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Abstract

We consider the problem of ûnding an approximate solution to 31 regression while only
observing a small number of labels. Given an n× d unlabeled data matrix X , we must choose
a small set of m j n rows to observe the labels of, then output an estimate �³ whose error
on the original problem is within a 1 + · factor of optimal. We show that sampling from X
according to its Lewis weights and outputting the empirical minimizer succeeds with probability
1 2 · for m > O( 1

ε2
d log d

εδ
). This is analogous to the performance of sampling according to

leverage scores for 32 regression, but with exponentially better dependence on ·. We also give a
corresponding lower bound of '( d

ε2
+ (d + 1

ε2
) log 1

δ
).

1 Introduction

The standard linear regression problem is, given a data matrix X * R
n×d and corresponding

values y * R
n, to ûnd a vector ³ * R

d minimizing �X³ 2 y�p. Least squares regression (p = 2)
is the most common, but least absolute deviation regression (p = 1) is sometimes preferred for its
robustness to outliers and heavy-tailed noise. In this paper we focus on 31 regression:

³7 = arg min
³*Rd

�X³ 2 y�1 (1)

But what happens if the unlabeled data X is cheap but the labels y are expensive? Can we
choose a small subset of indices, only observe the corresponding labels, and still recover a good
estimate �³ of the true solution? We would like an algorithm that works with probability 1 2 ·
for any input (X, y); this necessitates that our choice of indices be randomized, so the adversary
cannot concentrate the noise on them. Formally we deûne the problem as follows:

Problem 1 (Active L1 regression). There is a known matrix X * R
n×d and a fixed unknown

vector y. A learner interacts with the instance by querying rows indexed {ik}k*[m] adaptively, and

is shown labels {yik}k*[m] corresponding to the rows queried. The learner must return �³ such that
with probability 1 2 · over the learner’s randomness,

�X �³ 2 y�1 f (1 + ·) min
³

�X³ 2 y�1. (2)

Some rows of X may be more important than others. For example, if one row is orthogonal to
all the others, we need to query it to have any knowledge of the corresponding y; but if many rows
are in the same direction it should suûce to label a few of them to predict the rest.
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A natural approach to this problem is to attach some notion of <importance= p1, . . . , pn to
each row of X, then sample rows proportional to pi. We can represent this as a <sampling-and-
reweighting= sketch S * R

m×n, where each row is 1
pi
ei with probability proportional to pi. This

reweighting is such that ES[�Sv�1] ? �v�1 for any vector v. By querying m rows we can observe
Sy, and so can output the empirical risk minimizer (ERM)

�³ := arg min �SX³ 2 Sy�1. (3)

For ûxed ³, ES �SX³ 2 Sy�1 ? �X³ 2 y�1. The hope is that, if the pi are chosen carefully, the
ERM �³ will satisfy (2) with relatively few samples. Our main result is that this is true if the pi are
drawn according to the 31 Lewis weights:

Theorem 1.1 (Informal). Problem 1 can be solved with m = O( 1
·2
d log d

··
) queries. For constant

· = �(1), m = O
�

1
·2
d log d

�
suffices.

Note that, while the model allows for adaptive queries, this algorithm is nonadaptive.
We next show that our sample complexity is near-optimal by demonstrating the following lower

bound on the number of queries needed by any algorithm to obtain an accurate estimate.

Theorem 1.2 (Informal). Any algorithm satisfying Problem 1 must query '(d log 1
·

+ d
·2

+ 1
·2

log 1
·
)

rows on some instances (X, y).

For small ·, the upper bound is the product of d, 1
·2
, and log(1/·) while the lower bound is the

product of each pair.

1.1 Related Work

If all the labels are known: LAD regression cannot be solved in closed form. It can be written
as a linear program, but this is relatively slow to solve. One approach to speeding up LAD regression
is <sketch-and-solve,= which replaces (1) with (3), which has fewer constraints and so can be solved
faster. The key idea here is to acquire regression guarantees by ensuring that S is a subspace
embedding for the column space of [X y].

For a survey on techniques to do this, we direct the reader to [Woo14],[Mah11], [Cla05]. In
[Woo14], the emphasis is on oblivious sketches 3 distributions which do not require knowledge of
[X y]. On the other hand, [Mah11], [Cla05] discuss sketches that depend on [X y]. Most relevant
to us [DLS18], which shows that sampling-and-reweighting matrices S using Lewis weights of [X y]
suûce; we give a simple proof of this in Remark 2.2. The problem is that figuring out which labels
are important involves looking at all the labels.

Active 32 regression: Here we return to our setting, where only a subset of the labels is available
to us. A number of works have studied this problem, including [DMM06, DW17, DM21]. The 32
version of the problem was solved optimally in [CP19], where an algorithm was given using O(d

·
)

queries to ûnd �³ satisfying E

�
�X �³ 2 y�22

�
f (1 + ·)�X³7 2 y�22. Independent, identical sampling

using leverage scores achieves the same guarantee using O(d log d + d
·
) queries. Note that these

results for 32 ERM only work in expectation, while our results hold with high probability. One can
get high probability bounds in the 32 setting by taking the median of O(log 1/·) repetitions, but
the ERM itself does not succeed with high probability.
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Subspace embedding for 31 norms: Subspace embeddings for the 31 norm have been studied
in a long line of work including [Tal90], [Tal95], [LT89], [DDH+09], and [CP15], the most recent
of which describes an iterative algorithm to approximate Lewis weights, which are the analogue of
leverage scores for importance sampling preserving 31 norms. The [CP15] result shows that, for the
same m = O( 1

·2
d log d

··
) sample complexity as given in Theorem 3.1, a sampler sketch S based on

the Lewis weights of X will have �SX³�1 j· �X³�1 for all ³ * R
d.

Our approach. At a very high level the goal of this paper is to replace the 32 leverage score
analysis of the [CP19] active regression paper with the 31 Lewis weight analysis in the [CP15]
subspace embedding paper. However, the diûerences between 31 and 32 are signiûcant enough that
very little of the [CP19] proof approach remains.

Per [CP15], the Lewis weight sampling-and-embedding matrix S preserves �X³�1 for all ³.
The problem is that it doesn’t preserve �X³ 2 y�1: if y has outliers, we have no idea where they
are to sample them. In the 32 setting, this diûculty is addressed using the closed-form solution
³7 = X y. Then if S is a subspace embedding it will preserve �X³ 2X³7�, so it suûces to bound
the expectation of �S(X³7 2 y)�22. In the 31 setting, not only is ³7 not expressible in closed form,
but there can be many equally valid minimizers ³7 that are far from each other. In Appendix A
we show how this approach extends to the 31 setting to give a simple proof of Theorem 1.1 for a
constant factor approximation (i.e., · = O(1)); but the existence of multiple ³7 makes · < 1 seem
unobtainable by this approach.

Instead, we massage the [CP19] subspace embedding proof into the appropriate form, as we
discuss in Section 3. While S doesn9t preserve the total error �X³ 2 y�1, it does preserve relative
error �X³ 2 y�1 2 �X³7 2 y�1; the eûect of outliers is canceled out, so that this concentrates
similarly well to �X³ 2X³7�1. This approach would not work for 32: the eûect of outliers does
not entirely cancel out there, since the square loss has unbounded inûuence.

Concurrent work: A very similar set of results appears concurrently and independently in [CD21].
Their main result is identical to ours, with a similar proof. They also extend the result to 1 < p < 2,
but with a signiûcantly weaker m = �O(d2/·2) bound. They do not have the '(d log 1

·
) lower bound.

2 Preliminaries: Subspace Embeddings and Importance Sampling

A key idea used in our analysis is that of a 31 subspace embedding, which is a linear sketch of
a matrix that preserves 31 norms within the column space of a matrix:

Definition 2.1 (Subspace Embeddings). A subspace embedding for the column space of the matrix
X * R

n×d is a matrix S such that for all ³ * R
d,

�SX³� = (1 ± ·)�X³�

Remark 2.2. Consider the simpler setting in which we had access to all of y, but we still want to
subsample rows to improve computational complexity. We can view the regression loss �X³ 2 y�1
as the 31 norm of the point [X y]

�
³
21

�
in the column space of [X y]. Indeed, suppose ³7 =

arg min �X³ 2 y�1 as before and let �³ = arg min �SX³ 2 Sy�1. Then, �³ solves problem 1 because,
for · < 1

3 ,

�X �³2 y�1 f
1

1 2 ·
�SX �³2Sy�1 f

1

1 2 ·
�SX³72Sy�1 f

1 + ·

1 2 ·
�X³72 y�1 f (1+ 4·)�X³7 2 y�1.
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One way to construct a subspace embedding is by sampling rows and rescaling them appropri-
ately:

Definition 2.3 (Sampling and Reweighting with {pi}ni=1). For any sequence {pi}ni=1, let N =
�

i pi.
Then, the sampling-and-reweighting distribution S ({pi}ni=1) over the set of matrices S * R

N×n is
such that each row of S is independently the ith standard basis vector with probability pi

N
, scaled by

1
pi
. For any k * [N ], let ik denote the index such that Sk,ik = 1

pik
.

When working in 32, there is a natural choice for re-weighting: the leverage scores of the rows
[Woo14].

Definition 2.4 (Leverage Scores). The leverage score of the ith row of a matrix X, li(X) is defined
as x¦

i (X¦X)21xi.

For 31 subspace embeddings, the analogous weights are the 31 Lewis weights, deûned implicitly
as the unique weights {wi(X)}ni=1 that satisfy wi(X) = li(WX) where W is a diagonal matrix with
ith diagonal entry 1:

wi(X)
. We will drop the explicit dependence on X whenever it is clear from

context.

Definition 2.5 (Lewis Weights). The 31 Lewis weights of a matrix X are the unique weights
{wi}ni=1 that satisfy w2

i = x¦
i (
�n

j=1
1
wj

xjx
¦
j )21xi for all i.

Lewis weights are deûned in general for general 3p norms, but we will only need the 31 Lewis
weights. For basic properties of Lewis weights, we direct the reader to [CP15]. Using these deûni-
tions, we now state the main consequence of using Lewis weights. This result comes from a line of
work on embeddings from subspaces of L1[0, 1] to 3m1 such as [Tal90], but is reproduced here similar
to how it is presented in [CP15].

Theorem 2.6 ([CP15] Theorem 2.3). Sampling at least O(d log d
·2

) rows according to the 31 Lewis
weights {wi}ni=1 of a matrix X * R

n×d results in a subspace embedding for X with at least some

constant probability. If at least O(
d log d

εδ

·2
) rows are sampled, then we have a subspace embedding

with probability at least 1 2 ·.

2.1 Properties of Lewis Weights

We will need some properties of Lewis weights, particularly of how they change when the matrix
X is modiûed.

Lemma 2.7 ([CP15] Lemma 5.5). The 31 Lewis weights of a matrix do not increase when rows are
added.

Lemma 2.8. Let X * R
n×d, and let X 2 * R

kn×d be X stacked on itself k times, with each row
scaled down by k. Then, each of the Lewis weights is reduced by a factor of k.

3 Proof Overview

Theorem 3.1. Let X * R
n×d have 31 Lewis weights {wi}i*[n], and let 0 < ·, · < 1. Then, for

any N that is at least O
�

d
·2

log d
··

�
, there is a sampling-and-reweighting distribution S({pi}ni=1)

satisfying
�

i pi = N such that for all y, if S > S({pi}ni=1) and �³ = arg min �SX³ 2Sy�1, we have

�X �³ 2 y�1 f (1 + ·) min
³

�X³ 2 y�1

with probability 1 2 ·. If · = O(1) is some constant, then N at least O
�

1
·2
d log d

�
rows suffice.

4



Regression guarantees from column-space embeddings. As noted in Remark 2.2, it would
suûce to show that �SX³ 2 Sy�1 j �X³ 2 y�1 for all ³. The problem is that this is impossible
without knowing y: if one random entry of y is very large, we would need to sample it to estimate
�X³ 2 y�1 accurately. However, we don9t actually need to estimate �X³ 2 y�1; we just need to be
able to distinguish values of ³ for which �X³ 2 y�1 is far from �X³7 2 y�1 from values for which
it is close. That is, it would suûce to accurately

estimate �X �³ 2 y�1 2 �X³7 2 y�1 with �SX �³ 2 Sy�1 2 �SX³7 2 Sy�1 (4)

for every possible ³. In the above example where y has a single large outlier coordinate, sampling
this coordinate or not will dramatically aûect both terms, but will not aûect the diûerence very
much. As such, our key lemma, Lemma 4.1, states that 31 Lewis weight sampling achieves (4) with
high probability. In particular, using at least m g O( d

·2
log d

··
) rows we have

(�SX³7 2 Sy�1 2 �SX³ 2 Sy�1) 2 (�X³7 2 y�1 2 �X³ 2 y�1) < ·�X(³7 2 ³)�1 (5)

for all ³ with probability at least 12·. We do this by adapting the argument of [CP15] which shows
that S is a column-space embedding with high probability. We have summarized this argument
below.

Column-space embedding using Lewis weights ([CP15]). An important result in [CP15],
which directly implies the high probability subspace embedding, and which will be useful to us later
is the following moment bound on deviations of �SX³�1.

Lemma 3.2 ([CP15] Lemma 7.4). If N is at least O
�

d
·2

log d
··

�
, and S * R

N×n is drawn from the
sampling-and-reweighting distribution S({pi}Ni=1) with

�
i pi = N and {pi}ni=1 proportional to Lewis

weights {wi}ni=1, then

E
S

��
max

�X³�1=1
|�SX³�1 2 �X³�1|

�l
�
f ·l·

The proof follows from this chain of inequalities:

E
S

��
max

�X³�1=1
�SX³�1 2 �X³�1

�l
�

(A)

f 2l E
Ã,S

þ
ø
�

max
�X³�1=1

�����
�

k

Ãk
|xTik³|
pik

�����

�l
ù
û

(B)

f 2l E
Ã,S

þ
ø
�

max
�X³�1=1

�

k

Ãk
xTik³

pik

�l
ù
û

(C)

f ·l·

where the Ãk are independent Rademacher variables, which are ±1 with probability 1/2 each, and
pik is proportional to the 31 Lewis weight of row ik. (A) follows by symmetrizing the objective
F := max�X³�1=1 �SX³�1 2 �X³�1. (B) follows from a contraction lemma. (C) is shown by
constructing a related matrix with bounded Lewis weights and applying Lemma 4.5 from [Tal90]
reproduced below.

Lemma 3.3. There exists constant C such that for any X * R
n×d with all 31 Lewis weights less

than C ·2

log(n
δ )

and l = log(2n/·), we have

EÃ

þ
ø
�

max
�X³�1=1

�����

n�

i=1

Ãix
¦
i ³

�����

�l
ù
û f ·l·

2
(6)
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Regression Guarantees using Lewis weight sampling. In this work, we show the following
chain of inequalities.

E
S

��
max

�X³72X³�=1
|(�SX³7 2 Sy�1 2 �SX³ 2 Sy�1) 2 (�X³7 2 y�1 2 �X³ 2 y�1)|

�l
�

(A)

f 2l E
S,Ã

þ
ø
�

max
�X³72X³�=1

�����
�

k

Ãk

�
|x¦

ik
³7 2 yik |
pik

2
|x¦

ik
³ 2 yik |
pik

������

�l
ù
û

(B)

f 22l+1
E
S,Ã

þ
ø
�

max
�X(³72³)�1=1

�����
�

k

Ãik
x¦
ik

pik
(³7 2 ³)

�����

�l
ù
û (7)

(C)

f ·l·

Here, for (A), we symmetrize the left hand side of (5) in Lemma 4.2. For (B), we apply a
diûerent contraction lemma, Lemma 4.3, that allows us to remove y from our expression, and then
end up with the same moment bound for (C). Step (C) is essentially an application of Lemma 4.5
to SX, however, because we cannot immediately bound the Lewis weights of SX to conûrm the
constraints of the Lemma, we instead construct another matrix X 22 which does not signiûcantly
alter the right hand side of inequality (7) while having bounded Lewis weights. This is done in
Lemmas 4.6 and 4.7.

3.1 Lower Bounds

We will show that any algorithm must see '(d log 1
·

+ 1
·2

log 1
·

+ d
·2

) labels to return �³ satisfying

�X �³ 2 y�1 f (1 + ·)�X³7 2 y�1 with probability greater than 1 2 ·.
For the lower bound proof it is convenient to consider a distributional version of the problem:

Problem 2 (Distributional active L1 regression). There is an unknown joint distribution P over
a finite set X × Y ¢ R

d × R, with |Y| = 2. The learner is allowed to adaptively observe N i.i.d.
samples from P (·|X = x) for the learner’s choice of N values x * X . The learner must return �³
satisfying

E(X,Y )>P

�
|X¦ �³ 2 Y |

�
f (1 + ·) inf

³
E(X,Y )>P

�
|X¦³ 2 Y |

�
. (8)

with probability at least 1 2 ·.

We begin with a lemma that shows that solving the original, Problem 1, for some n polynomial
in the parameters d, ·, · is harder than solving the distributional version, Problem 2.

Lemma 3.4. A randomized algorithm that solves Problem 1 for n = 2
·2

�
log 2

·
+ d log 3d

·

�
with

accuracy · and failure probability · can be used to solve any instance of Problem 2, where X ,Y, in
the unit 3> ball, with accuracy 6· and failure probability 2·, for small ·.

We then prove lower bounds on the accuracy for any algorithm on Problem 2.
In all our lower bounds, x is a uniform ei, and y * {0, 1}. For '( d

·2
), we set P (y|x = ei) to

1
2 ± · uniformly at random independently for each i; getting an ·-approximate solution requires
getting most of the biases correct, which requires 1

·2
samples from most of the coordinates ei. The

'( 1
·2

log 1
·
) instance sets P (y|x = ei) to 1

2±· with the same bias for each i; solving this is essentially
distinguishing a · biased coin from a 2·-biased coin. Finally, for '(d log 1

·
) we set P (y|x = ei) = 0

except for a random hidden i7 with P (y | x = ei7) = 3
4 . Solving this instance requires ûnding i7,

but there9s a · chance the ûrst d log 1
·

queries are all zero.

6



Theorem 3.5. For any d g 2, ë < 1
10 , · < 1

4 , there exist sets X * R
d,Y * R of inputs and labels,

and a distribution P on X ×Y such that any algorithm which solves Problem 2, with · = 1, requires
at least m = '( d

ë2
+ 1

ë2
log 1

·
+ d log 1

·
) samples.

4 Proof of Theorem 3.1

Lemma 4.1. Let X * R
n×d have 31 Lewis weights {wi}i*[n]. Then, for any N that is at least

O
�

d
·2

log d
··

�
, there is a sampling-and-reweighting distribution S({pi}ni=1) satisfying

�
i pi = N

such that for all y, if S > S({pi}ni=1) and ³7 = arg min �X³ 2 y�1, we have for all ³

(�SX³7 2 Sy�1 2 �SX³ 2 Sy�1) 2 (�X³7 2 y�1 2 �X³ 2 y�1) f · · �X³7 2X³�1 (9)

with probability at least 1 2 ·. Further, for constant ·, m = O(d log d/·2) rows suffice.

This lemma is proved for constant and high probability bounds in Section 4.1. Given this, we
can prove the main theorem.

Proof of Theorem 3.1. Applying Lemma 4.1 to �³ := arg min �SX³ 2 Sy�1, we get
�
�SX³7 2 Sy�1 2 �SX �³ 2 Sy�1

�
f
�
�X³7 2 y�1 2 �X �³ 2 y�1

�
+ · · �X³7 2X �³�1

Since �³ is the minimizer of �SX³ 2 Sy�1, the left side is non-negative. So,

�X �³ 2 y�1 f �X³7 2 y�1 + · · �X³7 2X �³�1
f �X³7 2 y�1 + · · (�X³7 2 y�1 + �X �³ 2 y�1)

Rearranging, and assuming · < 1/2,

�X �³ 2 y�1 f
1 + ·

1 2 ·
�X³7 2 y�1

f (1 + 4·)�X³7 2 y�1
Using ·2 = ·/4 proves the theorem.

4.1 Proof of Lemma 4.1

This argument is similar to that in Appendix B of [CP15]. In order to prove Lemma 4.1, by
Markov9s inequality, it is suûcient to show that for some l,

M := E
S

��
max

�X³72X³�=1
|(�SX³7 2 Sy�1 2 �SX³ 2 Sy�1) 2 (�X³7 2 y�1 2 �X³ 2 y�1)|

�l
�
f ·l·

To show this, we will symmetrize, then use a contraction lemma to cancel the y terms. Then, with
all the terms being within the column space of SX, we use the fact that S is a subspace embedding
with high probability. We present two diûerent bounds, one used for the constant probability and
one for the high probability cases, but the following intermediate bound is the same for the two:

Lemma 4.2. Given a matrix X * R
n×d, let S({pi}i*[n]) be any sampling-and-reweighting disribu-

tion, and let ik be the row-indices chosen by this sampling matrix such that Sk,ik = 1
pik

. Let Ãk be

independent Rademacher variables that are ±1 each with probability 0.5. Then,

M f 2l E
S,Ã

þ
ø
�

max
�X³72X³�=1

�����
�

k

Ãk

�
|x¦

ik
³7 2 yik |
pik

2
|x¦

ik
³ 2 yik |
pik

������

�l
ù
û (10)
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This is essentially standard symmetrization; the proof is in Appendix B. To simplify the expres-
sion and eliminate the terms involving the labels, we then use a theorem from [LT89]:

Lemma 4.3 ([LT89] Theorem 5). Let § : R+ ³ R
+ be convex and increasing, and let Çk : R ³ R

be contractions such that Çk(0) = 0 for all k. Let F be a class of functions on {1, 2, 3 . . . , n}, and
�g(f)�F = supf*F |g(f)|. Then,

EÃ

�
§

�
1

2

�����
�

k

ÃkÇk(f(k))

�����
F

��
f 3

2
EÃ

�
§

������
�

k

Ãkf(k)

�����
F

��

Lemma 4.4. For any y * R
n, we have

E
S,Ã

þ
ø
�

max
�X³72X³�=1

�����
�

k

Ãk

�
|x¦

ik
³7 2 yik |
pik

2
|x¦

ik
³ 2 yik |
pik

������

�l
ù
û

f 2l+1
E
S,Ã

þ
ø
�

max
�X³72X³�1=1

�����
�

k

Ãk

�
x¦
ik
³7 2 x¦

ik
³

pik

������

�l
ù
û (11)

Proof. We take §(x) = xl, which is convex and increasing for l > 1, let F be the set of functions

f³ where f³(k) =
x¦
ik
³72x¦

ik
³

pik
and ³ satisûes �X³7 2X³�1 = 1, and let Çk be deûned as

Çk(z) =
|x¦

ik
³7 2 yik |
pik

2
|x¦

ik
³7 2 zpik 2 yik |

pik
.

This satisûes

Çk(f³(k)) = Çk

�
x¦
ik
³7 2 x¦

ik
³

pik

�
=

|x¦
ik
³7 2 yik |
pik

2
|x¦

ik
³ 2 yik |
pik

.

This is a contraction, since

|Çk(z1) 2 Çk(z2)| =

�����
|x¦

ik
³7 2 z2pik 2 yik |

pik
2

|x¦
ik
³7 2 z1pik 2 yik |

pik

�����

f |z1pik 2 z2pik |
pik

f |z1 2 z2|

Applying Lemma 4.3 with these parameters, we have

E
Ã

þ
ø
�

1

2
max

�X³72X³�=1

�����
�

k

Ãk

�
|x¦

ik
³7 2 yik |
pik

2
|x¦

ik
³ 2 trueyik |

pik

������

�l
ù
û

f 3

2
E
Ã

þ
ø
�

max
�X³72X³�1=1

�����
�

k

Ãk

�
x¦
ik
³7 2 x¦

ik
³

pik

������

�l
ù
û

After taking the expectation with respect to S and multiplying both sides by 2l, this gives the
statement of the lemma.

From here, we use two separate results to show the appropriate row counts for the constant and
high probability cases. The constant probability case is left for Appendix C.

For high probability row-counts, we use a lemma from [CP15]:

8



Lemma 4.5 (8.2, 8.3, 8.4 in [CP15]). There exists constant C such that for any X * R
n×d with

all 31 Lewis weights less than C ·2

log(n
δ )

and l = log(2n/·), then

EÃ

þ
ø
�

max
�X³�1=1

�����

n�

i=1

Ãix
¦
i ³

�����

�l
ù
û f ·l·

2
(12)

We want a similar statement, but for arbitrary matrices, with no bounds placed on the Lewis
weights. To do this, we construct a new, related matrix using the following lemma, which is proved
in Appendix B:

Lemma 4.6 (Similar to [CP15] Lemma B.1). Let X be any matrix, and let W be the matrix that has
the Lewis weights of X in the diagonal entries. Let N g d

·2
log d

··
. There exist constants C1, C2, C3

such that we can construct a matrix X 2 such that

• X 2 has C1dN rows,

• X 2¦W 221X 2 � X¦W21X, (where W 2 is the matrix that has the Lewis weights of X 2 in the
diagonal entries),

• �X 2³�1 f C2�X³�1 for all ³,

• the Lewis weights of X 2 are bounded by C3
N
.

Lemma 4.7. Consider X * R
n×d with 31 Lewis weights wi. Let pi be some set of sampling values

such that N =
�

i pi and, for some constants C,C1, C4,

pi g
log
�
N+C1Nd

·

�

C·2
wi

Then, if N g C4
d
·2

log d
··

and if S > S({pi}i*[n]), then

E
S,Ã

þ
ø
�

max
�X³�1=1

�����

N�

k=1

Ãk
x¦
ik
³

pik

�����

�l
ù
û f ·l·

2
(13)

Proof of Lemma 4.7. Ideally the Lewis weights of SX would be bounded by C ·2

log N
δ

and we could

directly apply Lemma 4.5 to SX to obtain a bound on the moment. However, we do not know this.
Instead, we ûrst construct X 2 using X as described in Lemma 4.6. We then construct a new matrix
X 22 by stacking X 2 on top of SX. Deûne W 22 to be the diagonal matrix consisting of the 31 Lewis
weights of X 22. Deûne, for convenience, R = N + C1Nd, which is the number of rows X 22 has.

We can bound the term on the left side of (13) by the same term, summing over the rows of
X 22 instead. That is,

E
S,Ã

þ
ø
�

max
�X³�=1

�����

N�

k=1

Ãk
x¦
ik
³

pik

�����

�l
ù
û f E

S,Ã

þ
ø
�

max
�X³�=1

�����

R�

i=1

Ãix
22¦
i ³

�����

�l
ù
û

Our goal is to apply Lemma 4.5 to the right side. To do this, we need to show the correct bound on
its Lewis weights, and then have the term be a maximum over �X 22³�1 = 1, rather than �X³�1 = 1.
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Bounding the Lewis weights of X 22. By Lemma 2.7, the 31 Lewis weights of a matrix do not
increase when more rows are added. So, the rows in X 22 that are from X 2 have Lewis weights that
are bounded above by C3

·2

log( d
εδ )

. Further,

X 22¦W 2221X 22 =

R�

i=1

1

w22
i

x22
i (x22

i )¦

�
R2N�

i=1

1

w22
k

x22
k(x22

k)¦ since

N�

i=kC1d2+1

1

w22
i

x22
i (x22

i )¦ � 0

= X 2¦W 221X 2 � X¦W21X.

So, any row yi = xi/pi in X 22 that is from SX satisûes

w222
i = y¦i (X 22¦W 2221X 22)21yi f y¦i (X¦W21X)21yi

=
1

p2i
x¦
i (X¦W21X)21xi

f
�

C·2

log
�
R
·

� 1

wi

�2

· w2
i =

�
C·2

log
�
R
·

�
�2

which means that all of the Lewis weights of X 22 are less than the larger of C ·2

log(R
δ )

and C3
·2

log( d
εδ )

.

Now, for small enough ·, ·, log R
·
f C

C3
log d

··
, we have the Lewis weight upper bound for all rows

of X 22 is C ·2

log(R
δ )

.

Renormalizing to maximize over �X 22³�1 = 1: If we deûne the following

F := max
�X³�1=1

|�SX³�1 2 �X³�1|

then,
�X 22³�1 = �SX³�1 + �X 2³�1 f (1 + C2 + F )�X³�1

So, we get

�
max

�X³�=1

�����

R�

k=1

Ãkx
22¦
k ³

�����

�l

f (1 + C2 + F )l

�
max

�X22³�=1

�����

R�

k=1

Ãkx
22¦
k ³

�����

�l

f 2l21((1 + C2)
l + F l)

�
max

�X22³�=1

�����

R�

k=1

Ãkx
22¦
k ³

�����

�l

Taking expectations of either side over just the Rademacher variables,

E
Ã

þ
ø
�

max
�X³�=1

�����

R�

k=1

Ãkx
22¦
k ³

�����

�l
ù
û f 2l21((1 + C2)

l + F l)E
Ã

þ
ø
�

max
�X22³�=1

�����

R�

k=1

Ãkx
22¦
k ³

�����

�l
ù
û
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Applying Lemma 4.5 to X 22: Since X 22 has R rows, and the correct Lewis weight bound, we
can simply apply Lemma 4.5 to the right side above

E
Ã

þ
ø
�

max
�X³�=1

�����

R�

k=1

Ãkx
22¦
k ³

�����

�l
ù
û f 2l21((1 + C2)

l + F l))
·l·

2

Now, by Lemma 3.2, we know that ES [F l] f ·l·. So, taking the expectation with respect to the
sampling matrices of either side of the above, we get, for small enough ·, ·,

E
S,Ã

þ
ÿø

û
ý max

�X³�=1

������

kC1d
2+N�

k=1

Ãkx
22¦
k ³

������

þ
ø

l
ù
úû f 2l21((1 + C2)

l + ·l·)
·l·

2
f 2l(1 + C2)

l ·
l·

2

So, solving the problem for ·2 = ·
2+2C2

gives the correct bound.

Finally, we can show Lemma 4.1

Proof of Lemma 4.1. Take l = log(2n/·), N = 5 (1+C1)C3

C
d
·2

log d
··

. Then, we apply Lemma 4.2,
Lemma 4.4, and Lemma 4.7 to get

M f 22l·l·

which, solving the problem for ·/4, gives the correct bound. Then, applying Markov9s inequality,
we get that with probability ·,

max
�X³72X³�=1

|(�SX³7 2 Sy�1 2 �SX³ 2 Sy�1) 2 (�X³7 2 y�1 2 �X³ 2 y�1)| f ·

Finally, scaling up appropriately gives, in generality,

|(�SX³7 2 Sy�1 2 �SX³ 2 Sy�1) 2 (�X³7 2 y�1 2 �X³ 2 y�1)| f ·�X³7 2X³�1
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A Constant-factor approximation

If we just want a constant factor approximation, we can take S to be a constant probability
31-subspace embedding, so that �X³�1 f 2�SX³�1 with probability at least 0.9. We have

�X �³ 2 y�1 f �X �³ 2X³7�1 + �X³7 2 y�1
f 2�SX �³ 2 SX³7�1 + �X³7 2 y�1
f 2(�SX �³ 2 Sy�1 + �SX³7 2 Sy�1) + �X³7 2 y�1
f 4(�SX³7 2 Sy�1) + �X³7 2 y�1

where in the last inequality, we have used the fact that �³ is the minimizer of �SX³ 2 Sy�1. Now,
by Markov9s inequality, with probability 0.9, �SX³7 2 Sy�1 f 10�X³7 2 y�1. So, we have with
probability 0.81,

�X �³ 2 y�1 f 41�X³7 2 y�1
Since we only used a constant-factor subspace embedding, the row count would be O(d log d).

B Proofs of Lemmas

Lemma 2.8. Let X * R
n×d, and let X 2 * R

kn×d be X stacked on itself k times, with each row
scaled down by k. Then, each of the Lewis weights is reduced by a factor of k.

Proof. Let {wi}ni=1 be the Lewis weights of X, and let {w2
i}kni=1 be the Lewis weights of X 2. Let

xi be the ith row of X, and similarly let x2
i be the ith row of X 2. Let the ordering of the rows

be such that x2
jn+i = 1

k
xi for 0 f j < k. Let W be the diagonal matrix where Wii = wi. Since

Lewis weights are deûned circularly, we just need to check that the suggested weights work, and by
uniqueness, they will be correct.

We know that w2
i = x¦

i (X¦W21X)21xi. Therefore, if we take W 2 to be the diagonal matrix of
size kn × kn, and set the diagonal entries to be the Lewis weights of X divided by k, repeated k
times, then we have

X 2¦W 221X 2 =

kn�

i=1

1

w2
i

x2
ix

2¦
i =

kn�

i=1

k

wi
x2
ix

2¦
i = k

n�

i=1

k

wi
· 1

k2
xix

¦
i

In the last expression above, we are only summing over the ûrst set of rows in X 2, which are the
scaled rows of X, and then multiplying by k since they are repeated k times. Now,

k

n�

i=1

k

wi
· 1

k2
xix

¦
i =

n�

i=1

1

wi
xix

¦
i = X¦W21X

So, ûnally, for an arbitrary row x2
jn+i, which corresponds to row xi in the original matrix, we get

its Lewis weight:

w22
jn+i = x2¦

jn+i(X
2¦W 221X 2)21x2

jn+i =
1

k2
x¦
i (X¦W21X)21xi =

w2
i

k2

which proves that our suggested Lewis weights are consistent.
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Lemma 4.2. Given a matrix X * R
n×d, let S({pi}i*[n]) be any sampling-and-reweighting disribu-

tion, and let ik be the row-indices chosen by this sampling matrix such that Sk,ik = 1
pik

. Let Ãk be

independent Rademacher variables that are ±1 each with probability 0.5. Then,

M f 2l E
S,Ã

þ
ø
�

max
�X³72X³�=1

�����
�

k

Ãk

�
|x¦

ik
³7 2 yik |
pik

2
|x¦

ik
³ 2 yik |
pik

������

�l
ù
û (10)

Proof. We proceed by symmetrization. Since the matrix S scales the rows by the probability they
are picked with, the expectation of �SM³�1 is just �M³�1, for any matrix M and vector ³. So,
adding or subtracting the same term with a diûerent sampling matrix S2, (�S2X³7 2 S2y�1 2 �S2X³ 2 S2y�1)2
(�X³7 2 y�1 2 �X³ 2 y�1), is just adding a mean zero term, and since taking the lth power of a
maximum is convex, this can only increase the expectation. That is,

E
S,S2

��
max

�X³72X³�=1
| (�SX³7 2 Sy�1 2 �SX³ 2 Sy�1) 2 (�X³7 2 y�1 2 �X³ 2 y�1) |

�l
�

f E
S,S2

��
max

�X³72X³�=1
| ((�SX³7 2 Sy�1 2 �SX³ 2 Sy�1) 2 (�X³7 2 y�1 2 �X³ 2 y�1))

2
��
�S2X³7 2 S2y�1 2 �S2X³ 2 S2y�1

�
2 (�X³7 2 y�1 2 �X³ 2 y�1)

�
|
�l
�

So, we can bound M as

M f E
S,S2

��
max

�X³72X³�=1
| (�SX³7 2 Sy�1 2 �SX³ 2 Sy�1)2

�
�S2X³7 2 S2y�1 2 �S2X³ 2 S2y�1

�
|
�l
�

Let ik be the indices chosen by S, and i2k the indices chosen by S2. Rewriting this as a sum,

M f E
S,S2

��
max

�X³72X³�=1

����
�

k

�
|x¦

ik
³7 2 yik |
pik

2
|x¦

ik
³ 2 yik |
pik

�
2

�

k

� |x¦
i2
k
³7 2 yi2

k
|

pi2
k

2
|x¦

i2
k
³ 2 yi2

k
|

pi2
k

� ����
�l
�

Now, since ik and i2k are independent and identically distributed, randomly swapping elements
from either sum does not change the distribution. This amounts to adding a random sign Ãk to
the terms, where Ãk = ±1 independently with probability 1/2. So,
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M f E
S,S2,Ã

��
max

�X³72X³�=1

����
�

k

Ãk

�
|x¦

ik
³7 2 yik |
pik

2
|x¦

ik
³ 2 yik |
pik

�
2

�

k

Ãk

� |x¦
i2
k
³7 2 yi2

k
|

pi2
k

2
|x¦

i2
k
³ 2 yi2

k
|

pi2
k

�����
�l
�

f E
S,S2,Ã

��
max

�X³72X³�=1

����
�

k

Ãk

�
|x¦

ik
³7 2 yik |
pik

2
|x¦

ik
³ 2 yik |
pik

�����+

max
�X³72X³�=1

����
�

k

Ãk

� |x¦
i2
k
³7 2 yi2

k
|

pi2
k

2
|x¦

i2
k
³ 2 yi2

k
|

pi2
k

�����
�l
�

f 2l E
S,Ã

��
max

�X³72X³�=1

����
�

k

Ãk

�
|x¦

ik
³7 2 yik |
pik

2
|x¦

ik
³ 2 yik |
pik

�����
�l
�

Where the ûnal inequality follows from (a + b)l f 2l21(al + bl). Putting these together,

M f 2l E
S,Ã

þ
ø
�

max
�X³72X³�=1

�����
�

k

Ãk

�
|x¦

ik
³7 2 yik |
pik

2
|x¦

ik
³ 2 yik |
pik

������

�l
ù
û (14)

Lemma 4.6 (Similar to [CP15] Lemma B.1). Let X be any matrix, and let W be the matrix that has
the Lewis weights of X in the diagonal entries. Let N g d

·2
log d

··
. There exist constants C1, C2, C3

such that we can construct a matrix X 2 such that

• X 2 has C1dN rows,

• X 2¦W 221X 2 � X¦W21X, (where W 2 is the matrix that has the Lewis weights of X 2 in the
diagonal entries),

• �X 2³�1 f C2�X³�1 for all ³,

• the Lewis weights of X 2 are bounded by C3
N
.

Proof. Given matrix X, we can use Lemma B.1 from [CP15] to construct a new matrix X1 that
satisûes

• X1 has C1d
2 rows,

• X¦
1 W21

1 X1 � X¦W21X, (where W1 is the matrix that has the Lewis weights of X1 in the
diagonal entries),

• �X1³�1 f C2�X1³�1 for all ³,

• the Lewis weights of X1 are bounded by C3
d

.

So, we can take this matrix and stack it on itself k = N
d

times, while scaling each row down by the
same k. This will be our matrix X 2. X 2 will then have k = C1Nd rows, which satisûes the ûrst
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bullet. Also, by Lemma 2.8, this shrinks the Lewis weights by a factor of k, which changes the
Lewis weight upper bound to

C3

kd
=

C3

N

which is what we need. Now, since we are repeating rows k times, but each row is scaled down by
k, we have �X1³�1 = �X 2³�1 for all ³. Therefore, �X 2³�1 f C2�X³�1 for all ³. Finally, as in
the proof of Lemma 2.8, we know that since we have duplicated the rows of X1 k times but scaled
them down by k, X¦

1 W21
1 X1 = X 2¦W 221X 2, and so we are done.

C Proof for constant failure probability

For the constant probability row-count, we use a lemma from [LT89]:

Lemma C.1 ([LT89]). There exists a constant C such that for any matrix X with all Lewis weights

less than C ·2

log d ,

E
Ã

�
max

�X³�1=1

�

k

Ãkx
¦
i ³

�
f ·

In [LT89], this is proved with absolute values within the sum (that is, summing Ãi|x¦
i ³|). How-

ever, the ûrst step of the proof removes these absolute values using a comparison lemma, bounding
the term with absolute values by twice the term without absolute values.

Lemma C.2. For matrix X with 31 Lewis weights wi, let pi be some set of sampling values such
that

�
i pi = N and pi g log d

C·2
wi. If you sample S > S({pi}i*[n]), then

E
S,Ã

�
max

�X³�1=1

�����
�

k

Ãk
x¦
ik
³

pik

�����

�
f · (15)

Proof. This proof is very similar to that of Lemma 4.7.
Construct X 2 using X as described in Lemma 4.6, with N = C3

C
log d
·2

. We then construct a new
matrix X 22 by stacking X 2 on top of SX. Deûne W 22 to be the diagonal matrix consisting of the 31
Lewis weights of X 22.

We can bound the term on the left side of (15) by the same term, summing over the rows of
X 22 instead. That is,

E
S,Ã

�
max

�X³�=1

�����

N�

k=1

Ãk
x¦
ik
³

pik

�����

�
f E

S,Ã

�
max

�X³�=1

�����

R�

i=1

Ãix
22¦
i ³

�����

�

Our goal is to apply Lemma C.1 to the right side. To do this, we need to show the correct bound on
its Lewis weights, and then have the term be a maximum over �X 22³�1 = 1, rather than �X³�1 = 1.

Bounding the Lewis weights of X 22. By Lemma 2.7, the 31 Lewis weights of a matrix do not
increase when more rows are added. So, the rows in X 22 that are from X 2 have Lewis weights that
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are bounded above by C·2

log d . Further,

X 22¦W 2221X 22 =

R�

i=1

1

w22
i

x22
i (x22

i )¦

�
R2N�

i=1

1

w22
k

x22
k(x22

k)¦ since

N�

i=kC1d2+1

1

w22
i

x22
i (x22

i )¦ � 0

= X 2¦W 221X 2 � X¦W21X.

So, any row yi = xi/pi in X 22 that is from SX satisûes

w222
i = y¦i (X 22¦W 2221X 22)21yi f y¦i (X¦W21X)21yi

=
1

p2i
x¦
i (X¦W21X)21xi

f
�

C·2

log d

1

wi

�2

· w2
i =

�
C·2

log d

�2

which means that all of the Lewis weights of X 22 are less than C·2

log d .

Renormalizing to maximize over �X 22³�1 = 1: If we deûne the following

F := max
�X³�1=1

|�SX³�1 2 �X³�1|

then,
�X 22³�1 = �SX³�1 + �X 2³�1 f (1 + C2 + F )�X³�1

So, we get

max
�X³�=1

�����

R�

k=1

Ãkx
22¦
k ³

����� f (1 + C2 + F ) · max
�X22³�=1

�����

R�

k=1

Ãkx
22¦
k ³

�����

Taking expectations of either side over just the Rademacher variables,

E
Ã

�
max

�X³�=1

�����

R�

k=1

Ãkx
22¦
k ³

�����

�
f (1 + C2 + F )E

Ã

�
max

�X22³�=1

�����

R�

k=1

Ãkx
22¦
k ³

�����

�

Applying Lemma C.1 to X 22: Since X 22 has R rows, and the correct Lewis weight bound, we
can simply apply Lemma C.1 to the right side above

E
Ã

�
max

�X³�=1

�����

R�

k=1

Ãkx
22¦
k ³

�����

�
f (1 + C2 + F )·

Now, by Lemma 3.2, we know that ES [F ] f ·. So, taking the expectation with respect to the
sampling matrices of either side of the above, we get, for small enough ·,

E
S,Ã

þ
ø max
�X³�=1

������

kC1d
2+N�

k=1

Ãkx
22¦
k ³

������

ù
û f 2(1 + C2)·

So, solving the problem for ·2 = ·
2+2C2

gives the correct bound.
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Therefore, we can similarly prove the constant-probability case for Lemma 4.1:

Proof of 4.1 for constant probability. We take l = 1, N = d
·2

log d and apply Lemma 4.2, Lemma
4.4, and Lemma C.2.

D Lower Bounds

We prove three main theorems that allow us to show Theorem 3.5: Theorems D.1, D.2, and
D.4. To do this, we make several Claims, which are proved in section 7.1. Recall the reduction
between the matrix problem and the distribution:

Lemma 3.4. A randomized algorithm that solves Problem 1 for n = 2
·2

�
log 2

·
+ d log 3d

·

�
with

accuracy · and failure probability · can be used to solve any instance of Problem 2, where X ,Y, in
the unit 3> ball, with accuracy 6· and failure probability 2·, for small ·.

Proof. Let n = 8
·2

�
log 2

·
+ d log 4d

·

�
. Construct an instance of Problem 1 in which the rows of

feature matrix X and the corresponding label vector y are drawn i.i.d. from P . Let H be the unit
3> ball. We have the following:

Claim D.1. For all ³ * H, with probability at least 1 2 ·,

(1 2 ·)E(X,Y )>P

�
|X¦³ 2 Y |

�
f 1

n
�X³ 2 y�1 f (1 + ·)E(X,Y )>P

�
|X¦³ 2 Y |

�

Let ³ç denote the minimizer inf³ E(X,Y )>P

�
|X¦³ 2 Y |

�
. Let ³7 denote the minimizer of the

matrix instance inf³ �X³ 2 y�1, and let �³ denote the output of the algorithm on the instance
generated. Then we have

(1 2 ·)E(X,Y )>P

�
|X¦ �³ 2 Y |

�
f 1

n
�X�³ 2 y�1

f (1 + ·)
1

n
�X³7 2 y�1 with probability 1 2 ·

f (1 + ·)
1

n
�X³ç 2 y�1

f (1 + ·)2 E(X,Y )>P

�
|X¦³ç 2 Y |

�

So with probability 1 2 2·,

E(X,Y )>P

�
|X¦ �³ 2 Y |

�
f (1 + 6·)E(X,Y )>P

�
|X¦³ç 2 Y |

�
.

Theorem D.1. For any d g 2 and · < 1
10 , there exist families X * R

d,Y * R of inputs and labels

respectively such that any algorithm which solves Problem 2 with · < 1
4 requires at least m = 3d

2000·2

samples.

We take X to be the set of standard basis vectors, and the distribution over X to be uniform.
We will deûne a set B as being a subset of the unit hypercube {21, 1}d such that every element is
suûciently far from every other.
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Claim D.2. There is a set B ¢ H with |B| g 20.2d such that for any two ³1, ³2 * B, we have
|³1 2 ³2| > 0.2d

Proof. Here we just need an error correcting code with constant rate and constant relative (Ham-
ming) distance. The existence of such a code follows from the Gilbert-Varshamov bound [Gil52].

Fix some unknown ³7. We will have Y = ZX¦³7 where Z is an independent random variable
with probability 1

2 + · of being 1, and 1
2 2 · of being 21. This completes our description of P . We

deûne l(³) to be the 31 norm of the residuals for ³, that is, l(³) = E(X,Y )>P [
��X¦³ 2 Y

��]. We have
the following properties of l(³).

Claim D.3. For D,B as chosen above, l(³7) = 1 2 2·.

Claim D.4. For D,B as chosen above, we have for all ³ * B, l(³) 2 l(³7) = 2·
d
||³ 2 ³7||1.

Proof of Theorem D.1. Suppose some algorithm returns �³ with l(�³) < (1 + ·
5)l(³7) =ó ||³7 2

�³||1 < 0.1d with probability 3
4 . By Fano9s inequality,

H(³7|�³) < H

�
1

4

�
+

log |B| 2 1

4
< 0.05d,

and we have a lower bound on the mutual information between the output of our algorithm and
the true parameter: I(�³;³7) = H(³7) 2 H(³7|�³) g 0.15d. For an upper bound on the mutual
information after seeing m samples, we use the data processing inequality.

I(³7; �³) f I(³7; (Yi)i*[m]) f
m�

i=1

I(³7;Yi|(Yj)j*[i21])

=
m�

i=1

H(Yi|(Yj)j*[i21]) 2H(Yi|³7, (Yj)j*[i21])

f
m�

i=1

1 2H(Yi|³7, Ii)

f 4·2m

Here we have used that

H(Yi|³7, (Yj)j*[i21]) g H(Yi|³7, Ii, (Yj)j*[i21])

= H(Yi|³7, Ii)

and that the distribution of Yi conditioned on ³7, Ii is just an independent Bernoulli with parameter
1
2 + · and so

m�

i=1

1 2H(Yi|³7, Ii) f
m�

i=1

�
1 +

�
1

2
+ ·

�
log

�
1

2
+ ·

�
+

�
1

2
2 ·

�
log

�
1

2
2 ·

��

f 4·2m

So 0.15d f I(³7; �³) f 4·2m, and so we need m g 3d
80·2

. The result follows by replacing · with
5·.
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We can use the same instance to give a high probability lower bound of '(log 1
·
/·2).

Theorem D.2. For any d and · < 1
10 , there exist sets X * R,Y * R of inputs and labels respectively,

and a distribution P on X × Y such that any algorithm which solves problem 2 requires at least
m = 1

4·2
log 1

·
samples.

Proof. Consider two instances, denoted by subscripts (1) and (2) with ³7
(1) = 21d and ³7

(2) = 1d,

where 1d * R
d is the all-ones vector. Denote by P(i) the distribution over X ,Y for instance (i), and

let l³7

(i)
(³) = E(X,Y )>P(i)

[
��X¦³ 2 Y

��] for i * {1, 2}.

Claim D.5. For any ³, max{3³7

(1)
(³) 2 3³7

(1)
(³7

(1)), 3³7

(2)
(³) 2 3³7

(2)
(³7

(2))} > 2·

From this claim together with Claim D.3, we have for some i * {1, 2}, l³7

(i)
(³) g (1+2·)l³7

(i)
(³7

(i)),

for all ³.
Denote by �³ the output of the algorithm. Denote by P(1) the distribution over outputs by

a algorithm interacting instance (1), and by P(2) the distribution over outputs by a algorithm

interacting instance (2). Denote by A the event that 3³7

(1)
(�³)2 3³7

(1)
(³7

(1)) g 2·. Note that under Ac,

we have 3³7

(2)
(�³) 2 3³7

(2)
(³7

(2)) g 2·. Because the algorithm fails with probability at most · on any

instance, we have 2· g P(1)(A) + P(2)(A
c). On the other hand, P(1)(A) + P(2)(A

c) g e2D(P(1)||P(2)).
We can bound the KL-divergence of the two distributions as an aggregate KL-divergence over the
course of acquiring the samples.

Theorem D.3 (Lemma 15.1, [LS20]). If a learner interacts with two environments (1) and (2)
through a policy Ã(·|I1, Y1, I2, Y2, · · · , Yi21) which dictates a distribution over actions Ii conditioned
on the past (I1, Y1, · · · , Yi21), and sees label Yi distributed according to some label distribution P(1),Ii

and P(2),Ii , then the KL-divergence between the output of the learner on instance (1) and (2), P(1)

and P(2) is given by

D(P(1)||P(2)) =
d�

k=1

E(1)

�
N�

i=1

1{Ii = k} ·D(P(1),Ii ||P(2),Ii)

�

Now, P(1),k is a Bernoulli with parameter 1
2 + ·, and P(1),k is a Bernoulli with parameter 1

2 2 ·,
so D(P(1),k�P(1),k) f 16·2, and so we have

d�

k=1

E(1)

�
N�

i=1

1{Ii = k} ·D(P(1),Ii ||P(2),Ii)

�
f

d�

k=1

E(1)

�
N�

i=1

1{Ii = k} · 16·2

�

= 16·2 · E(1)

�
d�

k=1

N�

i=1

1{Ii = k}
�

= 16·2m

Putting this together, we have · g e216·2m =ó m g 1
16·2

log 1
·
, and the result follows by replacing

· with 1
2·.

Theorem D.4. For any d g 2, there exist sets X * R
d,Y * R of inputs and labels, and a

distribution P on X × Y such that any algorithm which solves Problem 2, with · = 1, requires at
least m = d

3 log 1
8· samples.
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Proof. All logarithms are base 4. Consider instances in which X = {e1, e2, · · · , ed} where ei denotes
the ith standard basis vector and the distribution over X is uniform. We take Y = ZX¦³7 for
some ³7, where Z is an independent Bernoulli random variable which is 1 with probability 3

4 , and 0
otherwise. Consider d instances labelled with subscripts (1), (2), · · · , (d), one in which each of the
d standard basis is ³7, that is, ³7

(i) = ei. Denote by ³j the jth coordinate of ³. For each instance,
we have

Claim D.6. For all i * [d], ³ * R
d, we have 3³7

(i)
(³) g 1

4d with equality when ³ = ³7
(i)

We would like our algorithm to return an estimate �³ which satisûes 3³7(�³) < 1
2d . We ûrst note

that any choice of ³ only succeeds to be this close to the optimal on a single instance.

Claim D.7. Any ³ * R
d can only satisfy 3³7

(i)
(�³) < 1

2d for one i * [d].

So, we may as well enforce that the algorithm return one of e1, e2, · · · , ed, since any other output
can be mapped to one of these to improve the performance of the algorithm.

We will allow our algorithm to sample N = d
3 log 1

·
rows total. Let E be the event that

Y1, Y2, . . . YN are all zero. Given any algorithm A, let FA denote the set of rows it samples fewer
than log 1

·
times with probability at least 1

2 , in event E . Because the total number of rows sampled

is d
3 log 1

·
, there must be at least 2d

3 rows which are sampled fewer than 1
2 log 1

·
times in expectation.

By Markov9s inequality, these rows are sampled fewer than log 1
·

times with probability at least
1
2 , and are thus all in FA. Let BA denote the distribution over outputs �³ of A in event E . Let
iA = arg minj*FA

BA(j). Denote by GA the event that row iA is sampled fewer than log 1
·

times;

by construction we have P(GA) > 1
2 .

The subscripts are explicit because FA, BA, iA,P[GA] are properties of the algorithm and are
independent of the instance with which it interacts. Consider the performance of this algorithm
against the instance ³7

(iA).
Let Y(iA),j,k denote the label returned to the algorithm when it queries ej for the kth time. Let

T(iA) = min{t|Y(iA),iA,t = 1}. Denote by E(iA) the event that T(iA) > log 1
·
. Because T(iA) is a

geometric random variable, we have P[E(iA)] > ·.

Now condition on the event GA+EiA , which is an event with probability 1
2·. Here our algorithm

samples iA fewer than TiA times, so it never sees a 1 and its output distribution is BA. It returns
i * FA \ {iA} with probability at least 1 2 BA(iA) g 1 2 1

|FA| g 1 2 3
2d g 1

4 . In summary, even

after d
3 log 1

·
queries, no algorithm can return �³ with �X �³2y� < (1+·)�X³72y� with probability

greater than 1
8·. The result follows by replacing · by 8·.

Corollary D.5. Any algorithm that solves Problem 1 takes at least '(d log 1
·
+ d

·2
+ 1

·2
log 1

·
) samples

for some n = O(
d log d

δ

·
).

Proof. Each of the instances that demonstrate the lower bounds above, in Lemmas D.1, D.2, and
D.4, take |X | = d, the results follows from Lemma 3.4.

D.1 Proof of Claims D.1, D.3, D.4, D.6, and D.7

Claim D.1. For all ³ * H, with probability at least 1 2 ·,

(1 2 ·)E(X,Y )>P

�
|X¦³ 2 Y |

�
f 1

n
�X³ 2 y�1 f (1 + ·)E(X,Y )>P

�
|X¦³ 2 Y |

�
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Proof of Claim D.1. By assumption, we know that X¦³, Y * [21, 1], so, |X¦³2Y | * [0, 2]. So, for
ûxed ³, by Hoeûding9s on the rows of X³ 2 y, we have that if n g 8

·2
log 2

·2
, then with probability

at least 1 2 ·2,

�
1 2 ·

2

�
E(X,Y )>P

�
|X¦³ 2 Y |

�
f 1

n
�X³ 2 y�1 f

�
1 +

·

2

�
E(X,Y )>P

�
|X¦³ 2 Y |

�
(16)

Now, we construct a ·
2d -covering S of the unit 3> ball H, with fewer than

�
4d
·

�d
elements, so that

for any ³, there is some ³c * S such that �³ 2 ³c�> f ·
2d . To do this, simply take S = {³ : ³i =

k ·
2d , k * Z + [22d/·, 2d/·]}.

Note that X has rows on the hypercube. So, if we denote xi,j to be the entry of X in the ith
row and jth column, then xi,j * {21, 1}. Therefore, for any ³,

�X³�1 =

n�

i=1

|x¦
i ³| f

n�

i=1

d�

j=1

|xi,j³j | f
n�

i=1

d�

j=1

|³j | f nd�³�>

Therefore, we can apply Hoeûding9s, as in (16), with ·2 = ·
�

·
4d

�d
, and union bound over the set S,

to get that for any ³ * S, with probability at least 1 2 ·, (16) holds.
Then, for any ³ * H, by the covering property, we can ûnd some ³c * S such that

�³ 2 ³c�> f ·

d
=ó �X³ 2X³c�1 f n·. (17)

We have

�X³c 2 y�1 2 �X³c 2X³�1 f �X³ 2 y�1 f �X³ 2X³c�1 + �X³c 2 y�1

So, combining (16) and (17), and dividing by n, we ûnally have that if n g 8
·2

�
log 2

·
+ d log 4d

·

�
,

then for all ³ * H,

(1 2 ·)E(X,Y )>P

�
|X¦³ 2 Y |

�
f 1

n
�X³ 2 y�1 f (1 + ·)E(X,Y )>P

�
|X¦³ 2 Y |

�

Claim D.3. For D,B as chosen above, l(³7) = 1 2 2·.

Proof of Claim D.3. The 31 error for the correct ³ is given by

E(X,Y )>P

��X¦³7 2 Y
��

= EX [EY >P (·|X)

��|X¦³7 2 Y |] by independence

= EX [(
1

2
+ ·)

��X¦³7 2X¦³7| + (
1

2
2 ·)

��X¦³7 + X¦³7
��]

= EX [(1 2 2·)
��X¦³7|] ³7 * H

= 1 2 2·

Claim D.4. For D,B as chosen above, we have for all ³ * B, l(³) 2 l(³7) = 2·
d
||³ 2 ³7||1.
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Proof of Claim D.4.

E(X,Y )>P

��X¦³ 2 Y |
��

= EX

�
EY >P (·|X)

��X¦³ 2 Y |
��
�

= EX

��
1

2
+ ·

� ��X¦³ 2X¦³7
��+

�
1

2
2 ·

�
|X¦³ + X¦³7

��
�

= (1 2 2·) + 2·EX [X¦³ 2X¦³7]

= (1 2 2·) + 2·
1

d
||³ 2 ³7||1

Claim D.5. For any ³, max{3³7

(1)
(³) 2 3³7

(1)
(³7

(1)), 3³7

(2)
(³) 2 3³7

(2)
(³7

(2))} > 2·

Proof of Claim D.5.

l(³) + l(³) = 2 2 4· +
2·

d
�³7

(1) 2 ³�1 +
2·

d
�³7

(2) 2 ³�1

g 2 2 4· +
2·

d
�³7

(2) 2 ³7
(1)�1

= 2

=ó max{3³7

(1)
(³) 2 3³7

(1)
(³7

(1)), 3³7

(2)
(³) 2 3³7

(2)
(³7

(2))} > 2·,"³ * R
d

Claim D.6. For all i * [d], ³ * R
d, we have 3³7

(i)
(³) g 1

4d with equality when ³ = ³7
(i)

Proof of Claim D.6.

3³7

(i)
(³) =

1

d

�

j �=i

|³j | +
1
2 + ·

d
|1 2 ³i| +

1
2 2 ·

d
|³i|

g
1
2 2 ·

d
(|³i| + |1 2 ³i|) +

2·

d
|1 2 ³i| g

1
2 2 ·

d

Claim D.7. Any ³ * R
d can only satisfy 3³7

(i)
(�³) < 1

2d for one i * [d].
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Proof of Claim D.7. Indeed, suppose ³ was such that 3³7

(I)
(³), 3³7

(J)
(³) < 1

2d . Then we must have

1

2d
g 3³7

(I)
(³)

=
1

d

�

j �=I

|³j | +
1
2 2 ·

d
(|³I | + |1 2 ³i|) +

2·

d
|1 2 ³I |

g 1

d

�

j �=I

|³j | +
1
2 2 ·

d
+

2·

d
|1 2 ³I |

ñó · g
�

j �=I

|³j | + 2·|1 2 ³I |

g
�

j �=I

|³j | + 2·2 2·|³I |

ñó 2|³I | g �³�1 + 2·

Similarly for J , so we would have �³� g |³I | + |³J | g �³�1 + 2·.
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