
PROV-IO: An I/O-Centric Provenance Framework
for Scientific Data on HPC Systems

Runzhou Han

hanrz@iastate.edu

Iowa State University

Ames, Iowa, USA

Suren Byna
sbyna@lbl.gov

Lawrence Berkeley National Laboratory
 Berkeley, California, USA

Houjun Tang
htang4@lbl.gov

Lawrence Berkeley National Laboratory
 Berkeley, California, USA

Bin Dong
dbin@lbl.gov

Lawrence Berkeley National Laboratory
 Berkeley, California, USA

Mai Zheng

mai@iastate.edu

Iowa State University

Ames, Iowa, USA

ABSTRACT
Data provenance, or data lineage, describes the life cycle of data.

In scientific workflows on HPC systems, scientists often seek di-

verse provenance (e.g., origins of data products, usage patterns of

datasets). Unfortunately, existing provenance solutions cannot ad-

dress the challenges due to their incompatible provenance models

and/or system implementations.

In this paper, we analyze three representative scientific work-

flows in collaboration with the domain scientists to identify con-

crete provenance needs. Based on the first-hand analysis, we pro-

pose a provenance framework called PROV-IO, which includes an

I/O-centric provenance model for describing scientific data and the

associated I/O operations and environments precisely. Moreover,

we build a prototype of PROV-IO to enable end-to-end provenance

support on real HPC systems with little manual effort. The PROV-

IO framework provides flexibility in selecting various classes of

provenance. Our experiments with realistic workflows show that

PROV-IO can address the provenance needs of the domain scientists

effectively with reasonable performance (e.g., less than 3.5% track-

ing overhead for most experiments). Moreover, PROV-IO outper-

forms a state-of-the-art system (i.e., ProvLake) in our experiments.

CCS CONCEPTS
• Computer systems organization → Parallel architectures; •
Information systems → Data management systems.

KEYWORDS
Data Provenance, Lineage, Scientific Data, Workflows, High Perfor-

mance Computing, FAIR Principles, Explainability, Trustworthiness

ACM Reference Format:
Runzhou Han, Suren Byna, Houjun Tang, Bin Dong, and Mai Zheng. 2022.

PROV-IO: An I/O-Centric Provenance Framework for Scientific Data on

HPC Systems. In Proceedings of the 31st Int’l Symposium on High-Performance

This work is licensed under a Creative Commons Attribution

International 4.0 License.

HPDC ’22, June 27-July 1, 2022, Minneapolis, MN, USA
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9199-3/22/06.

https://doi.org/10.1145/3502181.3531477

Parallel and Distributed Computing (HPDC ’22), June 27-July 1, 2022, Min-
neapolis, MN, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.

1145/3502181.3531477

1 INTRODUCTION
1.1 Motivation
Data-driven scientific discovery has been well acknowledged as

a new fourth paradigm of scientific innovation [1]. The shift to-

ward the data-driven paradigm imposes new challenges in data

findability, accessibility, interoperability, reusability (i.e., FAIR prin-

ciples [2], [3]) and trustworthiness [4], all of which demand inno-

vative solutions for modeling and capturing provenance, i.e., the

lineage of data life cycle.

Figure 1: DASSA workflow. Solid arrows stand for write op-
eration and dashed arrows stand for read operation.

As an example, Figure 1 shows a simplified scientific workflow

which analyzes geophysical sensing data on high performance

computing (HPC) systems (i.e., DASSA [5]) . The workflow takes

geophysical data as input, which are often stored in different file

formats (e.g., “.tdms”, “.h5”). It then converts non-HDF5 files into a

uniform HDF5 format (i.e., “.h5”). Depending on the analysis goals,

the workflow further applies a set of different analysis programs

(e.g., “Decimate”, “X-Correlation-Stacking”) to process the files, the

results of which are stored as data products in HDF5 format.

Based on our survey, the domain scientists using DASSA need

the fine-grained origin of the data products (i.e., backward data
lineage). For example, User A applies the “Decimate” program with

a number of HDF5 files as input and generates a set of data prod-

ucts. Another User B may query the origin of the datasets in the

final data products to understand which datasets in the input files

contributed to which portions of the final data products, or who

initiated the “Decimate” application to generate the data products

Session 5: HPC Toolchains, Traces, and More HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

213

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3502181.3531477
https://doi.org/10.1145/3502181.3531477
https://doi.org/10.1145/3502181.3531477

and when. Such provenance information is important for ensuring

the reproducibility, explainability, and security of the DASSA data.

Nevertheless, the DASSA workflow involves multiple programs

accessing multiple files using different I/O interfaces and operations

(e.g., HDF5 and POSIX I/O), which makes tracking and deriving

the data provenance non-trivial. Moreover, as we will elaborate

in Section §3, there are other diverse needs of provenance for dif-

ferent scientific workflows and data (e.g., I/O statistics, lineage of

configurations). Such diversity, complexity, as well as the stringent

performance requirement in HPC environments call for a compre-

hensive and practical solution beyond the state of the art.

1.2 Limitations of State-of-the-art Tools
Unfortunately, to the best of our knowledge, existing provenance

tools cannot address the grand challenge above sufficiently due to

multiple reasons. We summarize three main limitations below:

First, while the importance of provenance has been well rec-

ognized across communities in general (e.g., databases [6]–[10],

operating systems (OS) [11], [12], eScience [13]–[17]), there is a

lack of concrete understanding of the exact provenance needs of

domain scientists, largely due to the variety of data and metadata

that could be generated from HPC systems. As a result, existing

solutions are often too coarse-grained (e.g., whole file tracking

without understanding HPC data formats [11]) to help domain sci-

entists effectively, or too specific for one use case (e.g., Machine

Learning [18]) to support general needs.

Second, in terms of provenance modeling, we find that exist-

ing standards (e.g., W3C PROV [19]) are too vague to describe the

characteristics of scientific data provenance precisely. Scientists

often seek a variety of information from scientific workflows on

HPC systems, including the origins of data products, the config-

urations used for deriving results, the usage patterns of datasets,

and so on, which cannot be described effectively using any existing

provenance models. Such ambiguity limits the capability of existing

provenance solutions for describing scientific data.

Third, in terms of usability, existing approaches often require

the users to identify the critical code sites in the workflow software

(e.g., loop structure [20]) and manually insert the provenance APIs

to track the desired information accordingly. Such labor-intensive

and error-prone method hinders the wide adoption of provenance

products and diminishes the potential benefits.

Note that the limitations highlighted above are correlated. For

example, the lack of understanding of provenance needs and the

ambiguity of the provenance model are contributing to each other,

which fundamentally limits the usability of existing solutions in

terms of granularity, expressibility, etc., which in turn makes clari-

fying the ambiguity and real needs difficult.

1.3 Key Insights & Contributions
We tackle the grand challenge of provenance support for scientific

data on HPC systems in this paper.

First, we observe that for a provenance framework to be prac-

tical and useful, inputs from the end users (i.e., domain scientists)

is essential. Therefore, we collaborate with domain scientists to

analyze three representative scientific workflows in depth. In doing

so, we identify the unique characteristics of the workflows studied

(e.g., I/O interfaces, data formats, access patterns) as well as the

specific needs for scientific data provenance (e.g., lineage at file,

dataset, or attribute granularity).

Second, we observe that I/O operations are critically important

in affecting the state of data that form the lineage needed by the

domain scientists. Therefore, different from existing solutions [20]–

[22], we introduce an I/O-centric provenance model dedicated for

the HPC environments. The model enriches the W3C PROV stan-

dard [19] with a variety of concrete sub-classes, which can describe

both the data and the associated I/O operations and execution en-

vironments precisely with extensibility. Moreover, it enables us to

decouple the data provenance from specific executions of a work-

flow and support the integration of provenance from multiple runs

naturally, which is important as workflows may evolve over time.

Third, based on the I/O-centric model, we find that the rich I/O

middleware already used by the scientists provide an ideal vehicle

for capturing the desired provenance transparently. Therefore, we

create a configurable and extensible library and integrate it with ex-

isting I/O code paths (e.g., HDF5 I/O and POSIX syscalls) to capture

necessary information without requiring the scientists to modify

the source code of their workflows. Moreover, to further improve

the usability, we persist the captured provenance as standard RDF

triples [23] and enable provenance query and visualization.

Based on the key ideas above, we build a framework called PROV-

IO, which can provide end-to-end provenance support for domain

scientists with little manual effort. We deploy PROV-IO on a repre-

sentative supercomputer and evaluate it with realistic workflows.

Our experiments show that PROV-IO incurs reasonable perfor-

mance overhead and outperforms a state-of-the-art provenance

product (i.e., IBM ProvLake [20]) for the use cases evaluated. More

importantly, through the query and visualization support, PROV-IO

can address the provenance needs of the scientists effectively.

In summary, we have made the following contributions:

• Identifying concrete provenance needs of domain scientists

based on three representative scientific workflows;

• Designing a comprehensive PROV-IO model to describe the

provenance of scientific data precisely and extensibly;

• Building a practical prototype of PROV-IOwhich can support

different HPC workflows with little human efforts;

• Measuring the PROV-IO prototype in HPC environments

and demonstrating the efficiency and effectiveness.

• Releasing PROV-IO as an open-source tool to facilitate follow-

up research on provenance in general.

1.4 Experimental Methodology & Artifact
Availability

Experiments were performed on up to 64 compute nodes with

Intel Xeon “Haswell” processors and with up to 4096 cores. The

storage backend is a Lustre file system with typical configura-

tions. We applied PROV-IO to three scientific workflows including

DASSA [5], Top Reco [24], and a I/O-intensive application based on

H5bench [25], which covers diverse characteristics (e.g., various lan-

guages, file formats, I/O interfaces, metadata) and provenance needs

(e.g., file/dataset/attribute lineage, metadata versioning, I/O statis-

tics). We varied the critical parameters of the workflows to measure

the run-time performance and storage requirements under a wide

Session 5: HPC Toolchains, Traces, and More HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

214

range of scenarios. We compared PROV-IO with ProvLake [20] us-

ing the Python-based Top Recoworkflow as ProvLake only supports

Python at the time of this writing. The PROV-IO tool is open-source

at https://github.com/hpc-io/prov-io.

1.5 Limitations of PROV-IO
The design of the PROV-IO tool is driven by the needs of the domain

scientists using three scientific workflows. Given the diversity of

science, it is likely that the prototype cannot directly address the

unique provenance queries of all scientists. We plan to collaborate

with more domain scientists to identify additional needs and refine

PROV-IO accordingly.

Similarly, while the current prototype supports POSIX and HDF5

I/O transparently and is extensible by design, there are other pop-

ular I/O systems in HPC (e.g., ADIOS [26]) which we have not

integrated yet. We leave the integration with other I/O libraries as

future work.

In addition, there are other important aspects of provenance

(e.g., security [27]) which cannot be ignored in practice. We hope

that our efforts and the resulting open-source tool can facilitate

follow-up research in the communities and help address the grand

challenge of provenance support for scientific data in general.

2 BACKGROUND
2.1 W3C Provenance Standard
The PROV family of specifications, published by the World Wide

Web Consortium (W3C), is a set of provenance standard to promote

provenance publication on the Web with interoperability across

diverse provenance management systems [28]. One key specifica-

tion is PROV-DM, an extensible relational model which describes

provenance information with a graph representation. As shown

in Figure 2, a W3C provenance graph abstracts information into

classes of Entity,Activity,Agent, and Relation between the first three
classes. Another critical specification is PROV-O which describes

the mapping of PROV-DM classes to RDF triples. In PROV-O, Entity,
Activity and Agent are mapped to subjects and objects, while Rela-
tion is mapped to predicates. We follow the W3C PROV standard

in the design of our PROV-IO model.

Figure 2: The W3C Provenance Model [28].

2.2 HPC I/O Libraries
I/O libraries (e.g., ADIOS [26], HDF5 [29], and NetCDF [30]) play an

essential role in scientific computations. Many workflows leverage

the library I/O to manipulate data files. For example, HDF5 (i.e.,

Hierarchical Data Format version 5) is one of the the most wildly

used I/O libraries for scientific data [31]. It is developed to be a

parallel data management middleware to bridge the gap between

HPC applications and the complicated, low-level details of under-

lying file systems, and has grown to a popular data format and

management system.

In this work, we integrate our solution with the HDF5 library

besides the classic POSIX I/O operations. This is based on the ob-

servation that HDF5 has evolved with a Virtual Object Layer (VOL)

which can intercepts object-level API operations to functional plug-

ins, called VOL Connectors [32]. VOL connectors allow third-party

developers to add desired storage functionalities, which can be

loaded dynamically at runtime. We leverage such extensibility for

tracking the provenance of HDF5 I/O data.

3 CASE STUDIES
In this section, we discuss three real-world use cases to motivate

the I/O-centric provenance further. For each case, we describe its

semantics and characteristics, the provenance need of the domain

scientists, and the associated challenges.

3.1 Top Reco - Lineage of configurations
Workflow Description. Top Reco [24] is a Machine Learning (ML)

workflow in high-energy physics data analysis, which uses Graph

Neural Network (GNN) models for top quark reconstruction. Top

quarks are the elementary particles with the most mass that may

decay quickly and are not detectable directly due to their mass. By

representing particles and their relationships as graphs, the GNN-

based workflow can help reconstruct top quarks more accurately

and efficiently, which is important for physics discoveries.

In Figure 3, we show the key steps of the Top Reco workflow.

First, the workflow takes two types of files as input, including the

“.root” file for input event and the “.ini” file for configuration. Second,

it generates “.tfrecord” files which stores the training dataset and

test dataset based on the input events. Third, it trains a GNN model

with the training dataset and tests the model with the test dataset

by accessing the “.tfrecord” files. Fourth, a range of scores of edge

and nodes are generated as the output of the model. Finally, a

reconstructor component runs a simulation of reconstructing the

top quarks based on highest scores. As summarized in Table 1,

the Top Reco workflow uses the POSIX I/O interface, and involves

multiple programs accessing multiple files.

Figure 3: Top Reco workflow. Solid arrows stand for write
operation and dashed arrows stand for read operation.

Provenance Need. In the Top Reco case, the domain scientists

are interested in the impact of GNN configurations on the model

Session 5: HPC Toolchains, Traces, and More HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

215

https://github.com/hpc-io/prov-io

Table 1: Three Real Use Cases with Different Characteristics and Provenance Needs.

Use Case Description I/O Interface Provenance Need
Top Reco training GNN models for top quark reconstruction; multi-program, multi-file; POSIX metadata version control & mapping

DASSA parallel processing of acoustic sensing data; multi-program, multi-file; HDF5 & POSIX backward lineage of data products

H5bench simulating typical I/O patterns of HDF5 app; multi-program, single-file; HDF5 I/O statistics & bottleneck

performance. Specifically, they would like to know which combina-

tion of model hyperparameters and dataset preselections result in

the best training accuracy. In other words, they would like to have

fine-grained version control of the metadata (e.g., hyperparameters,

preselections) as well as the correlation between the metadata and

the result to ensure the explainability and reproducibility of the

models.

Challenges. Essentially, the Top Reco case requires automatic ver-

sion control management on the machine learning model. However,

a typical version control system (e.g., Git) cannot meet the require-

ments because it cannot automatically track the model performance

and maps the performance to the model configuration. In practice,

the scientists may need to execute the workflow for multiple times

with different configurations, and each execution may take multiple

hours or more. Due to lack of provenance support, the scientists

have to manually make a new copy of configuration when they start

a new run, and record the corresponding result later. Such common

practice is time-consuming and not scalable. In other words, a new

provenance framework is urgently needed.

3.2 DASSA - Lineage of Data Products
Workflow Description. As mentioned in Section §1.1, DASSA [5]

is a parallel storage and analysis framework for distributed acoustic

sensing (DAS) applications. It uses a hybrid (i.e., MPI and OpenMP)

data analysis execution engine to support efficient and automated

parallel processing of geophysical data in HPC environments, which

has been applied for accelerating a variety of scientific computations

including earthquake detection, environmental characterization,

and so on. The overall workflow is described in Figure 1.

Provenance Need. As discussed in Section §1.1, the domain scien-

tists need the backward data lineage to understand the origin of the

data products and to ensure the data reproducibility, explainability,

and security, among others.

Challenges. The DASSA workflow may involve multiple different

programs, file formats, I/O interfaces, and end users, which is repre-

sentative for large-scale scientific workflows in HPC environments.

Moreover, both the file level and the sub-file level (e.g., inner hier-

archies of the HDF5 format) information is needed. To the best of

our knowledge, none of the existing provenance models or systems

can handle the complexity to meet the comprehensive needs.

3.3 H5bench - Data usage and I/O performance
Workflow Description. H5bench [25] is a parallel I/O benchmark

suite for HDF5 [33] that is representative of various large-scale

workflows. It includes a default set of read and write workloads

with typical I/O patterns in HDF5 applications on HPC systems,

which enables creating synthetic workflows to simulate diverse

HDF5 I/O operations in HPC environments. The benchmark also

contains ‘overwrite’ and ‘append’ operations that allow modifying

data or metadata of existing files and appending new data, respec-

tively. We collect an H5bench-based workflow which contains a

combination of ‘write’, ‘overwrite’, ’append’ and ‘read’ workloads

operating on HDF5 files via MPI. This workflow simulates the typ-

ical scenarios where a single file may be accessed concurrently

by HPC applications and multiple versions of a dataset may be

generated accordingly. As shown in Table 1, the H5bench-based

workflowmainly uses the HDF5 I/O interface, and involves multiple

programs accessing a single file.

Provenance Need. Understanding frequently accessed data in

large datasets leads to optimizing I/O performance by improved

data placement and layout. Scientists typically use the H5bench-

based workflow to collect I/O statistics and identify potential bottle-

necks on HPC systems. While I/O profiling tools, such as Darshan

[34] and Recorder [35] collect coarse-grained statistics of I/O per-

formance, there are no tools to extract data access information

and the cost of those operations. Fine-grained information such

as the total number of each type of HDF5 I/O operations incurred

during the workflow, the accumulated time cost for each type of

operations, the distribution of operations and time overhead, the

HDF5 APIs invoked at a specific time point, etc. would be critically

important for understanding the system behavior and fine-tuning

the performance.

Challenges.TheH5bench use case involves handlingHDF5 datasets
concurrently and measuring diverse fine-grained metrics at the

HDF5 API level, which requires deep understanding of the seman-

tics and internals of HDF5. Since existing solutions are largely

incompatible with HDF5, they are fundamentally inapplicable for

this important category of use cases.

3.4 Summary
By analyzing the three cases in depth and consulting with the

domain scientists, we find that there is a big gap between the prove-

nance needs and existing solutions. The variety of the workflow

characteristics (e.g., different I/O interfaces and file formats) as

well as the diversity of scientists’ needs motivates us to design a

comprehensive provenance framework to address the challenge,

which we elaborate in the following sections.

4 PROV-IO DESIGN
In this section, we introduce the design of PROV-IO. We focus

on the provenance model (§4.1) and its system architecture (§4.2),

which are two fundamental pillars of PROV-IO. We defer the im-

plementation details to §5.

4.1 PROV-IO Model
Figure 4(a) shows an overview of the PROV-IO model, which is

derived based on the W3C standard (§2.1) as well as the character-

istics of typical workflows and the provenance needs of domain

scientists (§3).

Session 5: HPC Toolchains, Traces, and More HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

216

Figure 4: (a) PROV-IO Model Overview. The PROV-IO model classifies information into five super-classes: Entity (yellow boxes),
Activity (purple boxes), Agent (orange boxes), Extensible Class (green boxes) and Relation (text on arrows). The new concepts
introduced by PROV-IO are highlighted with blue color font. (b) A Provenance Snippet based on the PROV-IO Model.

Following the W3C specification, we classify information into

five PROV-IO super-classes: Entity (yellow boxes in Figure 4(a)),

Activity (purple boxes),Agent (orange boxes), Extensible Class (green
boxes) and Relation (text on arrows). Moreover, we introduce a

variety of concrete sub-classes to enrich the model, which can

capture the data with different granularity as well as the associated

I/O operations and execution environments for deriving the data.

We summarize the definitions of the sub-classes in Table 2 and

highlight the main concepts added to each super-class as follows:

4.1.1 Entity. This PROV-IO super-class includes seven specific

Data Object sub-classes (i.e.,Directory, File,Group,Dataset,Attribute,
Datatype, Link). Together, these sub-classes cover common I/O

structures and file formats. For example, Attribute is a combined

sub-class that canmap to both the HDF5 attributes and the extended

attributes of an inode in a POSIX-compliant Ext4 file system [36].

4.1.2 Activity. This super-class includes six specific I/O API sub-
classes (i.e., Create, Open, Read,Write, Fsync, Rename). These sub-
classes cover a wide range of commonly used I/O operations in HPC

environments. For example, Read can map to HDF5 read-family

operations (e.g., “H5Gread”, “H5Dread”, “H5Aread”, “H5Tread”) and

POSIX system call “read” and its variants. Note that these operations

are applicable to other I/O libraries too (e.g., NetCDF [30]).

4.1.3 Agent. This super-class includes a set of sub-classes repre-
senting the operator of a series of activities, such as User, Thread,
and Program. Note that the Thread sub-class can describe thread/process
information (e.g., MPI rank) in multi-threaded programs which is

critical in HPC environments.

4.1.4 Extensible class. This super-class contains properties per-
tained by entities, activities and agents. It is designed to be exten-

sible because valuable information is often workflow-specific. We

define three generic sub-classes (i.e., Type, Configuration, Program)

to cover a variety of valuable information that cannot be described

precisely in the native W3C specification (e.g., hyperparameters of

ML models).

4.1.5 Relation. This super-class describes the diverse relations

among other classes.We inherit the basicW3C provenance relations

between entity & entity (prov:wasDerivedFrom), entity & agent
(prov:wasAttributedTo), activity & agent (prov:AssociatedWith),

agent & agent (prov:actedOnBehalfOf). Moreover, we introduce

new relations between entity & activity to precisely describe the

relations between various I/O API and Data Object sub-classes (e.g.,

provio:wasCreatedBy, provio:wasReadBy, provio:wasWrittenBy,

provio:wasModifiedBy).

To make the description more concrete, we show an example

snippet of provenance captured by PROV-IO in Figure 4(b). The

provenance snippet contains five records pertained by different sub-

jects. Each subject can be an Agent (e.g., “Bob”, “MPI_rank_0”), an

Activity (e.g., “H5Dcreate2–b1”), or an Entity (e.g., “/Timestep_0/x”).

Each record is a series of triples starting with a unique subject,

where the triples describe provenance information of a subject.

Note that the record length may vary depending on the prove-

nance information associated with the subject. Given this snip-

pet, we can derive complex provenance information (e.g., dataset

“/Timestep_0/x” was created by I/O API “H5Dcreate2–b1” associ-

ated with program “vpicio_un_h5.exe–a1” on thread “MPI_rank_0”,

which was started by user “Bob”).

4.2 PROV-IO Architecture
Figure 5 shows the architecture of the PROV-IO framework. Be-

sides the PROV-IO model (yellow), the framework includes three

major components: (1) provenance tracking (blue modules) which

captures I/O operations from multiple I/O interfaces; (2) a prove-

nance store (green) which persists captured provenance into RDF

triples; (3) a user engine (red) for users to query and visualize prove-

nance information. We introduce the design of these three major

components one by one below.

Provenance Tracking. As shown in Figure 5, a scientific work-

flow is typically started on compute nodes by a user. The workflow

may consist of several parallel applications with multiple threads

Session 5: HPC Toolchains, Traces, and More HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

217

Table 2: Description of PROV-IO Model.

Super-
class Sub-class Description

<<Data Object>>

Directory

POSIX file system directory.

<<Data Object>>

File

POSIX file system file.

<<Data Object>>

Group

I/O library interior group structure (e.g.,

HDF5 group).

Entity <<Data Object>>

Dataset

I/O library interior dataset structure (e.g.

, HDF5 dataset).

<<Data Object>>

Attribute

POSIX Inode extended attribute and I/O

library interior attribute structure (e.g.,

HDF5 attribute).

<<Data Object>>

Datatype

I/O library interior datatype structure

(e.g., HDF5 datatype).

<<Data Object>>

Link

POSIX file system hard/soft link.

<<I/O API>>

Create

POSIX syscall “open” and I/O library

“Create” APIs (e.g., H5Acreate).

<<I/O API>>

Open

I/O library “Open” APIs (e.g., H5Aopen).

<<I/O API>>

Read

POSIX syscall “read” (and variants) and

I/O library “Read” APIs (e.g., H5Aread).

Activity <<I/O API>>

Write

POSIX syscall “write” (and variants) and

I/O library “Write” APIs (e.g., H5Awrite).

<<I/O API>>

Fsync

POSIX syscall “fsync” (and variants) and

I/O library “Flush” APIs (e.g., H5Flush).

<<I/O API>>

Rename

POSIX syscall “rename” (and variants)

and I/O library “Rename” APIs.

User Workflow user.

Agent Thread Individual thread.

Program Program instance.

Type Type of a program/workflow (e.g., Ma-

chine Learning (Top Reco), Acous-

tic Sensing (DASSA), and Synthetic

(H5bench workflow)).

Extensible

Class
Configuration Workflow configurations (e.g., hyperpa-

rameter in Top Reco).

Metrics Evaluation metrics of the workflow. E.g.,

model accuracy in Top Reco.

provio:

wasCreatedBy

The relation between a <<I/O API>>

Create and a <<Data Object>>.

provio:

wasOpenedBy

The relation between a <<I/O API>>

Open and a <<Data Object>>.

Relation provio:

wasReadBy

The relation between a <<I/O API>>

Read and a <<Data Object>>.

provio:

wasWrittenBy

The relation between a <<I/O API>>

Write and a <<Data Object>>.

provio:

wasFlushedBy

The relation between a <<I/O API>>

Fsync and a <<Data Object>>.

provio:

wasModifiedBy

The relation between a <<I/O API>>

Rename and a <<Data Object>>.

Figure 5: The Architecture of PROV-IO Framework. Beside
the PROV-IO model (yellow), the framework includes three
major components: provenance tracking (blue modules), a
provenance store (green) and a user engine (red).

running concurrently. During the workflow execution, all I/O op-

erations (e.g., POSIX and HDF5) are monitored by PROV-IO for

provenance collection.

Specifically, the Provenance Tracking component contains two

thin modules (i.e., PROV-IO Lib Connector and PROV-IO Syscall
Wrapper) for monitoring the library I/O and POSIX I/O operations

respectively. In case of the HDF5 library, the PROV-IO Lib Connec-

tor monitors the I/O requests within the HDF5 Virtual Object Layer

(VOL). In case of POSIX, the I/O syscalls are monitored through the

PROV-IO Syscall Wrapper which is configurable via environmental

variables. In both cases, PROV-IO let the native I/O requests pass

through and invoke the core PROV-IO Library for collecting the

provenance defined by the PROV-IO model without changing the

original I/O semantics. Note that both the library I/O and POSIX I/O

operations can be tracked in a transparent and non-intrusive way

from the workflow’s perspective, which is important for usability.

In addition, to achieve extensibility, we provide a set of PROV-

IO APIs which enables users to convey user/workflow-specific

semantics and requirements to PROV-IO (i.e., Extensible Class in

PROV-IO model). Similar to ProvLake [20], users can instrument

their workflows with PROV-IO APIs as needed (e.g., tracking a

specific hyperparameter of a ML workflow). By providing such

flexibility, additional provenance needs can be satisfied by PROV-

IO conveniently.

Provenance Store. The Provenance Store component maintains

the provenance information as RDF graphs durably on the underly-

ing parallel file system to enable future queries. We choose an RDF

triplestore instead of a traditional SQL database for two main rea-

sons: (1) W3C PROV-DM already has a well-defined ontology (i.e.,

PROV-O[19]) to map the model to RDF, so using RDF makes PROV-

IO compatible with other W3C-compliant solutions; (2) To answer

path queries in provenance use cases, SQL queries with repeated

self-joins are necessary to compute the transitive closure, which

often leads to worse performance when the provenance grows [37].

Session 5: HPC Toolchains, Traces, and More HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

218

More specifically, the Provenance Store component provides

an interface for the PROV-IO Library to manipulate provenance

records and maintain provenance graphs efficiently, which includes

creating a new provenance RDF graph in memory, loading an

existing graph, inserting new records to an existing graph, etc.

To minimize the performance impact on the workflow, the in-

memory provenance graph is serialized to the Provenance Store

asynchronously. And depending on the need of the user, the seri-

alization operation may be triggered either periodically or by the

end of the workflow.

PROV-IO User Engine. The provenance information could be

enormous due to the complexity of scientific workflows. To avoid

distraction and help users derive insights, the PROV-IO User Engine

component allows users to enable/disable individual sub-classes

defined in the PROV-IO model, which also enables flexible tradeoffs

between completeness and overhead.

Moreover, the engine provides a query interface to allow the user

to issue queries on the provenance generated by PROV-IO. More-

over, it includes a visualization module to visualize the provenance

(sub)graphs requested by the user. Note that both the query and the

visualization need to follow the PROV-IO model, which enforces a

uniform way to represent the rich provenance information.

5 PROV-IO IMPLEMENTATION
In this section, we discuss additional implementation details of the

major components in the PROV-IO framework.

Provenance Tracking. To support HDF5 I/O, we implement the

PROV-IO Lib Connector in C and integrate it with the native HDF5

VOL-provenance connector, which follows a homomorphic design

inwhich eachHDF5 native I/OAPI has a counterpart API [32]. Upon

each invocation of an HDF5 native API, the counterpart API adds

the corresponding virtual data object to a linked list. PROV-IO Lib

Connector leverages the linked list with locking support to achieve

concurrency control on I/O operations on the same data object.

To collect provenance, the PROV-IO Library APIs are invoked. We

collect Agent information at the initialization stage of the native

HDF5 VOL-provenance connector. Entity and Activity classes are

tracked at each homomorphic API during the workflow runtime.

Similarly, to support POSIX I/O, we use GOTCHA [38] to build

a C wrapper layer for POSIX syscall and invokes the PROV-IO

Library internally. Additionally, the current PROV-IO APIs support

invoking the PROV-IO Library from workflows written in multiple

languages including Python, C/C++, and Java.

Provenance Store. The Provenance Store is implemented based

on Redland librdf [39] to serve as the durable backend of the

PROV-IO Library. We choose Redland because based on our experi-

ences, many other existing RDF solutions are not directly usable in

our HPC environments due to compatibility issues in dependent

packages and/or operating system (OS) kernels [40]–[44].

We utilize Redland’s in-memory graph representation and its

support for serializing in-memory graph to multiple on-disk RDF

formats (e.g., Turtle [45], ntriples [46], etc.). Redland librdf also
supports the integration of multiple databases as the storage back-

end (e.g., BerkeleyDB, MySQL, PostgreSQL and SQLite). In the

current prototype, we store provenance information in the Turtle

format directly for simplicity.

To avoid potential data races when serializing from multiple pro-

cesses to the Provenance Store, PROV-IO maintains an in-memory

sub-graph for each process and lets the process serialize its own

sub-graph to a unique RDF file on disk. The sub-graph files are

then parsed and merged into a complete provenance graph. Since

every node in the graph has a globally unique ID (GUID), merging

the sub-graphs does not cause unnecessary duplication. Note that

this strategy also help performance because no extra inter-process

communication or synchronization is needed during workflow exe-

cution, and the merging can be performed after workflow execution.

PROV-IO User Engine. Also, the engine supports querying RDF
triples with SPARQL, which is a semantic query language to retrieve

and manipulate data stored in RDF [47]. We use Python scripts as

the SPARQL endpoint. Note that depending on different use case

scenarios, the query can vary a lot, as will be demonstrated in

Section §6.5. In the current prototype, we utilize Graphviz [48] for

RDF graph visualization.

6 EVALUATION
In this section, we evaluate a prototype of the PROV-IO framework

in representative HPC environments. We first introduce the ex-

perimental methodology (§6.1), and then evaluate PROV-IO from

three perspectives including tracking performance (§6.2), storage

requirement (§6.3), and query effectiveness for the end users (§6.5).

We compare PROV-IO with a state-of-the-art provenance product

(i.e., ProvLake [20]) in §6.4. Overall, our experimental results shows

that PROV-IO’s tracking overhead is less than 3.5% in more than

95% of our experiments, and it outperforms ProvLake in terms of

both tracking and storage overhead.

Table 3: The provenance needs and the information tracked
by PROV-IO for three workflows.

Workflow Provenance Need Information Tracked
Top Reco

(Python)

metadata version

control & mapping

hyperparameter, preselec-

tion, training accuracy

file lineage program, I/O API, file

DASSA dataset lineage program, I/O API, dataset

(C++) attribute lineage program, I/O API, attr

scenario-1 I/O API

H5bench scenario-2 I/O API, duration

(C) scenario-3 user, thread, program, file

6.1 Experimental Methodology
We have evaluated the PROV-IO framework on a state-of-the-art

supercomputer. We do experiments with 64 Intel Xeon “Haswell”

processor nodes and up to 4096 cores, unless otherwise specified.

The storage backend is a Lustre file system with stripe count of 128

and stripe size of 16MB.

We apply PROV-IO to three representative workflows including

Top Reco [24], DASSA [5], and an H5bench-based workflow [25]. As

mentioned in §3, the three use cases exhibit diverse characteristics

(e.g., various file formats, I/O interfaces, metadata) and provenance

needs (e.g., file/dataset/attribute lineage, I/O statistics, metadata

versioning). We summarize the information tracked by PROV-IO

in the experiments to meet the provenance needs in Table 3 and

elaborate them in detail in the following subsections.

Session 5: HPC Toolchains, Traces, and More HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

219

Figure 6: Performance of Provenance Tracking. (a) Top Reco. (b) DASSA (with File, Dataset, Attribute Lineages tracked). (c - e)
H5bench-based workflow under three I/O patterns (i.e., write+read, write+overwrite+read, write+append+read)

6.2 Performance of Provenance Tracking
In case of Top Reco, the scientists need the mapping between

configurations and the training performance. Therefore, PROV-IO

tracks three domain-specific items (e.g., model hyperparameters,

dataset preselections, and training accuracy) based on the extensible

class defined in the PROV-IO model. To track the mapping between

workflow configuration and training accuracy, we instrument the

workflow’s training loop with PROV-IO APIs and record the train-

ing accuracy at the end of each epoch, and add the training accuracy

to the provenance graph as a property of configurations. In addition,

we vary the number of training epochs to see how the performance

scales. Note that Top Reco is a single process workflow.

Figure 6(a) shows the performance for Top Reco. The y-axis is the

normalized completion time (starting with 0.998), while the x-axis is

the number of training epoch (roughly equivalent to training time).

The grey bars are the baseline without provenance, and the green

bars show the performance with PROV-IO enabled. We can see

that the tracking overhead is negligible overall with a maximum of

0.02%. The overhead with a shorter training time is relatively high,

which is mostly caused by the latency of Redland. As the number of

training epoch increases, the overhead of PROV-IO decreases almost

linearly because PROV-IO tracks a constant amount of information.

In case of DASSA, the scientists need the backward lineage

of data products in different granularity. As shown in the second

column of Table 3, PROV-IO tracks the information of user, program,

file, dataset, or attribute for different lineage needs based on the

PROV-IO model (§4.1). We follow a similar configuration as the

domain scientists’ by using 32 compute nodes and up to 2048 input

files (1.35TB in total).

Figure 6(b) shows the tracking performance for DASSA. The

x-axis means the number of input files; the y-axis on the left and

right sides show the normalized completion time and the raw com-

pletion time (in second), respectively. The grey bars represent the

normalized baseline without PROV-IO, and the red, green and blue

bars represent the normalized completion time under three usage

scenarios (i.e., “File Lineage”, “Dataset Lineage” and “Attribute Lin-

eage”) where different provenance granularity are enabled (e.g., for

“File Lineage” we enable “program”, “I/O API” and “file” tracking).

The solid grey line stands for the average baseline completion time

(in second) without provenance tracking, while the dashed blue

line represents the worst case raw completion time with PROV-IO

enabled under all usage scenarios.

We can see the max overhead occurred when tracking the at-

tribute lineage of the entire 2048 files, which is about 11%. This

is because DASSA heavily relies on HDF5 attributes. To access an

attribute, the program first needs to open the file and the dataset

containing it, which incurs more I/O operations to track. But overall,

PROV-IO incurs reasonable overhead in DASSA (ranging from 1.8%

to 11%). This is expected because DASSA does not require heavy

I/O API tracking. In other words, PROV-IO is efficient for tracking

the backward lineage in file, dataset, and attribute granularity.

In the H5bench based workflow, the scientists need the data

usage and I/O statistics in general. We consider three different us-

age scenarios based on different needs. As summarized in Table 3,

scenario-1 tracks the total number of I/O APIs; scenario-2 tracks
both the I/O API count and their duration for bottleneck analysis;

scenario-3 tracks the users and threads that modify the file. More-

over, for each scenario, we consider three different I/O patterns

including: write-read, write-overwrite-read, and write-append-read.
In (c) and (d), we run the workflow with 128 to 4096 MPI processes.

In (e), since the append operations from a large amount of MPI

processes can easily overwhelm the memory buffer for appending

and lead to out-of-memory (OOM) errors, we reduce the number

Session 5: HPC Toolchains, Traces, and More HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

220

Figure 7: Storage of Provenance Tracking. (a) Top Reco. (b) DASSA (with File, Dataset, Attribute Lineages tracked). (c - e)
H5bench-based workflow under three I/O patterns (i.e., write+read, write+overwrite+read, write+append+read)

of MPI processes (2 to 64). Also, based on the observation that

the computation time of many HPC applications may vary from

dozens to thousands of seconds per I/O operation, we introduce a

relatively modest computation time of 25 seconds per step in the

experiments.

Figure 6 (c) (d) (e) show the tracking performance under three

different I/O patterns (i.e., “write+read”, “write+overwrite+read”,

“write+append+read”) respectively. The x-axis stands for the num-

ber of MPI ranks. The left y-axis is the normalized completion time

and the right y-axis is the raw completion time in second. The grey

bars represent the baseline while the three types of colored bars

stand for the performance of different provenance usage scenarios

mentioned in Table 3(red for “scenario 1”, green for “scenario 2”,

blue for “scenario 3”). The grey solid line is the average baseline

completion time, while the blue dash line is the worst-case raw

completion time with PROV-IO enabled.

Overall, we find that PROV-IO incurs reasonable amount of over-

head (i.e., ranging from 0.5% to 4%) even under heavy I/O operations

(3.9TB data with 4096 MPI ranks). In particular, the PROV-IO over-

head under the “write-append-read” I/O pattern (Figure 6 (c)) is

minimal (around 0.5%). This is because the HDF5 I/O operation

under this pattern takes more computation time than under the

other two patterns to determine the append offset and memory

range, which makes the PROV-IO overhead more negligible. Also,

by comparing scenario-1 and scenario-2, we find that tracking the

I/O API duration introduce little additional overhead. This is rea-

sonable because the timing information can be piggybacked with

the I/O API tracking which dominates the overall tracking time.

6.3 Storage Requirements
The storage requirement of PROV-IO is directly related to the

amount and the class of information tracked. Specifically, the stor-

age overhead may increase in two ways: (1) the size of a single

provenance record may increase (e.g., adding timing information

will increase size of an I/O API record); (2) the total number of

records in a provenance file may increase (e.g., tracking thread

information will create a number of thread records). We summarize

the storage performance of PROV-IO for the three workflows in

Figure 7.

Figure 7(a) shows the Top Reco case. The x-axis represents the

number of epochs and the y-axis is the provenance size (KB). We

can see that the provenance size is negligible. This is because PROV-

IO allows users to specify the target provenance precisely without

incurring unnecessary overhead. It also scales linearly since the

number of new nodes added to provenance graph is the same as

the increment in training epochs.

Figure 7(b) shows the DASSA case. The x-axis is the number of in-

put files while the y-axis represents the provenance size (MB). Lines

in three different colors represent File Lineage, Dataset Lineage

and Attribute Lineage, respectively. We can see that the storage

requirement varies from 40 MBs (with 128 input files) to about 800

MBs (with 2048 files) with linear scalability (note that the x-axis

increases by a multiple of 2). Although DASSA heavily relies on

attributes, the storage overhead in the three usage scenarios is

similar. This is because I/O API is still the dominant part in all sce-

narios. Even though the number of file and dataset is far less than

attribute in DASSA input data, when compared to number of APIs

involved in the workflow, their contribution to storage overhead is

insignificant.

Session 5: HPC Toolchains, Traces, and More HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

221

Figure 8: A performance comparison between PROV-IO and ProvLake.

Figure 7 (c)(d)(e) shows the H5bench-based workflow with three

different I/O patterns. The x-axis represents number of MPI ranks

and the y-axis stands for provenance size in MBs. Note that x-axis

also increases by a multiple of 2. Lines in three different colors

represents three different provenance usage scenarios (Table 3).

We can see the provenance size varies from a few KBs to 168 MBs.

Among the three I/O patterns, “write+overwrite+read” has the

highest storage overhead under usage scenario 2. This is because

the pattern includes one more I/O application (i.e., overwrite) than

“write+read” and has much more MPI processes contributing to

provenance graph than “write+append+read”. Moreover, scenario

2 also has the largest amount of tracked information (I/O API and

their duration). Note that the storage overhead in this workflow

also scales linearly.

In summary, because of the flexibility of the fine-grained PROV-

IO model, PROV-IO’s storage overhead is reasonable for all the use

cases evaluated.

6.4 Comparison with Other Frameworks
In this section, we compare PROV-IO to state-of-the-art provenance

systems. Table 4 shows the basic characteristics of Komadu [49],

ProvLake [20], and PROV-IO. We can see that all three frameworks

are derived from the base PROV-DM model, which makes the com-

parison fair. On the other hand, Komadu only supports Java pro-

grams and ProvLake only supports Python, which makes them

incompatible with many C/C++ based scientific workflows (e.g.,

DASSA and H5bench). Note that PROV-IO’s C/C++ interface is

designed for integration with major HPC I/O libraries. Once the I/O

library is integrated with PROV-IO (e.g., HDF5), the provenance

support is mostly transparent to the workflow users, i.e., users can

control the rich provenance features through a configuration file

without manually modifying their source code with APIs. Neither

Komadu nor ProvLake support such capability or transparency.

Table 4: Basic Characteristics of Three Frameworks.

Komadu ProvLake PROV-IO
Base model PROV-DM PROV-DM PROV-DM

Language Java Python C/C++,Python,Java

Transparency No No Hybrid

Since ProvLake has outperformed Komadu based on a previous

study [17], we focus on the comparison with ProvLake. Because

ProvLake does not support C/C++ workflows, we cannot apply it to

DASSA and H5bench. Therefore, we compare the two provenance

tools using Python-based Top Reco in the rest of this section.

Different fromPROV-IOwhich is I/O-centric, ProvLake is ’process-

oriented’. Specifically, ProvLake creates records based on the execu-

tion steps of a workflow, and the provenance data are maintained as

attribute or property of individual steps. On the contrary, PROV-IO

is not limited to the execution steps of the workflow. For example, it

can track a task in the workflow, an I/O operation invoked by a task,

a data object involved in the I/O operation, etc., all of which are

further correlated via the relations defined by the PROV-IO model

(§4.1). Such flexibility and richness is not available in ProvLake.

To make the comparison with ProvLake fair, we use the same

instrument points in the Top Reco workflow for both tools. Specifi-

cally, we instrument Top Reco at its GNN training loop and track

the training accuracy at the end of each epoch to corresponding

provenance records. Since the workflow configuration is never

changed during the entire workflow, we only add it to ProvLake’s

record once at the beginning of the workflow. In addition, to be

representative, we track three different numbers of configurations

(i.e., 20, 40, and 80).

Figure 8(a),(b),(c) compares the provenance tracking performance

of the two systems where y-axis is normalized completion time.

Figure 8 (d),(e),(f) shows the storage overhead where y-axis is size in

Session 5: HPC Toolchains, Traces, and More HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

222

Table 5: Example Queries. The diverse provenance needs can be satisfied by a few simple queries effectively.

Workflow Provenance Need Query Statement (SPARQL) # of Statements in Query
1: data_object_a prov:wasAttributedTo ?program. 3*N

DASSA file/dataset/attribute lineage 2: ?data_object prov:wasAttributedTo program_1; (where N is backward

3: provio:wasReadBy ?IO_API. propagation steps)

scenario-1 4: ?IO_API prov:wasMemberOf prov:Activity; 1

H5bench scenario-2 5: ?IO_API prov:wasMemberOf prov:Activity; 2

6: provio:elapsed ?duration.

7: file_a prov:wasAttributedTo ?program.

scenario-3 8: program_1 prov:actedOnBehalfOf ?thread. 3

9: thread_i prov:actedOnBehalfOf ?user.

Top Reco metadata version control & mapping 10: ?configuration ns1:Version ?version; 2

11: provio:hasAccuracy ?accuracy.

KB. In all figures x-axis is the number of configurations. In (a)(b)(c),

grey bars stand for the baseline without provenance tracking, green

bars show the normalized performance with PROV-IO, and red bars

show the performance with ProvLake. In (d)(e)(f), green lines stand

for PROV-IO provenance file size and red lines stand for ProvLake

provenance file size.

As shown in Figure8(a)(b)(c), both frameworks incur negligible

tracking overhead (e.g., less than 0.025%) and the PROV-IO overhead

is even lower than ProvLake for most cases. Similarly, as shown

in Figure8(d)(e)(f), PROV-IO always incurs less storage overhead,

regardless of the number of configuration fields tracked. This is

mainly because ProvLake has to track more irrelevant workflow

information not needed in the use case.

6.5 Query Effectiveness
As mentioned in §5, PROV-IO supports provenance query with

visualization. Table 5 summarizes the queries used to answer the

diverse provenance needs of the three workflow cases. We can see

that the provenance can be queried effectively and efficiently using

a few simple SPARQL statements in general. Since the number of

queries involved is small, the query time overhead is negligible in

our experiments. We discuss each case in more details below.

In DASSA, to get the backward lineage of a data product, we

can start with the program which generated the data product and

look for its input data. The same procedure can be repeated as

needed. For example, DASSA may convert “WestSac.tdms” into

“WestSac.h5” with program “tdms2h5”, and then use “decimate” to

process “WestSac.h5” into data product “decimate.h5”. To get the

backward lineage of “decimate.h5”, we first query with keywords

“decimate.h5 prov:wasAttributedTo ?program” to locate program

“decimate”, and then query “decimate”’s input file “WestSac.h5” with

keywords “?file wasAttributedTo decimate”. We can use similar

queries to locate earlier predecessors (e.g., “WestSac.tdms”). As

summarized in Table 5, for each backward step, we only need three

query statements. Figure 9 shows the visualization of this example,

which follows the PROV-IO provenance model (§4.1) and highlights

the queried data lineage in blue. Other types of lineages (e.g., dataset

and attribute) can be queried and visualized in the same way.

Similarly, in H5bench, we have three types of provenance needs

(i.e., the scenarios described in §6.2) which can be answered using

1, 2, 3 SPARQL statements respectively. In Top Reco, the metadata

versioning and mapping information can be queried in 2 statements.

Figure 9: An Example of DASSA Data Lineage by PROV-IO.
The graph follows the PROV-IO model; the data lineage is
highlighted in blue.

Note that the provenance needs are diverse across the real use

cases, but the number of queries needed is consistently small. This

elegant result suggests that the PROVI-IO model as well as the

entire framework is effective for scientific data on HPC systems.

7 RELATED WORK
In this section, we discuss provenance-related work and tools that

have not been covered sufficiently in the previous sections.

Database Provenance. Historically, provenance has been well

studied in databases to understand the causal relationship between

materialized views and table updates [6], [50]. The concept has

also been extended to other usages [8], [51]. In general, database

provenance may leverage the well-defined relational model and

the relatively strict transformations to capture precise provenance

within the system [52], which is not applicable for general software.

On the other hand, some query optimizations (e.g., provenance

reduction [53]) could potentially be applied to PROV-IO. Therefore,

PROV-IO and existing database tools are complementary.

OS-Level Provenance. Great efforts have also been made to cap-

ture provenance at the operating system (OS) level [11], [12], [37].

For example, PASS [11], [12] intercepts system calls via custom

kernel modules for inferring data dependencies. Similarly to these

efforts, PROV-IO recognizes the importance of I/O syscalls. But

different from PASS, PROV-IO is non-intrusive to the OS kernel.

Moreover, PROV-IO leverages the unique characteristics of HPC

workflows and systems to meet the needs of domain scientists,

Session 5: HPC Toolchains, Traces, and More HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

223

while PASS is largely inapplicable in this context. More specifically,

we elaborate on five key differences as follows:

(1) Provenance Model: PROV-IO follows theW3C specifications to

represent rich provenance information in a relational model (§4.1).

In contrast, PASS follows the conventional logging mechanism

without a general relational model, which limits its capability of

capturing and describing complex provenance. For example, PASS

has to establish the dependencies among events via a kernel-level

logger (i.e., ‘Observer’ [12]) which cannot interpret the semantics

or relations of HPC I/O library events. Consequently, PASS can

only answer relatively limited queries (e.g., ancestor of a node [12])

instead of the rich lineage defined in W3C specifications.

(2) System Architecture: PROV-IO is a user-level solution de-

signed for the HPC environment (§4.2). In contrast, PASS heavily

relies on customized kernel modules to achieve its core function-

alities. This kernel-based architecture makes PASS incompatible

with modern HPC systems. For example, neither the PASTA file

system (in PASS [11]) nor the Lasagna file system (in PASSv2 [12])

is compatible with the Lustre PFS dominant in HPC. In other words,

translating the core functionalities of PASS to HPC systems would

require substantial efforts (if possible at all), and the implications

on performance and scalability is unclear.

(3) Granularity: PROV-IO can handle fine-grained I/O prove-

nance which is critical for understanding HPC workflows (e.g.,

the lineage of an attribute of an HDF5 file), while PASS collects

relatively coarse-grained events (e.g., access to an entire file).

(4) Tracking APIs: By embedding in popular HPC I/O libraries,

PROV-IO does not require modifying the source code to track I/O

provenance. In contrast, to use PASS, users must consider how to

apply six low-level calls (e.g., pass_read, pass_mkobj [12]) to the

target applications.

(5) Storage & Query: Based on the well-defined model, PROV-IO

stores provenance as RDF triples backed by the parallel file system.

In contrast, PASS relies on its own local file system to generate

provenance as local logs. The storage representation directly affects

the user query capability. For example, PROV-IO supports querying

RDF triples via SPARQL [47], while PASS only supports a special

Path Query Language which is much less popular today.

In summary, while PROV-IO is partially inspired by the seminal

PASS designed more than a decade ago, the two works are different

due to the different goals and contexts. Therefore, we view PASS

and PROV-IO as complementary tools.

Workflow&Application Provenance. Provenancemodels or sys-

tems forworkflows and/or applications have also been explored [18],

[20], [21], [54]. For example, Karma [21] describes a model with

a hierarchy of ‘workflow-service-application-data’. However, the

model is designed for the cloud environment and cannot cover di-

verse HPC needs (e.g., HDF5 attributes, MPI ranks). PROV-ML [18]

is a series of well-defined specifications for machine learning work-

flows. Different from PROV-ML, PROV-IO is designed for general

HPC workflows. IBM ProvLake [20] is a lineage data management

system capable of capturing data provenance across programs. Un-

like PROV-IO, ProvLake always require users to modify the source

code using its special APIs, which severely limits its usage and

scalability for complicated HPC workflows.Similar to PROV-IO,

there are a few provenance capturing tools using DBMS to store

queriable provenance data, but they do not follow any widely used

provenance models [55]–[57].

OtherUsage of Provenance. Provenance has been applied to other
venues. For example, MOLLY uses lineage-driven fault injection

to expose bugs in fault-tolerant protocols [58]. There have been

a multitude of domain-specific or application-specific provenance

and ontology management implementations. However, they do

not capture the I/O access information that PROV-IO manages.

We believe the comprehensive provenance information enabled by

PROV-IO can also be leveraged to stimulate several data quality

and storage optimizations, which we leave as future work.

Non-Provenance Tools. In addition, great efforts have been made

to manage workflows [59], [60] or log I/O events for various pur-

poses [34], [35], [61]–[75]. While they are effective for their original

goals, they are insufficient to address provenance needs in general

due to a number of reasons: (1) no relational model to support track-

ing or querying rich provenance (e.g., various relations defined in

W3C PROV-DM [28]); (2) agnostic to the fine-grained semantics

in HPC I/O libraries (e.g., HDF5 attributes); (3) little portability

across different I/O libraries or workflow environments; (4) no

programmable interface to specify customized provenance needs.

8 CONCLUSION & FUTUREWORK
We have introduced a provenance tool called PROV-IO for scien-

tific data on HPC systems. Experiments with representative HPC

workflows show that PROV-IO can address diverse provenance

needs with reasonable overhead. We believe that PROV-IO repre-

sents a promising direction toward ensuring the rigorousness and

trustworthiness of scientific data management.

In the future, we will address the limitations mentioned in §1.5.

Moreover, in the Top Reco case studied in this paper, the domain

scientists would like to identify the best configurations across mul-

tiple runs of the workflow. In other words, there is a need of prove-

nance across multiple executions of the same workflow. Similar

cross-workflow provenance may be needed when multiple different

workflows cooperate to process shared datasets, which requires

additional modeling and interface to bridge the semantic gap be-

tween workflows. We would like to investigate such complex multi-

workflow scenario as well.

9 ACKNOWLEDGMENTS
The authors would like to thank Yogesh Simmhan (our shepherd)

and the anonymous reviewers for their insightful feedback. We also

thank Xiangyang Ju for providing the Top Reco workflow. This

work was supported in part by NSF under grants CNS-1855565,

CCF-1853714, CCF-1910747 and CNS-1943204. Any opinions, find-

ings, and conclusions expressed in this material are those of the

authors and do not necessarily reflect the views of the sponsors.

This manuscript has been authored by an author at Lawrence Berke-

ley National Laboratory under Contract No. DE-AC02-05CH11231

with the U.S. Department of Energy. The U.S. Government retains,

and the publisher, by accepting the article for publication, acknowl-

edges, that the U.S. Government retains a non-exclusive, paid-up,

irrevocable, world-wide license to publish or reproduce the pub-

lished form of this manuscript, or allow others to do so, for U.S.

Government purposes.

Session 5: HPC Toolchains, Traces, and More HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

224

REFERENCES
[1] K. M. Tolle et al., “The fourth paradigm: Data-intensive scientific discovery

[point of view],” Proceedings of the IEEE, vol. 99, no. 8, pp. 1334–1337, 2011. doi:
10.1109/JPROC.2011.2155130.

[2] M. D. Wilkinson et al., The fair guiding principles for scientific data management
and stewardship, 2016.

[3] Fair principles. [Online]. Available: https://www.go-fair.org/fair-principles/

(visited on 10/04/2021).

[4] M. Milton et al., “Trustworthy data underpin reproducible research,” Nature
Physics, vol. 16, pp. 117–119, Feb. 2020. doi: 10.1038/s41567-019-0780-5.

[5] B. Dong et al., “DASSA: Parallel DAS Data Storage and Analysis for Subsurface
Event Detection,” in 2020 IEEE International Parallel and Distributed Processing
Symposium (IPDPS’20), 2020.

[6] P. Buneman et al., “Why and where: A characterization of data provenance,” in

Proceedings of the 8th International Conference on Database Theory (ICDT’01),
2001.

[7] X. Niu et al., “Interoperability for provenance-aware databases using PROV

and JSON,” in 7th USENIX Workshop on the Theory and Practice of Provenance
(TaPP’15), 2015.

[8] P. Senellart, “Provenance and probabilities in relational databases,” SIGMOD
Rec., vol. 46, no. 4, pp. 5–15, Feb. 2018, issn: 0163-5808. doi: 10.1145/3186549.
3186551.

[9] Z. Miao et al., “Going beyond provenance: Explaining query answers with

pattern-based counterbalances,” in Proceedings of the 2019 International Confer-
ence on Management of Data (SIGMOD’19), 2019.

[10] Z. Wang et al., “A provenance storage method based on parallel database,” in

2015 2nd International Conference on Information Science and Control Engineering
(ICISCE’15), 2015.

[11] K.-K. Muniswamy-Reddy et al., “Provenance-aware storage systems,” in Pro-
ceedings of the Annual Conference on USENIX ’06 Annual Technical Conference
(ATC’06), 2006.

[12] K.-K. Muniswamy-Reddy et al., “Layering in provenance systems,” in Proceed-
ings of the 2009 Conference on USENIX Annual Technical Conference (ATC’09),
2009.

[13] E. Jandre et al., “Provenance in collaborative in silico scientific research: A

survey,” SIGMOD Rec., vol. 49, no. 2, pp. 36–51, Dec. 2020, issn: 0163-5808. doi:
10.1145/3442322.3442329.

[14] Y. L. Simmhan et al., “A survey of data provenance in e-science,” SIGMOD
Rec., vol. 34, no. 3, pp. 31–36, Sep. 2005, issn: 0163-5808. doi: 10.1145/1084805.
1084812.

[15] S. B. Davidson et al., “Provenance and scientific workflows: Challenges and

opportunities,” in Proceedings of the 2008 ACM SIGMOD International Conference
on Management of Data (SIGMOD’08), 2008.

[16] I. Suriarachchi et al., “Big provenance stream processing for data intensive com-

putations,” in 2018 IEEE 14th International Conference on eScience (eScience’18),
2018.

[17] R. Souza et al., “Efficient runtime capture of multiworkflow data using prove-

nance,” in 2019 15th International Conference on eScience (eScience’19), 2019.
[18] R. Souza et al., “Provenance data in the machine learning lifecycle in compu-

tational science and engineering,” in 2019 IEEE/ACM Workflows in Support of
Large-Scale Science (WORKS’19), 2019.

[19] The prov data model - w3c. [Online]. Available: https://www.w3.org/TR/prov-

overview/ (visited on 10/04/2021).

[20] L. Azevedo et al., “Experiencing provlake to manage the data lineage of ai

workflows,” in Meeting in Innovation in Information Systems (EISI) in Brazilian
Symposium in Information Systems (SBSI’20), 2020.

[21] Y. L. Simmhan et al., “A framework for collecting provenance in data-centric

scientific workflows,” in 2006 IEEE International Conference on Web Services
(ICWS’06), 2006.

[22] B. Howe et al., “End-to-end escience: Integrating workflow, query, visualization,
and provenance at an ocean observatory,” in 2008 IEEE Fourth International
Conference on eScience (eScience’08), 2008.

[23] Resource description framework. [Online]. Available: https://www.w3.org/RDF/

(visited on 10/04/2021).

[24] X. Allison et al., A graph neural network-based top quark reconstruction package.
[Online]. Available: https : / / indico . cern . ch / event / 932415 / contributions /

3918265/attachments/2086561/3505362/GNN_Top_Reco_-_Allison_Xu.pdf

(visited on 10/04/2021).

[25] H5bench. [Online]. Available: https : / /www.hdfgroup.org/solutions/hdf5/

(visited on 10/04/2021).

[26] Adios. [Online]. Available: https://www.olcf.ornl.gov/center-projects/adios/.

[27] A. Bates et al., “Trustworthy whole-system provenance for the linux kernel,” in

Proceedings of the 24th USENIX Conference on Security Symposium (Security’15),
2015.

[28] P. Missier et al., “The w3c prov family of specifications for modelling prove-

nancemetadata,” in Proceedings of the 16th International Conference on Extending
Database Technology (EDBT’13), 2013.

[29] Hdf5. [Online]. Available: https://https://www.hdfgroup.org/solutions/hdf5/

(visited on 10/04/2021).

[30] Netcdf. [Online]. Available: https://www.unidata.ucar.edu/software/netcdf/

(visited on 10/04/2021).

[31] Automatic library tracking database at nersc. [Online]. Available: https://www.

nersc.gov/assets/altdatNERSC.pdf (visited on 10/04/2021).

[32] T. Li et al., “H5prov: I/o performance analysis of science applications using

hdf5 file-level provenance,” in Cray User Group (CUG’19), 2019.
[33] M. Folk et al., “An overview of the hdf5 technology suite and its applications,”

in Proceedings of the EDBT/ICDT 2011 Workshop on Array Databases (AD’11),
2011.

[34] Darshan, hpc i/o characterization tool. [Online]. Available: https://www.mcs.

anl.gov/research/projects/darshan/ (visited on 10/04/2021).

[35] S. Yellapragada et al., “Verifying io synchronization from mpi traces,” in 2021
IEEE/ACM Sixth International Parallel Data Systems Workshop (PDSW’21), 2021.

[36] Ext4. [Online]. Available: https://ext4.wiki.kernel.org/index.php/Main_Page

(visited on 10/04/2021).

[37] A. Gehani et al., “Spade: Support for provenance auditing in distributed en-

vironments,” in Proceedings of the 13th International Middleware Conference
(Middleware’12), 2012.

[38] Gotcha v1.0.2. [Online]. Available: https://github.com/LLNL/GOTCHA (visited

on 10/04/2021).

[39] Redland rdf. [Online]. Available: https://librdf.org (visited on 10/04/2021).

[40] Apache jena. [Online]. Available: https://jena.apache.org (visited on 10/04/2021).
[41] Neo4j. [Online]. Available: https://neo4j.com (visited on 10/04/2021).

[42] Blazegraph. [Online]. Available: https://blazegraph.com (visited on 10/04/2021).

[43] Apache rya. [Online]. Available: https://rya.apache.org (visited on 10/04/2021).

[44] Anzographdb. [Online]. Available: https://cambridgesemantics.com/anzograph/

(visited on 10/04/2021).

[45] Terse rdf triple language. [Online]. Available: https://www.w3.org/TR/turtle/

(visited on 10/04/2021).

[46] N-triples. [Online]. Available: https://www.w3.org/TR/n-triples/ (visited on

10/04/2021).

[47] Sparql query language for rdf. [Online]. Available: https://www.w3.org/TR/rdf-

sparql-query/ (visited on 10/04/2021).

[48] Graphviz. [Online]. Available: https://graphviz.org (visited on 10/04/2021).

[49] I. Suriarachchi et al., “Komadu: A capture and visualization system for scientific

data provenance,” Journal of Open Research Software, vol. 3, Mar. 2015. doi:

10.5334/jors.bq.

[50] Y. Cui et al., “Tracing the lineage of view data in a warehousing environment,”

ACM Trans. Database Syst., vol. 25, no. 2, pp. 179–227, Jun. 2000, issn: 0362-5915.
doi: 10.1145/357775.357777.

[51] J. Widom, “Trio: A system for integrated management of data, accuracy, and lin-

eage,” in 2nd Biennial Conference on Innovative Data Systems Research (CIDR’05),
2005.

[52] L. Carata et al., “A primer on provenance,” Commun. ACM, vol. 57, no. 5, pp. 52–

60, May 2014, issn: 0001-0782. doi: 10.1145/2596628.

[53] D. Deutch et al., “Hypothetical reasoning via provenance abstraction,” in Pro-
ceedings of the 2019 International Conference on Management of Data (SIG-
MOD’19), 2019.

[54] Q. Zhou et al., “Study in usefulness of middleware-only provenance,” in 2014
IEEE 10th International Conference on eScience (eScience’14), 2014.

[55] Braid-db. [Online]. Available: https://github.com/ANL-Braid/DB/.

[56] Chimbuko. [Online]. Available: https://github.com/CODARcode/Chimbuko

(visited on 10/04/2021).

[57] J. Logan et al., “A vision for managing extreme-scale data hoards,” in IEEE 39th
International Conference on Distributed Computing Systems (ICDCS’19), 2019.

[58] P. Alvaro et al., “Lineage-driven fault injection,” in Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data (SIGMOD’15), 2015.

[59] Apache taverna. [Online]. Available: https://incubator.apache.org/projects/
taverna.html (visited on 10/04/2021).

[60] Effis. [Online]. Available: https : / / github . com / wdmapp / effis (visited on

10/04/2021).

[61] M. Zheng et al., “Torturing Databases for Fun and Profit,” in 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI), 2014.

[62] J. Cao et al., “A generic framework for testing parallel file systems,” in 2016
1st Joint International Workshop on Parallel Data Storage and data Intensive
Scalable Computing Systems (PDSW-DISCS), 2016.

[63] J. Cao et al., “PFault: A general framework for analyzing the reliability of

high-performance parallel file systems,” in Proceedings of the 2018 International
Conference on Supercomputing (ICS), 2018, pp. 1–11. doi: 10 .1145/3205289.
3205302.

[64] R. Han et al., “A study of failure recovery and logging of high-performance

parallel file systems,” ACM Transactions on Storage (TOS), 2021. doi: 10.1145/
3483447.

[65] O. R. Gatla et al., “Understanding the fault resilience of file system checkers,”

in 9th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage),
2017.

Session 5: HPC Toolchains, Traces, and More HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

225

https://doi.org/10.1109/JPROC.2011.2155130
https://www.go-fair.org/fair-principles/
https://doi.org/10.1038/s41567-019-0780-5
https://doi.org/10.1145/3186549.3186551
https://doi.org/10.1145/3186549.3186551
https://doi.org/10.1145/3442322.3442329
https://doi.org/10.1145/1084805.1084812
https://doi.org/10.1145/1084805.1084812
https://www.w3.org/TR/prov-overview/
https://www.w3.org/TR/prov-overview/
https://www.w3.org/RDF/
https://indico.cern.ch/event/932415/contributions/3918265/attachments/2086561/3505362/GNN_Top_Reco_-_Allison_Xu.pdf
https://indico.cern.ch/event/932415/contributions/3918265/attachments/2086561/3505362/GNN_Top_Reco_-_Allison_Xu.pdf
https://www.hdfgroup.org/solutions/hdf5/
https://www.olcf.ornl.gov/center-projects/adios/
https://https://www.hdfgroup.org/solutions/hdf5/
https://www.unidata.ucar.edu/software/netcdf/
https://www.nersc.gov/assets/altdatNERSC.pdf
https://www.nersc.gov/assets/altdatNERSC.pdf
https://www.mcs.anl.gov/research/projects/darshan/
https://www.mcs.anl.gov/research/projects/darshan/
https://ext4.wiki.kernel.org/index.php/Main_Page
https://github.com/LLNL/GOTCHA
https://librdf.org
https://jena.apache.org
https://neo4j.com
https://blazegraph.com
https://rya.apache.org
https://cambridgesemantics.com/anzograph/
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/n-triples/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
https://graphviz.org
https://doi.org/10.5334/jors.bq
https://doi.org/10.1145/357775.357777
https://doi.org/10.1145/2596628
https://github.com/ANL-Braid/DB/
https://github.com/CODARcode/Chimbuko
https://incubator.apache.org/projects/taverna.html
https://incubator.apache.org/projects/taverna.html
https://github.com/wdmapp/effis
https://doi.org/10.1145/3205289.3205302
https://doi.org/10.1145/3205289.3205302
https://doi.org/10.1145/3483447
https://doi.org/10.1145/3483447

[66] O. R. Gatla et al., “Towards robust file system checkers,” in 16th USENIX Con-
ference on File and Storage Technologies (FAST), 2018.

[67] O. R. Gatla et al., “Towards robust file system checkers,” ACM Transactions on
Storage (TOS), vol. 14, no. 4, pp. 1–25, 2018. doi: 10.1145/3281031.

[68] D. Zhang et al., “Sentilog: Anomaly detecting on parallel file systems via log-

based sentiment analysis,” in Proceedings of the 13th ACM Workshop on Hot
Topics in Storage and File Systems (HotStorage), 2021.

[69] D. Dai et al., “A performance study of lustre file system checker: Bottlenecks and

potentials,” in 2019 35th Symposium on Mass Storage Systems and Technologies
(MSST), 2019.

[70] E. Xu et al., “Understanding ssd reliability in large-scale cloud systems,” in 2018
IEEE/ACM 3rd International Workshop on Parallel Data Storage & Data Intensive
Scalable Computing Systems (PDSW-DISCS), 2018.

[71] E. Xu et al., “Lessons and actions: What we learned from 10k {ssd-related}
storage system failures,” in 2019 USENIX Annual Technical Conference (USENIX
ATC), 2019.

[72] Y. Shi et al., “A Command-Level Study of Linux Kernel Bugs,” in 2017 Inter-
national Conference on Computing, Networking and Communications (ICNC),
2017.

[73] M. Zheng et al., “Gmprof: A low-overhead, fine-grained profiling approach for

GPU programs,” in 19th International Conference on High Performance Comput-
ing (HiPC), 2012. doi: 10.1109/HiPC.2012.6507475.

[74] D. Huang et al., “LiU: Hiding disk access latency for HPC applications with a

new SSD-enabled data layout,” in 2013 IEEE 21st International Symposium on
Modelling, Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS), 2013.

[75] D. Zhang et al., “Benchmarking for Observability: The Case of Diagnosing

Storage Failures,” BenchCouncil Transactions on Benchmarks, Standards and
Evaluations (TBench), vol. 1, no. 1, 2021. doi: 10.1016/j.tbench.2021.100006.

Session 5: HPC Toolchains, Traces, and More HPDC ’22, June 27–July 1, 2022, Minneapolis, MN, USA

226

https://doi.org/10.1145/3281031
https://doi.org/10.1109/HiPC.2012.6507475
https://doi.org/10.1016/j.tbench.2021.100006

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Limitations of State-of-the-art Tools
	1.3 Key Insights & Contributions
	1.4 Experimental Methodology & Artifact Availability
	1.5 Limitations of PROV-IO

	2 Background
	2.1 W3C Provenance Standard
	2.2 HPC I/O Libraries

	3 Case Studies
	3.1 Top Reco - Lineage of configurations
	3.2 DASSA - Lineage of Data Products
	3.3 H5bench - Data usage and I/O performance
	3.4 Summary

	4 PROV-IO Design
	4.1 PROV-IO Model
	4.2 PROV-IO Architecture

	5 PROV-IO Implementation
	6 Evaluation
	6.1 Experimental Methodology
	6.2 Performance of Provenance Tracking
	6.3 Storage Requirements
	6.4 Comparison with Other Frameworks
	6.5 Query Effectiveness

	7 Related Work
	8 Conclusion & Future Work
	9 Acknowledgments

