
Vol.:(0123456789)

Statistics in Biosciences
https://doi.org/10.1007/s12561-021-09324-4

1 3

Simultaneous Learning the Dimension and Parameter
of a Statistical Model with Big Data

Long Wang1 · Fangzheng Xie1 · Yanxun Xu1 

Received: 15 June 2020 / Revised: 19 November 2020 / Accepted: 19 September 2021
© International Chinese Statistical Association 2021

Abstract
Estimating the dimension of a model along with its parameters is fundamental to
many statistical learning problems. Traditional model selection methods often
approach this task by a two-step procedure: first estimate model parameters under
every candidate model dimension, then select the best model dimension based on
certain information criterion. When the number of candidate models is large, how-
ever, this two-step procedure is highly inefficient and not scalable. We develop a
novel automated and scalable approach with theoretical guarantees, called mixed-
binary simultaneous perturbation stochastic approximation (MB-SPSA), to simul-
taneously estimate the dimension and parameters of a statistical model. To demon-
strate the broad practicability of the MB-SPSA algorithm, we apply the MB-SPSA
to various classic statistical models including K-means clustering, Gaussian mix-
ture models with an unknown number of components, sparse linear regression, and
latent factor models with an unknown number of factors. We evaluate the perfor-
mance of the MB-SPSA through simulation studies and an application to a single-
cell sequencing dataset in terms of accuracy, running time, and scalability. The
code implementing the MB-SPSA is available at http://​github.​com/​wangl​ong24/​
MB-​SPSA.

Keywords  Clustering · Mixed-binary optimization · Mini-batch learning · Single-
cell sequencing · Stochastic optimization

1  Introduction

Advances in high-throughput biotechnologies have led to the generation of large
amounts of biomedical data, providing researchers unprecedented opportunities
and challenges to analyze such large-scale and complex data. For example, modern

 *	 Yanxun Xu
	 yanxun.xu@jhu.edu

1	 Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, USA

http://orcid.org/0000-0001-5554-8637
http://github.com/wanglong24/MB-SPSA
http://github.com/wanglong24/MB-SPSA
http://crossmark.crossref.org/dialog/?doi=10.1007/s12561-021-09324-4&domain=pdf

	 Statistics in Biosciences

1 3

single-nucleotide polymorphisms (SNP) arrays technique allows us to tag millions
of SNPs, which enables genome-wide association studies (GWAS) to detect disease
associated variants [1]. Also, due to the emergence of microfluidics techniques and
combinatorial indexing strategies, thousands or even millions of cells can be gen-
erated in a single experiment [2]. The analysis of these big data needs to be han-
dled in a computationally efficient and statistically sound manner. Therefore, in light
of the emergence of big data in various domains, how to select the best statistical
model under an unknown dimension of parameter space in the big data context is
of great interest. Some classic statistical models that rely on the selection of param-
eter dimension include mixture models with an unknown number of components
[3], factor models with an unknown number of latent factors [4], and random dot
product graphs with an unknown dimension of the latent vertex positions [5]. In this
paper, we refer to the dimension of the parameter space of a model as the dimen-
sion of the model. Our goal is to develop an automated and scalable approach that
allows us to simultaneously learn the optimal model dimension along with model
parameters.

Popular examples of commonly used criteria for model selection include the
Akaike information criterion (AIC) [6] and Bayesian information criterion (BIC)
[7]. To select the best model, researchers need to first estimate the model-specific
parameters under every candidate model, then compare all candidate models based
on a certain information criterion (e.g., AIC or BIC). When the number of candidate
models is large (e.g., exponential in the sample size), the complete learning pro-
cess requires lots of computational resources. Similar issues arise in neural network
training as well. When the optimal network structure (e.g., number of layers and
number of neurons per layer) is unknown, conventional approaches apply reinforce-
ment learning [8] or evolution [9] over a discrete and non-differentiable search space
to cover every possible network structure, leading to a long training time. Hence, the
inefficiency of such a two-phase procedure motivates us to seek an integrated way
to determine the optimal model dimension as well as estimating model parameters.

In Bayesian literature, simultaneously learning the model dimension and parame-
ters can be addressed by dimension-changing sampling techniques such as reversible
jump Markov chain Monte Carlo (MCMC) [10] that can search over different model
dimensions. However, the practical implementation of the reversible jump MCMC
is limited by the difficulty in choosing good jump proposals since there is no natu-
ral neighborhood structure among different model dimensions. Bayesian non-para-
metric models, such as Dirichlet process mixture models [11, 12] and Indian buffet
processes for latent feature allocation models [13], can adapt to the model dimen-
sion based on the complexity of the data. The posterior inference is usually carried
out using either MCMC [14] or variational inference [15]. However, these Bayesian
methods do not scale to big data effectively and cannot be generalized to a wide
range of statistical models including frequentist and model-free methods.

Model selection has also been tackled via optimization methods. For example,
when the model dimension is not given, Markley and Miller [16] proposed an opti-
mization-based method: Firstly, an expectation maximization (EM)-type algorithm
was developed to minimize the BIC value when the model dimension was fixed.
Then the optimal model dimension was selected by starting the EM-type algorithm

1 3

Statistics in Biosciences	

with a sufficiently large initial dimension, and repeating the fitting process for every
reduced model. A similar approach was also developed in Huang et al. [17]. How-
ever, the computational cost of these methods increases significantly when the initial
dimension is large.

To simultaneously learn the model dimension and parameters, we formulate the
model selection problem as a mixed-binary optimization problem. Specifically, a
set of auxiliary binary variables is introduced to indicate whether a certain compo-
nent or covariate is active in the model or not. This formulation transfers the task
of model selection to an optimization problem involving binary indicator variables
and continuous model variables (i.e., parameters), called mixed-binary optimization
problem. When the model dimension is unknown but the maximum model dimen-
sion is given, some non-linear programming methods can be useful. For example,
Bertsimas et al. [18] studied a mixed-integer quadratic programming formulation
with a cardinality constraint. Based on various information criteria, Miyashiro and
Takano [19] proposed a mixed-integer second-order cone programming formulation.
Although these mixed-integer programming methods can provide good-quality solu-
tions for small- or medium-sized benchmark datasets, they slow down dramatically
and sometimes fail to converge for larger datasets. Therefore, an efficient and scal-
able optimization method for mixed-binary optimization problem is desired.

Efficient optimization algorithms for large-scale problems have been majorly
focusing on stochastic optimization thanks to the recent progress in machine learn-
ing techniques for big data. Despite the flourish developments in stochastic optimi-
zation, stochastic mixed-binary problems are relatively under-explored. The main
technical challenge is that the gradient information is not available since the loss
function is generally not differentiable due to the binary variables, which limits the
direct use of any first-order methods, such as stochastic gradient descent, Adagrad
[20], and AdaM [21]. Spall [22] developed a gradient-free stochastic approximation
algorithm for continuous optimization problems called the simultaneous perturba-
tion stochastic approximation (SPSA), which is very efficient and has been widely
used in machine learning problems involving a large dimension and/or sample size
[23–27]. Other recent applications based on SPSA-related algorithms include the
dynamic origin-destination matrix estimation [28], data-driven controller for general
discrete non-linear system [29], optimal experiment design for evoking a desired
target brain state [30], fitting stochastic epidemiological models [31], and medical
imaging with convolutional neural networks [32]. Aksakalli and Malekipirbazari
[33] developed the binary SPSA for classification problems and obtained favorable
results comparing with K-nearest neighbors, decision tree methods, and the support
vector machine on big data containing 10, 000 predictors. However, the SPSA for
mixed-binary optimization problem has not been studied, which is a gap we aim to
fill.

In this paper, we develop a mixed-binary SPSA (MB-SPSA) to solve mixed-
binary optimization problems with theoretical guarantees. The novelty of the pro-
posed MB-SPSA comes in three ways: (i) the model dimension is learned adaptively
during the fitting process so that there is no need to fit all possible candidate mod-
els; (ii) the loss function measurements can be noisy so that evaluations on a small
batch of data is allowed, which enables both the batch learning and the mini-batch

	 Statistics in Biosciences

1 3

learning for scalability; (iii) the MB-SPSA can be applied to a broad range of statis-
tical models and machine learning algorithms. We consider four applications of the
MB-SPSA in this paper: K-means clustering with an unknown number of clusters,
Gaussian mixture models with an unknown number of components, sparse linear
models, and latent factor models.

The remainder of the paper is organized as follows. In Sect. 2 we review the
basic SPSA and develop the MB-SPSA with theoretical guarantees. Applications of
the MB-SPSA to four examples including the K-means, Gaussian mixture models,
sparse linear models, and latent factor models are discussed in Sect. 3. We demon-
strate the utility of the MB-SPSA using simulation studies in Sect. 4 and an applica-
tion to a single-cell RNA-sequencing dataset in Sect. 5. We conclude the paper in
Sect. 6.

2 � Methods

2.1 � Background on SPSA

We first briefly review the generic SPSA algorithm for continuous optimiza-
tion problems [22]. Consider a general minimization problem min�∈ℝp L(�)
where L ∶ ℝ

p
→ ℝ is a differentiable loss function and denote its gradient

as g(�) = �L(�)∕�� . Furthermore, assume that only the noisy measurement
L̂(�) = L(�) + 𝜖(�) with a mean-zero noise �(�) is available. The standard stochastic
approximation update gives

where {ak} is a non-negative decreasing gain sequence and ĝk(�̂k) is the gradient
estimate at �̂k . When the true gradient g(�̂k) is either unavailable or computation-
ally expensive, an estimated gradient ĝk(�̂k) is applied in place of the true gradi-
ent. To estimate the true gradient g(�̂k) , the well-known finite different method was
first developed in Dennis Jr and Schnabel [34]. However, it requires 2p (noisy) loss
function evaluations per iteration to construct one gradient estimate, making it inef-
ficient in high-dimensional problems. In contrast, Spall [22] proposed a more effi-
cient method, called SPSA, that can estimate g(�̂k) as follows: One first computes
the perturbations �̂

(±)

k
 as

where {ck} is another non-negative decreasing gain sequence and �k is a random
p-dimensional perturbation vector �k = [Δk1,… ,Δkp]

T . Based on �̂
(+)

k
 and �̂

(−)

k
 , the

gradient is then estimated by

(1)�̂k+1 = �̂k − akĝk(�̂k),

(2)�̂
(+)

k
= �̂k + ck�k and �̂

(−)

k
= �̂k − ck�k,

(3)ĝk(�̂k) =
L̂(�̂

(+)

k
) − L̂(�̂

(−)

k
)

2ck�k

,

1 3

Statistics in Biosciences	

where 1∕�k = �
−1
k

=
[
Δ−1

k1
,… ,Δ−1

kp

]T
 . The advantage of (3) is that only two (noisy)

loss function measurements, i.e., L̂(�̂
(+)

k
) and L̂(�̂

(−)

k
) , are required, making the gradi-

ent estimate highly efficient when p is large. The regularity conditions for the almost
sure convergence were provided in Spall [22]. One common choice of the gain
sequence is ak = a∕(A + k)� and ck = c∕k� for some positive scalars a, c,A, �, � .
Each coordinate of the perturbation vector �k can be sampled independently and
uniformly from {−1,+1} [35].

2.2 � Mixed‑Binary SPSA (MB‑SPSA)

We propose the MB-SPSA to minimize loss functions with mixed-binary variables
and prove the almost sure convergence. The applications under mini-batch learning
framework are also discussed.

Consider the mixed-binary optimization problem with d binary variables and
p − d continuous variables, min�∈{0,1}d×ℝp−d L(�) . Note that the original SPSA is
no longer applicable since the binary constraint is not satisfied in (1) and (2), i.e.,
�̂
(±)

k
∉ {0, 1}d ×ℝ

p−d . To overcome this issue, denoting ⌊x⌋ to be the maximal inte-
ger no greater than x and

with

we modify (2) as

where the operator ◦ is the matrix Hadamard (element-wise) product and

with bk = b∕k� . We then propose to compute the following pseudo-gradient estimate

which is analogous to the gradient estimate ĝk(�̂k) in (3) for continuous optimization
problems. Since there is no “true gradient” of L(�) due to the existence of binary
variables and only noisy loss function measurements are used, our MB-SPSA can

�(�) =
�⌊�(�1) + 1∕2⌋,… , ⌊�(�d) + 1∕2⌋, �d+1,… , �p

�T

𝜏(𝜃) =

⎧⎪⎨⎪⎩

0, if 𝜃 < 0,

𝜃, if 0 ≤ 𝜃 ≤ 1,

1, if 𝜃 > 1,

(4)�̂
(+)

k
= �(�̂k + Ck◦�k) and �̂

(−)

k
= �(�̂k − Ck◦�k),

Ck = (bk,… , bk
⏟⏞⏟⏞⏟
d comp.

, ck,… , ck
⏟⏞⏟⏞⏟
(p−d) comp.

)T ,

(5)ĝk(�̂k) =
L̂(�̂

(+)

k
) − L̂

(
�̂
(−)

k

)

2Ck◦�k

,

	 Statistics in Biosciences

1 3

be viewed as a gradient-free stochastic optimization. The SPSA idea of generating
�̂
(±)

k
 is used here to essentially estimate the “pseudo-gradient” while maintaining the

scalability to high dimensionality. If the model dimension is known and fixed, our
method performs similarly to classical first-order gradient descent algorithms. At
a higher level, one can view the MB-SPSA as a pseudo-gradient descent method
that jumps among different dimensions. We present the generic MB-SPSA in Algo-
rithm 1 below.

Remark 1  Note that in the MB-SPSA, only �̂
(±)

k
∈ {0, 1}d ×ℝ

p−d are required since
we need to take direct loss function measurements at those two points. Although
it is generally the case that �̂k ∉ {0, 1}d ×ℝ

p−d , it does not affect the MB-SPSA
algorithm since we do not need to evaluate L(�̂k) during the training process. The
pseudo-gradient descent step (1) can gradually push the first d components of �̂k
toward the value 0 or 1 depending on corresponding components in the optimal
point. At the terminal iteration, we project �̂k to {0, 1}d ×ℝ

p−d by calculating �(�̂k)
to form the final estimate.

2.3 � Mini‑Batch Learning Using MB‑SPSA

In the MB-SPSA, we only require the noisy measurements of the loss function
L(�) . When the loss function is based on the given data y1,… , yn such as the
negative joint log-likelihood function, one can consider the noisy measurement
as the log-likelihood evaluated at only a single data point or a small mini-batch of
data points, thus motivating the use of the MB-SPSA for scalable learning with
big data or mini-batch learning.

Let � be the parameter space of a statistical model. When the data y1,… , yn
are independently and identically distributed (i.i.d.), the loss function to be mini-
mized can be the negative joint log-likelihood function,

1 3

Statistics in Biosciences	

where �(yi;�) is the negative log-likelihood of a single data point yi . For big data
problems when n is extremely large, directly evaluating L(y1,… , yn;�) is computa-
tionally intractable. Instead, we utilize a uniformly randomly selected subset of the
data. Denote I to be a random index variable that has a uniform distribution on inte-
gers {1,… , nb} . For a mini-batch size nb ≪ n , assuming I1,… , Inb are i.i.d., we get a
uniformly randomly selected subset of the data yI1 ,… , yIn such that

where L̂(yI1 ,… , yInb
,�) can be viewed as a noisy measurement of L(y1,… , yn;�) . It

is easy to see that the “random noise” 𝜖(�) = L̂(yI1 ,… , yInb
,�) − L(y1,… , yn;�) is

mean-zero since

where the expected value is taken with respect to the random sampling of I1,… , Inb .
By accessing only a small subset of data yI1 ,… , yInb

 at each iteration, the total com-
putational cost at each iteration can be reduced considerably. The variance of the
random noise depends on the loss function and the size of the mini-batch. As long as
the random noise introduced by each mini-batch does not overturn the average
behavior over multiple iterations, the proposed algorithm will converge and be faster
than using the full batch evaluations at every iteration [36].

2.4 � Theoretical Results of the MB‑SPSA

In this subsection, we provide the theoretical guarantee of the MB-SPSA by estab-
lishing the almost sure convergence result.

Assumption 1  (Gain sequences) ak > 0, ck > 0 ; ak → 0, ck → 0 ; ∑∞

k=1
ak = ∞,

∑∞

k=1
a2
k
< ∞,

∑∞

k=1
(ak∕ck)

2 < ∞.

Assumption 2  (Estimate boundedness) For all k, ‖�̂k‖ < ∞ a.s.

Assumption 3  (Measurement noise) Let Fk = {�̂1,… , �̂k} and Gk = {�1 , … ,�k} .
Denote 𝜖(±)

k
= L̂(�̂

(±)

k
) − L(�̂

(±)

k
) . For all k, there exists a real number B0 such that

�[�
(+)

k
− �

(−)

k
∣ Fk,Gk] = 0 a.s., Var(�

(±)

k
) ≤ B0.

Assumption 4  (Perturbation vector) For all i and k, the components of {Δki} are
independently and identically distributed (i.i.d.) and there exists B1,B2 and B3 such
that 0 < |Δki| ≤ B1,�

[
Δki

]
= 0,�

[|Δ−1
ki
|] ≤ B2 , and �{[L̂(�̂(−)

k
) − L̂(�̂

(−)

k
)]2} ≤ B3.

min
�∈�

L(y1,… , yn;�) = min
�∈�

n∑
i=1

�(yi;�),

L̂(yI1 ,… , yInb
,�) =

n

nb

nb∑
i=1

�(yIi ;�),

�I[�(�)] = �I

[
n

nb

nb∑
i=1

�(yIi ;�)

]
−

n∑
i=1

�(yi;�) = 0,

	 Statistics in Biosciences

1 3

Assumption 5  (Loss function smoothness) For all k, there exists B4 such that
|L(�̂(+)

k
) − L(�̂

(−)

k
)| ≤ B4 a.s.

Assumption 6  (Search direction) Let �∗ be the set of local minimizers such that for
any �∗ ∈ �

∗ , �
[
ĝk(�

�)
]T
(� − �∗) > 0 for all �� ∈ Br(�) , where Br(�) is the ball cen-

tered at � with radius 0 < r < 1∕2.

Theorem 1  Under Assumptions 1–6, �̂k converges to some �∗ ∈ �
∗ a.s. when k → ∞

.

Proof  See Appendix 1. 	� ◻

Remark 2  Assumptions 1–5 are standard conditions for stochastic optimization and
are similar to those provided in SPSA [22]. Assumption 6 is a common and neces-
sary assumption for proving the local convergence. It generalizes the search direc-
tions for continuous problems [37, Sect. 4.3.2]. If the parameter dimension is fixed,
similar assumptions can also be found in many EM-type optimization methods.

Remark 3  Spall [35] and Sect. 7.5 of Spall [37] provide a practical guidance on
choosing the gain sequences: ak = a∕(A + k)� , bk = b∕k� , ck = c∕k� . Specifically,
one can set � = 0.601 and � = 0.101 since they are practically effective and theoreti-
cally valid [35]. The value of A is often set to be around 10% of the total number of
iterations. In addition, one can choose the values of a, b and c such that the elements
of �̂ are moving by a desired magnitude (e.g., 10%) of the initial values in early
iterations. The general philosophy is to make ak large to increase the convergence
speed and ck small to obtain accurate gradient estimates. The variance of �̂k depends
on the gain sequences. When the gain sequences are decaying at a moderate rate, the
variance of the estimate is small.

Since the MB-SPSA is guaranteed to converge, the properties of the optimum
depend only on the loss function used in the algorithm. If a traditional model selec-
tion criteria such as AIC or BIC is used in the loss function, the MB-SPSA performs
comparably to these traditional model selection methods, but with a much shorter
time. The added values of the MB-SPSA are the generality to a variety of models
and the scalability to big data. In short, we are not proposing a new model selection
method, but rather an efficient optimization technique that applies to optimization-
based generic model selection problems.

3 � Applying the MB‑SPSA to Statistical Models

In this section, we illustrate how one can apply the MB-SPSA algorithm to the com-
monly used statistical models with four examples: K-means clustering, Gaussian
mixture models (GMM), sparse linear models, and latent factor models.

1 3

Statistics in Biosciences	

3.1 � K‑Means Clustering

Clustering is a powerful machine learning tool for detecting structures in bio-
medical datasets, e.g., clustering single-cell sequencing data to identify different
cell types [2], clustering gene expression data to discover disease subtypes [38],
and clustering patients to find patients subgroups with the goal of facilitating pre-
cision medicine [39]. K-means clustering is one of the most popular and simplest
unsupervised clustering algorithms. Given the data y1∶n = (y1,… , yn) , K-means
clustering aims to partition the n data points into K clusters such that the data
points in the same cluster are more similar with each other than those in other
clusters. The objective function of K-means is

where �1∶K = (�1,… ,�K) are cluster centroids. Although finding the exact mini-
mizer of the above objective function is NP-hard, efficient EM-type algorithms can
be used to find a sequence of iterates that converges to a local optimum with a pre-
defined K.

To select the number of clusters adaptively, one can apply the proposed MB-
SPSA to the K-means clustering by considering the following modified objective
function:

where K is an upper bound for the number of clusters, zk ∈ {0, 1} is a binary vari-
able to indicate whether the k-th cluster is included in the model or not, and �k is the
mean parameter of the k-th cluster. The last term in (6) that mimics the regular BIC-
type regularizer is added to prevent overfitting and � is a penalty parameter. Then
Algorithm 1 can be applied directly to (6) for K-means clustering with an unknown
number of clusters.

3.2 � Gaussian Mixture Models (GMMs)

GMMs have been gaining popularity due to its flexibility and tractability for clus-
tering and density estimation. Consider data y1∶n = (y1,… , yn) and the log-likeli-
hood function

where wj is the weight parameter for the j-th cluster and �(⋅;�j,�j) is the multi-
variate normal density function with mean �j and covariance matrix �j . Standard

L(�1∶K) =

n∑
i=1

min
1≤k≤K

‖‖yi − �k
‖‖2,

(6)L(z
1∶K

,�
1∶K

) =

n∑
i=1

min
k∶zk=1

‖‖yi − �k
‖‖2 + � log(n)

K∑
k=1

zk,

f (y1∶n;w1∶m,�1∶m,�1∶m) =

n∑
i=1

log

m∑
j=1

wj�(yi;�j,�j),

	 Statistics in Biosciences

1 3

approaches first estimate the component-specific parameters (ŵ1∶m, �̂1∶m, �̂1∶m)
under every possible value of m, then select the best model dimension as

where the last term is the BIC penalty and can be replaced with other information
criterion. When possible values of m is large, the two-step procedure can be very
inefficient. To overcome this computational challenge, we aim to estimate m and
(w1∶m,�1∶m,�1∶m) simultaneously by solving the following mixed-binary optimiza-
tion problem:

where M is an upper bound for m, z1∶M is a set of indicator variables such that
z1∶M ∈ {0, 1}M , �1∶M is the unconstrained weight parameter such that �k ∈ ℝ and
wj = zje

�j∕
∑M

k=1
zke

�k , and Lj ∈ ℝ
p×p ranges over the space of all lower-triangu-

lar p-by-p matrices such that �j = LjL
T
j
 . The binary variable zj ∈ {0, 1} indicates

whether the j-th component is included in the model so that m =
∑M

j=1
zj represents

the model dimension. The advantage of (7) is that the optimization can be performed
over all parameters simultaneously. One may notice that a fixed upper bound M is
required as an input. In practice, however, one can always run the algorithm at dif-
ferent values of M to see if it is large enough. To make the algorithm fully adaptive,
we propose Algorithm 2 that allows an adaptive selection of M based on the current
estimates ẑ1∶M . Intuitively, if M is not large enough, then the model space becomes
restrictive, resulting zj = 1 for many j’s. On the other hand, if M is too large, we are
likely to observe zj = 0 for many j’s. Hence, by increasing or decreasing the value
of M adaptively, we can locate the best model gradually within the fitting process.
Moreover, when searching between the models with K components and K + 1 com-
ponents, one expects that most of the component-wise parameters (e.g., means and
covariance matrices) of the two models are close to each other. Hence, when mov-
ing from the current model to a newly updated model, one should be able to use the
fitted parameter values in the previous model to achieve a faster convergence result.
This idea is detailed in Algorithm 2 below.

m̂ = arg min m − 2

n∑
i=1

log

m∑
j=1

ŵj𝜙(yi;�̂j, �̂j) + m log n,

(7)

min
z1∶M , �1∶M
�1∶M ,L1∶M

L(z1∶M , �1∶M ,�1∶M ,L1∶M)

= −2

n�
i=1

log

M�
j=1

zje
�j

∑M

k=1
zke

�k

�(yi;�j,LjL
T
j
) + log n

M�
j=1

zj,

1 3

Statistics in Biosciences	

Remark 4  Changing the model dimension by at most 1 per iteration might slow
down the algorithm if the initial M is extremely large or small. Our algorithm is flex-
ible enough to allow M to increase or decrease by more than 1 per iteration accord-
ing to the user’s preference without affecting convergence results. For practical use,
the algorithm can be implemented in the fashion that allows M to make big changes
for early iterations (so that early detection of a neighborhood of the optimal point
can be done) and small changes for later iterations (for the purpose of final conver-
gence to the optimal point).

In mini-batch learning settings, we define the noisy loss function based on a sub-
set of the data y1∶nb = (y1,… , ynb),

Algorithm 3 outlines the (mini-batch) MB-SPSA for GMMs.

(8)

L̂(z1∶M , 𝛽1∶M ,�1∶M ,L1∶M)

= −
2n

nb

nb�
i=1

log

M�
j=1

zje
𝛽j

∑M

k=1
zke

𝛽k

𝜙(yi;�j,LjL
T
j
) + log n

M�
j=1

zj.

	 Statistics in Biosciences

1 3

3.3 � Sparse linear models

As an emerging area in biomedical applications, high-dimensional statistics refers
to models where the number of parameters is much larger than the sample size in
a dataset, i.e., p ≫ n . For example, in genome-wide association studies (GWAS),
researchers usually apply high-dimensional linear regression models to study the
association between diseases or traits with SNPs, where the number of SNPs is
about 106 but the number of individuals is in the range of thousands. A key assump-
tion in high-dimensional models is the sparsity, and an appropriate sparsity assump-
tion is essential to ensure that the inference problem has a well-posed solution.

Consider a linear regression model yi = xT
i
� + �i , i = 1,… , n , with mean-zero

noise �i . A sparse linear model imposes the following sparsity constraint: only q < p
regression coefficients are non-zero. We introduce a set of binary variables
z1∶p = (z1,… , zp) ∈ {0, 1}p such that zj = 1 indicates �j ≠ 0 and q =

∑p

j=1
zj . Using

BIC as the model selection criterion, we obtain the loss function

Classical algorithms are often unable to learn both the sparsity and parameters at
the same time since the penalty term logN

∑p

j=1
zj is proportional to the �0-penalty

function ‖�‖0 = ∑m

j=1
1(zj = 1) , which is non-convex and discontinuous. Therefore,

high-dimensional linear regression usually relies on the convex relaxation of ‖�‖0 to
the �1-penalization, giving rise to the least absolute shrinkage selection operator
(LASSO) regression [40].

(9)min
z1∶p,�1∶p

n∑
i=1

(
yi −

p∑
j=1

zj�jxij

)2

+ log n

p∑
j=1

zj.

1 3

Statistics in Biosciences	

In contrast, the proposed MB-SPSA can optimize with respect to both the sparsity
variable z1∶p and the regression coefficients �1∶p efficiently without relaxing the pen-
alty function and is scalable to big data with extremely large N and p. For mini-batch
learning, a new loss function can be define similar to (8). We present the detailed
implementation of (mini-batch) MB-SPSA for sparse linear models in Algorithm 4.

3.4 � Latent Factor Models

Another widely used model that involves an unknown model dimension is the latent
factor model, which aims to decompose a data matrix into the product of two low-
rank matrices. Mathematically, given a p × n data matrix Y , one seeks to obtain a
low-rank approximation Y ≈ WH with W being a p × K matrix and H being a K × n
matrix, where the number of latent factors K is referred to as the model dimension
and usually required to be pre-defined for many machine learning algorithms (see,
e.g., [41–43]).

The latent factor model has been applied to a wide range of genetics and genom-
ics problems [44–46]. For example, several dimension reduction methods have
been introduced in analyzing single-cell RNA-seq data to identify and characterize
novel cell types and gene expression patterns before applying clustering methods
[47–50]. Specifically, for a count data matrix Y ∈ ℕ

p×n with p genes and n cells,
one often assumes that Y follows a distribution P(�) parameterized by a matrix
� , then decomposes � into the product of two low-rank matrices W ∈ ℝ

+,p,K and
H ∈ ℝ

+,K,n , where K is typically much smaller than p and n. Various probabil-
ity models P(⋅) have been proposed, such as the standard Poisson non-negative
matrix factorization [51], Gamma–Poisson factor models [47–49], and sparse
Gamma–Poisson factor models [52]. However, in these models, the number of latent
factors K needs to be pre-defined and fixed during the fitting process.

We now illustrate how one can apply the proposed MB-SPSA algorithm to latent
factor models using the model proposed in Sun et al. [53] as an example. Denote Y
a gene expression matrix. Specifically, Sun et al. [53] models its element yij for gene

	 Statistics in Biosciences

1 3

i and cell j as a negative binomial distribution, i.e., yij ∼ NB(�ij,�i) with the rate
parameter �ij denoting the mean expression level and the parameter �i representing
the gene-specific over-dispersion. The rate parameter �ij is further assumed to follow
a regression model log(�ij) = log(Nj) +

∑K

k=1
WikHkj , where Nj is the total read count

for the individual cell j, Wik is the loading matrix, and Hkj is the factor matrix repre-
senting the coordinates of the cells. While the values of Wik ’s and Hkj ’s can be esti-
mated using standard gradient descent methods, the choice of K must be pre-defined
and fixed by the user. To estimate the model dimension K adaptively, we propose
to use the MB-SPSA with a set of binary variable {zk} ∈ {0, 1} to indicate whether
a specific column of W and a row of H is included in the low-rank approximation.
Considering the Frobenius norm ‖⋅‖F as the measurement of an approximation error,
we seek to minimize the following objective function

where Z = diag(z1,… , z
K
) is a diagonal matrix with k-th diagonal being zk , � is a

penalty parameter, and K is an upper bound of the model dimension. If a statisti-
cal model is assumed on Y , such as the negative binomial distribution mentioned
above, one could replace the Frobenius norm term with the corresponding nega-
tive log-likelihood function. Then Algorithm 1 can be directly applied with the loss
function in (10) to learn the model dimension and parameter values (z

1∶K
,W,H)

simultaneously.

4 � Simulation Study

We evaluated the performance of the proposed MB-SPSA using two examples dis-
cussed in Sect. 3: Gaussian mixture models and sparse linear models. We also com-
pared the MB-SPSA with alternative methods in terms of accuracy, running time,
and scalability.

4.1 � Gaussian Mixture Models

We generated data y1∶n from the density: f (y) =
∑100

j=1
wj�(y;�j,�j) with

n = 100, 000 , wj = 0.01 , �j = (j,… , j)T , and �j = I10 for all j. We used (7)
as the loss function and restricted �j to diagonal matrices with unknown
diagonal elements. Following Spall [35], we set the gain sequences as
a = 0.1, b = 0.25, c = 0.5,A = 100, � = 0.602, � = 0.101 and sampled the perturba-
tion vector � independently and uniformly from {−1,+1} in the MB-SPSA. Initial
means �̂(0)

1∶M
 were sampled from N(0, 102) and initial covariances �̂

(0)

1∶M
 were set to

be the identity with M = 150 . We considered two settings: (i) the MB-SPSA and
(ii) the MB-SPSA-mini-batch with a mini-batch size nb = 100 . The MB-SPSA was
implemented for 800 iterations with 10 parallel runs. For comparison, we applied
the R package mclust, which uses BIC for learning GMMs via an EM algorithm.

(10)L̂(z
1∶K

,W,H) = ‖Y −WZH‖2
F
+ 𝜆

K�
k=1

zk,

1 3

Statistics in Biosciences	

Table 1 shows the estimated number of components, terminal normalized BIC
values (the standard BIC value divided by n), and total running times under the
simulated true parameters, mclust, the MB-SPSA, and the MB-SPSA-mini-batch,
respectively. The MB-SPSA correctly estimates the number of components and
yields the best BIC value with only one-third of the time spent in mclust. The
MB-SPSA-mini-batch also shows a reasonably good result under a significantly
shorter time (0.4% of the time in mclust). Figure 1 plots the number of estimated
components and the corresponding BIC values of the MB-SPSA algorithm versus
the number of iterations, showing that the MB-SPSA algorithm gradually converges
to the optimal number of components and BIC value.

4.2 � Sparse Linear Models

Denote � = (�1,… , �p)
T and xi = (xi1,… , xip)

T , we generated the data yi ,
i = 1,… , n , independently using the following linear regression model:

Table 1   Estimated number
of components, terminal
normalized BIC values, and
total running times under
true parameters, mclust, the
MB-SPSA, and the MB-SPSA-
mini-batch algorithms for a
GMM with 100,000 data points

Algorithm No. of comp Terminal nor-
malized BIC

Time (s)

True parameters 100 37.04 –
mclust 110 37.29 10979
MB-SPSA-batch 100 37.10 3920
MB-SPSA-mini-batch 105 37.28 46

Fig. 1   Number of components
estimated by the MB-SPSA
algorithm over 800 iterations
with 100,000 data points

0 200 400 600 800

80
90

11
0

Number of Iterations

N
um

be
r o

f C
om

po
ne

nt
s

(a) Number of components

0 200 400 600 800

37
39

41
43

Number of Iterations

N
or

m
al

iz
ed

 B
IC

 V
al

ue

(b) Normalized BIC values

	 Statistics in Biosciences

1 3

where �i ∼ N(0, 0.52) . The covariates in (11) were sampled independently from the
uniform distribution, i.e., xij ∼ Unif(0, 1) for i = 1,… , n and j = 1,… , p . To evalu-
ate the MB-SPSA algorithm for sparse linear models, we considered two scenarios,
one with a large sample size n and the other one with a high dimension p.

In scenario 1, we assumed n = 100 × p and considered two cases: p = 100
and p = 200 . The simulated true regression coefficients were set to be �j = 1 for
j = 0, 1,… , p∕2 and �j = 0 for j = p∕2 + 1,… , p . Therefore, the simulated true
number of active covariates was 51 when p = 200 , and 101 when p = 200 . We
used the loss function (9) with the BIC penalty term log(n)

∑p

i=1
zj to train the

MB-SPSA. For comparison, we applied the stepwise regression with both direc-
tions (SW-both) [54, 55], which combined the forward and backward selections.
Specifically, starting from no active covariates, SW-both sequentially adds the
covariate that contributes the most to the model and removes covariates that can-
not improve the model fitting. Table 2 shows that both the SW-both and MB-
SPSA yield satisfactory results in terms of recovering non-zero �j’s. The SW-both
performs slightly better than the proposed MB-SPSA in terms of the BIC since
the SW-both is an exact method, while the MB-SPSA relies on stochastic approx-
imation. However, the total running time of the MB-SPSA is much shorter and
the speed advantage becomes more significant as p gets larger.

In scenario 2, we examined the performance of the MB-SPSA in high-dimen-
sional case ( p ≫ n ). We assumed n = 100 and set the regression coefficients to
be �0 = 1, �j = 5 for j = 1,… , 5 , and �j = 0 for j = 6,… , p . We considered two
cases: p = 200 and p = 400 . In both cases, the simulated true number of active
covariates was 6. The loss function for the MB-SPSA was still chosen to be (9)
with the BIC penalty. For comparison, we applied the LASSO regression [40] to
the simulated datasets with the penalty parameter chosen by the fivefold cross-
validation. Since different loss functions were used for the LASSO and MB-
SPSA, we computed the residual sum of squares (RSS) for comparison. Table 3
shows the RSS values and the estimated number of active covariates under the
LASSO and MB-SPSA, respectively. Although LASSO achieved smaller RSS
values under both cases, it selected a significantly larger number of active covari-
ates compared to that under the MB-SPSA.

(11)yi = �0 + xT
i
� + �i,

Table 2   Terminal BIC values,
number of active covariates,
and total running times under
the SW-both and MB-SPSA
for sparse linear models with
n = 100p data points

p Algorithm BIC No. of active
covariates

Time(s)

100 SW-both 2979.80 51 279.28
MB-SPSA 2990.98 51 20.07

200 SW-both 5931.78 101 8621.80
MB-SPSA 5952.76 101 76.57

1 3

Statistics in Biosciences	

5 � Real Data: Single‑Cell RNA‑Seq Data Analysis

As mentioned in Sect. 3.4, an important task in the single-cell transcriptome analy-
sis is to identify distinct cell types with different gene expression patterns by cluster-
ing cells. Many methods have been proposed for detecting cell types from single-
cell RNA-Seq data, such as K-means, iterative clustering [56], or first projecting the
high-dimensional data to a lower-dimensional space, then using clustering methods
to detect cell types. Commonly used dimension reduction methods include principal
component analysis (PCA) [57], non-negative matrix factorization [58], and t-dis-
tributed stochastic neighbor embedding algorithm (t-SNE) [59].

We applied the proposed MB-SPSA to detect cell types by clustering cells using
a benchmark single-cell RNA-seq dataset [60], which is available at the data reposi-
tory Gene Expression Omnibus (GSE67853, https://​www.​ncbi.​nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​GSE67​835). After initial processing (i.e., filtering out the hybrid
cells and the low expression genes, whose total expression over all non-hybrid cells
was less or equal than 10), we ended up with p = 18, 568 genes and n = 420 cells
over 8 different cell types, including astrocytes cells (62 cells), endothelial cells (20
cells), fetal quiescent cells (110 cells), fetal replicating cells (25 cells), oligodendro-
cytes cells (38 cells), OPC cells (18 cells), microglia cells (16 cells), and neurons
cells (131 cells). Denote yij to be the count of gene i in cell j, we transformed yij into
continuous data by using base 2 and pseudo count 1, i.e., log2(yij + 1) . After the
transformation, for each gene, we normalize the values by its total expression over
all cells, i.e., yij∕

∑n

j=1
yij.

Using (6) as the objective function, we implemented the MB-SPSA for K-means
clustering with the gain sequence being a = 0.01,A = 50, � = 0.602, c

z
= 0.05,

c� = 0.001, � = 0.101 . The penalty parameter was set to � = 0.0004 . The initial
number of clusters was set to K = 10 . Figure 2 plots the estimated number of clus-
ters versus the number of iterations, showing that the number of clusters learned by
the MB-SPSA successfully converges within 200 iterations to 8, which is the true
number of clusters in the dataset.

To measure the performance of the clustering result, we used the normalized
mutual information (NMI) [61] and the adjusted rand index (ARI) [62]. Spe-
cifically, assume that Kt and Ke were the true and estimated number of clusters,
respectively. For each cluster, denote nt

k
 to be the number of cells assigned to

the k-th true cluster for k = 1,… ,Kt , and ne
k′
 to be the number of cells assigned

to the k′-th estimated cluster for k� = 1,… ,Ke . We further denoted nk,k′ to be the

Table 3   RSS values and the
number of active covariates
from fitted models under the
LASSO and MB-SPSA for
sparse linear models

p Algorithm RSS No. of active
covariates

200 LASSO 11.01 48
MB-SPSA 21.61 6

400 LASSO 19.98 25
MB-SPSA 28.44 10

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67835
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67835

	 Statistics in Biosciences

1 3

number of cells assigned to both the k-th true cluster and the k′-th estimated
cluster. Then the NMI was defined by

and the ARI was defined by

For comparison, we implemented several alternative methods including the
classical K-means, the K-means after PCA, the K-means after non-negative
matrix factorization via EM algorithm (NMF-EM) [58], and the K-means after
the t-SNE [63]. For K-means, we fixed the number of cluster to be 7, 8 and 9,
respectively. For PCA and NMF-EM, we first embedded the original data into
the top 10-dimensional feature space, then computed the NMI and ARI val-
ues after applying the K-means to the low-dimensional features with the true
number of clusters ( K = 8 ). For t-SNE, we first embedded the data to the top-2
dimensional feature space, then applied K-means with the true number of clus-
ters ( K = 8 ). Table 4 reports the NMI and ARI values under the proposed MB-
SPSA as well as all alternative methods, showing that the MB-SPSA yields the
highest values of NMI and ARI compared to alternative methods. This example
demonstrates that the proposed MB-SPSA outperforms alternative methods even
without pre-specifying the correct number of clusters.

NMI =

∑Kt

k=1

∑Ke

k�=1

nk,k�

n
log

�
nk,k�

n

�
−
∑Kt

k=1

nt
k

n
log

�
nt
k

n

�
−
∑Ke

t=1

ne
k�

n
log

�
ne
k�

n

�
�∑Kt

k=1

nt
k

n
log

�
nt
k

n

�∑Ke

k�=1

ne
k�

n
log

�
ne
k�

n

� ,

ARI =

∑Kt

k=1

∑Ke

k�=1

�
nk,k�

2

�
−
∑Kt

k=1

�
nk
2

�∑Ke

k�=1

�
nk�

2

�
∕

�
n

2

�

�∑Kt

k=1

�
nk
2

�
+
∑Ke

k�=1

�
nk�

2

��
∕2 −

∑Kt

k=1

�
nk
2

�∑Ke

k�=1

�
nk�

2

�
∕

�
n

2

� .

Fig. 2   Number of active clusters
estimated by the MB-SPSA

1 3

Statistics in Biosciences	

6 � Conclusion

We developed an automated and scalable MB-SPSA algorithm to simultaneously
learn the model dimension and parameters for a general class of statistical mod-
els. A mini-batch learning framework of the MB-SPSA is also discussed when
evaluating the loss function on the complete data and/or the gradient informa-
tion is computationally expensive or infeasible. Theoretically, the MB-SPSA is
guaranteed to converge locally under certain regularity conditions. Applications
including K-means clustering, GMMs with an unknown number of components,
sparse linear models with an unknown number of active covariates, and latent
factor models with an unknown number of factors are demonstrated. Through
simulation studies and real data analyses, the MB-SPSA yields favorable results
compared to alternatives in terms of efficiency and accuracy.

There are many other potential applications of the proposed MB-SPSA algo-
rithm, mainly in dimensionality reduction, including but not limited to, low-rank
random graph models [64], manifold learning [65], and topic models [66]. The com-
mon question of interest in these dimensionality reduction problems is how to iden-
tify the dimension of the latent space. For example, in low-rank random graph mod-
els, the dimension of the latent positions could be unknown. In manifold learning,
the intrinsic dimension of the underlying unobserved manifold could be unknown.
In topic models, it is impractical to assume a pre-determined number of topics for
a collection of documents. Applying the proposed MB-SPSA algorithm to learn the
latent space dimension for various dimensionality reduction problems with appro-
priate loss functions is an interesting future research direction.

Appendix: Proof of Theorem 1

Proof  Denote L(�̂(+)

k
) = L

(+)

k
 and L(−)

k
= L(�̂

(−)

k
) . Before starting the main proof, we

first define some useful notations below

(12)ḡk = �
[
ĝk ∣ �̂k

]
,

Table 4   NMI and ARI values
estimated by K-means with
different number of clusters,
PCA, NMF-EM, t-SNE, and the
MB-SPSA

Methods NMI ARI

K-means ( K = 7) 0.729 0.738
K-means ( K = 8) 0.792 0.787
K-means ( K = 9) 0.768 0.772
PCA and K-means ( K = 8) 0.703 0.521
NMF-EM and K-means ( K = 8) 0.456 0.264
t-SNE and K-means ( K = 8) 0.742 0.572
MB-SPSA 0.808 0.829

	 Statistics in Biosciences

1 3

where the expectation in (12) is taken over both the perturbation vector �k and the
noise term �k . Using (12), (13) and (14), we can write the updating equation as

For any � ∈ Ω0 such that P(Ω0) = 1 , since {�̂k(𝜔)} is a bounded sequence by
Assumption 2, the Bolzano–Weierstrass Theorem implies that there exists Ω1 ⊂ Ω
such that P(Ω1) = 1 and for any � ∈ Ω1 there exists a convergent subsequence
{�̂ks

(𝜔)} . Denote the limiting point of the convergent subsequence as ��(�) . For sim-
plicity, the notation � is suppressed below.

According to (15), we can write

Since �� − �̂ks
→ 0 as s → ∞ , we will show below that all the three terms of the

right-hand side of (16) must also converge to 0.
First note that by Assumption 3 and (13), we have

which implies that {
∑m

i=k
aibi}m≥k is a martingale sequence as

Given that {
∑m

i=k
aibi}m≥k is a martingale sequence, the Doob’s martingale ine-

quality implies that for any 𝜂 > 0

where the last equality is due to Assumption 3, since

(13)b̂k =
1

2
(Ck◦�k)

[
L
(+)

k
− L

(−)

k

]
− ḡk,

(14)êk = ĝk −
1

2
(Ck◦�k)

[
L
(+)

k
− L

(−)

k

]
=

1

2
(Ck◦�k)

[
𝜖
(+)

k
− 𝜖

(−)

k

]
,

(15)

�̂k+1 = �̂k − akĝk

= �̂k − ak

(
1

2
(Ck◦�k)

[
L
(+)

k
− L

(−)

k

]
+

1

2
(Ck◦�k)

[
𝜖
(+)

k
− 𝜖

(−)

k

])

= �̂k − ak

(
ḡk + b̂k + ḡk

)
.

(16)�� − �̂ks
= lim

s→∞

n∑
i=s

(�̂ki+1
− �̂ki

) = − lim
s→∞

n∑
i=s

aki

(
ḡki + b̂ki + ḡki

)
,

�

[
b̂k+1 ∣ Fk

]
= 0,

�

[
m+1∑
i=k

aib̂i ∣ Fm

]
=

m∑
i=k

aib̂i + am+1�
[
b̂m+1 ∣ Fm

]
=

m∑
i=k

aib̂i.

(17)P

(
sup
m≥k

‖‖‖‖‖

m∑
i=k

aib̂i

‖‖‖‖‖
≥ 𝜂

)
≤ 𝜂−2�

[‖‖‖‖‖

∞∑
i=k

aib̂i

‖‖‖‖‖

2]
= 𝜂−2

∞∑
i=k

a2
i
�

[‖‖‖b̂i
‖‖‖
2
]
,

�

[
b̂
T

i
b̂i

]
= �

[
�

[
b̂
T

i
b̂i ∣ Fj,Gj−1

]]
= �

[
b̂
T

i
�

[
b̂i ∣ Fj

]]
= 0.

1 3

Statistics in Biosciences	

By Assumption 1, we have bk > 0 and ck ≤ c0 . Hence, there exist a constant c̄
such that we can write (17) as

which further implies that

For any 𝜂 > 0 and all k ≥ n , since

we can use (17) to get

As n → ∞ , for all k ≥ n,

and

Therefore, we conclude

and

Similarly, we can also show that

∞∑
i=k

a2
i
�

[‖‖‖b̂i
‖‖‖
2
]
≤

∞∑
i=k

a2
i
�

[(
L
(+)

k
− L

(−)

k

)2

(2Ci◦�i)
−T (2Ci◦�i)

−1

]

≤

∞∑
i=k

c̄2
a2
i

c2
i

�

[(
L
(+)

k
− L

(−)

k

)2

�
−T
i
�
−1
i

]
< ∞,

lim
k→∞

a2
i
�

[‖‖‖b̂i
‖‖‖
2
]
= 0.

{
sup
k

‖‖‖‖‖

m∑
i=k

aib̂i

‖‖‖‖‖
≥ 𝜂

}
⊂

{
sup
m≥k

‖‖‖‖‖

m∑
i=k

aib̂i

‖‖‖‖‖
≥ 𝜂

}
,

P

(
sup
k

‖‖‖‖‖

m∑
i=k

aib̂i

‖‖‖‖‖
≥ 𝜂

)
≤ P

(
sup
m≥k

‖‖‖‖‖

m∑
i=k

aib̂i

‖‖‖‖‖
≥ 𝜂

)
≤ 𝜂−2

∞∑
i=k

a2
i
�

[‖‖‖b̂i
‖‖‖
2
]
.

lim
k→∞

𝜂−2
∞∑
i=k

a2
i
�

[‖‖‖b̂i
‖‖‖
2
]
= 0,

lim
n→∞

P

(
sup
k≥n

‖‖‖‖‖

∞∑
i=k

aib̂i

‖‖‖‖‖
≥ 𝜂

)
= 0.

lim
k→∞

∞∑
i=k

aib̂i = 0,

(18)lim
s→∞

∞∑
i=s

aki b̂ki = 0.

	 Statistics in Biosciences

1 3

Combining (16) with results in (18) and (19), we have

Suppose ��
≠ �∗ . Given lims→∞ �̂ks

= �� , for any 𝛿 > 0 , there exists a S such that
for any s > S , ‖�̂ks

− ��‖ ≤ 𝛿 . Let � be sufficiently small, we have �̂ks
∈ Br(�

�) . By
Assumption 1 and 6, we must have

∑∞

i=s
aki = ∞ implies

which contradicts with (20). Hence, we conclude that �� = �∗ . Since �′ is chosen to
be the limiting point of any convergent subsequence, we have all the convergent sub-
sequence converges to the same liming points and consequently �̂k → �∗ a.s. when
k → ∞ . 	� ◻

Acknowledgements  The work of Xu was supported by NSF 1918854 and NSF 1940107.

Declarations 

Conflict of interest  The authors declare that they have no conflict of interest.

References

	 1.	 Visscher PM, Brown MA, McCarthy MI, Yang J (2012) Five years of GWAS discovery. Am J Hum
Genet 90(1):7–24

	 2.	 Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, Zhang F, Mundlos S, Christiansen
L, Steemers FJ et al (2019) The single-cell transcriptional landscape of mammalian organogenesis.
Nature 566(7745):496–502

	 3.	 Richardson S, Green PJ (1997) On Bayesian analysis of mixtures with an unknown number of com-
ponents (with discussion). J R Stat Soc Ser B (Methodol) 59(4):731–792

	 4.	 Bhattacharya A, Dunson DB (2011) Sparse Bayesian infinite factor models. Biometrika
98(2):291–306

	 5.	 Athreya A, Fishkind DE, Tang M, Priebe CE, Park Y, Vogelstein JT, Levin K, Lyzinski V, Qin
Y (2017) Statistical inference on random dot product graphs: a survey. J Mach Learn Res
18(1):8393–8484

	 6.	 Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control
19(6):716–723

	 7.	 Schwarz G et al (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464
	 8.	 Zoph B et al (2018) Learning transferable architectures for scalable image recognition. In Proceed-

ings of the IEEE Conference on computer vision and pattern recognition, pp 8697–8710
	 9.	 Real E, Aggarwal A, Huang Y, Le QV (2019) Regularized evolution for image classifier architecture

search. Proc AAAI Conf Artif Intell 33:4780–4789

(19)lim
s→∞

∞∑
i=s

aki êki = 0.

(20)lim
s→∞

n∑
i=s

aki ḡki = 0.

lim
s→∞

n∑
i=s

aki ḡ
T
ki
(�� − �∗) = ∞,

1 3

Statistics in Biosciences	

	10.	 Green PJ (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model
determination. Biometrika 82(4):711–732

	11.	 Antoniak CE (1974) Mixtures of Dirichlet processes with applications to Bayesian nonparamet-
ric problems. Ann Stat 2(6):1152–1174

	12.	 Neal RM (2000) Markov chain sampling methods for Dirichlet process mixture models. J Com-
put Graph Stat 9(2):249–265

	13.	 Ghahramani Z, Griffiths TL (2006) Infinite latent feature models and the Indian buffet process.
In: Advances in neural information processing systems, pp 475–482

	14.	 Walker SG (2007) Sampling the dirichlet mixture model with slices. Commun Stat-Simul Com-
put 36(1):45–54

	15.	 Blei DM, Jordan MI et al (2006) Variational inference for dirichlet process mixtures. Bayesian
Anal 1(1):121–143

	16.	 Markley SC, Miller DJ (2010) Joint parsimonious modeling and model order selection for multi-
variate gaussian mixtures. IEEE J Select Top Signal Proces 4(3):548–559

	17.	 Huang T, Peng H, Zhang K (2017) Model selection for Gaussian mixture models. Stat Sin
27(1):147–169

	18.	 Bertsimas D, King A, Mazumder R et al (2016) Best subset selection via a modern optimization
lens. Ann Stat 44(2):813–852

	19.	 Miyashiro R, Takano Y (2015) Mixed integer second-order cone programming formulations for
variable selection in linear regression. Eur J Oper Res 247(3):721–731

	20.	 Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and sto-
chastic optimization. J Mach Learn Res 12:2121–2159

	21.	 Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. http://​arxiv.​org/​abs/​1412.​
6980

	22.	 Spall JC (1992) Multivariate stochastic approximation using a simultaneous perturbation gradi-
ent approximation. IEEE Trans Autom Control 37(3):332–341

	23.	 Alessandri A, Parisini T (1997) Nonlinear modeling of complex large-scale plants using
neural networks and stochastic approximation. IEEE Trans Syst Man Cybern A Syst Hum
27(6):750–757

	24.	 Balakrishna R, Antoniou C, Ben-Akiva M, Koutsopoulos HN, Wen Y (2007) Calibra-
tion of microscopic traffic simulation models: methods and application. Transp Res Rec
1999(1):198–207

	25.	 Kocsis L, Szepesvári C (2006) Universal parameter optimisation in games based on spsa. Mach
Learn 63(3):249–286

	26.	 Sidorov KA, Richmond S and Marshall D (2009) An efficient stochastic approach to groupwise
non-rigid image registration. In Proceedings of the IEEE conference on computer vision and pat-
tern recognition, pp 2208–2213

	27.	 Wang L, Zhu J and Spall JC (2018) Mixed simultaneous perturbation stochastic approximation
for gradient-free optimization with noisy measurements. In Proceedings of the annual american
control conference, pp 3774–3779

	28.	 Tympakianaki A, Koutsopoulos HN, Jenelius E (2015) C-SPSA: cluster-wise simultaneous per-
turbation stochastic approximation algorithm and its application to dynamic origin-destination
matrix estimation. Transp Res C Emerg Technol 55:231–245

	29.	 Dong N, Wu C-H, Gao Z-K, Chen Z-Q, Ip W-H (2016) Data-driven control based on simultane-
ous perturbation stochastic approximation with adaptive weighted gradient estimation. IET Con-
trol Theory Appl 10(2):201–209

	30.	 Lorenz R, Monti RP, Violante IR, Anagnostopoulos C, Faisal AA, Montana G, Leech R (2016)
The automatic neuroscientist: a framework for optimizing experimental design with closed-loop
real-time fmri. Neuroimage 129:320–334

	31.	 Alaeddini A, Klein DJ (2017) Application of a second-order stochastic optimization algorithm
for fitting stochastic epidemiological models. In: Proceedings of the winter simulation confer-
ence, pp 2194–2206

	32.	 Khatami A, Nazari A, Khosravi A, Lim CP, Nahavandi S (2020) A weight perturbation-based
regularisation technique for convolutional neural networks and the application in medical imag-
ing. Expert Syst Appl 149:113196

	33.	 Aksakalli V, Malekipirbazari M (2016) Feature selection via binary simultaneous perturbation
stochastic approximation. Pattern Recogn Lett 75:41–47

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

	 Statistics in Biosciences

1 3

	34.	 Dennis J Jr, Schnabel RB (1989) Chapter ia view of unconstrained optimization. Handb Oper
Res Manage Sci 1:1–72

	35.	 Spall JC (1998) Implementation of the simultaneous perturbation algorithm for stochastic opti-
mization. IEEE Trans Aerosp Electron Syst 34(3):817–823

	36.	 Bottou L, Cun YL (2004) Large scale online learning. In: Proceedings of the advances in neural
information processing systems, pp 217–224

	37.	 Spall JC (2005) Introduction to stochastic search and optimization: estimation, simulation, and
control, vol 65. Wiley, Berlin

	38.	 Shukla AK, Muhuri PK (2019) Big-data clustering with interval type-2 fuzzy uncertainty mod-
eling in gene expression datasets. Eng Appl Artif Intell 77:268–282

	39.	 de la Fuente-Tomas L, Arranz B, Safont G, Sierra P, Sanchez-Autet M, Garcia-Blanco A, Gar-
cia-Portilla MP (2019) Classification of patients with bipolar disorder using k-means clustering.
PLoS ONE 14(1):e0210314

	40.	 Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Roy Stat Soc Ser B
(Methodol) 58(1):267–288

	41.	 Brunet J-P, Tamayo P, Golub TR, Mesirov JP (2004) Metagenes and molecular pattern discovery
using matrix factorization. Proc Natl Acad Sci 101(12):4164–4169

	42.	 Lee DD, Seung HS (2001) Algorithms for non-negative matrix factorization. In: Proceedings of
the advances in neural information processing systems, pp 556–562

	43.	 Pascual-Montano A, Carazo JM, Kochi K, Lehmann D, Pascual-Marqui RD (2006) Nonsmooth
nonnegative matrix factorization (nsnmf). IEEE Trans Pattern Anal Mach Intell 28(3):403–415

	44.	 Alexandrov LB, Nik-Zainal S, Wedge DC, Campbell PJ, Stratton MR (2013) Deciphering signa-
tures of mutational processes operative in human cancer. Cell Rep 3(1):246–259

	45.	 Frichot E, Mathieu F, Trouillon T, Bouchard G, François O (2014) Fast and efficient estimation
of individual ancestry coefficients. Genetics 196(4):973–983

	46.	 Stein-O’Brien GL, Arora R, Culhane AC, Favorov AV, Garmire LX, Greene CS, Goff LA, Li Y,
Ngom A, Ochs MF et al (2018) Enter the matrix: factorization uncovers knowledge from omics.
Trends Genet 34(10):790–805

	47.	 Cemgil AT (2009) Bayesian inference for nonnegative matrix factorisation models. Comput
Intell Neurosci 2009:785152

	48.	 Févotte C, Cemgil AT (2009) Nonnegative matrix factorizations as probabilistic inference in
composite models. In: Proceedings of the European signal processing conference, pp 1913–1917

	49.	 Landgraf AJ, Lee Y (2020) Generalized principal component analysis: projection of saturated
model parameters. Technometrics 62(4):459–472

	50.	 Zhang S et al (2020) Review of single-cell rna-seq data clustering for cell type identification and
characterization. http://​arxiv.​org/​abs/​2001.​01006

	51.	 Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization.
Nature 401(6755):788–791

	52.	 Durif G, Modolo L, Mold JE, Lambert-Lacroix S, Picard F (2019) Probabilistic count matrix
factorization for single cell expression data analysis. Bioinformatics 35(20):4011–4019

	53.	 Sun S, Chen Y, Liu Y, Shang X (2019) A fast and efficient count-based matrix factorization
method for detecting cell types from single-cell rnaseq data. BMC Syst Biol 13(2):28

	54.	 Bruce P, Bruce A (2017) Practical statistics for data scientists: 50 essential concepts. O’Reilly
Media, Inc, Newton

	55.	 James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning, vol 112.
Springer, New York

	56.	 Yang L, Liu J, Lu Q, Riggs AD, Wu X (2017) SAIC: an iterative clustering approach for analysis
of single cell RNA-seq data. BMC Genomics 18(6):689

	57.	 Jiang L, Chen H, Pinello L, Yuan G-C (2016) Giniclust: detecting rare cell types from single-cell
gene expression data with gini index. Genome Biol 17(1):144

	58.	 Zhu X, Ching T, Pan X, Weissman SM, Garmire L (2017) Detecting heterogeneity in single-cell
rna-seq data by non-negative matrix factorization. PeerJ 5:e2888

	59.	 Linderman GC, Rachh M, Hoskins JG, Steinerberger S, Kluger Y (2019) Fast interpolation-
based t-sne for improved visualization of single-cell rna-seq data. Nat Methods 16(3):243–245

	60.	 Darmanis S, Sloan SA, Zhang Y, Enge M, Caneda C, Shuer LM, Gephart MGH, Barres BA,
Quake SR (2015) A survey of human brain transcriptome diversity at the single cell level. Proc
Natl Acad Sci 112(23):7285–7290

http://arxiv.org/abs/2001.01006

1 3

Statistics in Biosciences	

	61.	 Ghosh J, Acharya A (2011) Cluster ensembles. Wiley Interdiscipl Rev Data Mining Knowl Dis-
cov 1(4):305–315

	62.	 Hubert L, Arabie P (1985) Comparing partitions. J Classif 2(1):193–218
	63.	 van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res

9:2579–2605
	64.	 Xie F, Xu Y (2019) Optimal Bayesian estimation for random dot product graphs. http://​arxiv.​org/​

abs/​1904.​12070
	65.	 Huang H, Shi G, He H, Duan Y, Luo F (2019) Dimensionality reduction of hyperspectral imagery

based on spatial-spectral manifold learning. IEEE Trans Cybern 50(6):2604–2616
	66.	 Bing X, Bunea F, Wegkamp M et al (2020) A fast algorithm with minimax optimal guarantees for

topic models with an unknown number of topics. Bernoulli 26(3):1765–1796

http://arxiv.org/abs/1904.12070
http://arxiv.org/abs/1904.12070

	Simultaneous Learning the Dimension and Parameter of a Statistical Model with Big Data
	Abstract
	1 Introduction
	2 Methods
	2.1 Background on SPSA
	2.2 Mixed-Binary SPSA (MB-SPSA)
	2.3 Mini-Batch Learning Using MB-SPSA
	2.4 Theoretical Results of the MB-SPSA

	3 Applying the MB-SPSA to Statistical Models
	3.1 K-Means Clustering
	3.2 Gaussian Mixture Models (GMMs)
	3.3 Sparse linear models
	3.4 Latent Factor Models

	4 Simulation Study
	4.1 Gaussian Mixture Models
	4.2 Sparse Linear Models

	5 Real Data: Single-Cell RNA-Seq Data Analysis
	6 Conclusion
	Acknowledgements
	References

