
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. MATH. DATA SCI. © 2022 Society for Industrial and Applied Mathematics
Vol. 4, No. 1, pp. 72–99

Balancing Geometry and Density: Path Distances on High-Dimensional Data∗

Anna Little† , Daniel McKenzie‡ , and James M. Murphy§

Abstract. New geometric and computational analyses of power-weighted shortest path distances (PWSPDs)
are presented. By illuminating the way these metrics balance geometry and density in the underlying
data, we clarify their key parameters and illustrate how they provide multiple perspectives for data
analysis. Comparisons are made with related data-driven metrics, which illustrate the broader role
of density in kernel-based unsupervised and semisupervised machine learning. Computationally, we
relate PWSPDs on complete weighted graphs to their analogues on weighted nearest neighbor graphs,
providing high probability guarantees on their equivalence that are near-optimal. Connections with
percolation theory are developed to establish estimates on the bias and variance of PWSPDs in the
finite sample setting. The theoretical results are bolstered by illustrative experiments, demonstrating
the versatility of PWSPDs for a wide range of data settings. Throughout the paper, our results
generally require only that the underlying data is sampled from a compact low-dimensional manifold,
and depend most crucially on the intrinsic dimension of this manifold, rather than its ambient
dimension.
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methods
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1. Introduction. The analysis of high-dimensional data is a challenge in modern statistical
and machine learning. In order to defeat the curse of dimensionality [37, 33, 10], distance
metrics that efficiently and accurately capture intrinsically low-dimensional latent structure in
high-dimensional data are required. Indeed, this need to capture low-dimensional linear and
nonlinear structure in data has led to the development of a range of data-dependent distances
and related dimension reduction methods, which have been widely employed in applications
[43, 55, 8, 26, 21, 56]. Understanding how these metrics trade off fundamental properties in
the data (e.g., local versus global structure, geometry versus density) when making pointwise
comparisons is an important challenge in their use and may be understood as a form of model
selection in unsupervised and semisupervised machine learning problems.
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1.1. Power-weighted shortest path distances. In this paper we analyze power -weighted
shortest path distances (PWSPDs) and develop their applications to problems in machine
learning. These metrics compute the shortest path between two points in the data, accounting
for the underlying density of the points along the path. Paths through low-density regions are
penalized, so that the optimal path must balance being “short” (in the sense of the classical
geodesic distance) with passing through high-density regions. We consider a finite data set
X = {xi}ni=1 ⊂ RD, which we usually assume to be intrinsically low-dimensional, in the sense
that there exists a compact d-dimensional Riemannian data manifold M ⊂ RD with d ≤ D

and a probability density function f(x) supported on M such that {xi}ni=1
i.i.d.∼ f(x), where

i.i.d. is independent and identically distributed.

Definition 1.1. For p ∈ [1,∞) and for x, y ∈ X , the (discrete) PWSPD from x to y is

ℓp(x, y) = min
π={xij

}Tj=1

T−1∑
j=1

∥xij − xij+1∥p
 1

p

,(1.1)

where π is a path of points in X with xi1 = x and xiT = y and ∥ · ∥ is the Euclidean norm.

Early uses of density-based distances for interpolation [52] led to the formulation of
PWSPD in the context of unsupervised and semisupervised learning and applications [30,
58, 17, 51, 18, 13, 46, 45, 41, 62, 16]. It will occasionally be useful to think of ℓpp(·, ·) as the
path distance in the complete graph on X with edge weights ∥xi−xj∥p, which we shall denote
Gp
X . When p = 1, ℓ1(x, y) = ∥x− y∥, i.e., the Euclidean distance. As p increases, the largest

elements in the set of path edge lengths {∥xij −xij+1∥}T−1
j=1 begin to dominate the optimization

(1.1), so that paths through higher-density regions (with shorter edge lengths) are promoted.
When p→ ∞, ℓp converges (up to rescaling by the number of edges achieving maximal length)
to the longest-leg path distance ℓ∞(x, y) = minπ={xij

}Tj=1
maxj=1,...,T−1 ∥xij − xij+1∥ [41] and

is thus driven by the density function f . Outside these extremes, ℓp balances taking a “short”
path and taking one through regions of high density. Note that ℓp can be defined for p < 1, but
it does not satisfy the triangle inequality and is thus not a metric (ℓpp, however, is a metric for
all p > 0). This case was studied in [2], where it is shown to have counterintuitive properties
that should preclude its use in machine learning and data analysis.

While (1.1) is defined for finite data, it admits a corresponding continuum formulation.

Definition 1.2. Let (M, g) be a compact, d-dimensional Riemannian manifold and f a con-
tinuous density function on M that is lower bounded away from zero (i.e., fmin := minx∈M f(x)
> 0 on M). For p ∈ [1,∞) and x, y ∈ M, the (continuum) PWSPD from x to y is

Lp(x, y) =

(
inf
γ

∫ 1

0

1

f(γ(t))
p−1
d

√
g (γ′(t), γ′(t))dt

) 1
p

,(1.2)

where γ : [0, 1] → M is a C1 path with γ(0) = x, γ(1) = y.

Note L1 is simply the geodesic distance on M. However, for p > 1 and a nonuniform
density, the optimal path γ is generally not the geodesic distance on M: Lp favors paths
which travel along high-density regions, and detours off the classical L1 geodesics are thus
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74 ANNA LITTLE, DANIEL MCKENZIE, AND JAMES M. MURPHY

acceptable. The parameter p controls how large a detour is optimal; for large p, optimal paths
may become highly nonlocal and different from classical geodesic paths.

It is known [38, 32] that when f is continuous and positive, for p > 1 and all x, y ∈ M,

lim
n→∞

n
p−1
pd ℓp(x, y) = Cp,dLp(x, y)(1.3)

for an absolute constant Cp,d depending only on p and d, i.e., that the discrete PWSPD
computed on an i.i.d. sample from f (appropriately rescaled) is a consistent estimator for the
continuum PWSPD. In particular, (1.3) is established by [32] for C1, isometrically embedded
manifolds and by [38] for smooth, compact manifolds without boundary and for ℓp defined
using geodesic distance. We thus define the normalized (discrete) path metric

ℓ̃p(x, y) := n
p−1
pd ℓp(x, y) .(1.4)

The n
p−1
pd normalization factor accounts for the fact that for p > 1, ℓp converges uniformly

to 0 as n → ∞ [45]. Note that the 1/p exponent in (1.1) and (1.3) is necessary to obtain
a metric that is homogeneous. Moreover, as p → ∞, Lp is constant on regions of constant
density, but Lp

p is not. Indeed, consider a uniform distribution on [0, 1]d, which has density
f = 1[0,1]d . Then for all x, y ∈ [0, 1]d and for all p, Lp

p(x, y) = ∥x − y∥. On the other hand,

for all x, y ∈ [0, 1]d, Lp(x, y) = ∥x − y∥1/p → 1 as p → ∞, i.e., all points are equidistant in
the limit p→ ∞. Thus the 1/p exponent in (1.1) and (1.3) is necessary to obtain an entirely
density-based metric for large p.

In practice, it is more efficient to compute PWSPDs in a sparse graph instead of a complete
graph. It is thus natural to define PWSPDs with respect to a subgraph H of Gp

X .

Definition 1.3. Let H be any subgraph of Gp
X . For x, y ∈ X, let PH(x, y) be the set of paths

connecting x and y in H. For p ∈ [1,∞) and for x, y ∈ X , the (discrete) PWSPD with respect
to H from x to y is

ℓHp (x, y) = min
π={xij

}Tj=1∈PH(x,y)

T−1∑
j=1

∥xij − xij+1∥p
 1

p

.

Clearly ℓ
Gp
X

p (·, ·) = ℓp(·, ·). In order to compute all-pairs PWSPDs in a complete graph
with n nodes (i.e., ℓp(xi, xj) for all xi, xj ∈ X ), a direct application of Dijkstra’s algorithm

has complexity O(n3). Let Gp,k
X denote the kNN graph, constructed from Gp

X by retaining
only edges {x, y} if x is among the k nearest neighbors of y in X (we say “x is a kNN of

y” for short) or vice versa. In some cases the PWSPDs with respect to Gp,k
X are known to

coincide with those computed in Gp
X [32, 20]. If so, we say the kNN graph is a 1-spanner of

Gp
X . This provides a significant computational advantage, since kNN graphs are much sparser,

and reduces the complexity of computing all-pairs PWSPD to O(kn2) [39].

1.2. Summary of contributions. This article develops new analyses, computational in-
sights, and applications of PWSPDs, which may be summarized in three major contributions.
First, we establish that when p

d is not too large, PWSPDs locally are density-rescaled Euclid-
ean distances. We give precise error bounds that improve over known bounds [38] and are
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GEOMETRY, DENSITY, AND PATH DISTANCES 75

tight enough to prove the local equivalence of Gaussian kernels constructed with PWSPD and
density-rescaled Euclidean distances. We also develop related theory which clarifies the role
of density in machine learning kernels more broadly. A range of machine learning kernels that
normalize in order to mitigate or leverage differences in underlying density are considered and
compared to PWSPD. Relatedly, we analyze how PWSPDs become increasingly influenced
by the underlying density as p → ∞. We also illustrate the role of density and benefits of
PWSPDs on illustrative data sets.

Second, we improve and extend known bounds on k [32, 45, 20] guaranteeing that the
kNN graph is a 1-spanner of Gp

X . Specifically, we show that for any 1 < p < ∞, the kNN
graph is a 1-spanner of Gp

X with probability exceeding 1 − 1/n if k ≥ Cp,d,f,M · log(n), for
an explicit constant Cp,d,f,M that depends on the density power p, intrinsic dimension d,
underlying density f , and the geometry of the manifold M, but is crucially independent of n.
These results are proved both in the case that the manifold is isometrically embedded and in
the case that the edge lengths are in terms of intrinsic geodesic distance on the manifold. Our
results provide an essential computational tool for the practical use of PWSPDs, and their
key dependencies are verified numerically with extensive large-scale experiments.

Third, we bound the convergence rate of PWSPD to its continuum limit using a percola-
tion theory framework, thereby quantifying the [38, 32] asymptotic convergence result (1.4).
Specifically, we develop bias and variance estimates by relating results on Euclidean first pas-
sage percolation (FPP) to the PWSPD setting. Surprisingly, these results suggest that the
variance of PWSPD is essentially independent of p and depends on the intrinsic dimension d
in complex ways. Numerical experiments verify our theoretical analyses and suggest several
conjectures related to Euclidean FPP that are of independent interest.

1.3. Notation. We shall use the notation in Table 1 consistently, though certain special-
ized notation will be introduced as required. We assume throughout that the data X is drawn
from a compact Riemannian data manifold (M, g), with additional assumptions imposed on
M as needed; we do not rigorously consider the more general case that X is drawn from a
distribution supported near M. If M ⊂ RD, we assume that it is isometrically embedded
in RD, i.e., g is the unique metric induced by restricting the Euclidean metric on RD to M,
unless otherwise stated. If an event holds with probability 1 − c/n, where n = |X | and c is
independent of n, we say it holds with high probability (w.h.p.).

2. Local analysis: Density and kernels. Density-driven methods are commonly used for
unsupervised and semisupervised learning [19, 27, 21, 49, 13, 7, 50]. Despite this popularity,
the role of density is not completely clear in this context. Indeed, some methods seek to
leverage variations in density while others mitigate it. In this section, we explore the role that
density plays in popular machine learning kernels, including those used in self-tuning spectral
clustering and diffusion maps. We compare with the effect of density in ℓp-based kernels and
illustrate the primary advantages and disadvantages on toy data sets.

2.1. Role of density in graph Laplacian kernels. A large family of algorithms [8, 9, 54,
47, 59] view data points as the nodes of a graph and define the corresponding edge weights via
a kernel function. In general, by kernel we mean a function K : RD × RD → R that captures
a notion of similarity between elements of RD. More precisely, we suppose that K is of theD
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Table 1
Notation used throughout the paper.

Notation Definition

X X = {xi}ni=1 ⊂ RD, a finite data set
D ambient dimension of data set X
d intrinsic dimension of data set X

∥v∥p ∥v∥p = (
∑D

i=1 |vi|
p)

1
p , the Euclidean p-norm of v ∈ RD

∥v∥ ∥v∥2, the Euclidean 2-norm
|c| the absolute value of c ∈ R
Gp
X complete graph on X with edge weight ∥xi − xj∥p between xi, xj ∈ X

{x, y} edge between nodes x, y in a graph
(M, g) a Riemannian manifold with associated metric g

κ measure of curvature on M; see Definition 2.1
κ0 measure of regularity on M; see Definition 3.7
ζ reach of a manifold M; see Definition 3.8

f(x) probability density function from which X is drawn
fmin, fmax minimum and maximum values of density f defined on compact manifold M

{πi}Ti=1, γ(t) discrete, continuous path
ℓp(x, y) discrete PWSPD; see (1.1)

ℓ̃p(x, y) rescaled version of ℓp(x, y); see (1.4)
ℓHp (x, y) discrete PWSPD defined on the subgraph H ⊂ Gp

X ; see Definition 1.3
Lp(x, y) continuum PWSPD; see (1.2)
D(x, y) geodesic distance on manifold M

Df,Euc(x, y) density-based stretch of Euclidean distance with respect to f
L Lipschitz constant of the density f , satisfying |f(x)− f(y)| ≤ LD(x, y)

W,Deg, L weight, degree, and Laplacian matrices associated to a graph
δ(·, ·) arbitrary metric

Bδ(x, ϵ) {y | δ(x, y) ≤ ϵ}, ball of radius ϵ > 0 centered at x with respect to δ
B(x, ϵ) Euclidean ball of radius ϵ > 0 centered at x, dimension determined by context

Dα,p(x, y) p-elongated set of radius α based at points x, y; see Definition 3.4
k number of nearest neighbors, sometimes dependent on n (i.e., k = k(n))

µ, χ percolation time, fluctuation constants
λ intensity parameter in a Poisson point process
Ā complement of the set A

E[ξ],Var[ξ] expectation, variance of a random variable ξ
diam(A) supx,y∈A ∥x− y∥, the Euclidean diameter of a set A
vol(A) volume of a set A, with dimension depending on context

Ā complement of a set A
∂A boundary of a set A
a ≲ b a ≤ Cb for a constant C independent of the dependencies of a, b
a ∝ b quantity a is proportional to quantity b, i.e., a ≲ b and b ≲ a

form K(xi, xj) = h(δ(xi, xj)) for some metric δ on RD and smooth, positive, rapidly decay-
ing (hence integrable) function h : R → R. Our technical results will pertain exclusively to
the Gaussian kernel K(xi, xj) = exp(−δ(xi, xj)2/ϵ2) for some metric δ and scaling parameter
ϵ > 0, albeit more general kernels have been considered in the literature [4, 23, 11]. Given
X ⊂ RD, one first defines a weight matrix W ∈ Rn×n by Wij = K(xi, xj) for some kernel K,
and diagonal degree matrix Deg ∈ Rn×n by Degii =

∑n
j=1Wij . A graph Laplacian L is then

defined using W,Deg. Then, the K lowest frequency eigenvectors of L, denoted ϕ1, . . . , ϕK ,D
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GEOMETRY, DENSITY, AND PATH DISTANCES 77

define a K-dimensional spectral embedding of the data by xi 7→ (ϕ1(xi), ϕ2(xi), . . . , ϕK(xi)),
where ϕj(xi) = (ϕj)i. Commonly, a standard clustering algorithm such as K-means is then
applied to the spectral embedding. This procedure is known as spectral clustering (SC). In
unnormalized SC, L = Deg − W , while in normalized SC either the random walk Lapla-
cian LRW = Deg−1L or the symmetric normalized Laplacian LSYM = Deg−1/2LDeg−1/2

is used.
Many modifications of this general framework have been considered. Although SC is better

able to handle irregularly shaped clusters than many traditional algorithms [5, 53], it is often
unstable in the presence of low degree points and sensitive to the choice of scaling parameter
ϵ when using the Gaussian kernel [59]. These shortcomings motivated [61] to apply SC with

the self-tuning kernel Wij = exp(−∥xi−xj∥2
σi,kσj,k

), where σi,k is Euclidean distance of xi to its kth

NN. To clarify how the data density influences this kernel, consider how σi,k relates to the
kNN density estimator at xi:

fn(xi) :=
k

nvol(B(0, 1))σdi,k
.(2.1)

It is known [42] that if k = k(n) is such that k(n) → ∞ while k(n)/n → 0, then fn(xi) is
a consistent estimator of f(xi), as long as f is continuous and positive. Furthermore, if f is
uniformly continuous and k(n)/ log n → ∞ while k(n)/n → 0, then supi |fn(xi)− f(xi)| → 0
with probability 1 [25]. Although these results assume the density f is supported in Rd, the
density estimator (2.1) is consistent in the general case when f is supported on a d-dimensional

Riemannian manifold M ⊆ RD for log n≪ k(n) ≪ n [28]. For such k(n), σi,k → ϵn,df(xi)
− 1

d

for some constant ϵn,d depending on n, d. Thus, for n large the kernel for self-tuning SC is
approximately

Wij ≈ exp

(
−f(xi)

1
d f(xj)

1
d
∥xi − xj∥2

ϵ2n,d

)
.(2.2)

Relative to a standard SC kernel, (2.2) weakens connections in high-density regions and
strengthens connections in low-density regions.

Diffusion maps [22, 21] is a more general framework which reduces to SC for certain
parameter choices. More specifically, [21] considered the family of kernels

Wij =
exp

(
−∥xi − xj∥2/ϵ2

)
deg(xi)adeg(xj)a

, deg(xi) =

n∑
j=1

exp
(
−∥xi − xj∥2/ϵ2

)
(2.3)

parametrized by a ∈ [0, 1], which determines the degree of density normalization. Since
deg(xi) ∝ f(xi) + O(ϵ2), deg(xi) is a kernel density estimator of the density f(xi) [12] and,
up to higher-order terms,

Wij ∝
exp

(
−∥xi − xj∥2/ϵ2

)
f(xi)af(xj)a

.(2.4)

Note that f has an effect on the kernel similar to the self-tuning kernel (2.2): connections in
high-density regions are weakened, and connections in low-density regions are strengthened.D
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Let La,ϵ
RW denote the discrete random walk Laplacian using the weights Wij given in (2.3).

The discrete operator −La,ϵ
RW/ϵ

2 converges to the continuum Kolmogorov operator Lψ =

∆ψ + (2 − 2a)∇ψ · ∇f
f as n → ∞, ϵ → 0+ for Laplacian operator ∆ and gradient ∇, both

taken with respect to the Riemannian metric inherited from the ambient space [8, 21, 12].
When a = 0, we recover standard SC; there is no density renormalization in the kernel but
the limiting operator is density dependent. When a = 1, −L1,ϵ

RW/ϵ
2 → ∆; in this case the

discrete operator is density dependent but the limiting operator is purely geometric, since the
density term is eliminated. We note that Laplacians and diffusion maps with various metrics
and norms have been considered in a range of settings [60, 15, 57, 40].

2.2. Local characterization of PWSPD-based kernels. While the kernels discussed in
section 2.1 compensate for discrepancies in density, PWSPD-based kernels strengthen connec-
tions through high-density regions and weaken connections through low-density regions. To
illustrate more clearly the role of density in PWSPD-based kernels, we first show that locally
the continuum PWSPD Lp

p is well-approximated by the density-based stretch of Euclidean

distance Df,Euc(x, y) =
∥x−y∥

(f(x)f(y))
p−1
2d

, as long as f does not vary too rapidly and M does not

curve too quickly. This is quantified in Lemma 2.2, which is then used to prove Theorem 2.3,

which bounds the local deviation of Lp from D
1/p
f,Euc. Finally, Corollary 2.4 establishes that

Gaussian kernels constructed with Lp and D
1/p
f,Euc are locally similar. Throughout this section

we assume M ∈ S(d, κ, ϵ0) as defined below.

Definition 2.1. An isometrically embedded Riemannian manifold M ⊂ RD is an element
of S(d, κ, ϵ0) if it is compact with dimension d ≤ D, vol(M) = 1, and D(x, y) ≤ ∥x −
y∥(1 + κ∥x − y∥2) for all x, y ∈ M such that D(x, y) ≤ ϵ0, where D(·, ·) is geodesic distance
on M.

The condition D(x, y) ≤ ∥x − y∥(1 + κ∥x − y∥2) for all x, y ∈ M such that D(x, y) ≤ ϵ0
is equivalent to an upper bound on the second fundamental form: ∥IIx∥ ≤ κ for all x ∈ M
[4, 44]. Note that this is also equivalent to a positive lower bound on the reach [29] of M
(e.g., Proposition 6.1 in [48] and Proposition A.1 in [1]); see Definition 3.8.

Let BLp
p
(x, ϵ) and BD(x, ϵ) denote, respectively, the (closed) Lp

p and geodesic balls centered
at x of radius ϵ. Let fmax = maxy{f(y) : y ∈ M}, fmin = miny{f(y) : y ∈ M} be the global
density maximum and minimum. Define the following local quantities:

fmin(x, ϵ) = min
y

{
f(y) : y ∈ BD

(
x, ϵ

(
1 + κϵ2

))}
,

fmax(x, ϵ) = max
y

{
f(y) : y ∈ BLp

p

(
x, ϵ(1 + κϵ2)/fmin(x, ϵ)

p−1
d

)}
.

Let ρx,ϵ = fmax(x, ϵ)/fmin(x, ϵ), which characterizes the local discrepancy in density in a ball
of radius O(ϵ) around the point x.

The following lemma establishes that Lp
p and Df,Euc are locally equivalent and that discrep-

ancies depend on (ρx,ϵ)
p−1
d and the curvature constant κ. We note similar estimates appear

in [2] for the special case p = 0. The proof appears in Appendix A.D
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Lemma 2.2. Let M ∈ S(d, κ, ϵ0). Then for all y ∈ M with D(x, y) ≤ ϵ0 and ∥x− y∥ ≤ ϵ,

1

(ρx,ϵ)
p−1
d

Df,Euc(x, y) ≤ Lp
p(x, y) ≤ (ρx,ϵ)

p−1
d (1 + κϵ2)Df,Euc(x, y) .(2.5)

Note that corresponding bounds in terms of geodesic distance follow easily from the def-

inition of Lp: fmax(x, ϵ)
− p−1

d D(x, y) ≤ Lp
p(x, y) ≤ fmin(x, ϵ)

− p−1
d D(x, y). Lemma 2.2 thus

establishes that the metrics Lp
p and Df,Euc are locally equivalent when (i) ρx,ϵ is close to 1,

(ii) p−1
d is not too large, and (iii) κ is not too large. However, when p−1

d ≫ 1, Lp
p balls may

become highly nonlocal in terms of geodesics.

The following theorem establishes the local equivalence of Lp and D
1/p
f,Euc (and thus kernels

constructed using these metrics). Assuming the density does not vary too quickly, Lemma 2.2

can be used to show that locally the difference between D
1/p
f,Euc and Lp is small. Variations

in density are controlled by requiring that f is L-Lipschitz with respect to geodesic distance,
i.e., |f(x)− f(y)| ≤ LD(x, y). This Lipschitz assumption allows us to establish a higher-order
equivalence compared to existing results (e.g., Corollary 9 in [38]), which we leverage to obtain
the local kernel equivalence stated in Corollary 2.4. The following analysis also establishes
explicit dependencies of the equivalence on d, p,L, κ.

Theorem 2.3. Assume M ∈ S(d, κ, ϵ0) and that f is a bounded L-Lipschitz density function
on M with fmin > 0. Let ϵ > 0 and let

ρ = max
x∈M

ρx,ϵ, C1 =
L
(
ρ

p−1
d + 1

)
(p− 1)

f
1+ p−1

pd

min pd

, C2 =
κ

f
p−1
pd

min p

.

Then for all x, y ∈ M such that D(x, y) ≤ ϵ0 and ∥x− y∥ ≤ ϵ,∣∣∣Lp(x, y)− D
1/p
f,Euc(x, y)

∣∣∣ ≤ C1ϵ
1+ 1

p + C2ϵ
2+ 1

p +O
(
ϵ
3+ 1

p

)
.

Proof. We first show that ρx,ϵ is close to 1. Let y1 ∈ BLp
p
(x, ϵ(1 + κϵ2)/fmin(x, ϵ)

p−1
d )

satisfy f(y1) = fmax(x, ϵ) and y2 ∈ BD(x, ϵ(1 + κϵ2)) satisfy f(y2) = fmin(x, ϵ) (since these
sets are compact, these points must exist). Then by the Lipschitz condition,

|ρx,ϵ − 1| = |f(y1)− f(y2)|
f(y2)

≤ LD(y1, y2)

f(y2)
≤ LD(x, y1) + LD(x, y2)

f(y2)
.

Let γ2(t) be a path achieving Lp
p(x, y1). Note that

D(x, y1)

fmax(x, ϵ)
p−1
d

≤
∫ 1

0

1

f(γ2(t))
p−1
d

|γ′2(t)| dt = Lp
p(x, y1) ≤

ϵ(1 + κϵ2)

fmin(x, ϵ)
p−1
d

so that D(x, y1) ≤ ρ
p−1
d

x,ϵ ϵ(1 + κϵ2), D(x, y2) ≤ ϵ(1 + κϵ2). We thus obtain

ρx,ϵ ≤ 1 + L

 ρ
p−1
d

x,ϵ + 1

fmin(x, ϵ)

 ϵ(1 + κϵ2) .(2.6)
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Letting Cx,ϵ = L(ρ
p−1
d

x,ϵ + 1)/fmin(x, ϵ), Taylor expanding around ϵ = 0 and (2.6) give

ρ
p−1
pd
x,ϵ ≤ (1 + Cx,ϵϵ(1 + κϵ2))

p−1
pd = 1 + Cx,ϵ

(p−1)
pd ϵ + O(ϵ3). Applying Lemma 2.2 yields

(ρx,ϵ)
− p−1

pd D
1/p
f,Euc(x, y) ≤ Lp(x, y) ≤ (ρx,ϵ)

p−1
pd (1 + κϵ2)

1
p D

1/p
f,Euc(x, y), which gives

D
1/p
f,Euc(x, y)(

1 + Cx,ϵ
(p−1)
pd ϵ+O(ϵ3)

) ≤ Lp(x, y) ≤
(
1 + Cx,ϵ

(p− 1)

pd
ϵ+

κ

p
ϵ2 +O(ϵ3)

)
D

1/p
f,Euc(x, y).

Rewriting the above yields(
1− Cx,ϵ

(p− 1)

pd
ϵ− κ

p
ϵ2 +O(ϵ3)

)
Lp(x, y) ≤ D

1/p
f,Euc(x, y) ≤ Lp(x, y)

(
1 + Cx,ϵ

(p− 1)

pd
ϵ+O(ϵ3)

)
.

We thus obtain∣∣∣Lp(x, y)− D
1/p
f,Euc(x, y)

∣∣∣
≤
(
Cx,ϵ

(p− 1)

pd
ϵ+

κ

p
ϵ2 +O(ϵ3)

)
Lp(x, y)

≤
(
Cx,ϵ

(p− 1)

pd
ϵ+

κ

p
ϵ2 +O(ϵ3)

)
ϵ
1
p (1 + κϵ2)

1
p

fmin(x, ϵ)
p−1
pd

=

(
Cx,ϵ

fmin(x, ϵ)
p−1
pd

(p− 1)

pd
ϵ
1+ 1

p +
κ

pfmin(x, ϵ)
p−1
pd

ϵ
2+ 1

p +O
(
ϵ
3+ 1

p

))
.

Note the coefficient C1 increases exponentially in p; thus the equivalence between Lp and

D
1/p
f,Euc is weaker for large p. We also emphasize that in a Euclidean ball of radius ϵ, the metric

Lp scales like ϵ
1
p ; Theorem 2.3 thus guarantees that the relative error of approximating Lp

with D
1/p
f,Euc is O(ϵ).

When Lp is locally well-approximated by D
1/p
f,Euc, the kernels constructed from these two

metrics are also locally similar. The following corollary leverages the error term in Theorem
2.3 to make this precise for Gaussian kernels. It is a direct consequence of Theorem 2.3 and
Taylor expanding the Gaussian kernel, and its proof is given in the supplementary material file
PWSPD Supplement Final.pdf [local/web 1.06MB]. Let ha(x) = exp(−x2a) so that h1(

δ(·,·)
ϵ )

is the Gaussian kernel with metric δ(·, ·) and scaling parameter ϵ > 0. Note h1(
Lp

ϵ1/p
) = h 1

p
(
Lp
p

ϵ ).

Corollary 2.4. Under the assumptions and notation of Theorem 2.3, for C̃i = Ci/f
p−1
pd

min ,∣∣∣h 1
p
(Lp

p(x, y)/ϵ)− h 1
p
(Df,Euc(x, y)/ϵ)

∣∣∣
h 1

p
(Lp

p(x, y)/ϵ)
≤ C̃1ϵ+

(
C̃2 +

1

2
C̃2
1

)
ϵ2 +O(ϵ3) .

When p − 1 is not too large relative to d, a kernel constructed with Lp is locally well-

approximated by a kernel constructed with D
1/p
f,Euc. Thus, in a Euclidean ball of radius ϵ, we

may think of the Gaussian Lp kernel asD
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h1

(
Lp(xi, xj)

ϵ1/p

)
≈ h 1

p

(
∥xi − xj∥

ϵ(f(xi)f(xj))
p−1
2d

)
.

Density plays a different role in this kernel compared with those of section 2.1. This kernel
strengthens connections in high-density regions and weakens them in low-density regions.

We note that the 1
p -power in Definition 1.2 has a large impact, in that Lp-based and Lp

p-

based kernels have very different properties. More specifically, h1(Lp
p/ϵ) is a local kernel as

defined in [12], so it is sufficient to analyze the kernel locally. However, h1(Lp/ϵ
1/p) is a non-

local kernel, so that nontrivial connections between distant points are possible. The analysis
in this section thus establishes the global equivalence of h1(Lp

p/ϵ) and h1(Df,Euc/ϵ) (when p
is not too large relative to d) but only the local equivalence of h 1

p
(Lp

p/ϵ) and h 1
p
(Df,Euc/ϵ).

2.3. The role of p: Examples. This subsection illustrates the useful properties of PWSPDs
and the role of p on three synthetic data sets in R2: (1) two rings data, consisting of two
nonconvex clusters that are well-separated by a low-density region; (2) long bottleneck data,
consisting of two isotropic clusters each with a density gap connected by a long, thin bot-
tleneck; (3) short bottleneck data, where two elongated clusters are connected by a short
bottleneck. The data sets are shown in Figures 1, 2, and 3, respectively. We also show the
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(h) K̂, PWSPD SC (binarized)

Figure 1. Two rings data set. Because the underlying cluster structure is density driven, the PWSPD SE
separates the clusters for large p (see (d)). While taking ϵ small in Euclidean SC can allow for good clustering
accuracy (see (e)), the range is narrow and does not permit accurate estimation of K via the eigengap (see
(g)). On the other hand, PWSPD consistently clusters well and correctly captures K = 2 for a wide range of
(ϵ, p) pairs (see (f), (h)). Generally, PWSPD allows for fully unsupervised clustering as long as p is sufficiently
large and ϵ not too small.
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Figure 2. Long bottleneck data set. Different latent cluster structures exist in this data, driven by geometry
( (a), K = 2), density ( (k), K = 3), and a combination of geometry and density ( (f), K = 4). When varying
p, the PWSPD SE separates by geometry (see (b)) for p near 1, before separating by density for p ≫ 1 (see (l)).
Given the correct choice of ϵ and a priori knowledge of K, any of the three natural clusterings can be learned
by Euclidean SC (see (e), (j)). However, in the Euclidean SC case, correct estimation of K fails to coincide
with parameters that give good clustering results (see (o)). On the other hand, PWSPD SC is able to correctly
estimate each of K = 2, 3, 4 for some choice of (ϵ, p) parameters in the same region that such parameters yield
high clustering accuracy ( (c), (d) for K = 2; (m), (n) for K = 3; (h), (i) for K = 4).

PWSPD spectral embedding (denoted PWSPD SE) for various p, computed from a symmetric
normalized Laplacian constructed with PWSPD. The scaling parameter ϵ for each data set is
chosen as the 15th percentile of pairwise PWSPD distances.

Different aspects of the data are emphasized in the low-dimensional PWSPD embedding
as p varies. Indeed, in Figure 1, we see the PWSPD embedding separates the rings for large p
but not for small p. In Figure 2, we see separation across the bottleneck for p small, while for
p large there is separation with respect to the density gradients that appear in the two bells of
the dumbbell. Interestingly, separation with respect to both density and geometry is observed
for p = 2 (see Figure 2(g)). In Figure 3, the clusters both are elongated and lack robustD
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Figure 3. Short bottleneck data set. Because the underlying cluster structure is not driven entirely by
geometry or density, the PWSPD SE separates the clusters for moderate p (see (c)). We note PWSPD is able
to correctly learn K and cluster accurately for ϵ somewhat large and p between 2 and 3 (see (f), (h)), while
Euclidean SC cannot simultaneously learn K and cluster accurately (see (e), (g)).

density separation, but the PWSPD embedding well separates the two clusters for moderate
p. In general, p close to 1 emphasizes the geometry of the data, large p emphasizes the density
structure of the data, and moderate p defines a metric balancing these two considerations.

2.3.1. Comparison with Euclidean spectral clustering. To evaluate how p impacts the
clusterability of the PWSPD spectral embedding, we consider experiments in which we run SC
under various graph constructions. We run K-means for a range of parameters on the spectral
embedding xi 7→ (ϕ2(xi), . . . , ϕK(xi)), where ϕk is the kth lowest frequency eigenvector of
the Laplacian. We construct the symmetric normalized Laplacian using PWSPD (denoted
PWSPD SC) and also using Euclidean distances (denoted SC) and the Laplacian with diffusion
maps normalization a = 1 (denoted SC+DMN). We vary ϵ in the SC and SC+DMN methods
and both ϵ and p in the PWSPD SC method. Results for self-tuning SC, in which the kNN
used to compute the local scaling parameter varies, are in the supplementary material file
PWSPD Supplement Final.pdf [local/web 1.06MB]. To allow for comparisons across figures,
ϵ is varied across the percentiles of the pairwise distances in the underlying data, up to the
25th percentile. We measure two outputs of the clustering experiments:

(i) The overall accuracy (OA), namely the proportion of data points correctly clus-
tered when K is known a priori. For K = 2, similar results were observed when
thresholding ϕ2 at 0 instead of running K-means; see the supplementary material file
PWSPD Supplement Final.pdf [local/web 1.06MB].
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(ii) The eigengap estimate of the number of latent clusters: K̂ = argmaxk≥2 λk+1 − λk,
where 0 = λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of the corresponding graph Lapla-
cian. We note that experiments estimating K by considering the ratio of consecutive
eigenvalues were also performed, with similar results. In the case of PWSPD SC, we
plot heatmaps of where K is correctly estimated, with yellow corresponding to success
(K̂ = K) and blue corresponding to failure (K̂ ̸= K).

The results in terms of OA and K̂ as a function of ϵ and p are in Figures 1–3. We see that
when density separates the data clearly, as in the two rings data, PWSPD SC with large p
gives accurate clustering results, while small p may fail. In this data set, ϵ very small allows for
the data to be correctly clustered with SC and SC+DMN when K is known a priori. However,
the regime of ϵ is so small that the eigenvalues become unhelpful for estimating the number
of latent clusters. Unlike Euclidean SC, PWSPD SC correctly estimates K̂ = 2 for a range of
parameters and achieves near-perfect clustering results for those parameters as well. Indeed,
as shown by Figures 1(f) and 1(h), PWSPD SC with p large is able to do fully unsupervised
clustering on the two rings data.

In the case of the long bottleneck data set, there are three reasonable latent cluster-
ings, depending on whether geometry, density, or both matter (see Figures 2(a), 2(k), 2(f)).
PWSPD is able to balance between the geometry and density-driven cluster structure in the
data. Indeed, all of the cluster configurations shown in Figures 2(a), 2(k), and 2(f) are learn-
able without supervision for some choice of parameters (ϵ, p). To capture the density cluster
structure (K = 3), p should be taken large, as suggested in Figures 2(m) and 2(n). To capture
the geometry cluster structure (K = 2), p should be taken small and ϵ large, as suggested by
Figures 2(c) and 2(d). Interestingly, both cluster and geometry (K = 4) can be captured by
choosing p moderate, as in Figures 2(h) and 2(i). For Euclidean SC, varying ϵ is insufficient
to capture the rich structure of this data.

In the case of the short bottleneck, taking ϵ large allows for the Euclidean methods to
correctly estimate the number of clusters. But, in this ϵ regime, the methods do not cluster
accurately. On the other hand, taking p between 2 and 3 and ϵ large allows PWSPD to
correctly estimate K and also cluster accurately.

Overall, this suggests that varying p in PWSPD SC has a different impact than varying the
scaling parameter ϵ and can allow for richer cluster structures to be learned when compared
to SC with Euclidean distances. In addition, PWSPDs generally allow for the underlying
cluster structures to be learned in a fully unsupervised manner, while Euclidean methods may
struggle to simultaneously cluster well and estimate K accurately.

3. Spanners for PWSPD. Let H ⊂ Gp
X denote a subgraph and recall the definition of

ℓHp (·, ·) given in Definition 1.3.

Definition 3.1. For t ≥ 1, H ⊂ Gp
X is a t-spanner if ℓHp (x, y) ≤ tℓp(x, y) for all x, y ∈ X .

Clearly ℓp(x, y) ≤ ℓHp (x, y) always, as any path in H is a path in Gp
X . Hence if H is a

1-spanner we have equality: ℓHp (x, y) = ℓp(x, y). Define the kNN graph, Gp,k
X , by retaining

only edges {x, y} if x is a kNN of y or vice versa. For appropriate k, p, and M it is known that

Gp,k
X is a 1-spanner of Gp

X w.h.p. Specifically, [32] shows this when M is an open connected set
with C1 boundary, 1 < p < ∞ and k = O(cp,d log(n)) for a constant cp,d depending on p, d.D

ow
nl

oa
de

d 
06

/2
9/

22
 to

 6
6.

31
.6

0.
88

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GEOMETRY, DENSITY, AND PATH DISTANCES 85

One can deduce cp,d ≥ 2d+13ddd/2, while the dependence on p is more obscure. A different
approach is used in [20] to show this for arbitrary smooth, closed, isometrically embedded M,
2 ≤ p <∞, and k = O(2d log(n)), where O hides constants depending on the geometry of M.
In both cases f must be continuous and bounded away from zero.

Under these assumptions, we prove Gp,k
X is a 1-spanner w.h.p. for any smooth, closed,

isometrically embedded M with mild restrictions on its curvature. Our results hold generally
for 1 < p <∞ and enjoy improved dependence of k on d and explicit dependence of k on p and
the geometry of M compared to [32, 20]. We also consider an intrinsic version of PWSPD,

ℓM,p(x, y) =

 min
π={xij

}Tj=1

T−1∑
j=1

D(xij , xij+1)
p

1/p

,

where D(·, ·) is assumed known, which is not typically the case in data science. However, this
situation can occur when X is presented as a subset of RD, but one wishes to analyze X with
an exotic metric (i.e., not ∥ · ∥). For example, if each xi ∈ X is an image, a Wasserstein metric
may be more appropriate than ∥ · ∥. As this case closely mirrors the statement and proof
of Theorem 3.9 we leave it to the supplementary material file PWSPD Supplement Final.pdf
[local/web 1.06MB]. Before proceeding we introduce some further terminology.

Definition 3.2. The edge {x, y} is critical if it is in the shortest path from x to y in Gp
X .

Lemma 3.3 ([20]). H ⊂ Gp
X is a 1-spanner if it contains every critical edge of Gp

X .

3.1. Nearest neighbors and PWSPD spanners. A key proof ingredient is the following
definition, which generalizes the role of spheres in the proof of Theorem 1.3 in [20].

Definition 3.4. For any x, y ∈ Rd and α ∈ (0, 1], the p-elongated set associated to x, y is

Dα,p(x, y) =
{
z ∈ Rd : ∥x− z∥p + ∥y − z∥p ≤ α∥x− y∥p

}
.

Visualizations of D1,p(x, y) ⊂ R2 are shown in Figure 4. D1,p(x, y) is the set of points z
such that the two-hop path, x → z → y, is ℓp-shorter than the one-hop path, x → y. Hence,
we have the following.

Lemma 3.5. If there exists z ∈ D1,p(x, y) ∩ X , then the edge {x, y} is not critical.

We defer the proof of the following technical lemma to Appendix B.

Lemma 3.6. Let r := ∥x− y∥, xM = x+y
2 , and r⋆ := r

√
α2/p

41/p
− 1

4 for α > 21−p. Then,

B(xM , r
⋆) ⊂ Dα,p(x, y) ⊂ B(x, r).

For α = 1, [32] makes a similar claim but crucially does not quantify the dependence of
the radius of this ball on p. Before proceeding, we introduce two regularity assumptions.

Definition 3.7. M ⊂ RD is in V (d, κ0, ϵ0) for κ0 ≥ 1 and ϵ0 > 0 if it is connected and for
all x ∈ M, ϵ ∈ (0, ϵ0) we have κ−1

0 ϵd ≤ vol(M∩B(x, ϵ))/vol(B(0, 1)) ≤ κ0ϵ
d.

Definition 3.8. A compact manifold M ⊂ RD has reach ζ > 0 if every x ∈ RD satisfying
dist(x,M) := miny∈M ∥x− y∥ < ζ has a unique projection onto M.D
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Figure 4. Plots of D1,p((− 1
2
, 0), ( 1

2
, 0)) for p = 1.01, 2, 100. We see that for smaller p, the set becomes

quite small, converging to a line segment as p → 1+. For p = 2, the p-elongated set is a circle. As p increases,
D1,p((− 1

2
, 0), ( 1

2
, 0)) converges to a set resembling a vertically oriented American football.

Theorem 3.9. Let M ∈ V (d, κ0, ϵ0) be a compact manifold with reach ζ > 0. Let X =
{xi}ni=1 be drawn i.i.d. from M according to a probability distribution with continuous density

f satisfying 0 < fmin ≤ f(x) ≤ fmax for all x ∈ M. For p > 1 and n sufficiently large, Gp,k
X

is a 1-spanner of Gp
X with probability at least 1− 1/n if

k ≥ 4κ20

[
fmax

fmin

] [
4

41−1/p − 1

]d/2
log(n).(3.1)

Proof. In light of Lemma 3.3 we prove that, with probability at least 1−1/n, Gp,k
X contains

every critical edge of Gp
X . Equivalently, we show every edge of Gp

X not contained in Gp,k
X is not

critical.
For any c, ϵ > 0, P[maxx,y∈X ℓp(x, y) ≤ ϵ] ≥ 1 − c/n for n sufficiently large [45]. So, let

n be sufficiently large so that P[ℓp(x, y) ≤ min{ϵ0, ζd
√

1
41/p

− 1
4} for all x, y ∈ X ] ≥ (1 − 1

2n).

Pick any x, y ∈ X which are not kNNs and let r := ∥x − y∥. If r > min{ϵ0, ζd
√

1
41/p

− 1
4},

then ℓp(x, y) < ∥x − y∥ and thus the edge {x, y} is not critical. So, suppose without loss of

generality in what follows that r ≤ min{ϵ0, ζd
√

1
41/p

− 1
4}.

Define r⋆1 := r
√

1
41/p

− 1
4 and r⋆2 := r(

√
1

41/p
− 1

4 −
r
4ζ ); note that r

⋆
2 > 0 by the assumption

r ≤ ζ
d

√
1

41/p
− 1

4 . Let xM := x+y
2 and let x̃M := argminz∈M ∥xM −z∥ be the projection of xM

onto M, which is unique because r < ζ. By Lemma 3.6, B(xM , r
⋆
1) ⊂ D1,p(x, y) ⊂ B(x, r). By

Lemma B.1, B(x̃M , r
⋆
2) ⊂ B(xM , r

⋆
1). Let xi1 , . . . , xik denote the kNNs of x, ordered randomly.

Because y is not a kNN of x, ∥x − xij∥ ≤ ∥x − y∥ = r for j = 1, . . . , k. Thus, xij ∈ B(x, r)
and so by Lemma B.2 we bound for fixed j

P
[
xij ∈ D1,p(x, y) | xij ∈ B(x, r)

]
≥ P

[
xij ∈ B(x̃M , r

⋆
2) | xij ∈ B(x, r)

]
(3.2)

≥ 3

4
κ−2
0

fmin

fmax

(
1

41/p
− 1

4

)d/2

=: εM,p,f .(3.3)D
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Because the xij are all independently drawn,

P
[
̸ ∃j with xij ∈ D1,p(x, y)

]
=

k∏
j=1

P
[
xij /∈ D1,p(x, y) | xij ∈ B(x, r)

]
≤ (1− εM,p,f )

k .

A routine calculations reveals that for k ≥ 3 logn
− log(1−εM,p,f )

,

P
[
∃j with xij ∈ D1,p(x, y)

]
= 1− P

[
̸ ∃j with xij ∈ D1,p(x, y)

]
≥ 1− 1

n3
.(3.4)

By Lemma 3.5 we conclude the edge {x, y} is not critical with probability exceeding 1 − 1
n3 .

There are fewer than n(n−1)/2 such non-kNN pairs x, y ∈ X . These edges {x, y} are precisely

those contained in Gp
X but not in Gp,k

X . By the union bound and (3.4) we conclude that none of

these are critical with probability greater than 1− n(n−1)
2

1
n3 ≥ 1− 1

2n . This was conditioned on

ℓp(x, y) ≤ min{ϵ0, ζd
√

1
41/p

− 1
4} for all x, y ∈ X , which holds with probability exceeding 1− 1

2n .

Thus, all critical edges are contained in GX
p,k with probability exceeding 1− ( 1

2n + 1
2n) = 1− 1

n .
Unpacking εM,p,f yields the claimed lower bound on k.

In (3.1), the explicit dependence of k on κ0, p, and d is shown. The 4κ20 factor corresponds
to the geometry of M. The numerical constant 4, which is not tight, stems from accounting for
the reach of M. IfM is convex (i.e., ζ = ∞), then it can be replaced with 3. The second factor
in (3.1) is controlled by the probability distribution, while the third corresponds to p and d.
For p = 2 and ignoring geometric and density factors we attain k = O(2d log(n)) as in [20]. For
large p we get k ≈ O((43)

d/2 log(n)), thus improving the dependence of k on d given in [32, 20].
Finally, using Corollary 4.4 of [45] we can sharpen the qualitative requirement that n be “suf-

ficiently large” to the quantitative lower bound n ≥ Cmax{[dζ ]
pd
p−1 [ 4

41−1/p−1
]

pd
2(p−1) , [ 1ϵ0 ]

pd
p−1 } for

a constant C depending on the geometry of M. So, when M is intrinsically high-dimensional
or has small reach, or when p is close to 1, n may need to be quite large for k as in (3.1) to
yield a 1-spanner.

3.2. Numerical experiments. We verify the claimed dependence of k on n, p, and d en-
sures that Gp,k

X is a 1-spanner of Gp
X numerically. We generate Figures 5(a)–5(f) as follows:

(1) Fix p, d,M, and f , then generate a sequence of (n, k) pairs.
(2) For each (n, k), do:

(i) Generate X = {xi}ni=1 by sampling i.i.d. from f on M.

(ii) For all pairs {xi, xj} compute ℓp(xi, xj) and ℓ
Gp,k
X

p (xi, xj).

(iii) If max1≤i<j≤n |ℓp(xi, xj)−ℓ
Gp,k
X

p (xi, xj)| > 10−10 record “failure”; else, record “suc-
cess.”

(3) Repeat step (2) 20 times and compute the proportion of successes.
As can be seen from Figure 5, there is a sharp transition between an “all failures” and an

“all successes” regime. The transition line is roughly linear when viewed using semi-log-x axes,
i.e., k ∝ log(n). Moreover the slope of the line-of-best-fit to this transition line decreases with
increasing p (compare Figures 5(a)–5(c)) and depends on intrinsic, not extrinsic dimension
(compare Figures 5(b) and 5(d)), as predicted by Theorem 3.9. Intriguingly, there is littleD
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(a) p = 1.5,M = [0, 1]5. Uniform.

5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

40

60

80

100

120

140

160

0

0.2

0.4

0.6

0.8

1

(b) p = 2,M = [0, 1]5. Uniform.
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(c) p = 10,M = [0, 1]5. Uniform.
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(d) p = 2,M = S4 ⊂ R5. Uniform.
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(e) p = 2,M = [0, 1]5. Gaussian dist.
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(f) p = 1.5,M = [0, 1]4, Uniform+noise.
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(g) p = 2,M = [0, 1]5. Uniform.
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(h) p = 2,M = [0, 1]5. Uniform.
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(i) p = 2,M = [0, 1]5. Uniform.

Figure 5. Figures (a)–(f) show the proportion of randomly generated data sets for which Gp,k
X is a 1-

spanner of Gp
X . The red line is the line of best fit through the cells representing the first value of k, for each

value of n, for which all trials were successful, i.e., it is the line ensuring Gp,k
X is a 1-spanner. The slopes of

(a)–(f) are, respectively, 43.43, 25.33, 0.29, 14.18, 18.79, and 40.0. Figures (g) and (h) show the minimal ω
(averaged across simulations) for which Gp,k

X is a (1.1, ω)-spanner and a (1.01, ω)-spanner, respectively; the red
lines trace out the requirements for Gp,k

X to be a (1.1, 1)-spanner and a (1.01, 1)-spanner respectively. Figure (i)
shows the minimal t ≥ 1 such that Gp,k

X is a (t, 1)-spanner of Gp
X , and the red line traces out the (1, 1)-spanner

requirement. Experiments with a smaller range of k but the same data setting as (g) and (h) are in the
supplementary material file PWSPD Supplement Final.pdf [local/web 1.06MB].

difference between Figure 5(b) (uniform distribution) and Figure 5(e) (Gaussian distribution),
suggesting that perhaps the assumption fmin > 0 in Theorem 3.9 is unnecessary. Finally, we
observe that the constant of proportionality (i.e., C such that k = C log n) predicted by The-
orem 3.9 appears pessimistic. For Figures 5(a)–5(c), Theorem 3.9 predicts C = 484.03, 128,
and 21.76, respectively (taking κ0 = 1 due to the flat domain), while empirically the slope of
the line-of-best-fit is 43.43, 25.33, and 0.29, respectively.

In Figure 5(f), we consider an intrinsically four-dimensional set corrupted with Gaussian
noise (standard deviation 0.1) in the fifth dimension. Interestingly, the scaling with k is
more efficient than as shown in Figure 5(a) for the intrinsically five-dimensional data. ThisD
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suggests that measures which concentrate near low-dimensional sets benefit from that low-
dimensionality, even if they are not supported exactly on it.

We also consider relaxing the success condition (2)(iii). We define H to be a (t, ω)-spanner
if ℓHp (x, y) ≤ tℓp(x, y) for ω ∈ (0, 1] proportion of the edges, so that Theorem 3.9 pertains to
(1,1)-spanners. Figures 5(g) and 5(h) show the minimal ω (averaged across simulations) for

which Gp,k
X is a (1.1, ω)-spanner and a (1.01, ω)-spanner, respectively; the red lines trace out the

requirements for Gp,k
X to be a (1.1, 1)-spanner and a (1.01, 1)-spanner, respectively. Comparing

with Figure 5(b), we see that the required scaling for Gp,k
X to be a (1 + ϵ, 1)-spanner is similar

to the required scaling to be a (1, 1)-spanner, at least for ϵ > 0 small. However, the required
scaling for (1 + ϵ, ω)-spanners (ω < 1) is quite different and much less restrictive, even for

ω very close to 1; for example, the requirement for Gp,k
X to be a (1.01, 0.95)-spanner appears

sublinear in the log2(n) versus k plot (see Figure 5(h)). If this notion of approximation is
acceptable, our empirical results suggest one can enjoy much greater sparsity. Finally, in
Figure 5(i) we compute the minimal t ≥ 1 such that Gp,k

X is a (t, 1)-spanner of Gp
X ; again the

overall transition patterns for (t, 1)-spanners are similar to the (1, 1)-spanner case in Figure
5(b) when t is close to 1. Overall we see that greater sparsity is permissible in these relaxed
cases; rigorous analysis is a topic of ongoing research.

4. Global analysis: Statistics on PWSPD and percolation. We recall that after a suit-
able normalization, ℓp is a consistent estimator for Lp. Indeed, [38, 32] prove that for any d ≥ 1,
p > 1, there exists a constant Cp,d independent of n such that limn→∞ ℓ̃p(x, y) = Cp,dLp(x, y).

The important question then arises: how quickly does ℓ̃p converge? How large does n need

to be to guarantee the error incurred by approximating Lp with ℓ̃p is small? To answer this
question we turn to results from Euclidean FPP [35, 36, 6, 24]. For any discrete set X , we let
ℓp(x, y,X ) denote the PWSPD computed in the set X ∪ {x} ∪ {y}.

4.1. Overview of Euclidean first passage percolation. Euclidean FPP analyzes ℓpp(0,
z,H1), where H1 is a homogeneous, unit intensity Poisson point process (PPP) on Rd.

Definition 4.1. A (homogeneous) PPP on Rd is a point process such that for any bounded
subset A ⊂ Rd, nA (the number of points in A) is a random variable with distribution P[nA =
m] = 1

m!(λ|A|)
me−λ|A|; λ is the intensity of the PPP.

It is known that

lim
∥z∥→∞

ℓpp(0, z,H1)

∥z∥
= µ ,(4.1)

where µ = µp,d is a constant depending only on p, d known as the time constant. The con-
vergence of ℓpp(0, z,H1) is studied by decomposing the error into random and deterministic
fluctuations, i.e.,

ℓpp(0, z,H1)− µ∥z∥ = ℓpp(0, z,H1)− E[ℓpp(0, z,H1)]︸ ︷︷ ︸
random

+E[ℓpp(0, z,H1)]− µ∥z∥︸ ︷︷ ︸
deterministic

.

In terms of mean squared error (MSE), one has the standard bias-variance decomposition:
E[(ℓpp(0, z,H1) − µ∥z∥)2] = (E[ℓpp(0, z,H1)] − µ∥z∥)2 + Var[ℓpp(0, z,H1)]. The following propo-
sition is well known in the Euclidean FPP literature.D
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Proposition 4.2. Let d ≥ 2 and p > 1. Then E[(ℓpp(0, z,H1)−µ∥z∥)2] ≤ C∥z∥ log2(∥z∥) for
a constant C depending only on p, d.

Proof. By Theorem 2.1 in [36], Var[ℓpp(0, z,H1)] ≤ C∥z∥. By Theorem 2.1 in [3], (E[µ∥z∥]−
µ∥z∥)2 ≤ C∥z∥ log2(∥z∥).

Although Var[ℓpp(0, z,H1)] ≤ C∥z∥ is the best bound which has been proved, the fluctua-
tion rate is known to in fact depend on the dimension, i.e., Var[ℓpp(0, z,H1)] ∼ ∥z∥2χ for some
exponent χ = χ(d) ≤ 1

2 . Strong evidence is provided in [24] that the bias can be bounded by
the variance, so the exponent χ very likely controls the total convergence rate.

The following tail bound is also known [36].

Proposition 4.3. Let d ≥ 2, p > 1, β1 = min{1, d/p}, and β2 = 1/(4p + 3). For any
ϵ ∈ (0, β2), there exist constants C0 and C1 (depending on ϵ) such that for ∥z∥ > 0 and

∥z∥
1
2
+ϵ ≤ t ≤ ∥z∥

1
2
+β2−ϵ, P[|ℓpp(0, z,H1)− µ∥z∥| ≥ t] ≤ C1 exp(−C0(t/

√
∥z∥)β1).

4.2. Convergence rates for PWSPD. We wish to utilize the results in section 4.1 to
obtain convergence rates for PWSPD. However, we are interested in PWSPD computed on a
compact set with boundary M and the convergence rate of ℓp rather than ℓpp. To simplify the
analysis, we restrict our attention to the following idealized model.

Assumption 1. Let M ⊆ Rd be a convex, compact, d-dimensional set of unit volume
containing the origin. Assume we sample n points independently and uniformly from M ,
i.e., f = 1M , to obtain the discrete set Xn. Let Mτ denote the points in M which are at least
distance τ from the boundary of M , i.e., Mτ := {x ∈M : miny∈∂M ∥x− y∥ > τ}.

We establish three things: (i) Euclidean FPP results apply away from ∂M ; (ii) the time
constant µ equals the constant Cp,d in (1.3); (iii) ℓp has the same convergence rate as ℓpp.

To establish (i), we let Hn denote a homogeneous PPP with rate λ = n and let ℓp(0, y,Hn)
denote the length of the shortest path connecting 0 and y in Hn. We also let XN = Hn ∩M
and ℓp(0, y,XN ) denote the PWSPD in XN ; note E[|XN |] = n. To apply percolation results
to our setting, the statistical equivalence of ℓp(0, y,Xn), ℓp(0, y,XN ), and ℓp(0, y,Hn) must be
established. For n large, the equivalence of ℓp(0, y,Xn) and ℓp(0, y,XN ) is standard and we
omit any analysis. The equivalence of ℓp(0, y,XN ) and ℓp(0, y,Hn) is less clear. In particular,
how far away from ∂M do 0, y need to be to ensure these metrics are the same? The following
proposition is a direct consequence of Theorem 2.4 from [36] and essentially guarantees the

equivalence of the metrics as long as 0 and y are at least distance O(n−
1
4d ) from ∂M .

Proposition 4.4. Let d ≥ 2, p > 1, β1 = min{1, dp}, β2 = 1/(4p + 3), and ϵ ∈ (0, β2

2 ),

and τ = n−
1
4d

+ ϵ
d diam(M)

3
4
+ϵ. Then for constants C0, C1 (depending on ϵ), for all 0, y ∈

Mτ , the geodesics connecting 0, y in XN and Hn are equal with probability at least 1 −
C1 exp(−C0(n

1
d ∥y∥)

3
4
ϵβ1), so that ℓp(0, y,XN ) = ℓp(0, y,Hn).

Next we establish the equivalence of µp,d (percolation time constant) and Cp,d (PWSPD
discrete-to-continuum normalization constant).

Proposition 4.5. Let µp,d be as in (4.1) and Cp,d as in (1.3). Then µ
1/p
p,d = Cp,d.

Proof. Suppose Assumption 1 holds and choose y ∈ M with ∥y∥ = 1 and let M be such
that 0, y are not on the boundary. By Proposition 4.4, limn→∞ ℓp(0, y,Xn) = limn→∞ ℓp(0,D
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y,Hn). Let H1 be the unit intensity PPP obtained from Hn by rescaling each axis by n1/d,

so that ℓp(0, y,Hn) = n−
1
d ℓp(0, n

1
d y,H1). For notational convenience, let z = n

1
d y. Then

lim
n→∞

ℓ̃p(0, y,Xn) = lim
n→∞

ℓ̃p(0, y,Hn)

= lim
n→∞

n
p−1
pd ℓp(0, y,Hn)

= lim
n→∞

n
p−1
pd n−

1
d ℓp

(
0, n

1
d y,H1

)
= lim

∥z∥→∞
∥z∥

p−1
p ∥z∥−1ℓp(0, z,H1)

= lim
∥z∥→∞

ℓp(0, z,H1)

∥z∥1/p
.

Thus, Cp,d = Cp,dLp(0, y) = limn→∞ ℓ̃p(0, y,Xn) = lim∥z∥→∞
ℓp(0,z,H1)

∥z∥1/p = µ
1/p
p,d .

Finally, we bound our real quantity of interest: the convergence rate of ℓ̃p to Cp,dLp.

Theorem 4.6. Assume Assumption 1, d ≥ 2, β2 = 1/(4p+ 3), τ = n−
(1−β2)

4d diam(M)
3+β2

4 ,

p > 1, and 0, y ∈Mτ . Then for n large enough, E[(ℓ̃p(0, y,Xn)−Cp,dLp(0, y))
2] ≲ n−

1
d log2(n).

Proof. To simplify notation throughout the proof we denote Lp(0, y) simply by Lp. By
Proposition 4.5 and for n large enough,

E
[(
ℓ̃p(0, y,Xn)− Cp,dLp

)2]
≲ E

[(
ℓ̃p(0, y,XN )− µ1/pLp

)2]
=: (I) ,

where XN = Hn∩M and Hn is a homogeneous PPP with rate n. Let A be the event that the

geodesics from 0 to y in XN and Hn are equal. Since we assume τ = n−
(1−β2)

4d diam(M)
3+β2

4 , we
may apply Proposition 4.4 with ϵ = β2/4 to conclude P[A] ≥ 1−C1 exp(−C0∥y∥

ν
dnν) for ν =

3β2

16 min{1, dp}. Conditioning on A, and observing ℓ̃p(0, y,XN ) = n
p−1
pd ℓp(0, y,XN ) ≤ n

p−1
pd ∥y∥,

we obtain

(I) = E
[(
ℓ̃p(0, y,XN )− µ1/pLp

)2 ∣∣ A]P[A] + E
[(
ℓ̃p(0, y,XN )− µ1/pLp

)2 ∣∣ Ā]P[Ā]
≤ E

[(
ℓ̃p(0, y,Hn)− µ1/pLp

)2 ∣∣ A]+ (n 2(p−1)
pd ∥y∥2 + µ2/pL2

p

)
C1 exp

(
−C0∥y∥

ν
dnν

)
≤ E

[(
ℓ̃p(0, y,Hn)− µ1/pLp

)2]
+ q1,

where q1 decays exponentially in n (for the last line note that conditioning on A means
conditioning on the geodesics being local, which can only decrease the expected error).

A Lipschitz analysis applied to the function g(x) = x1/p yields(
ℓ̃p(0, y,Hn)− µ1/pLp

)2
≤ p−2ℓ̃p(0, y,Hn)

2(1−p)/p ·
(
ℓ̃pp(0, y,Hn)− µLp

p

)2
.D
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By Proposition 4.3,

ℓ̃pp(0, y,Hn) ≥ µLp
p − ∥y∥

1
2
+ϵ/n

1
d(

1
2
−ϵ)(4.2)

with probability at least 1−C1 exp(−C0∥y∥ϵβ1n
ϵβ1
d ) for any ϵ ∈ (0, β2), where β1 = min{1, d/p}.

Fix ϵ ∈ (0, β2) and let B be the event that (4.2) is satisfied. On B,

ℓ̃p(0, y,Hn)
2(1−p)

p ≤ (µ1/pLp)
2(1−p)

p

(
1− ∥y∥

1
2
+ϵ

µLp
pn

1
d(

1
2
−ϵ)

) 2(1−p)

p2

≤ (µ1/pLp)
2(1−p)

p

(
1 +

2(p− 1)∥y∥
1
2
+ϵ

p2µLp
pn

1
d(

1
2
−ϵ)

+ higher order terms

)
≤ 2(µ1/pLp)

2(1−p)
p

for n large enough. Note also that

E
[(
ℓ̃p(0, y,Hn)− µ1/pLp

)2
| B̄
]
P[B̄] ≤

(
n

2(p−1)
pd ∥y∥2 + µ2/pL2

p

)
exp

(
−C0∥y∥ϵβ1n

ϵβ1
d

)
:= q2

and q2 decreases exponentially in n. We thus obtain

E
[(
ℓ̃p(0, y,Hn)− µ1/pLp

)2]
≤ E

[(
ℓ̃p(0, y,Hn)− µ1/pLp

)2 ∣∣ B]P[B] + q2

≤ 2

p2
(µ1/pLp)

2(1−p)
p E

[(
ℓ̃pp(0, y,Hn)− µLp

p

)2 ∣∣ B]+ q2

= CE
[(
ℓ̃pp(0, y,Hn)− µLp

p

)2]
+ q2,

where C is a constant depending on p, d, ∥y∥, and the last line follows since once again the
expected error is lower conditioned on B than unconditionally. We have thus established

E
[(
ℓ̃p(0, y,Xn)− Cp,dLp

)2]
≲ E

[(
ℓ̃pp(0, y,Hn)− µLp

p

)2]
+ q1 + q2

for q1, q2 exponentially small in n. Finally let H1 be the unit intensity homogeneous PPP
obtained from Hn by multiplying each axis by n1/d. By Proposition 4.2,

E
[(
ℓpp

(
0, n

1
d y,H1

)
− µn

1
d ∥y∥

)2]
≲ n

1
d ∥y∥ log2

(
n

1
d ∥y∥

)
⇒ E

[(
n

p
d ℓpp(0, y,Hn)− n

1
dµLp

p

)2]
≲ n

1
d ∥y∥ log2

(
n

1
d ∥y∥

)
⇒ E

[(
n

p−1
d ℓpp(0, y,Hn)− µLp

p

)2]
≲ n−

1
d ∥y∥ log2

(
n

1
d ∥y∥

)
⇒ E

[(
ℓ̃pp(0, y,Hn)− µLp

p

)2]
≲ n−

1
d log2(n) .

For n large, the above dominates q1, q2, so that for a constant C depending on p, d, ∥y∥,

E
[(
ℓ̃p(0, y,Xn)− Cp,dLp

)2]
≤ Cn−

1
d log2(n).
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4.3. Estimating the fluctuation exponent. As an application, we utilize the 1-spanner re-
sults of section 3 to empirically estimate the fluctuation rate χ(d). Since there is evidence that
the variance dominates the bias, this important parameter likely determines the convergence
rate of ℓ̃p to Lp. Once again utilizing the change of variable z = n

1
d y, we note

Var
[
ℓpp(0, z,H1)

]
≲ ∥z∥2χ ⇐⇒ Var

[
ℓ̃p(0, y,Xn)

]
≲ n

2(χ−1)
d ,

and we estimate the right-hand side from simulations. Specifically, we sample n points
uniformly from the unit cube [0, 1]d and compute ℓ̃p(x, y,Xn) for x = (0.25, 0.5, . . . , 0.5),
y = (0.75, 0.5, . . . , 0.5) in a kNN graph on Xn, with k = ⌈1+3( 4

41−1/p−1
)d/2 log(n)⌉ as suggested

by Theorem 3.9 (note that fmin = fmax, ζ = ∞, κ0 = 1 in this example). We vary n from
nmin = 11586 to nmax = 92682, and for each n we estimate Var[ℓ̃p(x, y,Xn)] from Nsim simula-
tions. Figure 6 shows the resulting log-log variance plots for d = 2, 3, 4 and various p, as well
as the slopesm from a linear regression. The observed slopes are related to χ by χ = md/2+1,
and one thus obtains the estimates for χ reported in Table 2. See the supplementary material
file PWSPD Supplement Final.pdf [local/web 1.06MB] for confidence interval estimates.

These simulations confirm that χ is indeed independent of p. It is conjectured in the
percolation literature that χ(d) → 0+ as d increases, with χ(2) = 1

3 , χ(3) ≈ 1
4 , which is

consistent with our results. For d = 2, the empirical convergence rate is thus n−
2
3 (not n−

1
2

as given in Theorem 4.6), and for large d one expects an MSE of order n−
2
d instead of n−

1
d .

However, estimating χ empirically becomes increasingly difficult as d increases, since one has
less sparsity in the kNN graph, and because χ is obtained from m by χ = md/2 + 1, so
errors incurred in estimating the regression slopes are amplified by a factor of d. Table 2 also
reports the factor nmax/k, which can be interpreted as the expected computational speed-up
obtained by running the simulation in a kNN graph instead of a complete graph. We were
unable to obtain empirical speed-up factors since computational resources prevented running
the simulations in a complete graph.

An important open problem is establishing that ℓ̃p computed from a nonuniform density
enjoys the same convergence rate (with respect to n) as the uniform case. Although this

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4
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0.8

1

(a) Data for d = 2
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(b) d = 2
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(c) d = 3
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-11
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(d) d = 4

Figure 6. Variance plots for ℓ̃p. For each n, the variance was estimated from a maximum of Nsim = 24000
simulations, with a smaller Nsim when p was small and/or the dimension was large. Specifically, when d = 2,
Nsim = 14000 was used for p = 1.5; when d = 3, Nsim = 5000, 12000 was used for p = 1.5, 2; when d = 4,
Nsim = 2000, 6000, 19000 was used for p = 1.5, 2, 4.D
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Table 2
The slopes of log(n) versus Var[ℓ̃p] are shown for uniform data for different density weightings (p) and

different dimensions (d).

d p χ̂ nmax/k d p χ̂ nmax/k d p χ̂ nmax/k

2 1.5 0.30 394 3 1.5 0.28 152 4 1.5 0.19 58
2 2 0.31 667 3 2 0.23 336 4 2 0.16 169
2 4 0.33 1204 3 4 0.24 820 4 4 0.14 558
2 8 0.34 1545 3 8 0.29 1204 4 8 0.19 927

seems intuitively true and preliminary simulation results support this equivalence, to the best
of our knowledge it has not been proven, as the current proof techniques rely on “straight
line” geodesics.

5. Conclusion and future work. This article establishes local equivalence of PWSPD to a
density-based stretch of Euclidean distance. We derive a near-optimal condition on k for the
kNN graph to be a 1-spanner for PWSPD, quantifying and improving the dependence on p
and d. Moreover, we leverage the theory of Euclidean FPP to establish statistical convergence
rates for PWSPD to its continuum limit, and apply our spanner results to empirically support
conjectures on the optimal dimension-dependent rates of convergence.

Many directions remain for future work. Our statistical convergence rates for PWSPD
in section 4 are limited to uniform distributions. Preliminary numerical experiments indicate
that these rates also hold for PWSPDs defined with varying density, but rigorous convergence
rates for nonhomogeneous PPPs are lacking in the literature.

The analysis of section 2 proved the local equivalence of PWSPDs with density-stretched
Euclidean distances. These results and the convergence results of section 4 are the first steps
in a program of developing a discrete-to-continuum limit analysis for PWSPDs and PWSPD-
based operators. A major problem is to develop conditions so that the discrete graph Laplacian
(defined with ℓ̃p) converges to a continuum second-order differential operator as n → ∞. A
related direction is the analysis of how data clusterability with PWSPDs depends on p for
various random data models and in specific applications.

The numerical results of section 3.2 confirm that k ∝ log(n) is required for the kNN graph
to be a 1-spanner, as predicted by theory. Relaxing the notion of t-spanners to (t, ω)-spanners,
as suggested in section 3.2, is a topic of future research.

Finally, the results of this article require data to be generated from a distribution supported
exactly on a low-dimensional manifold M. An arguably more realistic setting is the noisy
one in which the data is distributed only approximately on M. Two potential models are
of interest: (i) replacing M with B(M, τ) = {x ∈ RD | dist(x,M) ≤ τ} (tube model)
and (ii) considering a density that concentrates on M, rather than being supported on it
(concentration model). PWSPDs may exhibit very different properties under these two noise
models, for example, under bounded uniform noise and Gaussian noise, especially for large p.
For the concentration model one expects noisy PWSPDs to converge to manifold PWSPDs
for p large, since the optimal PWSPD paths are density driven. Preliminary empirical results
(Figure 5(f)) suggest that when the measure concentrates sufficiently near a low-dimensional
set M, the number of nearest neighbors needed for a 1-spanner benefits from the intrinsicD
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low-dimensional structure. For the tube model, although noisy PWSPDs will not converge
to manifold PWSPDs, they will still scale according to the intrinsic manifold dimension for
τ small. For both models, incorporating a denoising procedure such as local averaging [31]
or diffusion [34] before computing PWSPDs is expected to be advantageous. Future research
will investigate robust denoising procedures for PWSPD and which type of noise distributions
are most adversarial to PWSPD.

Appendix A. Proofs for section 2.

Proof of Lemma 2.2. Let γ1(t) be a path which achieves D(x, y). Since D(x, y) ≤ ϵ(1 +
κϵ2), f(γ1(t)) ≥ fmin(x, ϵ) for all t. Then,

Lp
p(x, y) ≤

∫ 1

0

1

f(γ1(t))
p−1
d

|γ′1(t)| dt ≤
D(x, y)

fmin(x, ϵ)
p−1
d

≤ ϵ(1 + κϵ2)

fmin(x, ϵ)
p−1
d

.

Note y ∈ BLp
p
(x, ϵ(1+κϵ2)/fmin(x, ϵ)

p−1
d ) implies f(y) ≤ fmax(x, ϵ), and thus fmax(x,ϵ)

p−1
d

(f(x)f(y))
p−1
2d

≥ 1,

so that Lp
p(x, y) ≤ D(x,y)

fmin(x,ϵ)
p−1
d

fmax(x,ϵ)
p−1
d

(f(x)f(y))
p−1
2d

. This yields

Lp
p(x, y) ≤ (ρx,ϵ)

p−1
d

∥x− y∥(1 + κ∥x− y∥2)
(f(x)f(y))

p−1
2d

≤ (ρx,ϵ)
p−1
d (1 + κϵ2)Df,Euc(x, y),

which proves the upper bound. Now let γ0(t) be a path achieving Lp
p(x, y); note that since

Lp
p(x, y) ≤ D(x,y)

fmin(x,ϵ)
p−1
d

, the path γ0 is contained in BLp
p
(x, ϵ(1 + κϵ2)/fmin(x, ϵ)

p−1
d ). Thus

Lp
p(x, y) =

∫ 1

0

1

f(γ0(t))
p−1
d

|γ′0(t)| dt ≥
D(x, y)

fmax(x, ϵ)
p−1
d

≥ D(x, y)

fmax(x, ϵ)
p−1
d

· fmin(x, ϵ)
p−1
d

(f(x)f(y))
p−1
2d

so that

Lp
p(x, y) ≥

D(x, y)

(ρx,ϵ)
p−1
d (f(x)f(y))

p−1
2d

≥ ∥x− y∥
(ρx,ϵ)

p−1
d (f(x)f(y))

p−1
2d

=
1

(ρx,ϵ)
p−1
d

Df,Euc(x, y).

Appendix B. Proofs for section 3.

Proof of Lemma 3.6. Let s := ∥x− y∥ and choose a coordinate system x(1), . . . , x(n) such
that y = (−s/2, 0, . . . 0), x = (s/2, 0, . . . , 0), and xM = 0. Dα,p(x, y) is now the interior of((

x(1) +
s

2

)2
+ (x(2))2 + · · ·+ (x(n))2

)p/2

+

((
x(1) − s

2

)2
+ (x(2))2 + · · ·+ (x(n))2

)p/2

= αsp.

In spherical coordinates the boundary of this region may be expressed as

(B.1)
(
r2 + sr cos θ1 + s2/4

)p/2
+
(
r2 − sr cos θ1 + s2/4

)p/2
= αsp,D
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where (x(1))2 + · · · + (x(n))2 = r2 and x1 = r cos θ1. Define r = H(θ1) as the unique positive
solution of (B.1). Implicitly differentiating in θ1 yields

p

2

(
r2 + sr cos(θ1) +

s2

4

) p
2−1(

2r
dr

dθ1
− sr sin(θ1) + s cos(θ1)

dr

dθ1

)
+
p

2

(
r2 − sr cos(θ1) +

s2

4

) p
2−1(

2r
dr

dθ1
+ sr sin(θ1)− s cos(θ1)

dr

dθ1

)
= 0 .

Solving for dr
dθ1

and setting the result to 0 yields[(
r2 + sr cos(θ1) +

s2

4

) p−2
2

−
(
r2 − sr cos(θ1) +

s2

4

) p−2
2

]
sin(θ1) := (I) · (II) = 0.

Thus we obtain two solutions to dr
dθ1

= 0:

(I) = 0 ⇒ cos(θ1) = 0 ⇒ θ1 =
π

2
(min.) (II) = 0 ⇒ sin(θ1) = 0 ⇒ θ1 = 0 (max.).

Thus the minimal radius occurs when θ1 =
π
2 . Substituting θ1 =

π
2 into (B.1) yields

r = s
√
α2/p

/
41/p − 1/4 = ∥x− y∥

√
α2/p

/
41/p − 1/4.

Hence B(xM , r) ⊂ Dα,p(xi, xj), as desired. To see Dα,p(x, y) ⊂ B(x, r) observe that if z /∈
B(x, r), then

(B.2) ∥x− z∥ > r = ∥x− y∥ ⇒ ∥x− z∥p > α∥x− y∥p for all α ∈ (0, 1] and p ≥ 1,

hence z cannot be in Dα,p(x, y).

Lemma B.1. With assumptions and notation as in Theorem 3.9, B (x̃M , r
⋆
2) ⊂ B(xM , r

⋆
1).

Proof. By [14, Lemma 1], ∥xM − x̃M∥ ≤ ζ −
√
ζ2 − r2/4 < r2/(4ζ). Now, suppose

y ∈ B(x̃M , r
⋆
2). Then

∥xM − y∥ ≤ ∥xM − x̃M∥+ ∥x̃M − y∥ ≤ r2
/
(4ζ) + r

(√
1/41/p − 1/4− r/(4ζ)

)
= r⋆1,

so that y ∈ B(xM , r
⋆
1), as desired.

Lemma B.2. With notation and assumptions as in Theorem 3.9,

(B.3) P
[
xij ∈ B(x̃M , r

⋆
2) | xij ∈ B(x, r)

]
≥ 3

4
κ−2
0

fmin

fmax

(
1

41/p
− 1

4

)d/2

.

Proof. By the definition of conditional probability and B(x̃M , r
⋆
2) ⊂ B(x, r),

(B.4) P
[
xij ∈ B(x̃M , r

⋆
2) | xij ∈ B(x, r)

]
=

∫
B(x̃M ,r⋆2)∩M

f

/∫
B(x,r)∩M

f.D
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By Definition 3.7,
∫
B(x̃M ,r⋆2)∩M

f ≥ fminvol (B(x̃M , r
⋆
2) ∩M) ≥ fminκ

−1
0 (r⋆2)

dvol (B(0, 1)) and∫
B(x,r)∩M f ≤ fmaxvol (B(x, r) ∩M) ≤ fmaxκ0r

dvol (B(0, 1)). Returning to (B.4),

(B.5) P
[
xij ∈ B(x̃M , r

⋆
2) | xij ∈ B(x, r)

]
≥ κ−2

0

fmin

fmax

(
r⋆2
r

)d

.

The result follows by noting(
r⋆2
r

)d

=

(√
1

41/p
− 1

4
− r

4ζ

)d

≥

(√
1

41/p
− 1

4
− 1

4d

√
1

41/p
− 1

4

)d

≥ 3

4

(
1

41/p
− 1

4

)d/2

.

Acknowledgments. DM thanks Matthias Wink for several useful discussions on Riemann-
ian geometry. We thank the two reviewers and the associate editor for many helpful comments
that greatly improved the manuscript.

REFERENCES

[1] E. Aamari, J. Kim, F. Chazal, B. Michel, A. Rinaldo, and L. Wasserman, Estimating the reach
of a manifold, Electron. J. Stat., 13 (12019), pp. 1359–1399.

[2] M. Alamgir and U. Von Luxburg, Shortest path distance in random k-nearest neighbor graphs, in
Proceedings of ICML, 2012, pp. 1251–1258.

[3] K. S. Alexander, A note on some rates of convergence in first-passage percolation, Ann. Appl. Probab.,
pp. 81–90, 1993.

[4] H. Antil, T. Berry, and J. Harlim, Fractional diffusion maps, Appl. Comput. Harmon. Anal., 54
(2021), pp. 145–175.

[5] E. Arias-Castro, Clustering based on pairwise distances when the data is of mixed dimensions, IEEE
Trans. Inform. Theory, 57 (2011), pp. 1692–1706.

[6] A. Auffinger, M. Damron, and J. Hanson, 50 Years of First-Passage Percolation, Univ. Lecture
Ser. 68, AMS, Providence, RI, 2017.

[7] M. Azizyan, A. Singh, and L. Wasserman, Density-sensitive semisupervised inference, Ann. Statist.,
41 (2013), pp. 751–771.

[8] M. Belkin and P. Niyogi, Laplacian eigenmaps for dimensionality reduction and data representation,
Neural Comput., 15 (2003), pp. 1373–1396.

[9] M. Belkin and P. Niyogi, Convergence of Laplacian eigenmaps, in Proceedings of NIPS, pp. 129–136,
2007.

[10] R. E. Bellman, Adaptive Control Processes: A Guided Tour, Princeton University Press, Princeton, NJ,
2015.

[11] T. Berry and J. Harlim, Variable bandwidth diffusion kernels, Appl. Comput. Harmon. Anal., 40
(2016), pp. 68–96.

[12] T. Berry and T. Sauer, Local kernels and the geometric structure of data, Appl. Comput. Harmon.
Anal., 40 (2016), pp. 439–469.

[13] A. S. Bijral, N. Ratliff, and N. Srebro, Semi-supervised learning with density based distances, in
Proceedings of UAI, 2011, pp. 43–50.

[14] J.-D. Boissonnat, A. Lieutier, and M. Wintraecken, The reach, metric distortion, geodesic con-
vexity and the variation of tangent spaces, J. Appl. Comput. Topol., 3 (2019), pp. 29–58.
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