Patterns

EMBEDR: Distinguishing signal from noise in single-

cell omics data

Highlights
e An overview of the benefits and difficulties of dimensionality
reduction

e Anovel algorithm for quantifying and identifying quality within
embeddings of data

e Quality can be optimized to find data scales and set algorithm
parameters

e A cell-wise view of quality generates robust and interpretable
representations of data

Johnson et al., 2022, Patterns 3, 100443
March 11, 2022 © 2022 The Authors.
https://doi.org/10.1016/j.patter.2022.100443

uuuuuuu

Authors

Eric M. Johnson, William Kath,
Madhav Mani

Correspondence
madhav.mani@gmail.com

In brief

A novel algorithm for assessing the
quality of dimensionality reduction (DR)
methods is proposed and applied to
several single-cell omics datasets. The
method is local, quantitative, and
statistical, which permits quality to be
detected on a cell-wise basis in a manner
comparable across parameter sets and
DR methods. Optimizing DR methods per
cell permits a novel embedding scheme
that robustly reproduces structures in the
original data.

¢? CellP’ress


mailto:madhav.mani@gmail.�com
https://doi.org/10.1016/j.patter.2022.100443
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2022.100443&domain=pdf

Patterns

¢? CellPress

OPEN ACCESS

EMBEDR: Distinguishing signal
from noise in single-cell omics data

Eric M. Johnson,-2 William Kath,'-2 and Madhav Mani-2-3:4.*

1Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA
2NSF-Simons Center for Quantitative Biology at Northwestern University, Evanston, IL 60208, USA
3Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA

4Lead contact
*Correspondence: madhav.mani@gmail.com
https://doi.org/10.1016/j.patter.2022.100443

respond to stimuli.

THE BIGGERPICTURE Modern technologies have enabled biologists to construct enormous datasets con-
taining millions of observations of thousands of measurements. These datasets push the limits of traditional
analysis techniques, leaving doubts about the quality and fidelity of these methods. In this work, we present
a sort of meta-algorithm, called EMBEDR, which seeks to evaluate when a certain class of methods, known
as dimensionality reduction methods, are generating high-quality representations of data. We show that
EMBEDR allows for visualizations of even large datasets to be interpreted with confidence. Furthermore,
we show how asking about the method quality itself can lead to improved analyses of data. These improved
analyses may directly impact our understanding of cellular biology, including how cells behave, grow, and

Concept: Basic principles of a new
data science output observed and reported

SUMMARY

Single-cell “omics”-based measurements are often high dimensional so that dimensionality reduction (DR)
algorithms are necessary for data visualization and analysis. The lack of methods for separating signal
from noise in DR outputs has limited their utility in generating data-driven discoveries in single-cell data.
In this work we present EMBEDR, which assesses the output of any DR algorithm to distinguish evidence
of structure from algorithm-induced noise in DR outputs. We apply EMBEDR to DR-generated representa-
tions of single-cell omics data of several modalities to show where they visually show real—not spurious—
structure. EMBEDR generates a “p” value for each sample, allowing for direct comparisons of DR algorithms
and facilitating optimization of algorithm hyperparameters. We show that the scale of a sample’s neighbor-
hood can thus be determined and used to generate a novel “cell-wise optimal” embedding. EMBEDR is avail-

able as a Python package for immediate use.

INTRODUCTION

Advances in high-throughput measurement techniques are
revolutionizing biology. The advent of single-cell omics ap-
proaches, in particular, promises to illuminate the processes of
cellular differentiation, multicellular patterning, signaling, and
variation at single-cell resolution.”'® However, omics data are
high dimensional—each measured gene adds a dimension to
the sample space—leading to an explosive increase in the vol-
ume occupied by the data due to the curse of dimensionality
(see Figure S1 for an illustration).'* In addition, single-cell meth-
odologies generate significant technical noise due to the small
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amount of material being measured.'>'° Thus, despite the great
promise that single-cell omics approaches hold, it remains a
challenge®® to separate signal from noise in these datasets or
make data-driven inferences.'*

Faced with the challenges posed by high-dimensional data-
sets, a host of methods have been developed to help make
quantitative inferences from the data. One such class of
methods, termed dimensionality reduction (DR) methods, at-
tempts to reduce the size (dimensionality) of the data by identi-
fying a reduced set or combination of features (genes) on which
further qualitative or quantitative analysis can be applied with
more inferential power. Significant effort has been put into the
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development and application of DR algorithms, such as prin-
cipal-component analysis (PCA),>" t-SNE,?> UMAP,?® and
others.?*® Each of these methods attempts to find a lower-
dimensional (usually 2D or 3D) representation, or embedding,
of the data that preserves important aspects of the original
data structure (for a review, see Van der Maaten et al.,*° Gracia
et al.,"° and Espadoto et al.*’; in application to omics data, see
Fanaee-T and Thoresen®?).

Ideally, a researcher would prefer a reduced representation of
their data for gaining biological insight as it may avoid spurious
conclusions caused by the curse of dimensionality. These repre-
sentations can then be used to ask biologically relevant ques-
tions; for example, if cells from a tissue are sequenced, to what
extent can we say that two clusters in the embedding correspond
to distinct, differentiated, cell types? If clusters in such a view are
connected by a bridge of cells, does this imply the existence of a
path along which cells are differentiating? If cells subjected to
different treatments of a drug are processed through a DR
method, how is the strength of the treatment effect correlated
with distance in the lower-dimensional space? Experimentally,
one might be concerned with the depth of sequencing or the
number of samples; how does this information get transformed
into a dimensionally reduced representation of the data? Put
more plainly, DR methods produce an approximate picture of
the data, and we would like to know what parts display biological
signal, and what parts are simply algorithmic distortions.

In traditional data analyses, statistics provides a rigorous
framework with which to answer these questions, but DR
methods confound the statistical distinction between signal and
noise. Specifically, DR methods generically produce distortions
in their representations of data, and these distortions are inhomo-
geneous across a representation;*%“%“3=" are often stochastic
and non-linear, meaning that the robustness and reproducibility
of results is hard to assess;*" and often require user specification
of hyperparameters, where this specification is often based on
heuristics rather than quantitative principles.'%*®°° Addressing
these issues provides the motivation for this work, as recovering
the ability to separate signal and noise in DR output is essential for
their utilization in quantitative analyses.

These difficulties with DR methods can be insidious. As an
illustration, consider a sample dataset that populates the tips
(vertices) of a regular tetrahedron in three dimensions. (A slightly
more complicated example can be found in Figure S2.) The
vertices of this tetrahedron are all equidistant in the original three
dimensions of the data, but any squashing of the pyramid into
two dimensions will necessarily result in the distances between
some pairs of vertices being distorted. For example, flattening
the pyramid onto its base will make the top vertex look artificially
close to the other three. Alternatively, moving the top to a point
outside the bottom triangle will make it artificially far from one
of the base vertices. Real data are more complicated than a tet-
rahedron: cells are arranged in gene expression space in un-
known geometric relationships with heterogeneous densities.
But if in even simple cases one cannot match nearby regions
in the original data to nearby in the DR output—or far as far—
any interpretation of the dimensionally reduced representations
of real single-cell data must proceed with caution.

To address the distortive effect of reducing dimensions, DR al-
gorithms often employ stochastic or non-linear techniques,
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which work with remarkable success in a variety of contexts.*’
Using these techniques, however, also means that the exact out-
puts of a DR method will rarely look similar, whether comparing
across methods, different parameter choices with the same
method, or even across separate runs of the same method
with identical choices of parameters. As an example, consider
Figure 1, where scRNA-seq data from nearly 4,800 bone marrow
cells from the Tabula Muris Cell Atlas® have been embedded in
2D using t-SNE°" and UMAP?® each at two different user-pre-
scribed settings. (Throughout this work, we use kgg to parame-
terize t-SNE instead of perplexity. See section S3 for more infor-
mation.) In each panel of this figure, the lower-dimensional
representations demonstrate some apparently clustered struc-
tures, but the number, size, and shape of these clusters vary
dramatically between the representations. As an example, the
B cells in groups 2, 4, and 5 appear to be two to four distinct
“clusters” depending upon the panel that is considered. More
extremely, the representation in (A) separates the granulocytes
into two clusters, and both (A) and (B) separate the granulocytes
from their progenitor cells. Without more information then, it is
not obvious which of these panels best represents the high-
dimensional structure of the data. An assessment of the “error”
in these representations would allow for such a determination.
Together, these observations strongly motivate the need for
methods to assess the size of dimensionality reduction (DR)-
induced “error” associated with representing high-dimensional
data in lower-dimensional spaces. We emphasize that even noise-
less data will be distorted during the DR process, making error
assessment a necessary component in applying these methods.
However, it is also worth emphasizing that, despite these diffi-
culties, DR for analysis and visualization is obviously useful. Our
goal here is to develop a scheme that guides the user based on
the data rather than merely advising the user to “be careful.”
That is, an error-quantification scheme that can assess and quan-
tify where a DR-generated representation is showing structure that
is consistent with structure in the original, high-dimensional space
(signal) as opposed to spurious structures that may be due to sto-
chastic and non-linear methods (noise), would be immensely use-
ful to the average analyst. Moreover, we specifically assert that a
successful error-quantification scheme should do the following:

1. Assess quality locally: since the errors incurred in reducing
the dimensionality of data are not distributed homoge-
neously across the lower-dimensional representation,*>*
a quality-assessment scheme should provide local (per
cell) estimates of DR-induced error as opposed to a single
global estimate.

2. Assess variability in quality: to account for changes in
quality that may be due to variation across different execu-
tions of a stochastic DR algorithm, a quality-assessment
scheme should consider the distribution of errors
across runs.

3. Assess quality statistically: a robust quality-assessment
scheme should employ a null hypothesis to establish a
“ruler” or baseline against which errors in data can be
compared.

Others have addressed the problem of DR quality assess-
ment: work has been done to provide heuristic guidelines on
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Figure 1. Features of dimensionally reduced

data are sensitive to the choice of algorithm
~6 and algorithmic settings
(A and C) Four dimensionally reduced representa-
tions of RNA-seq measurements from 4,771 bone
marrow cells collected by the Tabula Muris Con-
sortium® generated by t-SNE at kg = 15 (A) and 150
(C) (perplexity = 10 and 120, respectively; custom

10 g . . 51,52
variation of the openTSNE implementation”'°) and
m by UMAP?® at n_neighbors = k = 15 and 150. Ten
‘ previously annotated cell types provided by
c t-SNE: kEffz 150 D UMAP: k=150 Schaum et al.® are colored and labeled. The same
10 &, cells are colored and labeled in each panel.
7 : ’5?‘3“ (B) The number of nearest neighbors, k, is set to its
2 % default value, 15, in UMAP. Following the method in
oot e o supplemental section S3, we use t-SNE with a
"’ . similar number of nearest neighbors (kg = 15) in (A).
& s ) 7 (C and D) We visualize the data using t-SNE and
6 9 --umilg® UMAP, respectively, at a much larger number of
9 a2 .. nearest neighbors: kg = 150 in (C) and k = 150
% 10 - in (D).
6: Late Pro-B Cell
2: Naive B Cell 7: Monocyte
8: Hematopoietic Precursor Cell
e e———— = Grig”:gﬁgggfs‘f e agnostic to the DR method being em-
ployed and the ways in which quality is
assessed. That is, while we focus on eval-
10,48-50

and to make im-

how to appropriately use DR algorithms
provements to the algorithms themselves.®'™>” Several efforts to
characterize the quality of DR methods have been pur-

sued,”"*®%8 which can roughly be categorized as being

global®®°8=%5 or |ocal?®45+46:65:57 in scope, and either based on
preserving distances,®® neighborhoods,0+46:58-60:62.68.69 g to_
pology,®*"%"" put in all cases they attempt to summarize the
extent to which a given DR algorithm preserves some aspect
of the original data’s structure. In surveying this literature, and
considering our basic principles, we find that what is still missing
is an approach that not only assesses quality quantitatively and
locally,*+47-60-67-70.72 bt also statistically in that it seeks to char-
acterize the part of the natural and expected variability in quality
that is due to noise.

It is with this in mind that we have developed the empirical
marginal resampling better evaluates dimensionality reduction,
or EMBEDR, algorithm to locally and statistically evaluate DR er-
ror. EMBEDR is a general approach that addresses the several
unique concerns that arise with high-dimensional, noisy data,
such as single-cell omics measurements, while also adhering
to our motivating principles for a quality-assessment scheme.

RESULTS

The EMBEDR algorithm

In this section we describe the heuristic structure of the EMBEDR
algorithm, as well as specific implementation details that are re-
flected in the figures throughout this work. Considered generally,
EMBEDR is based on measuring the local, per cell, distortion of
the DR method as a “quality” statistic. We then use empirical re-
sampling methods to generate a null distribution for these statis-
tics so that we may quantitatively assess whether a dimension-
ally reduced view of a cell’s local neighborhood has more
structure (signal) than we expect to be generated by random
chance. We re-emphasize that the EMBEDR framework is

uating the accuracy of t-SNE and UMAP in representing single-
cell omics data, EMBEDR is not specifically designed for these
algorithms or datasets, but more generally to assess the quality
of any DR method applied to high-dimensional data, as can be
seen in Figure S12. Furthermore, to emphasize EMBEDR’s
most direct application, we focus on evaluating t-SNE and
UMAP at the point where they are most commonly used in sin-
gle-cell omics analyses: after initial data preprocessing for visu-
alization of quality control, cell-type identification, and other
results.

The EMBEDR algorithm consists of three steps: (1) the
repeated embedding of the data (the repeated generation of
low-dimensional representations of the data), (2) the construc-
tion and embedding of null datasets generated in a data-driven
manner, and (3) the calculation of the quality statistics and the
performance of a hypothesis test. These are illustrated in Figures
2A-2C, respectively. We elaborate on each of these three steps
below. As suggested by the motivating principles, these steps
focus on the calculation of a local quality statistic, the empirical
embedding statistic (EES), for each sample (cell) in the dataset.
We then go on to describe how our algorithm characterizes the
distribution of the EES in a meaningful and useful way.

To clarify the notation throughout the rest of this paper:
consider a data matrix X to be a collection of N s vectors, where
each cell contains measurements for each of Njeatures genes (for
scATAC-seq data, this may be peaks instead of genes). Noting
that, for stochastic DR algorithms, the data can be embedded
multiple times to yield different lower-dimensional representa-
tions, we denote the position of the ith cell in the nth embedding
by 7,1,7, where the number of embeddings is Nembed, and 7,;,,7 is
usually a 2D or 3D vector. For each cell, in each embedding, we
calculate the quality statistic, which we denote EES;,. An
asterisk (*) is used to indicate quantities that correspond to
“null data” generated by resampling, so that a resampled high-
dimensional data vector is X; and its position in the embedded
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Figure 2. A schematic of the EMBEDR algo-
rithm

(A) The data (5,037 FACS-sorted marrow cells from
Schaum et al.? shown as a heatmap) are embedded
in 2D using a DR method several times (here: UMAP
with k = n_neighbors = 100). For each sample, the
distances to neighboring samples are calculated in
both the original data, X;—X;, and the low-
dimensional embedding, ¥, —¥;. An example cell
isillustrated by a red star in each of the embeddings.
These distance distributions are compared to
calculate EES; ,, a quality score for each cell in each
embedding.

(B) The same procedure as in (A) is conducted using
null datasets constructed via marginal resampling
(see Figure 3). A purple star indicates a sample point
in each null embedding.

(C) The individual EES;, values are compared with
the null distribution of EES* to estimate a p value for
each cell’'s embedding quality. This p value corre-
sponds to the empirical likelihood that the null data
could generate an observed or better embedding
quality.

(D) The UMAP embedding of the data from (A) is
shown. Cells in this embedding are colored ac-
cording to the p values calculated in (C) , so that
embedding quality can easily be visualized across
an embedding. The light purple cells are those
whose neighborhoods are better preserved than
expected by random chance.

Noise-like

EMBEDR p-Value

space would be 7,* The final step of the hypothesis test process
involves calculating a p value, p;, = Prob(EES" <EES;,), using
an empirically generated EES* distribution. (EES* refers to the set
of EES;,, across all cells in the null data and all N} .4 embed-

dings of the null data.)

1. Embedding the data: the first part of the EMBEDR algo-

rithm is to use a candidate DR algorithm to embed high-
dimensional data in lower dimensions. For stochastic al-
gorithms, such as t-SNE or UMAP, this embedding may
be performed multiple times with differing results as the
quality of a specific sample’s location can vary dramati-
cally between embeddings (see Figures S4 and S9). The
multiple embedding process is illustrated in Figure 2A us-
ing UMAP. In the final step of the algorithm, the effect of
these multiple embeddings is summarized into a single
quantity, so that the choice of Nempeq is Not critical to the
interpretation of the output, and instead mostly impacts
the resolution of the output p values (see section S4 and
Figures S9 and S10) For all datasets shown, the data
were embedded 25 times (except for the Allen Brain
data, which were embedded 12 times), but in practice
we find that ~3 embeddings is sufficient to get broad pat-
terns in embedding quality.

Next, an affinity between pairs of cells in the high-dimen-
sional space is calculated by applying a Gaussian kernel
with fixed entropy to the pairwise distances (as in Van
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Der Maaten and Hinton®?). This is

repeated in the lower-dimensional

embedding except that a Student’s
t distribution is used to calculate affinities. The affinity dis-
tributions for each cell in high and low dimensions are
compared using the Kullback-Leibler divergence, Dy,
which constitutes our quality measurement. If the Dy, is
small, it indicates that the two distributions are similar,
suggesting that the neighborhood of the embedded cell
looks similar to its neighborhood in the original, high-
dimensional, gene expression space. This calculation is
illustrated in Figure 2A. The use of Dg; as a quality metric
has also been used in other contexts.>*"* For more details
on how this is calculated, see section S1.

. Null construction and embedding: the most crucial step

in the EMBEDR algorithm is the data-driven construction
of biologically realistic “null” datasets that can be used
to generate an expectation for embedding quality from
data devoid of biological signal. EMBEDR achieves this
via marginal resampling, which is a resampling procedure
where each gene’s expression levels in the null data are
independently drawn from the distribution for that gene in
the original data. Figure 3 illustrates this process.
Computationally, if X is an Ngejis X Nieatures data matrix of
single-cell omics observations, X* can be generated by
independently drawing Nceis samples from each column
in X with replacement (the resulting X* has the same
shape as X). In this way, the null data contain biologically
realistic, marginal distributions of individual features
(genes, peaks, principal components, etc.)—Figure 3B
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Figure 3. An overview of marginal resampling for generating null datasets

(A) Gene expression data for real and resampled scRNA-seq data (FACS-sorted marrow cells®) are shown as heatmaps.

(B) The first and second principal component of the data in (A) are plotted against each other, and the corresponding marginal distributions are shown to the top
and right. Kernel density estimates are also plotted on the marginal distributions.

(C and D) The effect of marginal resampling to generate null distributions is shown, where the data and a null dataset are embedded using UMAP at k = 15 and

t-SNE at ke =60, respectively, which correspond to the default parameters for those algorithms.

shows that genes in an scRNA-seq dataset have nearly
identical marginal distributions in both datasets—but
the joint distribution of genes is altered. More technically,
the null dataset comprises a joint probability distribution
constructed from the explicit product of the individual
marginal distributions—guaranteeing statistical indepen-
dence of the features in the null data. This property of in-
dependence generates a more diffuse distribution of cells

relative to the real data, allowing for the assessment of
whether real cells populate higher-density regions in
expression space than expected. Any clustering that
manifests in the null dataset is therefore a consequence
of the properties of the original data’s marginal distribu-
tions and the specific DR algorithm employed. In addi-
tion, in this work, the null generation takes place after
normal data preprocessing (including normalization) so
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that the cellular library size distributions are similar be-
tween the null and data samples.

As with the original data, we recommend that the null-
generation and embedding process be repeated several
times so that the distribution of null quality statistics,
EES;, is well resolved. In the examples shown in this pa-
per, we have generated and embedded ten null datasets
(three in the case of the Allen Brain data). However, we
have also found that, in practice, a single null dataset is
sufficient to characterize the distribution of EES;, and
that additional nulls mostly add improved resolution to
the p value calculation outlined in the next step of the al-
gorithm.

We note that the use of marginal resampling has been used
successfully in several other contexts where the signal under ex-
amination was assumed to be a result of correlations in the
data”®"" and is similar to methods used for selecting statistically
significant principal components.”® It is reasonable to assume
that correlation structures are discoverable by DR methods, as
these methods leverage the covariance (PCA) or pairwise dis-
tance (t-SNE, UMAP) matrices to generate embeddings. Con-
structing null data via marginal resampling is also a model-free
and a parameter-free process. In the context of scRNA-seq
data, these resampled datasets correspond to the hypothesis
that all cells are sampling a common distribution of gene expres-
sion, which is a useful and generic null hypothesis for many bio-
logically interesting problems, such as cell-type identification,
where the hypothesis would be that gene distributions depend
on cell identity.

Figures 3C and 3D serve to underscore why we should
generate these null data empirically: uncorrelated data are not
necessarily uniform, meaning that clusters and structures can
appear in DR representations of signal-less data! This is not
necessarily intuitive, as one might naively expect clustering to
be a consequence of cells having similar expression profiles,
but clusters will be generated by many DR methods even
when no such signal is present.® Furthermore, there are no
theoretical results that describe the application of arbitrary DR
methods to arbitrary data, so that marginal resampling is also
a practical approach to this problem.

3. Empirical hypothesis test: the final step in the EMBEDR
framework is to perform an empirical hypothesis test.
Once the null data have been created and the null embed-
ding statistics EES* have been calculated for many sam-
ples over several embeddings, each of the sample statis-
tics, EES;,, can be compared with the aggregated
distribution of null statistics, as illustrated for a sample
point in Figure 2C. The fraction of null statistics, EES*,
that are smaller than EES;, can be used to estimate the
likelihood that null data would be embedded as well by un-
correlated data. This likelihood is interpreted as an empir-
ical p value, and can be summarized across the Nemped
embeddings’®®° to give a single quality metric, p;, for
each cell. For the sake of interpretability, we make an es-
timate of the likelihood that a cell’s quality is better than
that of the null across the Ngmpeq €mbeddings by calcu-
lating P(EES; <EES*), which amounts to averaging the in-
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dividual embeddings’ p values. See section S4 for more
details.

The EMBEDR p values can then be used, as in Figure 2D,
to color each cell within an embedding indicating regions
of higher or lower amounts of embedding quality. When
using Dk, as the quality statistic, lower p values indicate
that a cell’s neighbors are similarly distanced in the original
and low-dimensional spaces, with closer neighbors (in the
original space) weighted more than those further away.
The use of other quality metrics®**>“*® would require an
appropriate adjustment to this interpretation, but the inter-
pretation of the p value as a measure of better or worse
than algorithmically induced distortions does not. We
demonstrate the interpretation of these p values in our
results.

In practice, the EMBEDR algorithm operates in conjunction
with, not as a substitute for, any DR algorithm, requiring little
user input beyond what the DR method would require on its
own. The algorithm has been implemented as a ready-to-use Py-
thon package on Github for t-SNE and UMAP. The rest of this
section describes specific observations resulting from the appli-
cation of EMBEDR to single-cell datasets.

EMBEDR reveals where DR output shows signal

versus noise

Now that we have a local and statistical approach to separating
signal and noise in DR output, we can start to address the diffi-
culties introduced by DR methods in a principled way. For
example, we used the tetrahedron thought experiment (Fig-
ure S2) to intuitively show how DR methods introduce heteroge-
neous distortions in the dimensionally reduced embeddings, but
the problem here is not that these methods generate such errors,
it is that they are not systematic or predictable. That is, if there
were a pattern to misrepresentations in the lower-dimensional
embedding, then any of its features, such as the relative separa-
tion of two clusters or a cell’s similarity to its neighbors, could be
inferred by taking into account that pattern. Of course, single-cell
data are not as well structured as a tetrahedron, so that a hetero-
geneity of quality can be expected biologically: a single-cell da-
taset from a mature tissue does not always have equal numbers
of distinct cell types, or the cell types might have different levels
of gene expression variability. What this means practically is that
the distortions in a cell’s placement in the lower-dimensional
representation vary in a manner that is impossible to discern
“by eye.” Thus, a first step toward helping researchers use DR
methods confidently is to identify where a dimensionally reduced
view of data is preserving high-dimensional structure and where
it is not.

In Figures 4A-4C we present lower-dimensional embeddings
of the Tabula Muris marrow dataset at three different values of
effective nearest neighbors, kgg, in t-SNE (see section S3 for a
discussion on how kg is calculated), which is a monotonic func-
tion of its perplexity parameter. We utilize kgz; instead of perplex-
ity to enable direct comparisons to UMAP and to provide a more
intuitive parameterization of t-SNE. The cells in these represen-
tations are colored according to the level at which the DR
method was able to preserve the high-dimensional neighbor-
hood structure relative to noise (see the color bar in Figure 4D).
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Figure 4. Optimizing DR algorithm hyperparameters generates high-quality embeddings
A total of 4,771 bone marrow cells from several mice® were embedded with t-SNE 5 times at several values of kgi and the EMBEDR p value was calculated using

10 null embeddings.

(A-C) Embeddings generated at three interesting values of ke; each cell is colored by the EMBEDR p value (shown by the color bar) in (D). In (A), kess= 40

corresponds to the default t-SNE parameter (perplexity = 30) in most implementations of t-SN

E.?>®" (C) An embedding generated using kg = 1200 (perplexity =

1,000), which corresponds to the largest fraction of cells being well represented in the lower-dimensional embedding. Similarly, (B) shows the results at kg¢ = 150
(perplexity = 100), which corresponds to a second, smaller minimum in the p values.
(D) The distributions of p values are shown as box-and-whisker plots over each value of kg and the median of the boxplot at kg« = 1,200 indicates that a

substantial fraction of cells are best embedded at that hyperparameter value.

In this color map, green is used to illustrate cells whose quality is
better than 99.9% of embedded cells from a null dataset. Orange
then indicates cells that have a 99% chance of being better than
the null, and blue indicates cells that are better represented than
90% of null cells. Pink cells are those whose neighborhoods in
the lower-dimensional space are just as distorted as those
generated by embedding signal-less data. As a result, this color-
ing allows a researcher to quantitatively understand where DR

output is actually showing signal: regions of pink should not be
closely interpreted since the illustrated shapes and distances
are not representative of the original data. On the other hand,
green regions suggest the presence of a biological signal, as
the structures in those parts of the embedding are unlikely to
have been generated by applying the DR method to signal-less
data—i.e., they are unlikely to be due to the vagaries of the DR
method. More quantitatively, a user can examine these quality
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levels separately, as in Figure S11, to illuminate regions that are
well embedded or poorly embedded.

Generally speaking, there are some immediate patterns worth
pointing out. For example, at many values of kgg, cells that are
clustered together appear to have a similar quality of embed-
ding—there are blue (poorly embedded) clusters and green
(well embedded) clusters. We will elaborate on this further in
the next section. In addition, we observe that cells that are iso-
lated from the center of mass of any cluster tend to be poorly
embedded. However, we will see in the next results that such
poor embedding may be largely due to the improper specifica-
tion of DR method hyperparameters. More specifically, we find
no correlation between the size of a cluster and its members’ p
values at their optimal specification, shown in Figures S16, so
that both rare and common cell types are able to be assessed
with EMBEDR.

It is also worth highlighting that Figure 4A employs the default
parameters for t-SNE (perplexity = 30), but results in a low-qual-
ity dimensionally reduced representation of the data. Figures 4B
and 4C are then a potentially surprising contrast, as large por-
tions of the data are well represented when using hyperpara-
meter values that are very different from common recommenda-
tions.*® The difference in quality between these embeddings
underscores the potential pitfalls of employing complex DR algo-
rithms that require user-prescribed parameters without a quality-
assessment methodology. We elaborate on this more in the next
section.

In this way, EMBEDR’s most immediate contribution is to pro-
vide a DR user with an intuitive map of their reduced-dimension
data so that spurious structures can be separated from putative
biological signals. A utility for generating plots like Figures 4A-4C
is included in the Python package.

EMBEDR allows for optimization of algorithm
hyperparameters

As expected, Figures 4A-4C clearly illustrate that the quality of a
dimensionally reduced view of data can vary from cell to cell
across the lower-dimensional space, but Figure 4D shows that
quality can also depend strongly on values of DR hyperpara-
meters. In this panel, each cell’s p value is summarized as box-
plots that change as we sweep across Kkg¢, the effective number
of nearest neighbors used by t-SNE to place cells in two dimen-
sions. This figure thus allows for the detection of a “globally
optimal” kg based on where the largest fraction of cells are
best embedded. For the Tabula Muris marrow tissue, setting
ke =1200 corresponds to the largest fraction of minimal p
values, as indicated by the shaded box in Figure 4. Interestingly,
this is a far larger value for the perplexity parameter than is typi-
cally advised (perplexity = 1,000), even in some multiscale
methods.*®°” This is interesting in a practical sense, as EMBEDR
provides a hyperparameter tuning scheme that differs from
typical heuristics.

This result also emphasizes two important considerations.
First, many DR methods—t-SNE and UMAP included—have a
hyperparameter that corresponds to setting the size of “neigh-
borhoods” in the high-dimensional data. (In section S3 we
show how t-SNE’s perplexity can be mapped to such a size,
ke, which we use throughout this paper.) This neighborhood
size then acts like a low-pass filter in electronic circuits, in that
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information about cells that are further than a certain “scale” is
neglected. Regardless of whether a “neighborhood” is defined
as a distance or as a number of nearest neighbors, however,
the scale felt by the data is always mediated by the density of
the data in the high-dimensional space. What this means most
directly is that the interpretation of the neighborhood size param-
eter must involve the size of the dataset. Telling a DR method to
use 15 nearest neighbors will have a very different effect when
applied to a dataset of 15 cells versus one with 15,000. In the
former case, the effective scale is the entirety of the data, in
the latter it may be the entire data or—more likely—it may be re-
gions that differ in size for each cell depending on the data den-
sity around that cell. As aresult, these DR hyperparameters must
be set and interpreted uniquely for each dataset; in this paper we
consider values for these parameters across their entire possible
ranges. Furthermore, EMBEDR’s data-sensitive statistical test
means that Figure 4D can be constructed and interpreted
consistently across datasets of different sizes.

Second, the fact that large sections of cells are best
embedded when t-SNE considers kgi = 1200 nearest neighbors
in Figure 4C means that utilizing fewer neighbors for these cells
may result in spurious groupings,®® which can be seen in the
relatively poor quality of Figure 4A. As a result, the detection
and interpretation of structures in low-dimensional representa-
tions need to account for whether the DR scale matches the
“native” scale of the cells. The plateau in the curve in Figure 4D
at ke =150 and the dip in the curve at kg =1200 means that
most cells need to consider the positions of their 150 or 1,200
nearest neighbors to accurately position themselves in two di-
mensions, suggesting that kg= 150 and 1,200 correspond to
native scales for these data. EMBEDR facilitates this assessment
by permitting comparisons between hyperparameter choices
and by assessing quality locally.

The salient features of Figure 4D in the context of the Tabula
Muris marrow dataset are preserved across the datasets we
have analyzed. For a list of datasets considered, see Table
S1. A global p value sweep and a cell-optimal embedding
for each dataset can be found in Figures S14 and S20-S24.
In all cases, EMBEDR illustrates that (1) the quality of features
in dimensionally reduced data varies in a manner that is diffi-
cult to discern "by eye,” and that (2) the quality varies as a
function of algorithmic hyperparameters and DR methods.
Our ability to discern the local quality of dimensionally
reduced data results from posing the problem statistically
and the generation of data-driven null hypotheses. In addition,
while it may be concerning that large portions of some DR
outputs are consistent with spurious DR distortions, EMBEDR
provides a quantitative tool with which to examine and
improve these results.

EMBEDR allows for comparisons of DR algorithms

Novel DR algorithms are constantly being developed or adapt-
ed, so that their incorporation into single-cell analysis requires
quantitative analyses of their performance. While assessments
of these methods on select case studies have been performed
in many studies,'%'"13:41:48:49.81 thare are no theoretical results
that guarantee high-performance of any of these methods on
a given dataset. Instead, our results and observations
suggest that different methods will generate lower-dimensional
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Figure 5. EMBEDR facilitates direct compar-

612 (13%)

isons of DR methods

(A-D) A total of 4,711 cells from the Tabula Muris
marrow tissue® are embedded by t-SNE and UMAP
at default (A and B) and EMBEDR-optimized (C and
D) numbers of nearest neighbors. Each cell in each
embedding is colored by the EMBEDR p value ac-
cording to the color bars on the right. The p values
are calculated as in Figure 2 and in supplemental
Section S4 using Nembed = 25 applications of t-SNE/
UMAP to the data and N .4 = 10 embeddings of
null data. In the boxes below each panel, the num-
ber (percentage) of cells at each p value threshold
are shown (indicated by the corresponding color),
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embeddings with different quality for different datasets. As a
result, EMBEDR’s data-driven quality assessment provides a
natural tool for the comparison of DR methods applied to a
common dataset.

Figure 5 illustrates this approach in action, as the quality of t-
SNE and UMAP embeddings of the Tabula Muris marrow data
are compared side-by-side. In the top row, we show embed-
dings generated at t-SNE’s and UMAP’s default parameters,
while the bottom row sets k or kei based on the optima identified
in Figure 4. Below each embedding, the number of cells that
meet a quality threshold are indicated, showing that at default
hyperparameters neither t-SNE nor UMAP generate well-
matched neighborhoods for most cells. However, the effect of
optimizing t-SNE can now be seen in Figure 5C, as more than
50% of the cells have a neighborhood that is far more ordered
than the random null. When UMAP uses the same number of
neighbors in Figure 5D, the results are improved over the de-
faults (Figure 5B), but to a lesser extent than t-SNE. In Figure 5B,
the null was generated by reducing the dimensionality of the re-
sampled data using UMAP at k = 15. That is, the p values for
each cell are determined based on how often UMAP randomly
preserves structure in resampled data. In addition, the represen-
tations in Figure 5 are colored with p values generated by running
t-SNE/UMAP on the data 25 times and on marginally resampled
data 10 times, so that the p value indicates a consistency of qual-
ity as well, even though t-SNE and UMAP are stochastic and
non-linear methods.

We emphasize that this should not be taken to mean that
UMAP is not appropriate for the analysis of single-cell data,
but only that t-SNE preserves structure better than UMAP in
this case. We apply EMBEDR to other DR methods in Figure S12
and find similar differences in methods. Crucially, this direct,
quantitative comparison of DR algorithms is an immediate
consequence of our casting the quality-assessment problem
as a statistical problem and by generating the null hypothesis
empirically.

with the threshold containing a plurality of cells
shown in bold.

0.01

1073 EMBEDR allows for a single-cell

analysis of single-cell data

While our results in Figures 4 and 5 show
that EMBEDR can be used to push forward
global analyses of DR method quality, our
earlier observations that quality is hetero-
geneous within a dataset suggest that we should be more careful
and consider how embedding quality changes more locally.
More directly, the existence of global optima in embedding qual-
ity at kesr =150 and 1,200 does not imply that all cells are individ-
ually best embedded at those scales. Indeed, our expectation is
that single-cell data will contain myriad densities, cell types, and
expression patterns, meaning that we should expect to observe
multiple scales in data generically. As a result, current methods
are likely under-leveraging the information in our single-cell
data by ignoring single-cell patterns.

EMBEDR provides a natural route to performing a single-cell
resolution analysis of single-cell omics data as it already deter-
mines DR quality on a cell-wise basis. In Figures 6 and S13,
we illustrate previously annotated cell types in the Tabula Muris
marrow dataset to empirically demonstrate the existence of mul-
tiple scales in the data. Inspired by these observations, we pro-
pose to use a single-cell resolution analysis of single-cell data to
produce a locally optimal dimensionally reduced view of data
(Figure 7).

In Figure 6A, the EMBEDR p values for cells in six cell types from
the Tabula Muris marrow dataset are shown as a function of kg.
Notice that each cell’'s p value "trajectory” can be followed as
keg changes, giving a cell-specific “spectrum” of quality. Consid-
ering the statistics of these spectra for each cell type shows that,
indeed, some cell types are better represented at different scales
than others. For example, macrophages (green) appear to be well
embedded for kg = 150, but the granulocytes and B cells are
best embedded in a region around kg = 1,200. In Figures 6B
and 6C, two examples of embeddings at different kgi are shown
to illustrate the features of these spectra. In Figure 6B, the neigh-
borhoods of more than 80% of macrophages are better structured
than noise, but in Figure 6C none of their neighborhoods are. The
opposite happens for the granulocytes and B cells: using too few
neighbors results in spurious clustering and over-fracturing of
these cell populations; increasing to 1,200 neighbors captures
that they are parts of large, diffuse regions of data space.
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More generally, in the context of datasets that may contain
distinct cell types, we expect this to be reflected in these
spectra, as members of the same cell type may have neighbor-
hoods at a common scale. We observe this empirically in Fig-
ure S15, where cell annotations with more cells are best repre-
sented when t-SNE uses more neighbors. This makes sense,
because if a cell is truly part of a cluster of N other cells, then
incorporating spatial information from those N cells should be
necessary to place that cell in an embedding. Conversely, cells
from less-populous cell types may be poorly placed at high keg
because they are being positioned using cells that are not truly
their neighbors. For example, the basophils are best embedded
at a smaller scale (kgss = 30), which is likely because their neigh-
borhoods are best described by only including those 25 cells.

In this way, Figure 6 demonstrates the existence of multiple
scales in the data. The differences in the spectra of cells in
different cell types illustrates the sizes of different neighbor-
hoods in the data. In this figure, the cell annotations were a given,
but the relationship between EMBEDR spectra and cluster sizes
(Figure S15) suggests that EMBEDR may be useful for unsuper-
vised cluster identification. The development of such a method is
beyond the scope of this work and will be pursued in the future.
Instead, in Figure 7 we show how adapting t-SNE to allow for
scales to be set per cell results in an improved, scale-sensitive
embedding that is easily interpreted biologically.

Specifically, using the spectra from Figures 4 and 6 for each cell,
the value for kg at which each cell was best embedded was deter-
mined (see section S5 for details). These values for kg were used
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Figure 6. Different cell types are best
embedded at a variety of scales
Using annotations from the Tabula Muris project,®
the embedding quality of different cell types in the
Marrow data can be examined individually across
values of Kg.
(A) Six identified cell types from the bone marrow
tissue are shown, where each cell with a given
annotation is shown as an individual line. The
colored boxes indicate the median p value across all
cells with that annotation, and the solid lines indi-
cate the 90th percentiles. Similar plots for all cell
types are shown in Figure S13. Embeddings at kg
=~ 150 and 1,200 are shown in (B and C), respec-
tively.

1200 4700 (B and C) The cells corresponding to each cell type
Eff are highlighted with the same color as in (A). Cells
with an EMBEDR p value below 10~2 (the gray line in
A) are opaque, while other cells with a highlighted
annotation are lightly shaded. The fractions of such
cells in an annotation are shown in the colored
boxes below the embeddings. Other cell types are
shown in gray for context.

Macrophage
(N=173)

150

to generate a new similarity matrix where
each cellused its own “preferred” neighbor-
hood size to determine similarities between
itself and its neighbors. This similarity matrix
was then used to find a representation of the
data via t-SNE. The resulting embedding is
shown in Figure 7. We emphasize that this
representation was determined in a
completely unsupervised manner that involved no specification
of t-SNE’s perplexity parameter. In fact, this procedure eliminates
the perplexity parameter from the embedding process!

Examination of this cell-wise optimized embedding using our
established quantities in Figures 7B and 7C illustrates interesting
patterns. In Figure 7B we see that the larger clusters are best
embedded when the effective neighborhood size is large, while
the smaller clusters only use ks = 100 or fewer nearest neigh-
bors. In this way, allowing the scales to vary locally facilitates
the construction of specific and detailed structures in the
embedding. These structures are robust, as reinforced by Fig-
ure 7C, where the minimal p value achieved by each cell across
the parameter sweep is indicated, illustrating that all clusters
were extremely well embedded at some value of kgg. In addition,
Figure S19 shows that this cell-wise optimal embedding has a
better average quality than default t-SNE.

In Figure 7D, we show the results of using an unsupervised clus-
tering algorithm, DBSCAN,®? on the cell-wise optimal embedding.
That is, we took the unlabeled positions in (A), generated cluster
labels, and in (D) and (E) we cross-reference these labels with
the expert annotations generated by the Tabula Muris Con-
sortium. Comparing these labels and annotations illustrates that
the structures in this embedding are biologically relevant. Each
of the seven clusters in Figure 7D clearly correspond to a class
of bone marrow cell types, with almost no overlap between cell
annotations except for granulocyte-monocyte progenitor cells.
Similarly, the structure and arrangement of the clusters is biolog-
ically consistent: the annotated B cells (cluster 1, blue) are all
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Figure 7. A cell-wise optimized embedding
reveals clear biological signals

Adapting t-SNE to use a different scale for each
sample in the Tabula Muris marrow data® generates
a well-structured representation of the data.

(A) The unlabeled embedding is presented.

(B and C) To generate this embedding, the scale at
which a cell’s p value was minimized was used to
set kg for that cell. This kg is shown in (B) and the
minimal p value achieved by a cell across the sweep
is shown in (C).

(D) Applying DBSCAN with eps set based on the
pairwise distance (PWD) distribution of cells in the
embedding (specifically, the 1.5th percentile of
PWDs) detected the seven indicated clusters. Any
Tabula Muris cell-type annotation for which more

Slamfl-Negative
Progenitor Cell (N = 572)

Hematopoietic Precursor
Cell (N = 256)

Common Lymphoid
Progenitor (N = 156)
Slamfl-Positive
Progenitor Cell (N = 134)

Granulocyte Mono
Progenitor Cell (N = 132)
Megakaryocyte-Erythroid

Progenitor Cell (N = 54)

Immature T Cell (N = 53)
Mature Natural Killer
Cell (N = 48)

Natural Killer

Immature Na
Cell (N = 34)

Killer
(N = 22)

Basophil (N = 25)

aligned according to their developmental trajectory from pro-B
cells to naive B cells. At the same time, there is no differentiation
pathway in the progenitor cells (cluster 2, orange), reflecting their
common multipotent state. Furthermore, in Figures S17 and S18
we show that, regardless of how cluster labels are applied to
this embedding, the distances between clusters in the cell-wise
optimal embedding are more correlated with distances in the orig-
inal data than those in a regular t-SNE representation. That is, dis-
tances between clusters in Figure 7D are actually correlated with
distances between cells in gene space.

We can also see that smaller cell types, such as macrophages
and basophils, are clearly separated from the larger clusters.
This is another benefit of generating cell-optimal embeddings:
cells that actually have small neighborhoods will be allowed to
keep those small neighborhoods, even in the presence of larger
clusters, which require larger scale parameters to be robustly
resolved. That is, setting a DR hyperparameter large enough to
resolve the structures in more populous cell types would nor-
mally squish or hide smaller, “rare” cell types, but this cell-
wise optimization process protects against this. We also find
that most cells have a scale at which they are well resolved, as
shown in Figure S16, so that preserving these scales for each
cell generates a better embedding.

We find that these results hold across other datasets. In Fig-
ures S25-S27 we recreate the process from Figure 7 for the Tab-
ula Muris diaphragm and brain tissues and the MNIST digits. In
each we find that structures are generated that obviously display
biological (scRNA data) or visual (MNIST) meaning and that rare

than 20 cells overlapped with a DBSCAN label was
given a different shade of the cluster color.

(E) These cell annotations and colors are shown as a
confusion table.
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: embeddings even in the context of larger
clusters.
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i Single-cell omics offers a path toward un-
25

told biological discovery, but its high-
dimensional nature and inherent stochas-
ticity requires the careful application of
DR algorithms to make progress. The promise of DR approaches
to single-cell omics data is not just to gain a visual intuition for the
structure of the data, but to mitigate the curse of dimensionality
and perform additional downstream quantitative analyses. As of
now, the state of the art in DR currently rests on ever-changing
heuristics to a degree that limits data analysis and data-driven
discovery. A researcher cannot perform a comprehensive algo-
rithm review for each new dataset, ensuring that the lack of a
general approach to evaluating the quality of a DR method is pre-
venting the community from making the most of the single-cell
omics revolution. In the context of scRNA-seq, which has been
the omic technology of focus in our study, cell-type classifica-
tion,® lineage reconstruction,’® RNA-velocity analysis,®® and
countless other approaches rely on the fidelity of dimensionally
reduced data, or are limited by their inability to confidently
employ DR.

The statistical approach presented in this work via the EM-
BEDR algorithm addresses these concerns by providing a
rigorous framework for the evaluation of DR quality that can
also reveal information about the data itself. The EMBEDR algo-
rithm is relatively simple (Figure 2) and is available as a ready-to-
use Python package. EMBEDR performs its quality assessment
in a data-driven manner, meaning that it can be used to rigor-
ously compare DR methods’ performance (Figure 5). Perhaps
more importantly, EMBEDR’s local and statistical approach
promises to reveal previously hidden structures in single-cell
datasets while also facilitating hyperparameter optimization
(Figure 4).
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The EMBEDR method as proposed thus addresses the impor-
tant question: “how much can | trust this dimensionally reduced
view of the data?” Embedding quality is made available as a
cell-wise, interpretable p value that has meaning across algorithms
and datasets. This quality metric can be used to set algorithmic hy-
perparameters globally or locally, and can be leveraged to make
inferences about the data itself. The method is robust and does
not require the user to carefully specify parameters, in fact, the
cell-wise optimal embedding process in Figure 7 effectively re-
moves the perplexity parameter from the t-SNE algorithm.

This paper presents a broad view of the algorithm and its ap-
plications, but there are a few limitations that require further
consideration. Most practically, the code as written rests on
the speed of current implementations of DR algorithms that
can be chained together to generate many (null) embeddings
of the same data. Timings for various hyperparameter sweeps
to generate figures like Figure 4 are shown in Table S2. As noted
earlier, while there are benefits in principle to using many embed-
dings and many hyperparameter values, we find that as few as
three data embeddings and a single null embedding can be suf-
ficient. Furthermore, the recent extension of common
DR methods to GPUs®*® or quadratic rate optimization
schemes®®®® promises drastic improvements to these runtimes,
but their inclusion here was beyond the scope of this work.

The efficiency concerns also imply that there is a finite resolution
to the calculated p values since the null distributions are calculated
empirically. This means that the number of nulls that can be
embedded determines the lower bound on the p values. Other
than improved computational efficiency, remedies may include
theoretical work to describe the tails of these null distributions or
a principled method for parameterizing the null distribution.

Moving forward, it is clear that the nature of information that EM-
BEDR provides can be leveraged in a variety of ways not presented
in this work. Several such directions are suggested in Figure 5,
where more comprehensive efforts could be undertaken to assess
the quality of DR algorithms generically, as in other studies.***’
Alternately, as suggested by Figure 6, a “spectral” view of embed-
ding quality may provide an avenue for unsupervised clustering
more directly. More simply, removing cells that never achieve a
certain standard of quality may also be useful in improving tradi-
tional quality control processes. An extension of our null-genera-
tion process to non-normalized datasets may also permit EM-
BEDR to perform quality analyses of entire data-processing
pipelines.

Non-computationally, Figure 4 suggests that this approach
may be of widespread utility in the analysis of high-dimensional
biological datasets to detect and to assess the stability of biolog-
ically relevant structures. Protecting samples with small neigh-
borhoods from being subsumed by large-scale parameters sug-
gests that EMBEDR’s cell-wise optimal embeddings may be
reliably used to detect rare cell types. In addition, the ability of
the method to form model-free, non-parametric-scale spectra
presents a new way to look at these datasets that may reveal
heretofore unseen phenomena.

In all cases, high-dimensional and heterogeneous datasets,
such as single-cell RNA-seq, require analysis techniques that
account for and leverage the expected noise in the data to iden-
tify real biological signal. EMBEDR provides a robust statistical
framework to achieve just that.
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EXPERIMENTAL PROCEDURES

Resource availability
Lead contact
Further information and requests for resources and reagents should be
directed to and will be fulfilled by the lead contact, Madhav Mani (madhav.
mani@gmail.com).
Materials availability
This study did not generate new unique materials or reagents.
Data and code availability
No new data were generated in this work. For a full list of references for the da-
tasets considered in this work, see Table S1.

The code used to generate the results in this work is available here. Updates
to the code, as well as examples and documentation, are available at our Gi-
thub repository.

Single-cell data preprocessing

At this point, the EMBEDR algorithm has been designed and tested as a tool
for assessing the quality of a specific DR algorithm when applied to a quality
filtered and normalized dataset. DR algorithms are usually found at this point
of an analysis pipeline, where they are used for visualization or confirmation
of other results. In targeting EMBEDR at this stage of the process, our method
allows researchers to assess the extent to which structures in their data are
present or detectable in a 2D or 3D embedding. We do not, however, consider
here the extent to which different data-processing steps affect a dataset’s
embedding quality in this work, although EMBEDR could also be utilized to
evaluate this.

As a result, each of the datasets investigated in this work have been
filtered and normalized following a standard protocol before we apply DR
methods, such as t-SNE or UMAP. Specifically, all single-cell datasets
were obtained pre-aligned from their sources. The scRNA-seq data were
filtered so that each cell contained at least 500 genes and 50,000 reads.
These cells were also filtered so that no cell contained more than 10%
spike-ins, 10% ribosomal genes, or 40% Rn45s. The data were then
normalized to account for each cell’s library size and they were then log-
transformed. The number of genes was then reduced to only the highly var-
iable genes according to Satija et al.°” before centering and scaling the
data to have uniform variance. PCA was then applied and the first 50 com-
ponents were kept (100 components were kept for the Allen Brain Insti-
tute data).

The scATAC-seq data from 10x genomics was also filtered so that each
peak was found in at least 10 cells and each cell contained at least 1,000
peaks. Cells were also filtered so that their TSS enrichment score was at least
2. The cells were normalized using TF-IDF and then an SVD was applied and
the first 50 components were retained.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/].
patter.2022.100443.
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