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Abstract
Estimating the dimension of a model along with its parameters is fundamental to 
many statistical learning problems. Traditional model selection methods often 
approach this task by a two-step procedure: first estimate model parameters under 
every candidate model dimension, then select the best model dimension based on 
certain information criterion. When the number of candidate models is large, how-
ever, this two-step procedure is highly inefficient and not scalable. We develop a 
novel automated and scalable approach with theoretical guarantees, called mixed-
binary simultaneous perturbation stochastic approximation (MB-SPSA), to simul-
taneously estimate the dimension and parameters of a statistical model. To demon-
strate the broad practicability of the MB-SPSA algorithm, we apply the MB-SPSA 
to various classic statistical models including K-means clustering, Gaussian mix-
ture models with an unknown number of components, sparse linear regression, and 
latent factor models with an unknown number of factors. We evaluate the perfor-
mance of the MB-SPSA through simulation studies and an application to a single-
cell sequencing dataset in terms of accuracy, running time, and scalability. The 
code implementing the MB-SPSA is available at http:// github. com/ wangl ong24/ 
MB- SPSA.

Keywords Clustering · Mixed-binary optimization · Mini-batch learning · Single-
cell sequencing · Stochastic optimization

1 Introduction

Advances in high-throughput biotechnologies have led to the generation of large 
amounts of biomedical data, providing researchers unprecedented opportunities 
and challenges to analyze such large-scale and complex data. For example, modern 
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single-nucleotide polymorphisms (SNP) arrays technique allows us to tag millions 
of SNPs, which enables genome-wide association studies (GWAS) to detect disease 
associated variants [1]. Also, due to the emergence of microfluidics techniques and 
combinatorial indexing strategies, thousands or even millions of cells can be gen-
erated in a single experiment [2]. The analysis of these big data needs to be han-
dled in a computationally efficient and statistically sound manner. Therefore, in light 
of the emergence of big data in various domains, how to select the best statistical 
model under an unknown dimension of parameter space in the big data context is 
of great interest. Some classic statistical models that rely on the selection of param-
eter dimension include mixture models with an unknown number of components 
[3], factor models with an unknown number of latent factors [4], and random dot 
product graphs with an unknown dimension of the latent vertex positions [5]. In this 
paper, we refer to the dimension of the parameter space of a model as the dimen-
sion of the model. Our goal is to develop an automated and scalable approach that 
allows us to simultaneously learn the optimal model dimension along with model 
parameters.

Popular examples of commonly used criteria for model selection include the 
Akaike information criterion (AIC) [6] and Bayesian information criterion (BIC) 
[7]. To select the best model, researchers need to first estimate the model-specific 
parameters under every candidate model, then compare all candidate models based 
on a certain information criterion (e.g., AIC or BIC). When the number of candidate 
models is large (e.g., exponential in the sample size), the complete learning pro-
cess requires lots of computational resources. Similar issues arise in neural network 
training as well. When the optimal network structure (e.g., number of layers and 
number of neurons per layer) is unknown, conventional approaches apply reinforce-
ment learning [8] or evolution [9] over a discrete and non-differentiable search space 
to cover every possible network structure, leading to a long training time. Hence, the 
inefficiency of such a two-phase procedure motivates us to seek an integrated way 
to determine the optimal model dimension as well as estimating model parameters.

In Bayesian literature, simultaneously learning the model dimension and parame-
ters can be addressed by dimension-changing sampling techniques such as reversible 
jump Markov chain Monte Carlo (MCMC) [10] that can search over different model 
dimensions. However, the practical implementation of the reversible jump MCMC 
is limited by the difficulty in choosing good jump proposals since there is no natu-
ral neighborhood structure among different model dimensions. Bayesian non-para-
metric models, such as Dirichlet process mixture models [11, 12] and Indian buffet 
processes for latent feature allocation models [13], can adapt to the model dimen-
sion based on the complexity of the data. The posterior inference is usually carried 
out using either MCMC [14] or variational inference [15]. However, these Bayesian 
methods do not scale to big data effectively and cannot be generalized to a wide 
range of statistical models including frequentist and model-free methods.

Model selection has also been tackled via optimization methods. For example, 
when the model dimension is not given, Markley and Miller [16] proposed an opti-
mization-based method: Firstly, an expectation maximization (EM)-type algorithm 
was developed to minimize the BIC value when the model dimension was fixed. 
Then the optimal model dimension was selected by starting the EM-type algorithm 
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with a sufficiently large initial dimension, and repeating the fitting process for every 
reduced model. A similar approach was also developed in Huang et al. [17]. How-
ever, the computational cost of these methods increases significantly when the initial 
dimension is large.

To simultaneously learn the model dimension and parameters, we formulate the 
model selection problem as a mixed-binary optimization problem. Specifically, a 
set of auxiliary binary variables is introduced to indicate whether a certain compo-
nent or covariate is active in the model or not. This formulation transfers the task 
of model selection to an optimization problem involving binary indicator variables 
and continuous model variables (i.e., parameters), called mixed-binary optimization 
problem. When the model dimension is unknown but the maximum model dimen-
sion is given, some non-linear programming methods can be useful. For example, 
Bertsimas et  al. [18] studied a mixed-integer quadratic programming formulation 
with a cardinality constraint. Based on various information criteria, Miyashiro and 
Takano [19] proposed a mixed-integer second-order cone programming formulation. 
Although these mixed-integer programming methods can provide good-quality solu-
tions for small- or medium-sized benchmark datasets, they slow down dramatically 
and sometimes fail to converge for larger datasets. Therefore, an efficient and scal-
able optimization method for mixed-binary optimization problem is desired.

Efficient optimization algorithms for large-scale problems have been majorly 
focusing on stochastic optimization thanks to the recent progress in machine learn-
ing techniques for big data. Despite the flourish developments in stochastic optimi-
zation, stochastic mixed-binary problems are relatively under-explored. The main 
technical challenge is that the gradient information is not available since the loss 
function is generally not differentiable due to the binary variables, which limits the 
direct use of any first-order methods, such as stochastic gradient descent, Adagrad 
[20], and AdaM [21]. Spall [22] developed a gradient-free stochastic approximation 
algorithm for continuous optimization problems called the simultaneous perturba-
tion stochastic approximation (SPSA), which is very efficient and has been widely 
used in machine learning problems involving a large dimension and/or sample size 
[23–27]. Other recent applications based on SPSA-related algorithms include the 
dynamic origin-destination matrix estimation [28], data-driven controller for general 
discrete non-linear system [29], optimal experiment design for evoking a desired 
target brain state [30], fitting stochastic epidemiological models [31], and medical 
imaging with convolutional neural networks [32]. Aksakalli and Malekipirbazari 
[33] developed the binary SPSA for classification problems and obtained favorable 
results comparing with K-nearest neighbors, decision tree methods, and the support 
vector machine on big data containing 10, 000 predictors. However, the SPSA for 
mixed-binary optimization problem has not been studied, which is a gap we aim to 
fill.

In this paper, we develop a mixed-binary SPSA (MB-SPSA) to solve mixed-
binary optimization problems with theoretical guarantees. The novelty of the pro-
posed MB-SPSA comes in three ways: (i) the model dimension is learned adaptively 
during the fitting process so that there is no need to fit all possible candidate mod-
els; (ii) the loss function measurements can be noisy so that evaluations on a small 
batch of data is allowed, which enables both the batch learning and the mini-batch 
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learning for scalability; (iii) the MB-SPSA can be applied to a broad range of statis-
tical models and machine learning algorithms. We consider four applications of the 
MB-SPSA in this paper: K-means clustering with an unknown number of clusters, 
Gaussian mixture models with an unknown number of components, sparse linear 
models, and latent factor models.

The remainder of the paper is organized as follows. In Sect.  2 we review the 
basic SPSA and develop the MB-SPSA with theoretical guarantees. Applications of 
the MB-SPSA to four examples including the K-means, Gaussian mixture models, 
sparse linear models, and latent factor models are discussed in Sect. 3. We demon-
strate the utility of the MB-SPSA using simulation studies in Sect. 4 and an applica-
tion to a single-cell RNA-sequencing dataset in Sect. 5. We conclude the paper in 
Sect. 6.

2  Methods

2.1  Background on SPSA

We first briefly review the generic SPSA algorithm for continuous optimiza-
tion problems [22]. Consider a general minimization problem min�∈ℝp L(�) 
where L ∶ ℝ

p
→ ℝ is a differentiable loss function and denote its gradient 

as g(�) = �L(�)∕�� . Furthermore, assume that only the noisy measurement 
L̂(�) = L(�) + 𝜖(�) with a mean-zero noise �(�) is available. The standard stochastic 
approximation update gives

where {ak} is a non-negative decreasing gain sequence and ĝk(�̂k) is the gradient 
estimate at �̂k . When the true gradient g(�̂k) is either unavailable or computation-
ally expensive, an estimated gradient ĝk(�̂k) is applied in place of the true gradi-
ent. To estimate the true gradient g(�̂k) , the well-known finite different method was 
first developed in Dennis Jr and Schnabel [34]. However, it requires 2p (noisy) loss 
function evaluations per iteration to construct one gradient estimate, making it inef-
ficient in high-dimensional problems. In contrast, Spall [22] proposed a more effi-
cient method, called SPSA, that can estimate g(�̂k) as follows: One first computes 
the perturbations �̂

(±)

k
 as

where {ck} is another non-negative decreasing gain sequence and �k is a random 
p-dimensional perturbation vector �k = [Δk1,… ,Δkp]

T . Based on �̂
(+)

k
 and �̂

(−)

k
 , the 

gradient is then estimated by

(1)�̂k+1 = �̂k − akĝk(�̂k),

(2)�̂
(+)

k
= �̂k + ck�k and �̂

(−)

k
= �̂k − ck�k,

(3)ĝk(�̂k) =
L̂(�̂

(+)

k
) − L̂(�̂

(−)

k
)

2ck�k

,
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where 1∕�k = �
−1
k

=
[
Δ−1

k1
,… ,Δ−1

kp

]T
 . The advantage of (3) is that only two (noisy) 

loss function measurements, i.e., L̂(�̂
(+)

k
) and L̂(�̂

(−)

k
) , are required, making the gradi-

ent estimate highly efficient when p is large. The regularity conditions for the almost 
sure convergence were provided in Spall [22]. One common choice of the gain 
sequence is ak = a∕(A + k)� and ck = c∕k� for some positive scalars a, c,A, �, � . 
Each coordinate of the perturbation vector �k can be sampled independently and 
uniformly from {−1,+1} [35].

2.2  Mixed‑Binary SPSA (MB‑SPSA)

We propose the MB-SPSA to minimize loss functions with mixed-binary variables 
and prove the almost sure convergence. The applications under mini-batch learning 
framework are also discussed.

Consider the mixed-binary optimization problem with d binary variables and 
p − d continuous variables, min�∈{0,1}d×ℝp−d L(�) . Note that the original SPSA is 
no longer applicable since the binary constraint is not satisfied in (1) and (2), i.e., 
�̂
(±)

k
∉ {0, 1}d ×ℝ

p−d . To overcome this issue, denoting ⌊x⌋ to be the maximal inte-
ger no greater than x and

with

we modify (2) as

where the operator ◦ is the matrix Hadamard (element-wise) product and

with bk = b∕k� . We then propose to compute the following pseudo-gradient estimate

which is analogous to the gradient estimate ĝk(�̂k) in (3) for continuous optimization 
problems. Since there is no “true gradient” of L(�) due to the existence of binary 
variables and only noisy loss function measurements are used, our MB-SPSA can 

�(�) =
�⌊�(�1) + 1∕2⌋,… , ⌊�(�d) + 1∕2⌋, �d+1,… , �p

�T

𝜏(𝜃) =

⎧⎪⎨⎪⎩

0, if 𝜃 < 0,

𝜃, if 0 ≤ 𝜃 ≤ 1,

1, if 𝜃 > 1,

(4)�̂
(+)

k
= �(�̂k + Ck◦�k) and �̂

(−)

k
= �(�̂k − Ck◦�k),

Ck = (bk,… , bk
⏟⏞⏟⏞⏟
d comp.

, ck,… , ck
⏟⏞⏟⏞⏟
(p−d) comp.

)T ,

(5)ĝk(�̂k) =
L̂(�̂

(+)

k
) − L̂

(
�̂
(−)

k

)

2Ck◦�k

,
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be viewed as a gradient-free stochastic optimization. The SPSA idea of generating 
�̂
(±)

k
 is used here to essentially estimate the “pseudo-gradient” while maintaining the 

scalability to high dimensionality. If the model dimension is known and fixed, our 
method performs similarly to classical first-order gradient descent algorithms. At 
a higher level, one can view the MB-SPSA as a pseudo-gradient descent method 
that jumps among different dimensions. We present the generic MB-SPSA in Algo-
rithm 1 below.

Remark 1 Note that in the MB-SPSA, only �̂
(±)

k
∈ {0, 1}d ×ℝ

p−d are required since 
we need to take direct loss function measurements at those two points. Although 
it is generally the case that �̂k ∉ {0, 1}d ×ℝ

p−d , it does not affect the MB-SPSA 
algorithm since we do not need to evaluate L(�̂k) during the training process. The 
pseudo-gradient descent step (1) can gradually push the first d components of �̂k 
toward the value 0 or 1 depending on corresponding components in the optimal 
point. At the terminal iteration, we project �̂k to {0, 1}d ×ℝ

p−d by calculating �(�̂k) 
to form the final estimate.

2.3  Mini‑Batch Learning Using MB‑SPSA

In the MB-SPSA, we only require the noisy measurements of the loss function 
L(�) . When the loss function is based on the given data y1,… , yn such as the 
negative joint log-likelihood function, one can consider the noisy measurement 
as the log-likelihood evaluated at only a single data point or a small mini-batch of 
data points, thus motivating the use of the MB-SPSA for scalable learning with 
big data or mini-batch learning.

Let � be the parameter space of a statistical model. When the data y1,… , yn 
are independently and identically distributed (i.i.d.), the loss function to be mini-
mized can be the negative joint log-likelihood function,
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where �(yi;�) is the negative log-likelihood of a single data point yi . For big data 
problems when n is extremely large, directly evaluating L(y1,… , yn;�) is computa-
tionally intractable. Instead, we utilize a uniformly randomly selected subset of the 
data. Denote I to be a random index variable that has a uniform distribution on inte-
gers {1,… , nb} . For a mini-batch size nb ≪ n , assuming I1,… , Inb are i.i.d., we get a 
uniformly randomly selected subset of the data yI1 ,… , yIn such that

where L̂(yI1 ,… , yInb
,�) can be viewed as a noisy measurement of L(y1,… , yn;�) . It 

is easy to see that the “random noise” 𝜖(�) = L̂(yI1 ,… , yInb
,�) − L(y1,… , yn;�) is 

mean-zero since

where the expected value is taken with respect to the random sampling of I1,… , Inb . 
By accessing only a small subset of data yI1 ,… , yInb

 at each iteration, the total com-
putational cost at each iteration can be reduced considerably. The variance of the 
random noise depends on the loss function and the size of the mini-batch. As long as 
the random noise introduced by each mini-batch does not overturn the average 
behavior over multiple iterations, the proposed algorithm will converge and be faster 
than using the full batch evaluations at every iteration [36].

2.4  Theoretical Results of the MB‑SPSA

In this subsection, we provide the theoretical guarantee of the MB-SPSA by estab-
lishing the almost sure convergence result.

Assumption 1 (Gain sequences) ak > 0, ck > 0 ; ak → 0, ck → 0 ; ∑∞

k=1
ak = ∞,

∑∞

k=1
a2
k
< ∞,

∑∞

k=1
(ak∕ck)

2 < ∞.

Assumption 2 (Estimate boundedness) For all k, ‖�̂k‖ < ∞ a.s.

Assumption 3 (Measurement noise) Let Fk = {�̂1,… , �̂k} and Gk = {�1 , … ,�k} . 
Denote 𝜖(±)

k
= L̂(�̂

(±)

k
) − L(�̂

(±)

k
) . For all k, there exists a real number B0 such that 

�[�
(+)

k
− �

(−)

k
∣ Fk,Gk] = 0 a.s., Var(�

(±)

k
) ≤ B0.

Assumption 4 (Perturbation vector) For all i and k, the components of {Δki} are 
independently and identically distributed (i.i.d.) and there exists B1,B2 and B3 such 
that 0 < |Δki| ≤ B1,�

[
Δki

]
= 0,�

[|Δ−1
ki
|] ≤ B2 , and �{[L̂(�̂(−)

k
) − L̂(�̂

(−)

k
)]2} ≤ B3.

min
�∈�

L(y1,… , yn;�) = min
�∈�

n∑
i=1

�(yi;�),

L̂(yI1 ,… , yInb
,�) =

n

nb

nb∑
i=1

�(yIi ;�),

�I[�(�)] = �I

[
n

nb

nb∑
i=1

�(yIi ;�)

]
−

n∑
i=1

�(yi;�) = 0,
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Assumption 5 (Loss function smoothness) For all k, there exists B4 such that 
|L(�̂(+)

k
) − L(�̂

(−)

k
)| ≤ B4 a.s.

Assumption 6 (Search direction) Let �∗ be the set of local minimizers such that for 
any �∗ ∈ �

∗ , �
[
ĝk(�

�)
]T
(� − �∗) > 0 for all �� ∈ Br(�) , where Br(�) is the ball cen-

tered at � with radius 0 < r < 1∕2.

Theorem 1 Under Assumptions 1–6, �̂k converges to some �∗ ∈ �
∗ a.s. when k → ∞

.

Proof See Appendix 1.   ◻

Remark 2 Assumptions 1–5 are standard conditions for stochastic optimization and 
are similar to those provided in SPSA [22]. Assumption 6 is a common and neces-
sary assumption for proving the local convergence. It generalizes the search direc-
tions for continuous problems [37, Sect. 4.3.2]. If the parameter dimension is fixed, 
similar assumptions can also be found in many EM-type optimization methods.

Remark 3 Spall [35] and Sect.  7.5 of Spall [37] provide a practical guidance on 
choosing the gain sequences: ak = a∕(A + k)� , bk = b∕k� , ck = c∕k� . Specifically, 
one can set � = 0.601 and � = 0.101 since they are practically effective and theoreti-
cally valid [35]. The value of A is often set to be around 10% of the total number of 
iterations. In addition, one can choose the values of a, b and c such that the elements 
of �̂ are moving by a desired magnitude (e.g., 10%) of the initial values in early 
iterations. The general philosophy is to make ak large to increase the convergence 
speed and ck small to obtain accurate gradient estimates. The variance of �̂k depends 
on the gain sequences. When the gain sequences are decaying at a moderate rate, the 
variance of the estimate is small.

Since the MB-SPSA is guaranteed to converge, the properties of the optimum 
depend only on the loss function used in the algorithm. If a traditional model selec-
tion criteria such as AIC or BIC is used in the loss function, the MB-SPSA performs 
comparably to these traditional model selection methods, but with a much shorter 
time. The added values of the MB-SPSA are the generality to a variety of models 
and the scalability to big data. In short, we are not proposing a new model selection 
method, but rather an efficient optimization technique that applies to optimization-
based generic model selection problems.

3  Applying the MB‑SPSA to Statistical Models

In this section, we illustrate how one can apply the MB-SPSA algorithm to the com-
monly used statistical models with four examples: K-means clustering, Gaussian 
mixture models (GMM), sparse linear models, and latent factor models.



1 3

Statistics in Biosciences 

3.1  K‑Means Clustering

Clustering is a powerful machine learning tool for detecting structures in bio-
medical datasets, e.g., clustering single-cell sequencing data to identify different 
cell types [2], clustering gene expression data to discover disease subtypes [38], 
and clustering patients to find patients subgroups with the goal of facilitating pre-
cision medicine [39]. K-means clustering is one of the most popular and simplest 
unsupervised clustering algorithms. Given the data y1∶n = (y1,… , yn) , K-means 
clustering aims to partition the n data points into K clusters such that the data 
points in the same cluster are more similar with each other than those in other 
clusters. The objective function of K-means is

where �1∶K = (�1,… ,�K) are cluster centroids. Although finding the exact mini-
mizer of the above objective function is NP-hard, efficient EM-type algorithms can 
be used to find a sequence of iterates that converges to a local optimum with a pre-
defined K.

To select the number of clusters adaptively, one can apply the proposed MB-
SPSA to the K-means clustering by considering the following modified objective 
function:

where K is an upper bound for the number of clusters, zk ∈ {0, 1} is a binary vari-
able to indicate whether the k-th cluster is included in the model or not, and �k is the 
mean parameter of the k-th cluster. The last term in (6) that mimics the regular BIC-
type regularizer is added to prevent overfitting and � is a penalty parameter. Then 
Algorithm 1 can be applied directly to (6) for K-means clustering with an unknown 
number of clusters.

3.2  Gaussian Mixture Models (GMMs)

GMMs have been gaining popularity due to its flexibility and tractability for clus-
tering and density estimation. Consider data y1∶n = (y1,… , yn) and the log-likeli-
hood function

where wj is the weight parameter for the j-th cluster and �(⋅;�j,�j) is the multi-
variate normal density function with mean �j and covariance matrix �j . Standard 

L(�1∶K) =

n∑
i=1

min
1≤k≤K

‖‖yi − �k
‖‖2,

(6)L(z
1∶K

,�
1∶K

) =

n∑
i=1

min
k∶zk=1

‖‖yi − �k
‖‖2 + � log(n)

K∑
k=1

zk,

f (y1∶n;w1∶m,�1∶m,�1∶m) =

n∑
i=1

log

m∑
j=1

wj�(yi;�j,�j),
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approaches first estimate the component-specific parameters (ŵ1∶m, �̂1∶m, �̂1∶m) 
under every possible value of m, then select the best model dimension as

where the last term is the BIC penalty and can be replaced with other information 
criterion. When possible values of m is large, the two-step procedure can be very 
inefficient. To overcome this computational challenge, we aim to estimate m and 
(w1∶m,�1∶m,�1∶m) simultaneously by solving the following mixed-binary optimiza-
tion problem:

where M is an upper bound for m, z1∶M is a set of indicator variables such that 
z1∶M ∈ {0, 1}M , �1∶M is the unconstrained weight parameter such that �k ∈ ℝ and 
wj = zje

�j∕
∑M

k=1
zke

�k , and Lj ∈ ℝ
p×p ranges over the space of all lower-triangu-

lar p-by-p matrices such that �j = LjL
T
j
 . The binary variable zj ∈ {0, 1} indicates 

whether the j-th component is included in the model so that m =
∑M

j=1
zj represents 

the model dimension. The advantage of (7) is that the optimization can be performed 
over all parameters simultaneously. One may notice that a fixed upper bound M is 
required as an input. In practice, however, one can always run the algorithm at dif-
ferent values of M to see if it is large enough. To make the algorithm fully adaptive, 
we propose Algorithm 2 that allows an adaptive selection of M based on the current 
estimates ẑ1∶M . Intuitively, if M is not large enough, then the model space becomes 
restrictive, resulting zj = 1 for many j’s. On the other hand, if M is too large, we are 
likely to observe zj = 0 for many j’s. Hence, by increasing or decreasing the value 
of M adaptively, we can locate the best model gradually within the fitting process. 
Moreover, when searching between the models with K components and K + 1 com-
ponents, one expects that most of the component-wise parameters (e.g., means and 
covariance matrices) of the two models are close to each other. Hence, when mov-
ing from the current model to a newly updated model, one should be able to use the 
fitted parameter values in the previous model to achieve a faster convergence result. 
This idea is detailed in Algorithm 2 below.

m̂ = arg min m − 2

n∑
i=1

log

m∑
j=1

ŵj𝜙(yi;�̂j, �̂j) + m log n,

(7)

min
z1∶M , �1∶M
�1∶M ,L1∶M

L(z1∶M , �1∶M ,�1∶M ,L1∶M)

= −2

n�
i=1

log

M�
j=1

zje
�j

∑M

k=1
zke

�k

�(yi;�j,LjL
T
j
) + log n

M�
j=1

zj,
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Remark 4 Changing the model dimension by at most 1 per iteration might slow 
down the algorithm if the initial M is extremely large or small. Our algorithm is flex-
ible enough to allow M to increase or decrease by more than 1 per iteration accord-
ing to the user’s preference without affecting convergence results. For practical use, 
the algorithm can be implemented in the fashion that allows M to make big changes 
for early iterations (so that early detection of a neighborhood of the optimal point 
can be done) and small changes for later iterations (for the purpose of final conver-
gence to the optimal point).

In mini-batch learning settings, we define the noisy loss function based on a sub-
set of the data y1∶nb = (y1,… , ynb),

Algorithm 3 outlines the (mini-batch) MB-SPSA for GMMs.

(8)

L̂(z1∶M , 𝛽1∶M ,�1∶M ,L1∶M)

= −
2n

nb

nb�
i=1

log

M�
j=1

zje
𝛽j

∑M

k=1
zke

𝛽k

𝜙(yi;�j,LjL
T
j
) + log n

M�
j=1

zj.
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3.3  Sparse linear models

As an emerging area in biomedical applications, high-dimensional statistics refers 
to models where the number of parameters is much larger than the sample size in 
a dataset, i.e., p ≫ n . For example, in genome-wide association studies (GWAS), 
researchers usually apply high-dimensional linear regression models to study the 
association between diseases or traits with SNPs, where the number of SNPs is 
about 106 but the number of individuals is in the range of thousands. A key assump-
tion in high-dimensional models is the sparsity, and an appropriate sparsity assump-
tion is essential to ensure that the inference problem has a well-posed solution.

Consider a linear regression model yi = xT
i
� + �i , i = 1,… , n , with mean-zero 

noise �i . A sparse linear model imposes the following sparsity constraint: only q < p 
regression coefficients are non-zero. We introduce a set of binary variables 
z1∶p = (z1,… , zp) ∈ {0, 1}p such that zj = 1 indicates �j ≠ 0 and q =

∑p

j=1
zj . Using 

BIC as the model selection criterion, we obtain the loss function

Classical algorithms are often unable to learn both the sparsity and parameters at 
the same time since the penalty term logN

∑p

j=1
zj is proportional to the �0-penalty 

function ‖�‖0 = ∑m

j=1
1(zj = 1) , which is non-convex and discontinuous. Therefore, 

high-dimensional linear regression usually relies on the convex relaxation of ‖�‖0 to 
the �1-penalization, giving rise to the least absolute shrinkage selection operator 
(LASSO) regression [40].

(9)min
z1∶p,�1∶p

n∑
i=1

(
yi −

p∑
j=1

zj�jxij

)2

+ log n

p∑
j=1

zj.
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In contrast, the proposed MB-SPSA can optimize with respect to both the sparsity 
variable z1∶p and the regression coefficients �1∶p efficiently without relaxing the pen-
alty function and is scalable to big data with extremely large N and p. For mini-batch 
learning, a new loss function can be define similar to (8). We present the detailed 
implementation of (mini-batch) MB-SPSA for sparse linear models in Algorithm 4.

3.4  Latent Factor Models

Another widely used model that involves an unknown model dimension is the latent 
factor model, which aims to decompose a data matrix into the product of two low-
rank matrices. Mathematically, given a p × n data matrix Y , one seeks to obtain a 
low-rank approximation Y ≈ WH with W being a p × K matrix and H being a K × n 
matrix, where the number of latent factors K is referred to as the model dimension 
and usually required to be pre-defined for many machine learning algorithms (see, 
e.g., [41–43]).

The latent factor model has been applied to a wide range of genetics and genom-
ics problems [44–46]. For example, several dimension reduction methods have 
been introduced in analyzing single-cell RNA-seq data to identify and characterize 
novel cell types and gene expression patterns before applying clustering methods 
[47–50]. Specifically, for a count data matrix Y ∈ ℕ

p×n with p genes and n cells, 
one often assumes that Y follows a distribution P(�) parameterized by a matrix 
� , then decomposes � into the product of two low-rank matrices W ∈ ℝ

+,p,K and 
H ∈ ℝ

+,K,n , where K is typically much smaller than p and n. Various probabil-
ity models P(⋅) have been proposed, such as the standard Poisson non-negative 
matrix factorization [51], Gamma–Poisson factor models [47–49], and sparse 
Gamma–Poisson factor models [52]. However, in these models, the number of latent 
factors K needs to be pre-defined and fixed during the fitting process.

We now illustrate how one can apply the proposed MB-SPSA algorithm to latent 
factor models using the model proposed in Sun et al. [53] as an example. Denote Y 
a gene expression matrix. Specifically, Sun et al. [53] models its element yij for gene 
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i and cell j as a negative binomial distribution, i.e., yij ∼ NB(�ij,�i) with the rate 
parameter �ij denoting the mean expression level and the parameter �i representing 
the gene-specific over-dispersion. The rate parameter �ij is further assumed to follow 
a regression model log(�ij) = log(Nj) +

∑K

k=1
WikHkj , where Nj is the total read count 

for the individual cell j, Wik is the loading matrix, and Hkj is the factor matrix repre-
senting the coordinates of the cells. While the values of Wik ’s and Hkj ’s can be esti-
mated using standard gradient descent methods, the choice of K must be pre-defined 
and fixed by the user. To estimate the model dimension K adaptively, we propose 
to use the MB-SPSA with a set of binary variable {zk} ∈ {0, 1} to indicate whether 
a specific column of W and a row of H is included in the low-rank approximation. 
Considering the Frobenius norm ‖⋅‖F as the measurement of an approximation error, 
we seek to minimize the following objective function

where Z = diag(z1,… , z
K
) is a diagonal matrix with k-th diagonal being zk , � is a 

penalty parameter, and K is an upper bound of the model dimension. If a statisti-
cal model is assumed on Y , such as the negative binomial distribution mentioned 
above, one could replace the Frobenius norm term with the corresponding nega-
tive log-likelihood function. Then Algorithm 1 can be directly applied with the loss 
function in (10) to learn the model dimension and parameter values (z

1∶K
,W,H) 

simultaneously.

4  Simulation Study

We evaluated the performance of the proposed MB-SPSA using two examples dis-
cussed in Sect. 3: Gaussian mixture models and sparse linear models. We also com-
pared the MB-SPSA with alternative methods in terms of accuracy, running time, 
and scalability.

4.1  Gaussian Mixture Models

We generated data y1∶n from the density: f (y) =
∑100

j=1
wj�(y;�j,�j) with 

n = 100, 000 , wj = 0.01 , �j = (j,… , j)T , and �j = I10 for all j. We used (7) 
as the loss function and restricted �j to diagonal matrices with unknown 
diagonal elements. Following Spall [35], we set the gain sequences as 
a = 0.1, b = 0.25, c = 0.5,A = 100, � = 0.602, � = 0.101 and sampled the perturba-
tion vector � independently and uniformly from {−1,+1} in the MB-SPSA. Initial 
means �̂(0)

1∶M
 were sampled from N(0, 102) and initial covariances �̂

(0)

1∶M
 were set to 

be the identity with M = 150 . We considered two settings: (i) the MB-SPSA and 
(ii) the MB-SPSA-mini-batch with a mini-batch size nb = 100 . The MB-SPSA was 
implemented for 800 iterations with 10 parallel runs. For comparison, we applied 
the R package mclust, which uses BIC for learning GMMs via an EM algorithm.

(10)L̂(z
1∶K

,W,H) = ‖Y −WZH‖2
F
+ 𝜆

K�
k=1

zk,
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Table  1 shows the estimated number of components, terminal normalized BIC 
values (the standard BIC value divided by n), and total running times under the 
simulated true parameters, mclust, the MB-SPSA, and the MB-SPSA-mini-batch, 
respectively. The MB-SPSA correctly estimates the number of components and 
yields the best BIC value with only one-third of the time spent in mclust. The 
MB-SPSA-mini-batch also shows a reasonably good result under a significantly 
shorter time (0.4% of the time in mclust). Figure 1 plots the number of estimated 
components and the corresponding BIC values of the MB-SPSA algorithm versus 
the number of iterations, showing that the MB-SPSA algorithm gradually converges 
to the optimal number of components and BIC value.

4.2  Sparse Linear Models

Denote � = (�1,… , �p)
T and xi = (xi1,… , xip)

T , we generated the data yi , 
i = 1,… , n , independently using the following linear regression model:

Table 1  Estimated number 
of components, terminal 
normalized BIC values, and 
total running times under 
true parameters, mclust, the 
MB-SPSA, and the MB-SPSA-
mini-batch algorithms for a 
GMM with 100,000 data points

Algorithm No. of comp Terminal nor-
malized BIC

Time (s)

True parameters 100 37.04 –
mclust 110 37.29 10979
MB-SPSA-batch 100 37.10 3920
MB-SPSA-mini-batch 105 37.28 46

Fig. 1  Number of components 
estimated by the MB-SPSA 
algorithm over 800 iterations 
with 100,000 data points
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where �i ∼ N(0, 0.52) . The covariates in (11) were sampled independently from the 
uniform distribution, i.e., xij ∼ Unif(0, 1) for i = 1,… , n and j = 1,… , p . To evalu-
ate the MB-SPSA algorithm for sparse linear models, we considered two scenarios, 
one with a large sample size n and the other one with a high dimension p.

In scenario 1, we assumed n = 100 × p and considered two cases: p = 100 
and p = 200 . The simulated true regression coefficients were set to be �j = 1 for 
j = 0, 1,… , p∕2 and �j = 0 for j = p∕2 + 1,… , p . Therefore, the simulated true 
number of active covariates was 51 when p = 200 , and 101 when p = 200 . We 
used the loss function (9) with the BIC penalty term log(n)

∑p

i=1
zj to train the 

MB-SPSA. For comparison, we applied the stepwise regression with both direc-
tions (SW-both) [54, 55], which combined the forward and backward selections. 
Specifically, starting from no active covariates, SW-both sequentially adds the 
covariate that contributes the most to the model and removes covariates that can-
not improve the model fitting. Table  2 shows that both the SW-both and MB-
SPSA yield satisfactory results in terms of recovering non-zero �j’s. The SW-both 
performs slightly better than the proposed MB-SPSA in terms of the BIC since 
the SW-both is an exact method, while the MB-SPSA relies on stochastic approx-
imation. However, the total running time of the MB-SPSA is much shorter and 
the speed advantage becomes more significant as p gets larger.

In scenario 2, we examined the performance of the MB-SPSA in high-dimen-
sional case ( p ≫ n ). We assumed n = 100 and set the regression coefficients to 
be �0 = 1, �j = 5 for j = 1,… , 5 , and �j = 0 for j = 6,… , p . We considered two 
cases: p = 200 and p = 400 . In both cases, the simulated true number of active 
covariates was 6. The loss function for the MB-SPSA was still chosen to be (9) 
with the BIC penalty. For comparison, we applied the LASSO regression [40] to 
the simulated datasets with the penalty parameter chosen by the fivefold cross-
validation. Since different loss functions were used for the LASSO and MB-
SPSA, we computed the residual sum of squares (RSS) for comparison. Table 3 
shows the RSS values and the estimated number of active covariates under the 
LASSO and MB-SPSA, respectively. Although LASSO achieved smaller RSS 
values under both cases, it selected a significantly larger number of active covari-
ates compared to that under the MB-SPSA.

(11)yi = �0 + xT
i
� + �i,

Table 2  Terminal BIC values, 
number of active covariates, 
and total running times under 
the SW-both and MB-SPSA 
for sparse linear models with 
n = 100p data points

p Algorithm BIC No. of active 
covariates

Time(s)

100 SW-both 2979.80 51 279.28
MB-SPSA 2990.98 51 20.07

200 SW-both 5931.78 101 8621.80
MB-SPSA 5952.76 101 76.57
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5  Real Data: Single‑Cell RNA‑Seq Data Analysis

As mentioned in Sect. 3.4, an important task in the single-cell transcriptome analy-
sis is to identify distinct cell types with different gene expression patterns by cluster-
ing cells. Many methods have been proposed for detecting cell types from single-
cell RNA-Seq data, such as K-means, iterative clustering [56], or first projecting the 
high-dimensional data to a lower-dimensional space, then using clustering methods 
to detect cell types. Commonly used dimension reduction methods include principal 
component analysis (PCA) [57], non-negative matrix factorization [58], and t-dis-
tributed stochastic neighbor embedding algorithm (t-SNE) [59].

We applied the proposed MB-SPSA to detect cell types by clustering cells using 
a benchmark single-cell RNA-seq dataset [60], which is available at the data reposi-
tory Gene Expression Omnibus (GSE67853, https:// www. ncbi. nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= GSE67 835). After initial processing (i.e., filtering out the hybrid 
cells and the low expression genes, whose total expression over all non-hybrid cells 
was less or equal than 10), we ended up with p = 18, 568 genes and n = 420 cells 
over 8 different cell types, including astrocytes cells (62 cells), endothelial cells (20 
cells), fetal quiescent cells (110 cells), fetal replicating cells (25 cells), oligodendro-
cytes cells (38 cells), OPC cells (18 cells), microglia cells (16 cells), and neurons 
cells (131 cells). Denote yij to be the count of gene i in cell j, we transformed yij into 
continuous data by using base 2 and pseudo count 1, i.e., log2(yij + 1) . After the 
transformation, for each gene, we normalize the values by its total expression over 
all cells, i.e., yij∕

∑n

j=1
yij.

Using (6) as the objective function, we implemented the MB-SPSA for K-means 
clustering with the gain sequence being a = 0.01,A = 50, � = 0.602, c

z
= 0.05,

c� = 0.001, � = 0.101 . The penalty parameter was set to � = 0.0004 . The initial 
number of clusters was set to K = 10 . Figure 2 plots the estimated number of clus-
ters versus the number of iterations, showing that the number of clusters learned by 
the MB-SPSA successfully converges within 200 iterations to 8, which is the true 
number of clusters in the dataset.

To measure the performance of the clustering result, we used the normalized 
mutual information (NMI) [61] and the adjusted rand index (ARI) [62]. Spe-
cifically, assume that Kt and Ke were the true and estimated number of clusters, 
respectively. For each cluster, denote nt

k
 to be the number of cells assigned to 

the k-th true cluster for k = 1,… ,Kt , and ne
k′
 to be the number of cells assigned 

to the k′-th estimated cluster for k� = 1,… ,Ke . We further denoted nk,k′ to be the 

Table 3  RSS values and the 
number of active covariates 
from fitted models under the 
LASSO and MB-SPSA for 
sparse linear models

p Algorithm RSS No. of active 
covariates

200 LASSO 11.01 48
MB-SPSA 21.61 6

400 LASSO 19.98 25
MB-SPSA 28.44 10

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67835
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67835
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number of cells assigned to both the k-th true cluster and the k′-th estimated 
cluster. Then the NMI was defined by

and the ARI was defined by

For comparison, we implemented several alternative methods including the 
classical K-means, the K-means after PCA, the K-means after non-negative 
matrix factorization via EM algorithm (NMF-EM) [58], and the K-means after 
the t-SNE [63]. For K-means, we fixed the number of cluster to be 7, 8 and 9, 
respectively. For PCA and NMF-EM, we first embedded the original data into 
the top 10-dimensional feature space, then computed the NMI and ARI val-
ues after applying the K-means to the low-dimensional features with the true 
number of clusters ( K = 8 ). For t-SNE, we first embedded the data to the top-2 
dimensional feature space, then applied K-means with the true number of clus-
ters ( K = 8 ). Table 4 reports the NMI and ARI values under the proposed MB-
SPSA as well as all alternative methods, showing that the MB-SPSA yields the 
highest values of NMI and ARI compared to alternative methods. This example 
demonstrates that the proposed MB-SPSA outperforms alternative methods even 
without pre-specifying the correct number of clusters.

NMI =

∑Kt
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Fig. 2  Number of active clusters 
estimated by the MB-SPSA



1 3

Statistics in Biosciences 

6  Conclusion

We developed an automated and scalable MB-SPSA algorithm to simultaneously 
learn the model dimension and parameters for a general class of statistical mod-
els. A mini-batch learning framework of the MB-SPSA is also discussed when 
evaluating the loss function on the complete data and/or the gradient informa-
tion is computationally expensive or infeasible. Theoretically, the MB-SPSA is 
guaranteed to converge locally under certain regularity conditions. Applications 
including K-means clustering, GMMs with an unknown number of components, 
sparse linear models with an unknown number of active covariates, and latent 
factor models with an unknown number of factors are demonstrated. Through 
simulation studies and real data analyses, the MB-SPSA yields favorable results 
compared to alternatives in terms of efficiency and accuracy.

There are many other potential applications of the proposed MB-SPSA algo-
rithm, mainly in dimensionality reduction, including but not limited to, low-rank 
random graph models [64], manifold learning [65], and topic models [66]. The com-
mon question of interest in these dimensionality reduction problems is how to iden-
tify the dimension of the latent space. For example, in low-rank random graph mod-
els, the dimension of the latent positions could be unknown. In manifold learning, 
the intrinsic dimension of the underlying unobserved manifold could be unknown. 
In topic models, it is impractical to assume a pre-determined number of topics for 
a collection of documents. Applying the proposed MB-SPSA algorithm to learn the 
latent space dimension for various dimensionality reduction problems with appro-
priate loss functions is an interesting future research direction.

Appendix: Proof of Theorem 1

Proof Denote L(�̂(+)

k
) = L

(+)

k
 and L(−)

k
= L(�̂

(−)

k
) . Before starting the main proof, we 

first define some useful notations below

(12)ḡk = �
[
ĝk ∣ �̂k

]
,

Table 4  NMI and ARI values 
estimated by K-means with 
different number of clusters, 
PCA, NMF-EM, t-SNE, and the 
MB-SPSA

Methods NMI ARI

K-means ( K = 7) 0.729 0.738
K-means ( K = 8) 0.792 0.787
K-means ( K = 9) 0.768 0.772
PCA and K-means ( K = 8) 0.703 0.521
NMF-EM and K-means ( K = 8) 0.456 0.264
t-SNE and K-means ( K = 8) 0.742 0.572
MB-SPSA 0.808 0.829
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where the expectation in (12) is taken over both the perturbation vector �k and the 
noise term �k . Using (12), (13) and (14), we can write the updating equation as

For any � ∈ Ω0 such that P(Ω0) = 1 , since {�̂k(𝜔)} is a bounded sequence by 
Assumption 2, the Bolzano–Weierstrass Theorem implies that there exists Ω1 ⊂ Ω 
such that P(Ω1) = 1 and for any � ∈ Ω1 there exists a convergent subsequence 
{�̂ks

(𝜔)} . Denote the limiting point of the convergent subsequence as ��(�) . For sim-
plicity, the notation � is suppressed below.

According to (15), we can write

Since �� − �̂ks
→ 0 as s → ∞ , we will show below that all the three terms of the 

right-hand side of (16) must also converge to 0.
First note that by Assumption 3 and (13), we have

which implies that {
∑m

i=k
aibi}m≥k is a martingale sequence as

Given that {
∑m

i=k
aibi}m≥k is a martingale sequence, the Doob’s martingale ine-

quality implies that for any 𝜂 > 0

where the last equality is due to Assumption 3, since

(13)b̂k =
1

2
(Ck◦�k)

[
L
(+)

k
− L

(−)

k

]
− ḡk,

(14)êk = ĝk −
1

2
(Ck◦�k)

[
L
(+)

k
− L

(−)

k

]
=

1

2
(Ck◦�k)

[
𝜖
(+)

k
− 𝜖

(−)

k

]
,

(15)

�̂k+1 = �̂k − akĝk

= �̂k − ak

(
1

2
(Ck◦�k)

[
L
(+)

k
− L

(−)

k

]
+

1

2
(Ck◦�k)

[
𝜖
(+)

k
− 𝜖

(−)

k

])

= �̂k − ak

(
ḡk + b̂k + ḡk

)
.

(16)�� − �̂ks
= lim

s→∞

n∑
i=s

(�̂ki+1
− �̂ki

) = − lim
s→∞

n∑
i=s

aki

(
ḡki + b̂ki + ḡki

)
,

�

[
b̂k+1 ∣ Fk

]
= 0,

�

[
m+1∑
i=k

aib̂i ∣ Fm

]
=

m∑
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aib̂i + am+1�
[
b̂m+1 ∣ Fm

]
=

m∑
i=k

aib̂i.

(17)P

(
sup
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‖‖‖‖‖
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i
�

[
b̂i ∣ Fj
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= 0.
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By Assumption 1, we have bk > 0 and ck ≤ c0 . Hence, there exist a constant c̄ 
such that we can write (17) as

which further implies that

For any 𝜂 > 0 and all k ≥ n , since

we can use (17) to get

As n → ∞ , for all k ≥ n,

and

Therefore, we conclude

and

Similarly, we can also show that

∞∑
i=k

a2
i
�

[‖‖‖b̂i
‖‖‖
2
]
≤
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i
�

[(
L
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)2
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−1

]

≤

∞∑
i=k

c̄2
a2
i

c2
i

�

[(
L
(+)

k
− L

(−)

k

)2

�
−T
i
�
−1
i

]
< ∞,

lim
k→∞

a2
i
�

[‖‖‖b̂i
‖‖‖
2
]
= 0.

{
sup
k

‖‖‖‖‖

m∑
i=k

aib̂i

‖‖‖‖‖
≥ 𝜂

}
⊂

{
sup
m≥k

‖‖‖‖‖

m∑
i=k

aib̂i

‖‖‖‖‖
≥ 𝜂

}
,

P

(
sup
k

‖‖‖‖‖

m∑
i=k

aib̂i

‖‖‖‖‖
≥ 𝜂

)
≤ P

(
sup
m≥k

‖‖‖‖‖

m∑
i=k

aib̂i

‖‖‖‖‖
≥ 𝜂

)
≤ 𝜂−2

∞∑
i=k

a2
i
�

[‖‖‖b̂i
‖‖‖
2
]
.

lim
k→∞

𝜂−2
∞∑
i=k

a2
i
�

[‖‖‖b̂i
‖‖‖
2
]
= 0,

lim
n→∞

P

(
sup
k≥n

‖‖‖‖‖

∞∑
i=k

aib̂i

‖‖‖‖‖
≥ 𝜂

)
= 0.

lim
k→∞

∞∑
i=k

aib̂i = 0,

(18)lim
s→∞

∞∑
i=s

aki b̂ki = 0.



 Statistics in Biosciences

1 3

Combining (16) with results in (18) and (19), we have

Suppose ��
≠ �∗ . Given lims→∞ �̂ks

= �� , for any 𝛿 > 0 , there exists a S such that 
for any s > S , ‖�̂ks

− ��‖ ≤ 𝛿 . Let � be sufficiently small, we have �̂ks
∈ Br(�

�) . By 
Assumption 1 and 6, we must have 

∑∞

i=s
aki = ∞ implies

which contradicts with (20). Hence, we conclude that �� = �∗ . Since �′ is chosen to 
be the limiting point of any convergent subsequence, we have all the convergent sub-
sequence converges to the same liming points and consequently �̂k → �∗ a.s. when 
k → ∞ .   ◻
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