L). RNA fragmentation, first and 543 

second strand cDNA synthesis, and end-repair processing were performed with the 544 

NEBNext Ultra II RNA Library Prep with Sample Purification Beads (New England 545 

Biolabs, catalog no. E7775L). The cDNA libraries were adapter-ligated using adapters 546 

and unique dual indexes in the NEBNext Multiplex Oligos for Illumina (New England 547 

Biolabs, catalog no. E6440, E6442) and amplified using 12 PCR cycles. All procedures 548 

were performed according to the manufacturer’s protocols. The concentration of each 549 

RNA-seq library was determined using Qubit dsDNA BR Assay Kit (Invitrogen, catalog 550 

no. Q32853). Approximately 96 RNA-seq libraries were pooled and quantified with the 551 

2100 Bioanalyzer (Agilent) at Novogene, CA, USA. Each of the pools of libraries were 552 

sequenced on a single lane of an Illumina NovaSeq 6000 platform, yielding 150-bp 553 

paired-end (PE150) reads.  554 

 555 

In total, RNA-seq data of 608 samples from 207 wild C. elegans strains in seven pooled 556 

libraries were obtained with an average of 32.6 million reads per sample and a minimum 557 

of 16.6 million reads. Of the 207 strains, 194 strains with three replicates and 13 strains 558 

with two replicates.  559 

 560 

Sequence processing and expression abundance quantification 561 

Adapter sequences and low-quality reads in raw sequencing data were removed using 562 

fastp (v0.20.0)71. FastQC (v0.11.8) analysis 563 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc) was performed on trimmed 564 

FASTQ files to assess read quality (adapter content, read-length distribution, per read 565 

GC content, etc.). For RNA-seq mapping, SNV-substituted reference transcriptomes for 566 

each of the wild C. elegans strains were generated using BCFtools (v.1.9)72, gffread 567 

(v0.11.6)73, the N2 reference genome (WS276), a GTF file (WS276)53, and the hard-filtered 568 

isotype variant call format (VCF) 20200815 CeNDR release (Supplementary Fig. 1). 569 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 9, 2022. ; https://doi.org/10.1101/2022.02.06.479320doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.06.479320
http://creativecommons.org/licenses/by/4.0/


 

24 

Transposable element (TE) consensus sequences of C. elegans were also extracted from 570 

Dfam (release 3.3)74 using scripts (https://github.com/fansalon/TEconsensus). We used 571 

Kallisto (v0.44.0) to (1) pseudoalign trimmed RNA-seq reads from each sample to the 572 

transcriptome index built from the strain-specific SNV-substituted reference 573 

transcriptome (65,173 transcripts) and TE consensus sequences (157 TEs) and (2) 574 

quantify expression abundance at the transcript level75. On average, 31.3 million reads 575 

pseudoaligned to the transcriptome index per sample with a minimum of 15.5 million 576 

reads, which were sufficient to capture the expression of more than 70% of the C. 577 

elegans reference genome genes. We used the 608 samples of 207 strains and 39,008 578 

transcripts of protein-coding genes and pseudogenes in our analysis.  579 

 580 

Selection of reliably expressed transcripts 581 

We first normalized the raw counts of transcript expression abundances without the 582 

default filtering of low abundance transcripts using the R package sleuth (v0.30.0)76. 583 

Then, we filtered reliably expressed transcripts (26,043) by requiring at least five 584 

normalized counts in all the replicates of at least ten strains (Supplementary Fig. 1). We 585 

also filtered out 3,775 transcripts of 2,597 genes that are in hyper-divergent genomic 586 

regions of at least one strain. We further excluded 194 transcripts in hyper-divergent 587 

regions of more than 107 of the 207 strains. In summary, we collected reliable expression 588 

abundance for 25,849 transcripts of 16,094 genes (15,364 protein-coding genes and 730 589 

pseudogenes). 590 

 591 

Selection of well clustered samples 592 

We used sample-to-sample distance to select well clustered samples (Supplementary 593 

Fig. 1). We first summarized raw counts of reliably expressed transcripts into gene-level 594 

abundances using the R package tximport (v1.10.1)77. Then, we performed variance 595 

stabilizing transformations on the gene expression profile using the vst() function in the 596 

R package DESeq2 (v1.26.0), which generated log2 scale normalized expression data78. 597 

Sample-to-sample pairwise Euclidean distances among the 608 samples were 598 

calculated using the generic function dist() in R79. Our basic assumption is that intra-599 
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strain distances among replicates should be smaller than inter-strain distances. Because 600 

the majority of the 207 wild C. elegans strains exhibit low overall genetic diversity (Fig. 601 

1d)24,35,80, we required that the intra-strain distances of replicates be smaller than the 602 

median of inter-strain distances of the strain to other strains. Specifically, for each strain, 603 

if all of its intra-strain distances were smaller than the median of its inter-strain distances, 604 

then all of its replicates were kept. If none of its intra-strain distances were smaller than 605 

the median of its inter-strain distances, then all samples of the strain were removed. For 606 

strains with three replicates, if one or two of its three intra-strain distances were smaller 607 

than the median of its inter-strain distances, then the two replicates with the minimum 608 

distances were kept. After removal of some outlier samples, the median of inter-strain 609 

distances would change. Therefore, we repeatedly performed the procedures of data 610 

transformation, sample-to-sample distance calculation, and filtering by comparing inter- 611 

and intra-strain distances until no more samples were removed. Eventually, 561 samples 612 

of 207 strains were selected as well clustered samples, which comprised 147 strains 613 

with three replicates and 60 strains with two replicates. 614 

 615 

Transcript expression abundance normalization 616 

We used the function norm_factors() in the R package sleuth (v0.30.0)76 to compute the 617 

normalization factors for each sample using the raw transcripts per million reads (TPM) 618 

of 22,268 reliably expressed transcripts in non-divergent regions of the 207 strains and 619 

their well clustered samples. Then, we normalized the raw TPM of all the 25,849 reliably 620 

expressed transcripts of each sample with the normalization factors and used 621 

log2(normalized TPM + 0.5) for downstream analysis unless indicated otherwise.  622 

 623 

Sample age estimation 624 

To further verify the homogeneous developmental stage of our samples, we evaluated 625 

the age of each sample when they were harvested using the R package RAPToR 626 

(v1.1.3)28 (Supplementary Fig. 1). As the requirement of the package, we first generated 627 

gene-level expression abundances. Raw TPM of 22,268 reliably expressed transcripts in 628 

non-divergent regions were summarized into abundances of 13,637 genes using the R 629 
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package tximport (v1.10.1)77. Normalization factors for each sample using gene-level 630 

abundances were calculated as described for transcript level and were used to normalize 631 

gene level TPM. Correlation of log2(normalized TPM + 0.5) of our data against the 632 

reference gene expression time series (Cel_YA_2) in RAPToR was computed using the 633 

function ae() in RAPToR with 10,489 intersected genes and default parameters.  634 

 635 

Genetic and expression relatedness 636 

Genetic variation data for 207 C. elegans isotypes were acquired from the hard-filtered 637 

isotype variant call format (VCF) 20200815 CeNDR release. These variants were pruned 638 

to the 851,105 biallelic single nucleotide variants (SNVs) without missing genotypes. We 639 

converted this pruned VCF file to a PHYLIP file using the vcf2phylip.py script81. 640 

Expression distance among the 207 wild strains was calculated based on the mean 641 

expression of 22,268 transcripts without missing data using the function dist() in R. The 642 

unrooted neighbor-joining trees for genetic and expression relatedness were made using 643 

the R packages phangorn (v2.5.5)82 , ape (v5.6)83 and ggtree (v1.14.6)84.  644 

 645 

eQTL mapping 646 

Input phenotype and genotype data 647 

For the 25,849 transcripts, we summarized the expression abundance of replicates to 648 

have the mean expression for each transcript of each strain as phenotypes used in GWA 649 

mapping (Supplementary Data 1). Genotype data for each of the 207 strains were 650 

acquired from the hard-filtered isotype VCF (20200815 CeNDR release).  651 

 652 

Permutation-based FDR threshold 653 

We performed GWA mapping using the pipeline cegwas2-nf 654 

(https://github.com/AndersenLab/cegwas2-nf). The pipeline uses the eigen-655 

decomposition significance (EIGEN) threshold or the more stringent Bonferroni-656 

corrected significance (BF) threshold to correct for multiple testing because of the large 657 

number of genetic markers (SNVs). To further correct for false positive QTL because of 658 

the large number of transcript expression traits, we computed a permutation-based 659 
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False Discovery Rate (FDR) at 5%. We randomly selected 200 traits from our input 660 

phenotype file and permuted each of them 200 times. These 40,000 permuted 661 

phenotypes were used as input to call QTL using cegwas2-nf with EIGEN and BF 662 

threshold, respectively, as previously described47,49,52. Briefly, we used BCFtools72 to filter 663 

variants that had any missing genotype calls and variants that were below the 5% minor 664 

allele frequency. Then, we used -indep-pairwise 50 10 0.8 in PLINK v1.985,86 to prune the 665 

genotypes to 20,991 markers with a linkage disequilibrium (LD) threshold of r2 < 0.8 and 666 

then generated the kinship matrix using the A.mat() function in the R package rrBLUP 667 

(v4.6.1)87. The number of independent tests (Ntest) within the genotype matrix was 668 

estimated using the R package RSpectra (v0.16.0) (https://github.com/yixuan/RSpectra) 669 

and correlateR (0.1) (https://github.com/AEBilgrau/correlateR). The eigen-670 

decomposition significance (EIGEN) threshold was calculated as -log10(0.05/Ntest). We 671 

used the GWAS() function in the rrBLUP package to perform the genome-wide mapping 672 

with the EMMA algorithm32. QTL were defined by at least one marker that was above the 673 

EIGEN or BF threshold. The EIGEN and BF %5 FDR was calculated as the 95 percentile 674 

of the significance of all the detected QTL under each threshold. The EIGEN and BF 5% 675 

FDR thresholds were 6.11 and 7.76, respectively. 676 

 677 

eQTL mapping 678 

We performed GWA mapping on the expression traits of the 25,849 transcripts as for 679 

permuted expression traits but using the EIGEN 5% FDR (6.11) as the threshold. We 680 

identified QTL with significance that also passed the Bonferroni 5% FDR threshold to 681 

locate the best estimate of QTL positions with the highest significance. We used the 682 

generic function cor() in R and Pearson correlation coefficient to calculate the phenotypic 683 

variance explained by each QTL. We used the LD() function from the R package genetics 684 

(v1.3.8.1.2) (https://cran.r-project.org/package=genetics) to calculate the LD correlation 685 

coefficient r2 among QTL for traits with multiple eQTL.  686 

 687 

eQTL classification 688 
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Local eQTL were classified if the QTL was within a 2 Mb region surrounding the 689 

transcript. All other QTL were classified as distant. 690 

 691 

Heritability calculation 692 

Heritability estimates were calculated for each of the 25,849 traits used for eQTL 693 

mapping as previously described88. Narrow-sense heritability (h2) was calculated with the 694 

phenotype file and pruned genotypes in eQTL mapping using the functions mmer() and 695 

pin() in the R package sommer (v4.1.2)89. Broad-sense heritability (H2) was calculated 696 

using expression of replicates of each strain and the lmer function in the R package lme4 697 

(v1.1.21) with the model phenotype ~ 1 + (1|strain)90.  698 

 699 

Hotspot identification 700 

We first filtered out distant eQTL in common hyper-divergent genomic regions of wild C. 701 

elegans strains. Common hyper-divergent regions were defined among our 206 strains 702 

(reference N2 excluded) as described previously27. Briefly, we divided the genome into 1 703 

kb bins and calculated the percentage of 206 strains that are classified as hyper-704 

divergent in each bin. Common hyper-divergent regions were defined as bins ≥ 5%27.  705 

 706 

Distant eQTL hotspots were identified by dividing the genome into 0.5 cM bins and 707 

counting the number of non-divergent distant eQTL that mapped to each bin. 708 

Significance was determined as bins with more eQTL than the 99th percentile of a 709 

Poisson distribution using the maximum likelihood method and the function eqpois() in 710 

the R package EnvStats1,3,9,91.  711 

 712 

Reanalysis of RIAILs eQTL 713 

We reclassified eQTL detected in a previous study using microarray expression data 714 

from synchronized young adult populations of 208 recombinant inbred advanced 715 

intercross lines (RIAILs) derived from N2 and CB48569,36. A total of 2,540 eQTL from 716 

2,196 probes were identified using linkage mappings9. We selected 2,387 eQTL of 2,054 717 

probes that are in 2,003 live genes based on the probe-gene list in the R package 718 
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linkagemapping (https://github.com/AndersenLab/linkagemapping) and the GTF file 719 

(WS276)53. We classified 1,208 local eQTL and 1,179 distant eQTL as described above. 720 

We further identified hotspots as above for 1,124 distant eQTL that are not in the hyper-721 

divergent regions of CB4856. 722 

 723 

Population genetics 724 

We use 851,105 biallelic SNVs with no missing calls among the 207 strains from the 725 

hard-filtered VCF 20200815 CeNDR release to calculate population genomic statistics. 726 

Tajima’s D, Watterson’s θ, and pi were all calculated using scikit-allel92. Each of these 727 

statistics was calculated for non-overlapping 1,000-bp windows across the genome. 728 

 729 

Fine mapping for causal genes underlying hotspots 730 

For transcript expression traits with distant eQTL in hotspots, we performed fine 731 

mapping using the pipeline cegwas2-nf as previously described47. Briefly, we defined 732 

QTL regions of interest from the GWA mapping as +/- 100 SNVs from the rightmost and 733 

leftmost markers above the EIGEN 5% FDR significance threshold. Then, using 734 

genotype data from the imputed hard-filtered isotype VCF (20200815 CeNDR release), 735 

we generated a QTL region of interest genotype matrix that was filtered as described 736 

above, with the one exception that we did not perform LD pruning. We used PLINK 737 

v1.985,86 to extract the LD between the markers used for fine mapping and the QTL peak 738 

marker identified from GWA mappings. We used the same command as above to 739 

perform fine mappings. To identify causal genes and variants that affect expression of 740 

several transcripts underlying hotspots, we retained the fine-mapped candidate variants 741 

that passed the following per trait filters: top 5% most significant markers; out of 742 

common hyper-divergent genomic regions; with negative BLOSUM93 scores as 743 

characterized and annotated in CeNDR25. 744 

 745 

Enrichment analysis 746 
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Gene set enrichment analyses were carried out for all genes found with transcript-level 747 

eQTL and for genes with distant eQTL in each hotspot using the web-based tool 748 

WormCat39.  749 

 750 

Mediation analysis 751 

GWA mapping of diverse C. elegans phenotypes 752 

We obtained nine different phenotype data used in previous C.elegans natural variation 753 

and GWA studies43,44,46–52. We filtered genetically distinct isotype strains for each trait 754 

based on CeNDR (20200815 release) and performed GWA mapping as for permuted 755 

expression traits but mostly using EIGEN or BF as the threshold according to the original 756 

studies. GWA was performed under EIGEN for two studies originally using BF as the 757 

threshold48,49.  758 

 759 

Mediation analysis 760 

For each QTL of the above phenotypes, we used the genotype (Exposure) at the 761 

phenotype QTL peak, transcript expression traits (Mediator) that have eQTL overlapped 762 

with the phenotype QTL, and the phenotype (Outcome) as input to perform mediation 763 

analysis using the medTest() function and 1,000 permutations for p-value correction in 764 

the R package MultiMed (v2.6.0) 765 

(https://bioconductor.org/packages/release/bioc/html/MultiMed.html). For mediation, 766 

we used only strains with all of the three input data types available and where variation 767 

was found. For instance, between the 202 strains used in the study of ABZ resistance44 768 

and the 207 strains used in this study, 167 strains overlapped. Although we searched 769 

overlapped eQTL against QTL in the GWA mapping for ABZ resistance using 202 strains 770 

(Supplementary Fig. 8), 167 strains at maximum were used in mediation analysis. 771 

Furthermore, because some transcripts were found in hyper-divergent regions in certain 772 

strains and their expression data were filtered out, the rest of the strains with all of the 773 

data types available might contain no variation in one or all of the three data types and 774 

were not used in mediation analysis. For example, we found 1,193 eQTL overlapped with 775 
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the QTL on chromosome II in the GWA mapping for ABZ resistance, but only 1,157 776 

mediation analyses were performed. 777 

 778 

For mediators with adjusted p < 0.05 or mediation estimate greater than the 99th 779 

percentile of the distribution of mediation estimates, we performed a second mediation 780 

analysis as described previously9 using the mediate() function from the R package 781 

mediation (version 4.5.0)94 to filter out the uninterpretable results where the proportion of 782 

the total effect (the estimated effect of genotype on phenotype, ignoring expression) that 783 

can be explained by the mediation effect (the estimated effect of expression on 784 

phenotype) is negative or larger than 100%.  785 

 786 

GWA of traits regressed by transcript expression 787 

We regressed the trait animal length (q90.TOF)44 by expression of every transcript using 788 

the generic function residuals() in R, which fits a linear model with the formula (phenotype 789 

~ expression) to account for any differences in phenotype parameters present in 790 

transcript expression. Then GWA was performed for each regressed trait as for permuted 791 

expression traits using BF as the threshold. 792 

 793 

 794 

  795 
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Supplementary Fig. 1 33 

Workflow of RNA-seq data processing. 34 
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 37 

Supplementary Fig. 2  38 

Gene set enrichment analysis for genes with transcript level eQTL. Enriched gene 39 
classes of broad and specific categories (Category 1 to 3)39 are shown on the y axis. 40 
Bonferroni FDR corrected significance values using Fisher Exact Test for gene set 41 
enrichment analysis are shown on the x axis. The sizes of the circles correspond to the 42 
input gene counts of the annotation and the colors of the circles correspond to the gene 43 
ratio of input gene counts to total gene counts of the annotation.  44 
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 45 

Supplementary Fig. 3  46 

A histogram showing the distribution of linkage disequilibrium (LD) values (x-axis) among 47 
QTL of multiple eQTL of transcript expression traits. A total of 861 traits were found with 48 
multiple eQTL. LD of eQTL from the same chromosome and different chromosomes are 49 
colored salmon and blue, respectively. 50 
 51 
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 52 

Supplementary Fig. 4 53 

Genome-wide pattern of (a) Watterson’s theta (θ), (b) nucleotide diversity (pi), and (c) 54 
Tajima’s D. Each point represents the value (y-axis) for a non-overlapping 1 kb genomic 55 
window and is plotted against the genome position (x-axis) with tick marks denoting 56 
every 10 cM. Points for genomic windows in distant eQTL hotspots are colored red. 57 
Other points are colored gray. Median values of each statistic in each 0.5 cM bin were 58 
colored black. Tajima’s D values that suggest purifying selection are outliers for most 59 
values within a hotspot. 60 
 61 
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 62 
 63 

Supplementary Fig. 5  64 

Gene set enrichment analysis for genes with transcript level distant eQTL in each 65 
hotspot. Broad and specific categories of enriched gene (Category 1 to 3)39 are shown 66 
on the y axis. Distant eQTL hotspots with significant gene set enrichment are shown on 67 
the x axis. The colors of the circles correspond to Bonferroni FDR corrected significance 68 
values using Fisher Exact Test.   69 
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 70 

Supplementary Fig. 6  71 

Number of genes encoding chromatin cofactors and transcription factors in each 0.5 cM 72 
bin of the C. elegans genome. Bins that were identified as distant eQTL hotspots are 73 
colored red. Other bins are colored black. 74 
  75 
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 132 

Supplementary Fig. 7  133 

Fine mapping of transcript expression traits with distant eQTL in different hotspots is 134 
shown. Genomic position (x-axis) is plotted against the -log10(p) values (y-axis) for each 135 
variant. Purple triangles on the x-axis represent eQTL positions. Candidate variants with 136 
negative BLOSUM scores in genes encoding transcription factors or chromatin cofactors 137 
are indicated as red diamonds. Other variants that are with negative BLOSUM scores, 138 
with non-negative BLOSUM scores or intergenic are colored orange, dark gray, and light 139 
gray, respectively. Transcript names of each trait are indicated above each panel.  140 
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 142 

Supplementary Fig. 8 143 

Manhattan plots indicating the GWA mapping result for animal length (q90.TOF) of 202 144 
(top panel) and 167 (bottom panel) C. elegans wild strains in response to ABZ44 are 145 
shown. Each point represents an SNV that is plotted with its genomic position (x-axis) 146 
against its -log10(p) value (y-axis) from the GWA mapping. Real SNVs that pass the 147 
genome-wide EIGEN threshold (the dotted gray horizontal line) and the genome-wide 148 
Bonferroni threshold (the solid gray horizontal line) are colored pink and red, respectively. 149 
The pseudo SNV marker representing high allelic heterogeneity in the gene ben-1 at 150 
position 3,539,640 on chromosome III is indicated as an orange inverted triangle.  151 
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 152 

Supplementary Fig. 9 153 

RIAILs eQTL.  154 
a, The genomic locations of 2,387 eQTL peaks (x-axis) in the RIAILs eQTL studies3,9 are 155 
plotted against the genomic locations of the 2,003 genes with expression differences (y-156 
axis). Golden points or triangles on the diagonal of the map represent local eQTL. Purple 157 
points or triangles correspond to distant eQTL. Triangles represent eQTL that were also 158 
found in our study. b, The number of distant eQTL (y-axis) in each 0.5 cM bin across the 159 
genome (x-axis) is shown. Tick marks on the x-axis denote every 10 cM. The horizontal 160 
gray line indicates the threshold of 6 eQTL. Bins with 6 or more eQTL were identified as 161 
hotspots and are colored red or blue. Bins with fewer than 6 eQTL are colored black. 162 
Blue bins represent hotspots that were also found in our study. 163 
 164 
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