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Abstract

We consider the problem of finding an approximate solution to ¢; regression while only
observing a small number of labels. Given an n X d unlabeled data matrix X, we must choose
a small set of m <« n rows to observe the labels of, then output an estimate § whose error
on the original problem is within a 1 4 ¢ factor of optimal. We show that sampling from X
according to its Lewis weights and outputting the empirical minimizer succeeds with probability
1—4 form > O(E%dlog %). This is analogous to the performance of sampling according to
leverage scores for ¢2 regression, but with exponentially better dependence on 6. We also give a
corresponding lower bound of Q(Ei2 +(d+ %) log ).

1 Introduction

The standard linear regression problem is, given a data matrix X € R™*? and corresponding
values y € R™, to find a vector € R? minimizing | X3 — yl|lp- Least squares regression (p = 2)
is the most common, but least absolute deviation regression (p = 1) is sometimes preferred for its
robustness to outliers and heavy-tailed noise. In this paper we focus on ¢ regression:

B* = argmin | X8 — ylly (1)
BeR
But what happens if the unlabeled data X is cheap but the labels y are expensive? Can we
choose a small subset of indices, only observe the corresponding labels, and still recover a good
estimate B of the true solution? We would like an algorithm that works with probability 1 — ¢
for any input (X,y); this necessitates that our choice of indices be randomized, so the adversary
cannot concentrate the noise on them. Formally we define the problem as follows:

Problem 1 (Active L1 regression). There is a known matric X € R™? and a fired unknown
vector y. A learner interacts with the instance by querying rows indexed {ik}ke[m} adaptively, and
is shown labels {y;, }ke[m] corresponding to the rows queried. The learner must return B such that
with probability 1 — § over the learner’s randomness,

15 = ylh < (1+ &) min | X5 =yl (2)

Some rows of X may be more important than others. For example, if one row is orthogonal to
all the others, we need to query it to have any knowledge of the corresponding y; but if many rows
are in the same direction it should suffice to label a few of them to predict the rest.



A natural approach to this problem is to attach some notion of “importance” pi,...,p, to
each row of X, then sample rows proportional to p;. We can represent this as a “sampling-and-
reweighting” sketch S € R™*" where each row is +e; with probability proportional to p;. This
reweighting is such that Eg[||Sv||1] o [|v|1 for any vector v. By querying m rows we can observe
Sy, and so can output the empirical risk minimizer (ERM)

~

[ = argmin ||SXS5 — Sy||:. (3)

For fixed 8, Es [|SX3 — Syll1 o< | X8 — yll1. The hope is that, if the p; are chosen carefully, the
ERM g will satisfy (2) with relatively few samples. Our main result is that this is true if the p; are
drawn according to the ¢ Lewis weights:

Theorem 1.1 (Informal). Problem 1 can be solved with m = O(E%dlog g&) queries. For constant
d=01),m=0 (e%dlog d) suffices.

Note that, while the model allows for adaptive queries, this algorithm is nonadaptive.
We next show that our sample complexity is near-optimal by demonstrating the following lower
bound on the number of queries needed by any algorithm to obtain an accurate estimate.

Theorem 1.2 (Informal). Any algorithm satisfying Problem 1 must query Q(dlog % + E% + 6% log %)
rows on some instances (X,y).

For small 4§, the upper bound is the product of d, glg, and log(1/6) while the lower bound is the
product of each pair.

1.1 Related Work

If all the labels are known: LAD regression cannot be solved in closed form. It can be written
as a linear program, but this is relatively slow to solve. One approach to speeding up LAD regression
is “sketch-and-solve,” which replaces (1) with (3), which has fewer constraints and so can be solved
faster. The key idea here is to acquire regression guarantees by ensuring that S is a subspace
embedding for the column space of [X y].

For a survey on techniques to do this, we direct the reader to [Wool4],[Mah11], [Cla05]. In
[Woo14], the emphasis is on oblivious sketches — distributions which do not require knowledge of
[X y]. On the other hand, [Mah11], [Cla05] discuss sketches that depend on [X y]. Most relevant
to us [DLS18], which shows that sampling-and-reweighting matrices S using Lewis weights of [X y]
suffice; we give a simple proof of this in Remark 2.2. The problem is that figuring out which labels
are important involves looking at all the labels.

Active /5 regression: Here we return to our setting, where only a subset of the labels is available
to us. A number of works have studied this problem, including [DMMO06, DW17, DM21]. The /¢,
version of the problem was solved optimally in [CP19], where an algorithm was given using O(g)

queries to find 3 satisfying E [HXB— yH%} < (1+¢)|[|XB* — y||3. Independent, identical sampling

using leverage scores achieves the same guarantee using O(dlogd + g) queries. Note that these
results for /5 ERM only work in expectation, while our results hold with high probability. One can
get high probability bounds in the /5 setting by taking the median of O(log1/0) repetitions, but
the ERM itself does not succeed with high probability.



Subspace embedding for /; norms: Subspace embeddings for the ¢; norm have been studied
in a long line of work including [Tal90], [Tal95], [LT89], [DDH"09], and [CP15], the most recent
of which describes an iterative algorithm to approximate Lewis weights, which are the analogue of
leverage scores for importance sampling preserving ¢; norms. The [CP15] result shows that, for the
same m = O(a%dlog g&) sample complexity as given in Theorem 3.1, a sampler sketch .S based on

the Lewis weights of X will have ||SX |1 ~ || X1 for all B € R

Our approach. At a very high level the goal of this paper is to replace the ¢y leverage score
analysis of the [CP19] active regression paper with the ¢; Lewis weight analysis in the [CP15]
subspace embedding paper. However, the differences between ¢ and f5 are significant enough that
very little of the [CP19] proof approach remains.

Per [CP15], the Lewis weight sampling-and-embedding matrix S preserves || Xj|; for all S.
The problem is that it doesn’t preserve || X — yl|/1: if y has outliers, we have no idea where they
are to sample them. In the fo setting, this difficulty is addressed using the closed-form solution
B* = XTy. Then if S is a subspace embedding it will preserve || X3 — X 3*||, so it suffices to bound
the expectation of |S(XS* — y)||3. In the ¢; setting, not only is * not expressible in closed form,
but there can be many equally valid minimizers §* that are far from each other. In Appendix A
we show how this approach extends to the ¢; setting to give a simple proof of Theorem 1.1 for a
constant factor approximation (i.e., ¢ = O(1)); but the existence of multiple * makes ¢ < 1 seem
unobtainable by this approach.

Instead, we massage the [CP19] subspace embedding proof into the appropriate form, as we
discuss in Section 3. While S doesn’t preserve the total error | X5 — y||1, it does preserve relative
error || X3 — y|l1 — || XB* — yl|1; the effect of outliers is canceled out, so that this concentrates
similarly well to || X8 — X8*|1. This approach would not work for ¢5: the effect of outliers does
not entirely cancel out there, since the square loss has unbounded influence.

Concurrent work: A very similar set of results appears concurrently and independently in [CD21].
Their main result is identical to ours, with a similar proof. They also extend the result to 1 < p < 2,
but with a significantly weaker m = O(d?/e?) bound. They do not have the (dlog %) lower bound.

2 Preliminaries: Subspace Embeddings and Importance Sampling

A key idea used in our analysis is that of a £; subspace embedding, which is a linear sketch of
a matrix that preserves £; norms within the column space of a matrix:

Definition 2.1 (Subspace Embeddings). A subspace embedding for the column space of the matriz
X € R4 js a matriz S such that for all f € R?,

I1SXB] = (1+ )| XA

Remark 2.2. Consider the simpler setting in which we had access to all of y, but we still want to
subsample rows to improve computational complexity. We can view the regression loss || X8 — y||1

B
-1

argmin | X8 — y||1 as before and let B = argmin |SX B — Syl|y. Then, B solves problem 1 because,
fore < %,

as the €1 norm of the point [X y] [ } in the column space of [X y|. Indeed, suppose B* =

. 1 ~ 1 . 14e
[ X8 =yl < 1—_€||5X5—SZIH1 < 1—_€||5X5 — Sy <

< 7 IXB" vl = A+ 49) [ X587 —ylls.
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One way to construct a subspace embedding is by sampling rows and rescaling them appropri-
ately:

Definition 2.3 (Sampling and Reweighting with {p;}? ;). For any sequence {p;}}' |, let N =, p;.
Then, the sampling-and-reweighting distribution S ({pi};—,) over the set of matrices S € RN*7 g
such that each row of S is independently the ith standard basis vector with probability &, scaled by

1%‘ For any k € [N}, let i, denote the index such that Sy ; = ;%'
1 'lk.

When working in £5, there is a natural choice for re-weighting: the leverage scores of the rows
[Wool4].

Definition 2.4 (Leverage Scores). The leverage score of the ith row of a matriz X, [;(X) is defined
as z; (XTX) ey

For /1 subspace embeddings, the analogous weights are the ¢; Lewis weights, defined implicitly
as the unique weights {w;(X )} ; that satisfy w;(X) = [;(WX) where W is a diagonal matrix with

ith diagonal entry 1 = We will drop the explicit dependence on X whenever it is clear from
w;

context.

Definition 2.5 (Lewis Weights). The ¢1 Lewis weights of a matriz X are the unique weights
{w;}_; that satisfy w? = %T(E;Lﬂ wijxja;;)_lxi for all i.

Lewis weights are defined in general for general £, norms, but we will only need the ¢; Lewis
weights. For basic properties of Lewis weights, we direct the reader to [CP15]. Using these defini-
tions, we now state the main consequence of using Lewis weights. This result comes from a line of
work on embeddings from subspaces of L1[0, 1] to £]* such as [Tal90], but is reproduced here similar
to how it is presented in [CP15].

Theorem 2.6 ([CP15] Theorem 2.3). Sampling at least O(d—lggrd) rows according to the ¢, Lewis

weights {w;}"_ of a matriz X € R™*? results in a subspace embedding for X with at least some

dlog & .
Egg =) rows are sampled, then we have a subspace embedding

constant probability. If at least O(
with probability at least 1 — §.
2.1 Properties of Lewis Weights

We will need some properties of Lewis weights, particularly of how they change when the matrix
X is modified.

Lemma 2.7 ([CP15] Lemma 5.5). The {1 Lewis weights of a matriz do not increase when rows are
added.

Lemma 2.8. Let X € R™? and let X' € RF"™4 be X stacked on itself k times, with each row
scaled down by k. Then, each of the Lewis weights is reduced by a factor of k.
3 Proof Overview

Theorem 3.1. Let X € R™*? have ¢, Lewis weights {wi}tigpn), and let 0 < ¢,0 < 1. Then, for
any N that is at least O (5% log ;%), there is a sampling-and-reweighting distribution S({p;}l—)
satisfying Y, pi = N such that for all y, if S ~ S({p;}i~;) and B = argmin |SX 3 — Sy||1, we have

X6 =yl < (1+¢) min X8 =yl

with probability 1 — 0. If § = O(1) is some constant, then N at least O (e%dlog d) rows suffice.
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Regression guarantees from column-space embeddings.  Asnoted in Remark 2.2, it would
suffice to show that ||SXS3 — Sy||1 = || XS — yl||1 for all 5. The problem is that this is impossible
without knowing y: if one random entry of y is very large, we would need to sample it to estimate
|X 8 — y|l1 accurately. However, we don’t actually need to estimate || X3 — yl||1; we just need to be
able to distinguish values of § for which || X3 — yl; is far from || X5* — y||; from values for which
it is close. That is, it would suffice to accurately

estimate || X8 —ylly — || XB* —yl1 with [|SXS — Syl — [|SXB" — Syl (4)

for every possible 8. In the above example where y has a single large outlier coordinate, sampling
this coordinate or not will dramatically affect both terms, but will not affect the difference very
much. As such, our key lemma, Lemma 4.1, states that ¢; Lewis weight sampling achieves (4) with
high probability. In particular, using at least m > O(ei2 log ;%) rows we have

(ISXB" = Sylly = 1SXB = Syll) = (IXB" =yl = IXB —yl1) <ellX(B" =Bl (5)

for all 8 with probability at least 1—¢. We do this by adapting the argument of [CP15] which shows
that S is a column-space embedding with high probability. We have summarized this argument
below.

Column-space embedding using Lewis weights ([CP15]). An important result in [CP15],
which directly implies the high probability subspace embedding, and which will be useful to us later
is the following moment bound on deviations of ||SX/||;.

Lemma 3.2 ([CP15] Lemma 7.4). If N is at least O (g% log %), and S € RNX" is drawn from the
sampling-and-reweighting distribution S({p;}.1) with >, p; = N and {p;}?_, proportional to Lewis
weights {w;}_,, then

1
E [( max || SX5], - \\Xﬂulw) ] <els
S | \IIXBlh=1

The proof follows from this chain of inequalities:

! [ T !
(4) |z, Bl
E max ||[SXB|; — | X > <2E max o —2
s [<IIXBII1:1H o = 15l ] o8 | \IX8lh=1 Zk: i
i !
(B) T
<92 R max Jk:EZkB
o5 | \IxBli=14="" py,
© |
)

where the o are independent Rademacher variables, which are +1 with probability 1/2 each, and
pi, is proportional to the ¢; Lewis weight of row i;. (A) follows by symmetrizing the objective
F = max)xg|,=1 [[SXB|1 — [|XB][1. (B) follows from a contraction lemma. (C) is shown by
constructing a related matrix with bounded Lewis weights and applying Lemma 4.5 from [Tal90]
reproduced below.

Lemma 3.3. There exists constant C such that for any X € R™® with all {1 Lewis weights less

than C’% and | =log(2n/d), we have
oels

n ! 1
Zaixm‘) <% (6)




Regression Guarantees using Lewis weight sampling. In this work, we show the following
chain of inequalities.

l
s [(umf?%?%nzl ((15X8" = Syl = 15X8 = Syll1) = (IXB" — ylh — 1X8 ~ yum) ]

Zak (‘x;l,;ﬂ* _yik’ ’x B ylk’) )

k plk plk

A,
<2 E max
S,o | \IXp*—XB|=1

!
(B) z)
< 21 max o, —2(B* - B 7
S (uxw*—mulzl Ek: iy P @)
© ,
)

Here, for (A), we symmetrize the left hand side of (5) in Lemma 4.2. For (B), we apply a
different contraction lemma, Lemma 4.3, that allows us to remove y from our expression, and then
end up with the same moment bound for (C'). Step (C) is essentially an application of Lemma 4.5
to SX, however, because we cannot immediately bound the Lewis weights of SX to confirm the
constraints of the Lemma, we instead construct another matrix X” which does not significantly
alter the right hand side of inequality (7) while having bounded Lewis weights. This is done in
Lemmas 4.6 and 4.7.

3.1 Lower Bounds

We will show that any algorithm must see Q(dlog 5+ 1 L log 4 5+ ) labels to return ﬁ satisfying

||X5 ylli < (14 ¢)||XB* — y||1 with probability greater than 1-— 5
For the lower bound proof it is convenient to consider a distributional version of the problem:

Problem 2 (Distributional active L1 regression). There is an unknown joint distribution P over
a finite set X x Y C R x R, with |Y| = 2. The learner is allowed to adaptively observe N 0.%.d.
samples from P(|X = x) for the learner’s choice of N values x € X. The learner must return 3
satisfying

Exyyr [XTB =Y < (1+o)inf Egeyyep X8 -] (8)
with probability at least 1 — 6.

We begin with a lemma that shows that solving the original, Problem 1, for some n polynomial
in the parameters d, e, is harder than solving the distributional version, Problem 2.

Lemma 3.4. A randomized algorithm that solves Problem 1 for n = 6% (log% + dlog 3€_d) with
accuracy € and failure probability 6 can be used to solve any instance of Problem 2, where X,)Y, in
the unit £o, ball, with accuracy 6 and failure probability 25, for small €.

We then prove lower bounds on the accuracy for any algorithm on Problem 2.

In all our lower bounds, z is a uniform e;, and y € {0,1}. For Q(e%), we set P(ylz = e;) to
1 =+ ¢ uniformly at random independently for each i; getting an e-approximate solution requires
gettlng most of the biases correct, Wthh requires 12 samples from most of the coordinates e;. The
U= L log 6) instance sets P(y|z = €;) to 3 is with the same bias for each i; solving this is essentially
dlstlngulshlng a ¢ biased coin from a —5 biased coin. Flnally, for Q(dlog 1) we set P(y|z =¢;) =0
except for a random hidden ¢* with P(y | + = ¢;+) = 3. Solving this instance requires finding ¢*

but there’s a § chance the first dlog% queries are all zero.



Theorem 3.5. For any d > 2, e < 1—10, 0 < i, there exist sets X € R* Y € R of inputs and labels,
and a distribution P on X XY such that any algorithm which solves Problem 2, with € = 1, requires
at least m = Q(;iz + elg log% + dlog %) samples.

4 Proof of Theorem 3.1

Lemma 4.1. Let X € R™ have ¢, Lewis weights {wi}ie[n}. Then, for any N that is at least
(0] (g%log %), there is a sampling-and-reweighting distribution S({p;}i—,) satisfying > ,pi = N
such that for all y, if S ~ S({p;}l,) and f* = argmin || X5 — y||1, we have for all

(1SXB* = Sylli = [SXB = Syll1) — (IXB" —ylh = [XB—ylh) <e-[|[XB" = XB[1  (9)
with probability at least 1 — §. Further, for constant 5, m = O(dlogd/e?) rows suffice.

This lemma is proved for constant and high probability bounds in Section 4.1. Given this, we
can prove the main theorem.

~

Proof of Theorem 3.1. Applying Lemma 4.1 to 8 := arg min || SX S — Syl|1, we get
(I1sX8* = Sylly — 15XB = Sylls) < (I1X8" —yl — IXB —yl) +=- 1X8* = XBlx
Since f3 is the minimizer of [|SX3 — Syl|1, the left side is non-negative. So,
|XB —ylly < 1X5" — ylly + - | X5" ~ Xy

<|XB* =yl +e- (IXB8" =yl + X8 —yl)

Rearranging, and assuming ¢ < 1/2,

~ 1+¢ N
IXB =yl < T—IX6" —yls
< (1 +4e)| X8 = ylh
Using &’ = £/4 proves the theorem. O

4.1 Proof of Lemma 4.1

This argument is similar to that in Appendix B of [CP15]. In order to prove Lemma 4.1, by
Markov’s inequality, it is sufficient to show that for some [,

l
M= [(H)wggu{xﬁ”:l (15X5° = Syl ~ 155  Sull) = (18" ~ s = 1K = w1 ] =

To show this, we will symmetrize, then use a contraction lemma to cancel the y terms. Then, with
all the terms being within the column space of SX, we use the fact that .S is a subspace embedding
with high probability. We present two different bounds, one used for the constant probability and
one for the high probability cases, but the following intermediate bound is the same for the two:

Lemma 4.2. Given a matriz X € R™*%, et S{pitiepn)) be any sampling-and-reweighting disribu-
tion, and let iy, be the row-indices chosen by this sampling matriz such that S ;, = p#. Let o}, be
ik

l
N

independent Rademacher variables that are £1 each with probability 0.5. Then,

T % T
T, — Y T, B —y;
M<2'E max E Ok i v —| i = Vil
S,o X6 =XBll=1 | Diy, Diy,




This is essentially standard symmetrization; the proof is in Appendix B. To simplify the expres-
sion and eliminate the terms involving the labels, we then use a theorem from [LT89]:

Lemma 4.3 ([LT89] Theorem 5). Let ® : Rt — R be conver and increasing, and let ¢ : R — R
be contractions such that ¢(0) = 0 for all k. Let F be a class of functions on {1,2,3...,n}, and

7:) ( L‘)

" (1
2
Lemma 4.4. For any y € R™, we have
!
2] B* —wi | |zl B — vl
> o -
" l
z} g —x]
S (B a

k‘ plk
Proof. We take ®(z) = !, which is convex and increasing for [ > 1, let F be the set of functions
x] B —a] B
‘K ‘K

E, < 3g,
2

> owf(k)

k

S oron(F(K))
k

E max
S,o X8 —XB|=1

) max
S,o | \IIXB*=XB|1=1

fs where fg(k) = ———%— and 3 satisfies [ X" — Xy =1, and let ¢ be defined as
Kk
‘x;l' f - ylk’ ‘x;l' T 2Py, — ylk‘
br(z) = —= - = :
) Diy, Diy,

This satisfies

oi(fp(k)) = oy ( Diy Diy, Diy,

elf —a] ) Ryl LA

This is a contraction, since

|2, B* = zapiy, —yirl |2l B* = z1piy — i
|Bk(21) = Br(22)] = | =% -
Diy, by,
<Pzl
Di,,

Applying Lemma 4.3 with these parameters, we have

l
’xz—l;ﬂ* - yik‘ "T;I;IB - trueyik’
Do — - .

k plk plk

Toax T !
20 <IIX6*— Blh=1] ( Piy,

After taking the expectation with respect to S and multiplying both sides by 2!, this gives the
statement of the lemma. O

1
E — max
o |\ 2Ix8—Xp|=1

From here, we use two separate results to show the appropriate row counts for the constant and
high probability cases. The constant probability case is left for Appendix C.
For high probability row-counts, we use a lemma from [CP15]:



Lemma 4.5 (8.2, 8.3, 8.4 in [CP15]). There exists constant C' such that for any X € R"™ 9 with
all ¢4 Lewis weights less than C’loge(zﬁ) and | = log(2n/J), then
B

!
E, max < 2 (12)
(IX8]l1=1 2

We want a similar statement, but for arbitrary matrices, with no bounds placed on the Lewis
weights. To do this, we construct a new, related matrix using the following lemma, which is proved
in Appendix B:

Zaz TB

Lemma 4.6 (Similar to [CP15] Lemma B.1). Let X be any matriz, and let W be the matriz that has
the Lewis weights of X in the diagonal entries. Let N > E—dg log %. There exist constants Cq,Co, Cs
such that we can construct a matriz X' such that

e X' has C1dN rows,

o X'TW'=IX" = XTW~1X, (where W' is the matriz that has the Lewis weights of X' in the
diagonal entries),

o | X8l < Co|| XB|1 for all B,
e the Lewis weights of X' are bounded by %

Lemma 4.7. Consider X € R™ ¢ with {1 Lewis weights w;. Let p; be some set of sampling values
such that N =", p; and, for some constants C,C1, Cy,

N+Cy Nd>

log (
Di = w;

Ce2
Then, if N > Cy%log & and if S ~ S({pi}ticm)), then

N T
zkﬁ
=

l
l
e
max < — 13
S,a <|XB||1 ) - 2 (13)

Proof of Lemma 4.7. Ideally the Lewis weights of SX would be bounded by C’IOEQN and we could

directly apply Lemma 4.5 to SX to obtain a bound on the moment. However, we do not know this.
Instead, we first construct X’ using X as described in Lemma 4.6. We then construct a new matrix
X" by stacking X’ on top of SX. Define W” to be the diagonal matrix consisting of the ¢; Lewis
weights of X”. Define, for convenience, R = N + C1Nd, which is the number of rows X" has.

We can bound the term on the left side of (13) by the same term, summing over the rows of

X" instead. That is,
1 1
< E max
S,o | \IXBl=1

S (nxgn 1

Our goal is to apply Lemma 4.5 to the right side. To do this, we need to show the correct bound on
its Lewis weights, and then have the term be a maximum over || X”3||; = 1, rather than || X 3|y = 1.

R

/
} : o xi/‘l'

i=1

plk

e




Bounding the Lewis weights of X”. By Lemma 2.7, the ¢; Lewis weights of a matrix do not
increase when more rows are added. So, the rows in X” that are from X’ have Lewis weights that
are bounded above by Cgl ( Ty Further,

2

R

_ 1
X//TW// 1X// — 2 : //x;/(x;/)"l'
w'
=1
R—N 1 N 1
1"y INT : "o INT
= E : //xk($k) smce E : T (332) =0
: wy, . w;
1=1 i=kC1d%+1

— X/Tw/—lX/ - XTW_lX.
So, any row y; = x;/p; in X” that is from SX satisfies
w7/:/2 — yi—r(X//Tw//—lX//)—lyi S yi—r(XTw—lX)—l

1
= o (X Wix)™!
p

[

(i - ()
~ \log (?) w; ’ log( )

which means that all of the Lewis weights of X" are less than the larger of C ﬁ and Cgﬁ.
T 2

Now, for small enough &, 9, log% < C% log %, we have the Lewis weight upper bound for all rows
of X" is Comy
(7)

Renormalizing to maximize over || X”S|; =1: If we define the following

F:= max [|SXpB]1 — | X5]1]

X Bllh=1
then
1X"Bll = ISX Bl + |1 X"Bllh < (1+ C2 + F)| X8|
So, we get
R t R !
<”)1glﬁzﬁ>i1 ,;ka%T ) <(14+Cy+F) <”Xn/[/1§ﬁ<:1 kZ::lakaT >

Taking expectations of either side over just the Rademacher variables,

2: kx//‘l' } : kx//'l'
o IXBII 1

>l

1
) <2 N1+ )+ FHE <

1X7Bll=1
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Applying Lemma 4.5 to X”:  Since X” has R rows, and the correct Lewis weight bound, we
can simply apply Lemma 4.5 to the right side above

)

Z k:E//T

1
) <2l 4+ )+ P2 5

max
U I XBl=1

Now, by Lemma 3.2, we know that Eg[F!] < £!6. So, taking the expectation with respect to the
sampling matrices of either side of the above, we get, for small enough ¢, d,

l

kCld2+N E(S El(s
max onzl <21+ Oyt + 6)—— < 211 + Cy) —
E | e ; kT <27(( ) )2 <2 2) 5

So, solving the problem for &’ = ﬁ gives the correct bound.

Finally, we can show Lemma 4.1

Proof of Lemma 4.1. Take | = log(2n/d0), N = 5%%1@; g&. Then, we apply Lemma 4.2,
Lemma 4.4, and Lemma 4.7 to get

M < 2%l

which, solving the problem for £/4, gives the correct bound. Then, applying Markov’s inequality,
we get that with probability 9,

SXpB* — Syl — ||ISXB—-S — (| Xp* = — | X8 — <
||X6FEE}?(B||:1‘(” A" = Syln = 1SX8 = Syll) — (X8 —ylL = [XB —yl)[ < e

Finally, scaling up appropriately gives, in generality,

[(ISXB" = Sylly = [SXB = Syll) = (IXB" =yl = 1X8 —yl)] < el XB" = X5l
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A Constant-factor approximation

If we just want a constant factor approximation, we can take S to be a constant probability
¢1-subspace embedding, so that || X 5|1 < 2||SX |1 with probability at least 0.9. We have

IXB =yl < IXB — XB*| + [ XB" — ylh
< 2||SXB — SXB*|lL + |IXB* — ylh
< 2(|SXB — Syl + [SXB* — Syll) + |1X8* -yl
< 4(ISXB* — Sylv) + 1 XB* — ylh

where in the last inequality, we have used the fact that B is the minimizer of ||[SX 5 — Sy||;. Now,
by Markov’s inequality, with probability 0.9, ||SX5* — Sy||1 < 10| X5* — y|l1. So, we have with
probability 0.81, R

X8 =yl <41 X5" -yl

Since we only used a constant-factor subspace embedding, the row count would be O(dlogd).

B Proofs of Lemmas

Lemma 2.8. Let X € R™? and let X' € RF"™4 be X stacked on itself k times, with each row
scaled down by k. Then, each of the Lewis weights is reduced by a factor of k.

Proof. Let {w;}?_; be the Lewis weights of X, and let {w]}*", be the Lewis weights of X’. Let
x; be the ith row of X, and similarly let z be the ith row of X’. Let the ordering of the rows
be such that a;;-nﬂ- = %x, for 0 < j < k. Let W be the diagonal matrix where W;; = w;. Since
Lewis weights are defined circularly, we just need to check that the suggested weights work, and by
uniqueness, they will be correct.

We know that w? =z} (X TW~1X)~1x,. Therefore, if we take W' to be the diagonal matrix of
size kn x kn, and set the diagonal entries to be the Lewis weights of X divided by k, repeated k

times, then we have

kn kn n
_ 1 k k1
XTwix = E —,xéxéT = E — 2l =k E — —2x2:17ZT
— w; — Wi — W k
=1 =1 =1

In the last expression above, we are only summing over the first set of rows in X’, which are the
scaled rows of X, and then multiplying by k since they are repeated k times. Now,

n

kiﬁ ! T:Z%xixI:XTW‘lX

— w; k2" ;
=1 =1

/

So, finally, for an arbitrary row Tiintis which corresponds to row z; in the original matrix, we get

its Lewis weight:

1 w?

2 T T -1 -1 T Tyir—1 -1

Winti = Tjni (XD WXy = 52 (XTWTX) 7wy = -5

which proves that our suggested Lewis weights are consistent. O
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Lemma 4.2. Given a matriz X € R"*%, [et S{pitiem) be any sampling-and-reweighting disribu-
tion, and let iy, be the row-indices chosen by this sampling matriz such that S ;, = ;%' Let oy, be
K

independent Rademacher variables that are £1 each with probability 0.5. Then,
l
M<2E max (10)
So | \IIXB*—XB|=1

‘x;l,; " - yik’ ’xlﬂ - yik’
Do -
% Piy, Piy,

Proof. We proceed by symmetrization. Since the matrix S scales the rows by the probability they

are picked with, the expectation of ||[SMf|; is just || MpB]1, for any matrix M and vector 8. So,

adding or subtracting the same term with a different sampling matrix S, (||S’XS* — S'y|l1 — |’ X8 — S"y||1)—
(|XB* —yll1 — | XB — yl|l1), is just adding a mean zero term, and since taking the Ith power of a
maximum is convex, this can only increase the expectation. That is,

l
SXp* =Syl — ||ISXB - S —(|IXB* — — | X6 —
S%,[<||Xﬁg&;{xﬁ”:1!(\\ 5 — Syl — 1SXB — Syll) ~ (X8~ ylh — X5 yum)]
< SXp*— Syl —||SXp -85 — (| XB* — — | X8 —
_S%,[<||Xﬁg%zlr<<|r 5° = Syl — I1SX6 = Syll) — (1X5" — il — X5 — )
l
~ (I15'X5" = Syl = [5'X5 = S'ylh) = (1X8" =yl = 1X5 - y1) 1) ]
So, we can bound M as
M < SXB* — Syl — [|SXB—S —
<E, [(”Xﬁg%lzlun 8" — Syl ~ 158 — Syl
l
(15'X5" = Syl ~ |55 - Syl ]

Let i be the indices chosen by S, and 12 the indices chosen by S’. Rewriting this as a sum,
T . Ta ..
M< E < max Z ‘xlk " = Vil B ‘xzkﬂ Yir | B
8,8 | \ IXB*=Xpll=1 Dy, Dy,

k
’ _yijc| |x;5_yi§c|> )l]

-
> k
A bi;, bi;,

Now, since i; and i are independent and identically distributed, randomly swapping elements
from either sum does not change the distribution. This amounts to adding a random sign o} to
the terms, where o, = £1 independently with probability 1/2. So,
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plk

|y B* = vy | !%5 Y |
>_ o — -
k

pzjc pzk

25, 8" — il 5 yzkl
Do
% Diy,

"TT/B* - yzk ‘ TB yzk‘
>_ o
k

pi, Py

T np*
z; — x;
<2 R < max Edk ‘Zk ylk’ | B i D
S | \Ixe —Xpl=1| 5 P P

Where the final inequality follows from (a + b)! < 2=1(a! + b'). Putting these together,

T px ..
Zo'k <|l‘2k o y2k| |‘/E B — y2k|> > (14)

Piy,
O

ey B — il |l B - yzk!>
S

M < E <
IIXB* XBII 1

< E < max
5,50 | XB*—XBll=1

max
[XB*—XBl=1

)

k

Lemma 4.6 (Similar to [CP15] Lemma B.1). Let X be any matriz, and let W be the matriz that has
the Lewis weights of X in the diagonal entries. Let N > E—dg log %. There exist constants Cq,Co, Cs
such that we can construct a matriz X' such that

e X' has C1dN rows,

X'TW=IX" = XTW™X, (where W' is the matriz that has the Lewis weights of X' in the
diagonal entries),

[ X'Bllx < Col| XBl1 for all B,
e the Lewis weights of X' are bounded by %

Proof. Given matrix X, we can use Lemma B.1 from [CP15] to construct a new matrix X; that
satisfies

e X; has C1d? rows,

° X1TW1_1X1 - XTw-lX, (where Wy is the matrix that has the Lewis weights of X7 in the
diagonal entries),

o | X18]1 < Col| X181 for all j,
o the Lewis weights of X; are bounded by %

So, we can take this matrix and stack it on itself k = % times, while scaling each row down by the
same k. This will be our matrix X’. X’ will then have k = C1Nd rows, which satisfies the first
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bullet. Also, by Lemma 2.8, this shrinks the Lewis weights by a factor of k, which changes the

Lewis weight upper bound to

Cs (3

kd N
which is what we need. Now, since we are repeating rows k times, but each row is scaled down by
k, we have || X18]||1 = || X'B||1 for all 8. Therefore, || X'B|l1 < C2|| X1 for all . Finally, as in
the proof of Lemma 2.8, we know that since we have duplicated the rows of X k times but scaled

them down by &k, X W, 'X; = X'TW'~1 X’ and so we are done. O

C Proof for constant failure probability

For the constant probability row-count, we use a lemma from [LT89]:

Lemma C.1 ([LT89]). There exists a constant C' such that for any matriz X with all Lewis weights

less than C’loegd,

.
E[uwm 1zakx ﬁ] =€

In [LT89], this is proved with absolute values within the sum (that is, summing o;|z, 3|). How-
ever, the first step of the proof removes these absolute values using a comparison lemma, bounding
the term with absolute values by twice the term without absolute values.

Lemma C.2. For matriz X with €1 Lewis weights w;, let p; be some set of sampling values such
that >, pi = N and p; > lof_gdwl If you sample S ~ S({pi}iepm)), then

max Ok
[nxmh ! Z

Proof. This proof is very similar to that of Lemma 4.7.

Construct X’ using X as described in Lemma 4.6, with N = & loegd We then construct a new
matrix X” by stacking X’ on top of SX. Define W” to be the dlagonal matrix consisting of the ¢,
Lewis weights of X”.

We can bound the term on the left side of (15) by the same term, summing over the rows of

X" instead. That is,
max < E max
IX8|l=1 S,o |1 XBlI=1

Our goal is to apply Lemma C.1 to the right side. To do this, we need to show the correct bound on
its Lewis weights, and then have the term be a maximum over || X”3||; = 1, rather than || X8|; = 1.

] < (15)

plk

R

} : !
aixéT

i=1

N T
2,8
=

Piy,

Bounding the Lewis weights of X”. By Lemma 2.7, the ¢; Lewis weights of a matrix do not
increase when more rows are added. So, the rows in X” that are from X’ have Lewis weights that
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are bounded above by %. Further,

R
nTyx—1 1 _ 1"e INT
XWX E o i (@)
=1
R—N 1 N 1
1"y INT . "o MNT
- E ka(a;k) since E W%(%) =0
i=1 Ok i=kCrd2+1

— X/Tw/—lX/ - XTW_lX.
So, any row y; = x;/p; in X” that is from SX satisfies
Wl = g (XWX < T (XTI,

1
= ] (XTWX) e

< C€2i 2 w? — Ce2\?
~ \log d w; * \logd

Ce?
logd-*

which means that all of the Lewis weights of X" are less than

Renormalizing to maximize over || X”S|; =1: If we define the following

F = " max \HSXﬂHl — [ X8|

then,
IX"Bllh = [1SXBIh + X8l < (L + C2 + F)| XSl
So, we get
R
Zan //T
max OLT} (1+Cy+ F)- max I3
IX8ll=1 Z ||X”B|| 1 kz

Taking expectations of either side over just the Rademacher variables,

Z O‘k:E//T Z O’k:E//T

max
[ X"Bll=1

max
[ XBl=1

Applying Lemma C.1 to X”:  Since X” has R rows, and the correct Lewis weight bound, we
can simply apply Lemma C.1 to the right side above

an
[IIXBII ! ZW

Now, by Lemma 3.2, we know that Eg[F] < e. So, taking the expectation with respect to the
sampling matrices of either side of the above, we get, for small enough &,

] §(1+C2+F

<(1+Cy+ F)e

kCy1d?+N
E | max Z opl <2(1+ Cy)e
s |IXBI=1| &

So, solving the problem for &’ 27a0; gives the correct bound.

2+2
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Therefore, we can similarly prove the constant-probability case for Lemma 4.1:

Proof of 4.1 for constant probability. We take | =1, N = E% logd and apply Lemma 4.2, Lemma
4.4, and Lemma C.2.
O

D Lower Bounds

We prove three main theorems that allow us to show Theorem 3.5: Theorems D.1, D.2, and
D.4. To do this, we make several Claims, which are proved in section 7.1. Recall the reduction
between the matrix problem and the distribution:

Lemma 3.4. A randomized algorithm that solves Problem 1 for n = fg (log% + dlog i—d) with
accuracy € and failure probability § can be used to solve any instance of Problem 2, where X, in
the unit £o, ball, with accuracy 6 and failure probability 25, for small €.

Proof. Let n = 6% (log% + dlog 4?6[). Construct an instance of Problem 1 in which the rows of
feature matrix X and the corresponding label vector y are drawn i.i.d. from P. Let H be the unit
£ ball. We have the following:

Claim D.1. For all § € H, with probability at least 1 — 6,
1
(1= Epcy)r | XTB= Y| < <IXB -yl < (1 +2)Epy)p X8|

Let 3° denote the minimizer infg E(xy)~p [|XT5 — Y|] Let 8* denote the minimizer of the

matrix instance infg || X5 — y|[1, and let 5 denote the output of the algorithm on the instance
generated. Then we have

IN

1~
_”X/B_y”l
n

1
< (14 E)E”Xﬁ* -yl with probability 1 — §

(1= &)y [ XTB =]

N

< (149 -IX8 ~ s
< (142 yyer |IXT6 - Y]]
So with probability 1 — 24,
Ecxy)~p [!XTE - Y\] < (1+6e)E(xy)up [\XTBO _ y,} _
O

Theorem D.1. For any d > 2 and ¢ < 1—10, there exist families X € R%, Y € R of inputs and labels
respectively such that any algorithm which solves Problem 2 with § < i requires at least m = %

samples.

We take X to be the set of standard basis vectors, and the distribution over X to be uniform.
We will define a set B as being a subset of the unit hypercube {—1,1}% such that every element is
sufficiently far from every other.
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Claim D.2. There is a set B C H with |B| > 292¢ such that for any two B1,52 € B, we have
|81 — B2| > 0.2d

Proof. Here we just need an error correcting code with constant rate and constant relative (Ham-
ming) distance. The existence of such a code follows from the Gilbert-Varshamov bound [Gil52]. O

Fix some unknown 8*. We will have Y = ZX T * where Z is an independent random variable
with probability % + ¢ of being 1, and % — ¢ of being —1. This completes our description of P. We
define I() to be the ¢; norm of the residuals for 3, that is, I(5) = E(Xy)NpHXTﬁ —Y|]. We have
the following properties of ().

Claim D.3. For D,B as chosen above, I(f*) =1 — 2¢.

Claim D.4. For D,B as chosen above, we have for all B € B, 1(8) — 1(8*) = £||8 — B*||1.

Proof of Theorem D.1. Suppose some algorithm returns B with Z(B) < (14+UBY) = ||B* -
Bll1 < 0.1d with probability %. By Fano’s inequality,

-~ 1 1 -1
H(B*|B) < H <Z> + % < 0.05d,

and we have a lower bound on the mutual information between the output of our algorithm and
the true parameter: I(8;5*) = H(S*) — H(B*|5) > 0.15d. For an upper bound on the mutual
information after seeing m samples, we use the data processing inequality.

1(8*; B) < I(5*;( Z (8% Yil (V) jepi-1)
:ZH(YZ"(Y]')je[i—l}) H(Y:|B%, (Y))jeri-1))

<1 HYIE )

Here we have used that

(Y|B ( )]E[z 1]) (Y|5 IZ)( )]E[Z 1})
H(Y;|8%, L)

and that the distribution of Y; conditioned on §*, I; is just an independent Bernoulli with parameter
1
5 +¢€ and so

:1 H(Y)8", 1, i < >log<%+a>+<%—a>log<%—a>]

(2

IN

m

So 0.15d < I(5%; 5) < 4¢?m, and so we need m > 8?)?2 The result follows by replacing ¢ with

He. O
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We can use the same instance to give a high probability lower bound of Q(log % /e2).

Theorem D.2. For anyd ande < %, there exist sets X € R, Y € R of inputs and labels respectively,
and a distribution P on X x Y such that any algorithm which solves problem 2 requires at least
m = é log% samples.

Proof. Consider two instances, denoted by subscripts (1) and (2) with 62‘1 = —14 and ﬁ* = 1q,

where 14 € R? is the all-ones vector. Denote by P, () the distribution over &', Y for instance ( ), and
let lg: (8) = E(x,y)~pp XT'B-Y|] forie{1,2}.

Claim D.5. For any (3, max{ﬁg(*l)(ﬁ) - 65?1) (ﬁ&kl)),fgz«z) (B) — fg&)(ﬁa))} > 2¢e

From this claim together with Claim D.3, we have for some i € {1, 2}, lﬁ(*i) (B) > (1—1—26)l5(*i) (ﬁz‘i)),
for all g. R

Denote by (3 the output of the algorithm. Denote by P(;) the distribution over outputs by
a algorithm interacting instance (1), and by P(9) the distribution over outputs by a algorithm

interacting instance (2). Denote by A the event that Egz« )(3) —EB(*U (52‘1 ) > 2e. Note that under A€,

we have Eg& (ﬁ) éﬁ(g (ﬁ( )) > 2¢. Because the algorithm fails with probability at most § on any

instance, we have 20 > IP(1)(A) + P(2)(A°). On the other hand, P(1)(A) + P)(A°) > e —D®w)lIB),
We can bound the KL-divergence of the two distributions as an aggregate KIL-divergence over the
course of acquiring the samples.

Theorem D.3 (Lemma 15.1, [LS20]). If a learner interacts with two environments (1) and (2)
through a policy w(-|I1,Y1, I3, Y2, -+ ,Y;_1) which dictates a distribution over actions I; conditioned
on the past (I1,Y1,- -+ ,Yi—1), and sees label Y; distributed according to some label distribution Py 1,
and P9 1,, then the KL-divergence between the output of the learner on instance (1) and (2), P
and P9 is given by

=1

D(P)|IP2)) ZE(l [Z WI; =k} - D(Puy,1,1P2).1)

Now, P1) is a Bernoulli with parameter % + ¢, and P, is a Bernoulli with parameter % — &,
so D(Pu)kllPayk) < 16¢2, and so we have

ZEa Z 1{I; = k} - D(Puy,1,||P2).1,)

N
> UL =k} 1662]

=1 k=1 =1
d N
P [ZZ]I{IZ_IC}] _16%m
k=1 1=1

Puttlng this together, we have § > e~167m —y oy > 16 L log i 5, and the result follows by replacing
€ with 25 ]

Theorem D.4. For any d > 2, there exist sets X € R%Y € R of inputs and labels, and a
distribution P on X x Y such that any algorithm which solves Problem 2, with € = 1, requires at
least m = glog 8% samples.
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Proof. All logarithms are base 4. Consider instances in which X = {ej, es, -+ , e} where e; denotes
the ith standard basis vector and the distribution over X is uniform. We take Y = ZX T 3* for
some (%, where Z is an independent Bernoulli random variable which is 1 with probability %, and 0
otherwise. Consider d instances labelled with subscripts (1), (2),--- ,(d), one in which each of the
d standard basis is 8%, that is, BE*Z.) = ¢;. Denote by f; the jth coordinate of 5. For each instance,
we have

Claim D.6. For alli € [d], B € R?, we have 65(*1_) 8) > 4—1d with equality when 3 = ﬂa)

We would like our algorithm to return an estimate B which satisfies £+ (3) < %. We first note
that any choice of 8 only succeeds to be this close to the optimal on a single instance.

Claim D.7. Any 8 € R? can only satisfy EBE«Z_) (3) < o for one i € [d].

So, we may as well enforce that the algorithm return one of ey, es, - - - , €4, since any other output
can be mapped to one of these to improve the performance of the algorithm.

We will allow our algorithm to sample N = glog% rows total. Let £ be the event that
Y1,Ys, ... Yy are all zero. Given any algorithm A, let F 4 denote the set of rows it samples fewer
than log % times with probability at least %, in event £. Because the total number of rows sampled
is %l log %, there must be at least 23—d rows which are sampled fewer than % log % times in expectation.

By Markov’s inequality, these rows are sampled fewer than log % times with probability at least

%, and are thus all in F4. Let B4 denote the distribution over outputs 8 of A in event £. Let

iq = argminjcp, B 4(7). Denote by G 4 the event that row i4 is sampled fewer than log% times;
by construction we have P(G4) > 1.

The subscripts are explicit because F4, Ba,ia, P[G 4] are properties of the algorithm and are
independent of the instance with which it interacts. Consider the performance of this algorithm
against the instance 37, ..

Let Y(; ,),j,x denote the label returned to the algorithm when it queries e; for the kth time. Let
T ) = min{t|Y(; )i, = 1}. Denote by E(; ) the event that T(;,) > log%. Because T(; ) is a
geometric random variable, we have P[E; ,)] > ¢.

Now condition on the event G 4N E; ,, which is an event with probability %5 . Here our algorithm
samples i4 fewer than T;, times, so it never sees a 1 and its output distribution is B 4. It returns

i € Fyq\ {ia} with probability at least 1 — B4(ig) > 1 — ﬁ >1-— % > %. In summary, even

after 4 log § queries, no algorithm can return B with | XB—y| < (1+¢)||XB* —y|| with probability
greater than %(5. The result follows by replacing § by 84. O

Corollary D.5. Any algorithm that solves Problem 1 takes at least ©2(dlog %—i— E% +€i2 log %) samples

dlogg).

for some n = O(—

Proof. Each of the instances that demonstrate the lower bounds above, in Lemmas D.1, D.2, and
D.4, take |X| = d, the results follows from Lemma 3.4. O

D.1 Proof of Claims D.1, D.3, D.4, D.6, and D.7
Claim D.1. For all 8 € H, with probability at least 1 — ¢,

1
(1-2)Exy)~r [|XT5 - Y|} < EHXﬁ =yl <A +e)Exy)ep [|XT5 - Y|}
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Proof of Claim D.1. By assumption, we know that X '3,Y € [~1,1], so, | X 3—Y]| € [0,2]. So, for
fixed 8, by Hoeffding’s on the rows of X3 — y, we have that if n > 6% log %, then with probability
at least 1 — ¢,

<1 _ %) E(xyyop [\XTB _ Y@ < %HXB —ylh < (1 + %) E(x,y)~p [!XTﬁ - Y\] (16)

Now, we construct a 5;-covering S of the unit /o, ball H, with fewer than (%d)d elements, so that
for any f3, there is some . € S such that ||8 — fcl[cc < 5;. To do this, simply take S = {3 : 3; =
kog, k€ ZN[—2d/e,2d/e]}.

Note that X has rows on the hypercube. So, if we denote z; ; to be the entry of X in the ith
row and jth column, then z; ; € {—1,1}. Therefore, for any 3,

X5 = Z e B] < ZZ 21,3851 < ZZ 1851 < nd]|Blloo

=1 j=1 =1 j=1

Therefore, we can apply Hoeffding’s, as in (16), with ' = ¢ (ﬁ)d, and union bound over the set .S,
to get that for any 8 € S, with probability at least 1 — 4, (16) holds.
Then, for any 8 € H, by the covering property, we can find some 5. € S such that

18 = Belloo < = = IXB—XBe| < ne. (17)

We have
1XBe =yl — [XBe — XB1 < [|[XB =yl < IXB — XBe|l1 + [ XBe — yllt

So, combining (16) and (17), and dividing by n, we finally have that if n > E% (log% + dlog %),
then for all g € H,

(1= Egeyyer [IXT8-YI] < X8 — gl < (1+) Eqxyyer KT8V
U
Claim D.3. For D,B as chosen above, I(f*) =1 — 2¢.
Proof of Claim D.3. The £1 error for the correct 5 is given by
Egxy)p | X5 Y]
=Ex [EYNP( 1X) HXTﬁ* - Y]] by independence
= Ex|( —i—&? )| xTp - XxTp \+ —o)|X T+ X
= EX[(l —2¢)| X T 8] B eH
=1-2¢
U

Claim D.4. For D,B as chosen above, we have for all 8 € B, I(8) — 1(8*) = 2|8 — 5*||1.
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Proof of Claim D.4.
Exyyp|X B-Y]
=Ex [EYNP(.|X)|XT5 - YH]
=Ex [(% + €> |XT8—- X8|+ (% - a> IXT8+ XTB*@
=(1-2)+2Ex[X"8 - X"5"]

= (1-2¢) + 25118 - 5]l

Claim D.5. For any S, max{ﬁg(*l)(ﬁ) — 55?1)(5{1)),55?2) (8) — fg&) (ﬁ&))} > 2
Proof of Claim D.5.
2 . 2 .
W(B)+1U(B) =2—4e + EHﬁ(l) —Blh + gHﬁ(z) =Bl
26 * *
>2—4de+ EHﬁ(z) — Bylh
=2

= max{lg;, (8) — sy, (B): Ly, (B) — Lz, (Ba))} > 26,75 € RY

Claim D.6. For alli € [d], 8 € R?, we have Eg(*i) (B) > 4 with equality when 8 = B

Proof of Claim D.6.

1 s+e 3¢
fg(*i)(ﬁ) = EZWA + 2T|1 — Gil + 2T|ﬁz|
J#i
5— 26 %_E

7 (18l + 11 = Bil) + E'l - Bil > y

—_

>

Claim D.7. Any 8 € R? can only satisfy 652}) (B) < % for one i € [d].
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Proof of Claim D.7. Indeed, suppose S was such that 65(*1) (8), 652}) (B) < 2_1d‘ Then we must have

1
ﬁ Zeﬁg})(ﬁ)
1 i-¢ 2e
= 2D B+ 2= (IBrl + 1L = Bi) + |1~ 1]
d 4 d d
J#I
1 1-¢ 2
> =3 1B+ —+ =1 - B
d 4 d d
J#1
= e>) |B]+21- B
AT
> " 1B)] +2¢ — 2¢B]
AT
> 2Bl 2 |18l + 2¢
Similarly for J, so we would have ||3]| > |B1]| + |Bs] > |81 + 2¢. O

24



	1 Introduction
	1.1 Related Work

	2 Preliminaries: Subspace Embeddings and Importance Sampling
	2.1 Properties of Lewis Weights

	3 Proof Overview
	3.1 Lower Bounds

	4 Proof of Theorem 3.1
	4.1 Proof of Lemma 4.1

	A Constant-factor approximation
	B Proofs of Lemmas
	C Proof for constant failure probability
	D Lower Bounds
	D.1 Proof of Claims D.1, D.3, D.4, D.6, and D.7


