Session 5: HPC Toolchains, Traces, and More

HPDC 22, June 27-July 1, 2022, Minneapolis, MN, USA

PROV-10: An I/O-Centric Provenance Framework
for Scientific Data on HPC Systems

Runzhou Han
hanrz@iastate.edu
Iowa State University
Ames, Iowa, USA

Bin Dong
dbin@lbl.gov

Suren Byna
sbyna@lbl.gov
Lawrence Berkeley National Laboratory
Berkeley, California, USA

Lawrence Berkeley National Laboratory

Berkeley, California, USA
ABSTRACT

Data provenance, or data lineage, describes the life cycle of data.
In scientific workflows on HPC systems, scientists often seek di-
verse provenance (e.g., origins of data products, usage patterns of
datasets). Unfortunately, existing provenance solutions cannot ad-
dress the challenges due to their incompatible provenance models
and/or system implementations.

In this paper, we analyze three representative scientific work-
flows in collaboration with the domain scientists to identify con-
crete provenance needs. Based on the first-hand analysis, we pro-
pose a provenance framework called PROV-IO, which includes an
1I/O-centric provenance model for describing scientific data and the
associated I/O operations and environments precisely. Moreover,
we build a prototype of PROV-IO to enable end-to-end provenance
support on real HPC systems with little manual effort. The PROV-
IO framework provides flexibility in selecting various classes of
provenance. Our experiments with realistic workflows show that
PROV-IO can address the provenance needs of the domain scientists
effectively with reasonable performance (e.g., less than 3.5% track-
ing overhead for most experiments). Moreover, PROV-IO outper-
forms a state-of-the-art system (i.e., ProvLake) in our experiments.

CCS CONCEPTS

« Computer systems organization — Parallel architectures; «
Information systems — Data management systems.

KEYWORDS

Data Provenance, Lineage, Scientific Data, Workflows, High Perfor-
mance Computing, FAIR Principles, Explainability, Trustworthiness

ACM Reference Format:

Runzhou Han, Suren Byna, Houjun Tang, Bin Dong, and Mai Zheng. 2022.
PROV-IO: An I/O-Centric Provenance Framework for Scientific Data on
HPC Systems. In Proceedings of the 31st Int’l Symposium on High-Performance

HPDC °22, June 27-July 1, 2022, Minneapolis, MN, USA
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9199-3/22/06.
https://doi.org/10.1145/3502181.3531477

This work is licensed under a Creative Commons Attribution
International 4.0 License.

213

Houjun Tang
htang4@lbl.gov
Lawrence Berkeley National Laboratory
Berkeley, California, USA

Mai Zheng
mai@iastate.edu
Iowa State University
Ames, Iowa, USA

Parallel and Distributed Computing (HPDC °22), June 27-July 1, 2022, Min-
neapolis, MN, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3502181.3531477

1 INTRODUCTION
1.1 Motivation

Data-driven scientific discovery has been well acknowledged as
a new fourth paradigm of scientific innovation [1]. The shift to-
ward the data-driven paradigm imposes new challenges in data
findability, accessibility, interoperability, reusability (i.e., FAIR prin-
ciples [2], [3]) and trustworthiness [4], all of which demand inno-
vative solutions for modeling and capturing provenance, i.e., the
lineage of data life cycle.

DASSA Data
Analysis Programs

X-Correlate-
Stack
Strain-type
Analysis

Figure 1: DASSA workflow. Solid arrows stand for write op-
eration and dashed arrows stand for read operation.

Geophysical Data

's |
- tdms2h5]

Data
[-tdms]

Data
Product
[h5]

As an example, Figure 1 shows a simplified scientific workflow
which analyzes geophysical sensing data on high performance
computing (HPC) systems (i.e., DASSA [5]) . The workflow takes
geophysical data as input, which are often stored in different file
formats (e.g., “tdms”, “h5”). It then converts non-HDF5 files into a
uniform HDF5 format (i.e., “h5”). Depending on the analysis goals,
the workflow further applies a set of different analysis programs
(e.g., “Decimate”, “X-Correlation-Stacking”) to process the files, the
results of which are stored as data products in HDF5 format.

Based on our survey, the domain scientists using DASSA need
the fine-grained origin of the data products (i.e., backward data
lineage). For example, User A applies the “Decimate” program with
a number of HDF5 files as input and generates a set of data prod-
ucts. Another User B may query the origin of the datasets in the
final data products to understand which datasets in the input files
contributed to which portions of the final data products, or who
initiated the “Decimate” application to generate the data products

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3502181.3531477
https://doi.org/10.1145/3502181.3531477
https://doi.org/10.1145/3502181.3531477

Session 5: HPC Toolchains, Traces, and More

and when. Such provenance information is important for ensuring
the reproducibility, explainability, and security of the DASSA data.

Nevertheless, the DASSA workflow involves multiple programs
accessing multiple files using different I/O interfaces and operations
(e.g., HDF5 and POSIX 1/0), which makes tracking and deriving
the data provenance non-trivial. Moreover, as we will elaborate
in Section §3, there are other diverse needs of provenance for dif-
ferent scientific workflows and data (e.g., I/O statistics, lineage of
configurations). Such diversity, complexity, as well as the stringent
performance requirement in HPC environments call for a compre-
hensive and practical solution beyond the state of the art.

1.2 Limitations of State-of-the-art Tools

Unfortunately, to the best of our knowledge, existing provenance
tools cannot address the grand challenge above sufficiently due to
multiple reasons. We summarize three main limitations below:

First, while the importance of provenance has been well rec-
ognized across communities in general (e.g., databases [6]-[10],
operating systems (OS) [11], [12], eScience [13]-[17]), there is a
lack of concrete understanding of the exact provenance needs of
domain scientists, largely due to the variety of data and metadata
that could be generated from HPC systems. As a result, existing
solutions are often too coarse-grained (e.g., whole file tracking
without understanding HPC data formats [11]) to help domain sci-
entists effectively, or too specific for one use case (e.g., Machine
Learning [18]) to support general needs.

Second, in terms of provenance modeling, we find that exist-
ing standards (e.g., W3C PROV [19]) are too vague to describe the
characteristics of scientific data provenance precisely. Scientists
often seek a variety of information from scientific workflows on
HPC systems, including the origins of data products, the config-
urations used for deriving results, the usage patterns of datasets,
and so on, which cannot be described effectively using any existing
provenance models. Such ambiguity limits the capability of existing
provenance solutions for describing scientific data.

Third, in terms of usability, existing approaches often require
the users to identify the critical code sites in the workflow software
(e.g., loop structure [20]) and manually insert the provenance APIs
to track the desired information accordingly. Such labor-intensive
and error-prone method hinders the wide adoption of provenance
products and diminishes the potential benefits.

Note that the limitations highlighted above are correlated. For
example, the lack of understanding of provenance needs and the
ambiguity of the provenance model are contributing to each other,
which fundamentally limits the usability of existing solutions in
terms of granularity, expressibility, etc., which in turn makes clari-
fying the ambiguity and real needs difficult.

1.3 Key Insights & Contributions

We tackle the grand challenge of provenance support for scientific
data on HPC systems in this paper.

First, we observe that for a provenance framework to be prac-
tical and useful, inputs from the end users (i.e., domain scientists)
is essential. Therefore, we collaborate with domain scientists to
analyze three representative scientific workflows in depth. In doing
so, we identify the unique characteristics of the workflows studied

214

HPDC 22, June 27-July 1, 2022, Minneapolis, MN, USA

(e.g., I/O interfaces, data formats, access patterns) as well as the
specific needs for scientific data provenance (e.g., lineage at file,
dataset, or attribute granularity).

Second, we observe that I/O operations are critically important
in affecting the state of data that form the lineage needed by the
domain scientists. Therefore, different from existing solutions [20]-
[22], we introduce an I/O-centric provenance model dedicated for
the HPC environments. The model enriches the W3C PROV stan-
dard [19] with a variety of concrete sub-classes, which can describe
both the data and the associated I/O operations and execution en-
vironments precisely with extensibility. Moreover, it enables us to
decouple the data provenance from specific executions of a work-
flow and support the integration of provenance from multiple runs
naturally, which is important as workflows may evolve over time.

Third, based on the I/O-centric model, we find that the rich I/O
middleware already used by the scientists provide an ideal vehicle
for capturing the desired provenance transparently. Therefore, we
create a configurable and extensible library and integrate it with ex-
isting I/O code paths (e.g., HDF5 I/O and POSIX syscalls) to capture
necessary information without requiring the scientists to modify
the source code of their workflows. Moreover, to further improve
the usability, we persist the captured provenance as standard RDF
triples [23] and enable provenance query and visualization.

Based on the key ideas above, we build a framework called PROV-
IO, which can provide end-to-end provenance support for domain
scientists with little manual effort. We deploy PROV-IO on a repre-
sentative supercomputer and evaluate it with realistic workflows.
Our experiments show that PROV-IO incurs reasonable perfor-
mance overhead and outperforms a state-of-the-art provenance
product (i.e., IBM ProvLake [20]) for the use cases evaluated. More
importantly, through the query and visualization support, PROV-IO
can address the provenance needs of the scientists effectively.

In summary, we have made the following contributions:

o Identifying concrete provenance needs of domain scientists
based on three representative scientific workflows;

e Designing a comprehensive PROV-IO model to describe the
provenance of scientific data precisely and extensibly;

o Building a practical prototype of PROV-IO which can support
different HPC workflows with little human efforts;

e Measuring the PROV-IO prototype in HPC environments
and demonstrating the efficiency and effectiveness.

o Releasing PROV-IO as an open-source tool to facilitate follow-
up research on provenance in general.

1.4 Experimental Methodology & Artifact

Availability

Experiments were performed on up to 64 compute nodes with
Intel Xeon “Haswell” processors and with up to 4096 cores. The
storage backend is a Lustre file system with typical configura-
tions. We applied PROV-IO to three scientific workflows including
DASSA [5], Top Reco [24], and a I/O-intensive application based on
Hb5bench [25], which covers diverse characteristics (e.g., various lan-
guages, file formats, I/O interfaces, metadata) and provenance needs
(e.g., file/dataset/attribute lineage, metadata versioning, I/O statis-
tics). We varied the critical parameters of the workflows to measure
the run-time performance and storage requirements under a wide

Session 5: HPC Toolchains, Traces, and More

range of scenarios. We compared PROV-IO with ProvLake [20] us-
ing the Python-based Top Reco workflow as ProvLake only supports
Python at the time of this writing. The PROV-IO tool is open-source
at https://github.com/hpc-io/prov-io.

1.5 Limitations of PROV-IO

The design of the PROV-IO tool is driven by the needs of the domain
scientists using three scientific workflows. Given the diversity of
science, it is likely that the prototype cannot directly address the
unique provenance queries of all scientists. We plan to collaborate
with more domain scientists to identify additional needs and refine
PROV-IO accordingly.

Similarly, while the current prototype supports POSIX and HDF5
I/O transparently and is extensible by design, there are other pop-
ular I/O systems in HPC (e.g., ADIOS [26]) which we have not
integrated yet. We leave the integration with other I/O libraries as
future work.

In addition, there are other important aspects of provenance
(e.g., security [27]) which cannot be ignored in practice. We hope
that our efforts and the resulting open-source tool can facilitate
follow-up research in the communities and help address the grand
challenge of provenance support for scientific data in general.

2 BACKGROUND

2.1 W3C Provenance Standard

The PROV family of specifications, published by the World Wide
Web Consortium (W3C), is a set of provenance standard to promote
provenance publication on the Web with interoperability across
diverse provenance management systems [28]. One key specifica-
tion is PROV-DM, an extensible relational model which describes
provenance information with a graph representation. As shown
in Figure 2, a W3C provenance graph abstracts information into
classes of Entity, Activity, Agent, and Relation between the first three
classes. Another critical specification is PROV-O which describes
the mapping of PROV-DM classes to RDF triples. In PROV-O, Entity,
Activity and Agent are mapped to subjects and objects, while Rela-
tion is mapped to predicates. We follow the W3C PROV standard
in the design of our PROV-IO model.

wasDerivedFrom

Entity

wasAttributedTo
wasGeneratedBy
Q Agent used
actedOnBehalfOf

wasAssociatedWith

Activity

startedAtTime endedAtTime
xsd:dateTime wasInformedBy xsd:dateTime

Figure 2: The W3C Provenance Model [28].

2.2 HPC I/0 Libraries

/O libraries (e.g., ADIOS [26], HDF5 [29], and NetCDF [30]) play an
essential role in scientific computations. Many workflows leverage

215

HPDC 22, June 27-July 1, 2022, Minneapolis, MN, USA

the library I/O to manipulate data files. For example, HDF5 (i.e.,
Hierarchical Data Format version 5) is one of the the most wildly
used I/O libraries for scientific data [31]. It is developed to be a
parallel data management middleware to bridge the gap between
HPC applications and the complicated, low-level details of under-
lying file systems, and has grown to a popular data format and
management system.

In this work, we integrate our solution with the HDF5 library
besides the classic POSIX I/O operations. This is based on the ob-
servation that HDF5 has evolved with a Virtual Object Layer (VOL)
which can intercepts object-level API operations to functional plug-
ins, called VOL Connectors [32]. VOL connectors allow third-party
developers to add desired storage functionalities, which can be
loaded dynamically at runtime. We leverage such extensibility for
tracking the provenance of HDF5 I/O data.

3 CASE STUDIES

In this section, we discuss three real-world use cases to motivate
the I/O-centric provenance further. For each case, we describe its
semantics and characteristics, the provenance need of the domain
scientists, and the associated challenges.

3.1 Top Reco - Lineage of configurations

Workflow Description. Top Reco [24] is a Machine Learning (ML)
workflow in high-energy physics data analysis, which uses Graph
Neural Network (GNN) models for top quark reconstruction. Top
quarks are the elementary particles with the most mass that may
decay quickly and are not detectable directly due to their mass. By
representing particles and their relationships as graphs, the GNN-
based workflow can help reconstruct top quarks more accurately
and efficiently, which is important for physics discoveries.

In Figure 3, we show the key steps of the Top Reco workflow.
First, the workflow takes two types of files as input, including the
“root” file for input event and the “ini” file for configuration. Second,
it generates “tfrecord” files which stores the training dataset and
test dataset based on the input events. Third, it trains a GNN model
with the training dataset and tests the model with the test dataset
by accessing the “tfrecord” files. Fourth, a range of scores of edge
and nodes are generated as the output of the model. Finally, a
reconstructor component runs a simulation of reconstructing the
top quarks based on highest scores. As summarized in Table 1,
the Top Reco workflow uses the POSIX I/O interface, and involves
multiple programs accessing multiple files.

o g
Graph ITralnlng Graph | __ GNN Model ! scores r--»Reconstructor
Generator : [tfrecord] | Colesv]
"""""""" A L)
Events
[.root]

! Training Graph | _.-
[.tfrecord]

Figure 3: Top Reco workflow. Solid arrows stand for write

operation and dashed arrows stand for read operation.

: Top Candidates
[.csv]

Provenance Need. In the Top Reco case, the domain scientists
are interested in the impact of GNN configurations on the model

https://github.com/hpc-io/prov-io

Session 5: HPC Toolchains, Traces, and More

HPDC 22, June 27-July 1, 2022, Minneapolis, MN, USA

Table 1: Three Real Use Cases with Different Characteristics and Provenance Needs.

Use Case Description I/0 Interface Provenance Need

Top Reco | training GNN models for top quark reconstruction; multi-program, multi-file; POSIX metadata version control & mapping
DASSA parallel processing of acoustic sensing data; multi-program, multi-file; HDF5 & POSIX | backward lineage of data products
H5bench simulating typical I/O patterns of HDF5 app; multi-program, single-file; HDF5 1/O statistics & bottleneck

performance. Specifically, they would like to know which combina-
tion of model hyperparameters and dataset preselections result in
the best training accuracy. In other words, they would like to have
fine-grained version control of the metadata (e.g., hyperparameters,
preselections) as well as the correlation between the metadata and
the result to ensure the explainability and reproducibility of the
models.

Challenges. Essentially, the Top Reco case requires automatic ver-
sion control management on the machine learning model. However,
a typical version control system (e.g., Git) cannot meet the require-
ments because it cannot automatically track the model performance
and maps the performance to the model configuration. In practice,
the scientists may need to execute the workflow for multiple times
with different configurations, and each execution may take multiple
hours or more. Due to lack of provenance support, the scientists
have to manually make a new copy of configuration when they start
anew run, and record the corresponding result later. Such common
practice is time-consuming and not scalable. In other words, a new
provenance framework is urgently needed.

3.2 DASSA - Lineage of Data Products

Workflow Description. As mentioned in Section §1.1, DASSA [5]
is a parallel storage and analysis framework for distributed acoustic
sensing (DAS) applications. It uses a hybrid (i.e., MPI and OpenMP)
data analysis execution engine to support efficient and automated
parallel processing of geophysical data in HPC environments, which
has been applied for accelerating a variety of scientific computations
including earthquake detection, environmental characterization,
and so on. The overall workflow is described in Figure 1.

Provenance Need. As discussed in Section §1.1, the domain scien-
tists need the backward data lineage to understand the origin of the
data products and to ensure the data reproducibility, explainability,
and security, among others.

Challenges. The DASSA workflow may involve multiple different
programs, file formats, I/O interfaces, and end users, which is repre-
sentative for large-scale scientific workflows in HPC environments.
Moreover, both the file level and the sub-file level (e.g., inner hier-
archies of the HDF5 format) information is needed. To the best of
our knowledge, none of the existing provenance models or systems
can handle the complexity to meet the comprehensive needs.

3.3 H5bench - Data usage and I/0 performance

Workflow Description. H5bench [25] is a parallel I/O benchmark
suite for HDF5 [33] that is representative of various large-scale
workflows. It includes a default set of read and write workloads
with typical I/O patterns in HDF5 applications on HPC systems,
which enables creating synthetic workflows to simulate diverse
HDF5 I/O operations in HPC environments. The benchmark also
contains ‘overwrite’ and ‘append’ operations that allow modifying

216

data or metadata of existing files and appending new data, respec-
tively. We collect an H5bench-based workflow which contains a
combination of ‘write’, ‘overwrite’, ’append’ and ‘read’ workloads
operating on HDFS5 files via MPIL This workflow simulates the typ-
ical scenarios where a single file may be accessed concurrently
by HPC applications and multiple versions of a dataset may be
generated accordingly. As shown in Table 1, the H5bench-based
workflow mainly uses the HDF5 I/O interface, and involves multiple
programs accessing a single file.

Provenance Need. Understanding frequently accessed data in
large datasets leads to optimizing I/O performance by improved
data placement and layout. Scientists typically use the H5bench-
based workflow to collect I/O statistics and identify potential bottle-
necks on HPC systems. While I/O profiling tools, such as Darshan
[34] and Recorder [35] collect coarse-grained statistics of I/O per-
formance, there are no tools to extract data access information
and the cost of those operations. Fine-grained information such
as the total number of each type of HDF5 I/O operations incurred
during the workflow, the accumulated time cost for each type of
operations, the distribution of operations and time overhead, the
HDF5 APIs invoked at a specific time point, etc. would be critically
important for understanding the system behavior and fine-tuning
the performance.

Challenges. The H5bench use case involves handling HDF5 datasets
concurrently and measuring diverse fine-grained metrics at the
HDF5 API level, which requires deep understanding of the seman-
tics and internals of HDF5. Since existing solutions are largely
incompatible with HDF5, they are fundamentally inapplicable for
this important category of use cases.

3.4 Summary

By analyzing the three cases in depth and consulting with the
domain scientists, we find that there is a big gap between the prove-
nance needs and existing solutions. The variety of the workflow
characteristics (e.g., different I/O interfaces and file formats) as
well as the diversity of scientists’ needs motivates us to design a
comprehensive provenance framework to address the challenge,
which we elaborate in the following sections.

4 PROV-IO DESIGN

In this section, we introduce the design of PROV-IO. We focus
on the provenance model (§4.1) and its system architecture (§4.2),
which are two fundamental pillars of PROV-IO. We defer the im-
plementation details to §5.

4.1 PROV-IO Model

Figure 4(a) shows an overview of the PROV-IO model, which is
derived based on the W3C standard (§2.1) as well as the character-
istics of typical workflows and the provenance needs of domain
scientists (§3).

Session 5: HPC Toolchains, Traces, and More

HPDC 22, June 27-July 1, 2022, Minneapolis, MN, USA

<<Type>> <<Agent>> <<|/O API>> provio: <<Data Object>>
Machine Learning User Create wasCreatedBy Directory <Bob>
<prov:ofType> <prov:Agent> ;
<<Extnsible Class>> <<Type>> A) e—— <prov:wasMemberOf> <provio:User> .
Type Acoustic Sensing proviactedOnBehalfOf £ <<I/O API>> provio: — File — <MPI rank 0>
rov:ofType Open wasOpenedB; < ;. > <Bob> ;
prov:wasMemberOf <<Type>> P P <<Agent>> p- B P Y <§:§X32;;5222832:3?;9%?2*’- ’
Synthetic Thread | <<Data Object>>__| <prov:wasMenberOf> <provio:Thread> .
TS A > __| <<0 API>> provio: Group »
SR proviactedOnBehalfOf £ Read wasReadBy <vpicto_uni_hs.exe--al>
<<Extnsible Class>> Hyperparamter 1 <<Data Object>> <prov:actedonBehalfof> <MPI_rank_6> ;
— . . . | o — <prov:ofType> <prov:Agent> ;
Configuration <<Configuration>> l¢. _ Provio: <<Agent>> Dataset “hroviwashenberofs <provio:Prograns .
q s hasConfig Program <<I/O API>> provio: __|
prov: berOf L= Write wasWrittenBy <<Data Object>> <HsDcreate2--b1>
) N — ; — <prov:startedAtTime> "10/10/2021 15:46:23" ;
<;Metrlcs>> i prov:wasAssociatedWith Attribute <proviofTypes <proviActivitys ;
~ ccuracy provio: <<|/0O API>> <prov:wasMemberOf> <provio:IOAPI:Create> ;
<<Extnsible Class>> S A cenrac provio: _| - N . : - Cats -
- = hasAccuracy <<Activity>> ‘ e WasFlushedBy <<Data Object>> proviwasAssociatedwith> <vpicio_unt_hs.exe--al> ;
etrics B Datatype || <provio:elapsed> "94" .
<<Metrics>> IO API | P
prov: berOf Durati provio: . </Timestep_0/x>
elapesd prov:wasAttributed To <<I/O API>> provio: ____| | <<Data Object>> _| <prov:ofType> <prov:Entity> ;
) 1 Rename wasModifiedBy Link <prov:wasAttributedTo> <vpicio_uni_hS.exe--al> ;
femberOf E . <<Entity>> <prov:wasCreatedBy> <HSDcreate2--bi> ;
— prov:was! O8> Class, prov:wasbier Data Object prov: berOf <prov:wasMemberOf> <provio:DataObject:Dataset> .

(@)

(b)

Figure 4: (a) PROV-IO Model Overview. The PROV-I0O model classifies information into five super-classes: Entity (yellow boxes),
Activity (purple boxes), Agent (orange boxes), Extensible Class (green boxes) and Relation (text on arrows). The new concepts
introduced by PROV-IO are highlighted with blue color font. (b) A Provenance Snippet based on the PROV-IO Model.

Following the W3C specification, we classify information into
five PROV-IO super-classes: Entity (yellow boxes in Figure 4(a)),
Activity (purple boxes), Agent (orange boxes), Extensible Class (green
boxes) and Relation (text on arrows). Moreover, we introduce a
variety of concrete sub-classes to enrich the model, which can
capture the data with different granularity as well as the associated
I/O operations and execution environments for deriving the data.
We summarize the definitions of the sub-classes in Table 2 and
highlight the main concepts added to each super-class as follows:

4.1.1 Entity. This PROV-IO super-class includes seven specific
Data Object sub-classes (i.e., Directory, File, Group, Dataset, Attribute,
Datatype, Link). Together, these sub-classes cover common I/O
structures and file formats. For example, Attribute is a combined
sub-class that can map to both the HDF5 attributes and the extended
attributes of an inode in a POSIX-compliant Ext4 file system [36].

4.1.2 Activity. This super-class includes six specific /O API sub-
classes (i.e., Create, Open, Read, Write, Fsync, Rename). These sub-
classes cover a wide range of commonly used I/O operations in HPC
environments. For example, Read can map to HDF5 read-family
operations (e.g., “H5Gread”, “H5Dread”, “H5Aread”, “H5Tread”) and
POSIX system call “read” and its variants. Note that these operations
are applicable to other I/O libraries too (e.g., NetCDF [30]).

4.1.3 Agent. This super-class includes a set of sub-classes repre-
senting the operator of a series of activities, such as User, Thread,

and Program. Note that the Thread sub-class can describe thread/process

information (e.g., MPI rank) in multi-threaded programs which is
critical in HPC environments.

4.1.4 Extensible class. This super-class contains properties per-
tained by entities, activities and agents. It is designed to be exten-
sible because valuable information is often workflow-specific. We
define three generic sub-classes (i.e., Type, Configuration, Program)
to cover a variety of valuable information that cannot be described
precisely in the native W3C specification (e.g., hyperparameters of
ML models).

217

4.1.5 Relation. This super-class describes the diverse relations
among other classes. We inherit the basic W3C provenance relations
between entity & entity (prov:wasDerivedFrom), entity & agent
(prov:wasAttributedTo), activity & agent (prov:AssociatedWith),
agent & agent (prov:actedOnBehalfOf). Moreover, we introduce
new relations between entity & activity to precisely describe the
relations between various I/O API and Data Object sub-classes (e.g.,
provio:wasCreatedBy, provio:wasReadBy, provio:wasWrittenBy,
provio:wasModifiedBy).

To make the description more concrete, we show an example
snippet of provenance captured by PROV-IO in Figure 4(b). The
provenance snippet contains five records pertained by different sub-
jects. Each subject can be an Agent (e.g., “Bob”, “MPI_rank_0"), an
Activity (e.g., “H5Dcreate2-b1”), or an Entity (e.g., “/Timestep_0/x").
Each record is a series of triples starting with a unique subject,
where the triples describe provenance information of a subject.
Note that the record length may vary depending on the prove-
nance information associated with the subject. Given this snip-
pet, we can derive complex provenance information (e.g., dataset
“/Timestep_0/x” was created by /O API “H5Dcreate2-b1” associ-
ated with program “vpicio_un_h5.exe-al” on thread “MPI_rank_0”,
which was started by user “Bob”).

4.2 PROV-IO Architecture

Figure 5 shows the architecture of the PROV-IO framework. Be-
sides the PROV-IO model (yellow), the framework includes three
major components: (1) provenance tracking (blue modules) which
captures I/O operations from multiple I/O interfaces; (2) a prove-
nance store (green) which persists captured provenance into RDF
triples; (3) a user engine (red) for users to query and visualize prove-
nance information. We introduce the design of these three major
components one by one below.

Provenance Tracking. As shown in Figure 5, a scientific work-
flow is typically started on compute nodes by a user. The workflow
may consist of several parallel applications with multiple threads

Session 5: HPC Toolchains, Traces, and More

Table 2: Description of PROV-1IO Model.

Super-

Sub-class Description

class

<<Data Object>> POSIX file system directory.

Directory

<<Data Object>> POSIX file system file.

File

<<Data Object>> I/O library interior group structure (e.g.,

Group HDF5 group).

Entity <<Data Object>> I/O library interior dataset structure (e.g.

Dataset , HDF5 dataset).

<<Data Object>> POSIX Inode extended attribute and I/O

Attribute library interior attribute structure (e.g.,
HDF5 attribute).

<<Data Object>> I/O library interior datatype structure

Datatype (e.g., HDF5 datatype).

<<Data Object>> POSIX file system hard/soft link.

Link

<<I/O API>> POSIX syscall “open” and I/O library

Create “Create” APIs (e.g., H5Acreate).

<<I/0 API>> 1/Olibrary “Open” APIs (e.g., H5Aopen).

Open

<<I/0 API>> POSIX syscall “read” (and variants) and

Read I/O library “Read” APIs (e.g., H5Aread).

Activity | <<1/0 API>> POSIX syscall “write” (and variants) and

Write I/O library “Write” APIs (e.g., H5Awrite).

<<I/0 API>> POSIX syscall “fsync” (and variants) and

Fsync I/O library “Flush” APIs (e.g., H5Flush).

<<I/O API>> POSIX syscall “rename” (and variants)

Rename and I/O library “Rename” APIs.

User Workflow user.

Agent Thread Individual thread.

Program Program instance.

Type Type of a program/workflow (e.g., Ma-
chine Learning (Top Reco), Acous-
tic Sensing (DASSA), and Synthetic
(H5bench workflow)).

izﬁ:szble Configuration =~ Workflow configurations (e.g., hyperpa-
rameter in Top Reco).

Metrics Evaluation metrics of the workflow. E.g.,
model accuracy in Top Reco.

provio: The relation between a <<I/O API>>

wasCreatedBy ~ Create and a <<Data Object>>.

provio: The relation between a <<I/O API>>

wasOpenedBy Open and a <<Data Object>>.
Relation | provio: The relation between a <<I/O API>>

wasReadBy Read and a <<Data Object>>.

provio: The relation between a <<I/O API>>

wasWrittenBy ~ Write and a <<Data Object>>.

provio: The relation between a <<I/O API>>

wasFlushedBy Fsync and a <<Data Object>>.

provio: The relation between a <<I/O API>>

wasModifiedBy Rename and a <<Data Object>>.

218

HPDC 22, June 27-July 1, 2022, Minneapolis, MN, USA

' Scientific Workflow
[] :
.} ' -
38 : Application
£ § jue
o :
S ' Threads
____________ it Iy
! i (PROV-IO User Engine
HDF51/0 ! POSIX I/O |]PROV—IO API
v :

PROV-IO Lib [T v l
© Connector |||PROV-IO
29 Virtual Object Layer || Syscall PROV-IO_
3 .g (VOL) Framework Wrapper Library — PROV-IO
& =z T T I Model

—v ¥ ¥—

PFS

Provenance Store

: Normal
.h5 F|I:[File Q[

Figure 5: The Architecture of PROV-IO Framework. Beside
the PROV-IO model (yellow), the framework includes three
major components: provenance tracking (blue modules), a
provenance store (green) and a user engine (red).

running concurrently. During the workflow execution, all I/O op-
erations (e.g., POSIX and HDF5) are monitored by PROV-IO for
provenance collection.

Specifically, the Provenance Tracking component contains two
thin modules (i.e., PROV-IO Lib Connector and PROV-IO Syscall
Wrapper) for monitoring the library I/O and POSIX I/O operations
respectively. In case of the HDF5 library, the PROV-IO Lib Connec-
tor monitors the I/O requests within the HDF5 Virtual Object Layer
(VOL). In case of POSIX, the I/O syscalls are monitored through the
PROV-IO Syscall Wrapper which is configurable via environmental
variables. In both cases, PROV-IO let the native I/O requests pass
through and invoke the core PROV-IO Library for collecting the
provenance defined by the PROV-IO model without changing the
original I/O semantics. Note that both the library I/O and POSIX I/O
operations can be tracked in a transparent and non-intrusive way
from the workflow’s perspective, which is important for usability.

In addition, to achieve extensibility, we provide a set of PROV-
10 APIs which enables users to convey user/workflow-specific
semantics and requirements to PROV-IO (i.e., Extensible Class in
PROV-IO model). Similar to ProvLake [20], users can instrument
their workflows with PROV-IO APIs as needed (e.g., tracking a
specific hyperparameter of a ML workflow). By providing such
flexibility, additional provenance needs can be satisfied by PROV-
10 conveniently.

Provenance Store. The Provenance Store component maintains
the provenance information as RDF graphs durably on the underly-
ing parallel file system to enable future queries. We choose an RDF
triplestore instead of a traditional SQL database for two main rea-
sons: (1) W3C PROV-DM already has a well-defined ontology (i.e.,
PROV-0O[19]) to map the model to RDF, so using RDF makes PROV-
10 compatible with other W3C-compliant solutions; (2) To answer
path queries in provenance use cases, SQL queries with repeated
self-joins are necessary to compute the transitive closure, which
often leads to worse performance when the provenance grows [37].

Session 5: HPC Toolchains, Traces, and More

More specifically, the Provenance Store component provides
an interface for the PROV-IO Library to manipulate provenance
records and maintain provenance graphs efficiently, which includes
creating a new provenance RDF graph in memory, loading an
existing graph, inserting new records to an existing graph, etc.
To minimize the performance impact on the workflow, the in-
memory provenance graph is serialized to the Provenance Store
asynchronously. And depending on the need of the user, the seri-
alization operation may be triggered either periodically or by the
end of the workflow.

PROV-IO User Engine. The provenance information could be
enormous due to the complexity of scientific workflows. To avoid
distraction and help users derive insights, the PROV-IO User Engine
component allows users to enable/disable individual sub-classes
defined in the PROV-IO model, which also enables flexible tradeoffs
between completeness and overhead.

Moreover, the engine provides a query interface to allow the user
to issue queries on the provenance generated by PROV-IO. More-
over, it includes a visualization module to visualize the provenance
(sub)graphs requested by the user. Note that both the query and the
visualization need to follow the PROV-IO model, which enforces a
uniform way to represent the rich provenance information.

5 PROV-1I0 IMPLEMENTATION

In this section, we discuss additional implementation details of the
major components in the PROV-IO framework.

Provenance Tracking. To support HDF5 I/O, we implement the
PROV-IO Lib Connector in C and integrate it with the native HDF5
VOL-provenance connector, which follows a homomorphic design
in which each HDF5 native I/O API has a counterpart API [32]. Upon
each invocation of an HDF5 native API, the counterpart API adds
the corresponding virtual data object to a linked list. PROV-IO Lib
Connector leverages the linked list with locking support to achieve
concurrency control on I/O operations on the same data object.
To collect provenance, the PROV-IO Library APIs are invoked. We
collect Agent information at the initialization stage of the native
HDF5 VOL-provenance connector. Entity and Activity classes are
tracked at each homomorphic API during the workflow runtime.

Similarly, to support POSIX I/O, we use GOTCHA [38] to build
a C wrapper layer for POSIX syscall and invokes the PROV-IO
Library internally. Additionally, the current PROV-IO APIs support
invoking the PROV-IO Library from workflows written in multiple
languages including Python, C/C++, and Java.

Provenance Store. The Provenance Store is implemented based
on Redland librdf [39] to serve as the durable backend of the
PROV-IO Library. We choose Redland because based on our experi-
ences, many other existing RDF solutions are not directly usable in
our HPC environments due to compatibility issues in dependent
packages and/or operating system (OS) kernels [40]-[44].

We utilize Redland’s in-memory graph representation and its
support for serializing in-memory graph to multiple on-disk RDF
formats (e.g., Turtle [45], ntriples [46], etc.). Redland 1ibrdf also
supports the integration of multiple databases as the storage back-
end (e.g., BerkeleyDB, MySQL, PostgreSQL and SQLite). In the
current prototype, we store provenance information in the Turtle
format directly for simplicity.

219

HPDC 22, June 27-July 1, 2022, Minneapolis, MN, USA

To avoid potential data races when serializing from multiple pro-
cesses to the Provenance Store, PROV-IO maintains an in-memory
sub-graph for each process and lets the process serialize its own
sub-graph to a unique RDF file on disk. The sub-graph files are
then parsed and merged into a complete provenance graph. Since
every node in the graph has a globally unique ID (GUID), merging
the sub-graphs does not cause unnecessary duplication. Note that
this strategy also help performance because no extra inter-process
communication or synchronization is needed during workflow exe-
cution, and the merging can be performed after workflow execution.

PROV-IO User Engine. Also, the engine supports querying RDF
triples with SPARQL, which is a semantic query language to retrieve
and manipulate data stored in RDF [47]. We use Python scripts as
the SPARQL endpoint. Note that depending on different use case
scenarios, the query can vary a lot, as will be demonstrated in
Section §6.5. In the current prototype, we utilize Graphviz [48] for
RDF graph visualization.

6 EVALUATION

In this section, we evaluate a prototype of the PROV-IO framework
in representative HPC environments. We first introduce the ex-
perimental methodology (§6.1), and then evaluate PROV-IO from
three perspectives including tracking performance (§6.2), storage
requirement (§6.3), and query effectiveness for the end users (§6.5).
We compare PROV-IO with a state-of-the-art provenance product
(i.e., ProvLake [20]) in §6.4. Overall, our experimental results shows
that PROV-1O’s tracking overhead is less than 3.5% in more than
95% of our experiments, and it outperforms ProvLake in terms of
both tracking and storage overhead.

Table 3: The provenance needs and the information tracked
by PROV-IO for three workflows.

Workflow Provenance Need Information Tracked
Top Reco metadata version hyperparameter, preselec-
(Python) control & mapping tion, training accuracy
file lineage program, I/O AP], file
DASSA dataset lineage program, I/O AP, dataset
(C++) attribute lineage program, I/O API, attr
scenario-1 1/0 API
H5bench scenario-2 I/O API, duration
(©) scenario-3 user, thread, program, file

6.1 Experimental Methodology

We have evaluated the PROV-IO framework on a state-of-the-art
supercomputer. We do experiments with 64 Intel Xeon “Haswell”
processor nodes and up to 4096 cores, unless otherwise specified.
The storage backend is a Lustre file system with stripe count of 128
and stripe size of 16 MB.

We apply PROV-IO to three representative workflows including
Top Reco [24], DASSA [5], and an H5bench-based workflow [25]. As
mentioned in §3, the three use cases exhibit diverse characteristics
(e.g., various file formats, I/O interfaces, metadata) and provenance
needs (e.g., file/dataset/attribute lineage, I/O statistics, metadata
versioning). We summarize the information tracked by PROV-1IO
in the experiments to meet the provenance needs in Table 3 and
elaborate them in detail in the following subsections.

Session 5: HPC Toolchains, Traces, and More

mw/o PROV-I0 w/ PROV-10

HPDC 22, June 27-July 1, 2022, Minneapolis, MN, USA

[w /o PROV-10 File Lineage EEE Dataset Lineage

w/o PROV-I0

S5 Attribute Lineage — 48—~ w/ PROV-10

o prRRe
PR N VRN

2 1.0005 o
E £ T
= = <
S
H H 8
= = s
17} ®
= 5 08 g
g g 0.7 =
S S 06 5
o ° S
3 g os i
= = 04 =3
£ £ 03 &
o o
2 2 02 ©
01
B N R R 0
20 40 60 80 100 120 140 160 128 256 512 1024 2048
Number of Epochs Number of Files
(a) Top Reco (b) DASSA
14 700 14 700 14 700
13 | W w/oPROV-IO FZzaScenariol SS9 Scenario 2 13 | Wemw/oPROV-IO rzzaScenario1 5% Scenario 2 13 | wemmw/oPROV-I0 Scenario 1 (S Scenario 2
E ol k
E 12 Scenario 3 = @--w/PROV-I0 w/o PROV-IO T E12 | ezzasScenario3 = 8--w/ PROV-I0 w/o PROV-IO | 600 E 12 | pzzzzzaScenario 3 = - -w/PROV-I0 w/o PROV-10| 600 =5
F11 £ 1 € = 11 s
S 1 — S s 7 s S 1 500 g
Bos ;\\ 2 Fo ’Qf 8 §os o
208 2 "go: ’ é a0 2 3 08 a0 g
So7 £ 5 A £t £
Sos & = Qo A? e O o6 300 S
Tos ’«\ 23 / é 2 % os 2
e B S g 5™ 92
‘Goa = ﬁ% 2005 T 04 20 B
Eos ?\: £ ’sz H £ 03 £
202 ﬁ\\ N/ (5] /\4 100 S 02 100 ©
0.1 A ﬁﬁ 0.1
o LAY X7 N 0 o A7
128 256 1024 2048 4096 128 256 512 1024 2048 4096 2 a 32 64

512
Number of MPI Ranks
(c) H5bench: write+read

Number of MPI Ranks
(d) HSbench: write+overwrite+read

8 16
Number of MPI Ranks
(e) HSbench: write+append+read

Figure 6: Performance of Provenance Tracking. (a) Top Reco. (b) DASSA (with File, Dataset, Attribute Lineages tracked). (c - e)
H5bench-based workflow under three I/O patterns (i.e., write+read, write+overwrite+read, write+append+read)

6.2 Performance of Provenance Tracking

In case of Top Reco, the scientists need the mapping between
configurations and the training performance. Therefore, PROV-IO
tracks three domain-specific items (e.g., model hyperparameters,
dataset preselections, and training accuracy) based on the extensible
class defined in the PROV-IO model. To track the mapping between
workflow configuration and training accuracy, we instrument the
workflow’s training loop with PROV-IO APIs and record the train-
ing accuracy at the end of each epoch, and add the training accuracy
to the provenance graph as a property of configurations. In addition,
we vary the number of training epochs to see how the performance
scales. Note that Top Reco is a single process workflow.

Figure 6(a) shows the performance for Top Reco. The y-axis is the
normalized completion time (starting with 0.998), while the x-axis is
the number of training epoch (roughly equivalent to training time).
The grey bars are the baseline without provenance, and the green
bars show the performance with PROV-IO enabled. We can see
that the tracking overhead is negligible overall with a maximum of
0.02%. The overhead with a shorter training time is relatively high,
which is mostly caused by the latency of Redland. As the number of
training epoch increases, the overhead of PROV-IO decreases almost
linearly because PROV-IO tracks a constant amount of information.

In case of DASSA, the scientists need the backward lineage
of data products in different granularity. As shown in the second
column of Table 3, PROV-IO tracks the information of user, program,
file, dataset, or attribute for different lineage needs based on the
PROV-IO model (§4.1). We follow a similar configuration as the
domain scientists’ by using 32 compute nodes and up to 2048 input
files (1.35TB in total).

Figure 6(b) shows the tracking performance for DASSA. The
x-axis means the number of input files; the y-axis on the left and

220

right sides show the normalized completion time and the raw com-
pletion time (in second), respectively. The grey bars represent the
normalized baseline without PROV-IO, and the red, green and blue
bars represent the normalized completion time under three usage
scenarios (i.e., “File Lineage”, “Dataset Lineage” and “Attribute Lin-
eage”) where different provenance granularity are enabled (e.g., for
“File Lineage” we enable “program”, “I/O API” and “file” tracking).
The solid grey line stands for the average baseline completion time
(in second) without provenance tracking, while the dashed blue
line represents the worst case raw completion time with PROV-10
enabled under all usage scenarios.

We can see the max overhead occurred when tracking the at-
tribute lineage of the entire 2048 files, which is about 11%. This
is because DASSA heavily relies on HDF5 attributes. To access an
attribute, the program first needs to open the file and the dataset
containing it, which incurs more I/O operations to track. But overall,
PROV-IO incurs reasonable overhead in DASSA (ranging from 1.8%
to 11%). This is expected because DASSA does not require heavy
1/0 API tracking. In other words, PROV-IO is efficient for tracking
the backward lineage in file, dataset, and attribute granularity.

In the H5bench based workflow, the scientists need the data
usage and I/O statistics in general. We consider three different us-
age scenarios based on different needs. As summarized in Table 3,
scenario-1 tracks the total number of I/O APIs; scenario-2 tracks
both the I/O API count and their duration for bottleneck analysis;
scenario-3 tracks the users and threads that modify the file. More-
over, for each scenario, we consider three different I/O patterns
including: write-read, write-overwrite-read, and write-append-read.
In (c) and (d), we run the workflow with 128 to 4096 MPI processes.
In (e), since the append operations from a large amount of MPI
processes can easily overwhelm the memory buffer for appending
and lead to out-of-memory (OOM) errors, we reduce the number

Session 5: HPC Toolchains, Traces, and More

7.0E-02

—=—w/ PROV-I0

e

6.0E-02

5.0E-02

4.0E-02

3.0E-02

Provenance Size (KB)

2.0E-02

1.0E-02

0.0E+00

HPDC 22, June 27-July 1, 2022, Minneapolis, MN, USA

900

—e—File Lineage —e—Dataset Lineage

800

—A— Attribute Lineage

700
600
500
400
300

Provenance Size (MB)

200

100

20 40 60 80 100 120 140 160 128 256 512 1024 2048
Number of Epochs Number of Files
(a) Top Reco (b) DASSA
200 200 3
180 —e—Scenario1 —@—Scenario 2 —&—Scenario 3 180 —e—Scenario1 ——Scenario2 ——Scenario 3 —e—Scenariol —@—Scenario2 —a—Scenario 3

. 160 __160 . 25
o o [-2]

S 140 S 140 s,
@ 120 9 120]

100 @ 100 Y15
g E g
@ 80 © 80 ©

s S S .
g« g % 8
[-T) a 40 a

05

20 20
0 A o . — —
128 256 512 1024 2048 4096 128 256 512 1024 2048 4096 0

Number of MPI Ranks
(c) H5bench: write+read

Number of MPI Ranks
(d) H5bench: write+overwrite+read

2 64

4 8 16 32
Number of MPI Ranks
(e) H5bench: write+append+read

Figure 7: Storage of Provenance Tracking. (a) Top Reco. (b) DASSA (with File, Dataset, Attribute Lineages tracked). (c - €)
H5bench-based workflow under three I/0 patterns (i.e., write+read, write+overwrite+read, write+append+read)

of MPI processes (2 to 64). Also, based on the observation that
the computation time of many HPC applications may vary from
dozens to thousands of seconds per I/O operation, we introduce a
relatively modest computation time of 25 seconds per step in the
experiments.

Figure 6 (c) (d) (e) show the tracking performance under three
different I/O patterns (i.e., “write+read”, “write+overwrite+read”,
“write+append-+read”) respectively. The x-axis stands for the num-
ber of MPI ranks. The left y-axis is the normalized completion time
and the right y-axis is the raw completion time in second. The grey
bars represent the baseline while the three types of colored bars
stand for the performance of different provenance usage scenarios
mentioned in Table 3(red for “scenario 1”, green for “scenario 2”,
blue for “scenario 3”). The grey solid line is the average baseline
completion time, while the blue dash line is the worst-case raw
completion time with PROV-IO enabled.

Overall, we find that PROV-IO incurs reasonable amount of over-
head (i.e., ranging from 0.5% to 4%) even under heavy I/O operations
(3.9TB data with 4096 MPI ranks). In particular, the PROV-IO over-
head under the “write-append-read” I/O pattern (Figure 6 (c)) is
minimal (around 0.5%). This is because the HDF5 I/O operation
under this pattern takes more computation time than under the
other two patterns to determine the append offset and memory
range, which makes the PROV-IO overhead more negligible. Also,
by comparing scenario-1 and scenario-2, we find that tracking the
I/O API duration introduce little additional overhead. This is rea-
sonable because the timing information can be piggybacked with
the I/O API tracking which dominates the overall tracking time.

221

6.3 Storage Requirements

The storage requirement of PROV-IO is directly related to the
amount and the class of information tracked. Specifically, the stor-
age overhead may increase in two ways: (1) the size of a single
provenance record may increase (e.g., adding timing information
will increase size of an I/O API record); (2) the total number of
records in a provenance file may increase (e.g., tracking thread
information will create a number of thread records). We summarize
the storage performance of PROV-IO for the three workflows in
Figure 7.

Figure 7(a) shows the Top Reco case. The x-axis represents the
number of epochs and the y-axis is the provenance size (KB). We
can see that the provenance size is negligible. This is because PROV-
10 allows users to specify the target provenance precisely without
incurring unnecessary overhead. It also scales linearly since the
number of new nodes added to provenance graph is the same as
the increment in training epochs.

Figure 7(b) shows the DASSA case. The x-axis is the number of in-
put files while the y-axis represents the provenance size (MB). Lines
in three different colors represent File Lineage, Dataset Lineage
and Attribute Lineage, respectively. We can see that the storage
requirement varies from 40 MBs (with 128 input files) to about 800
MBs (with 2048 files) with linear scalability (note that the x-axis
increases by a multiple of 2). Although DASSA heavily relies on
attributes, the storage overhead in the three usage scenarios is
similar. This is because I/O API is still the dominant part in all sce-
narios. Even though the number of file and dataset is far less than
attribute in DASSA input data, when compared to number of APIs
involved in the workflow, their contribution to storage overhead is
insignificant.

Session 5: HPC Toolchains, Traces, and More

1.001

HPDC 22, June 27-July 1, 2022, Minneapolis, MN, USA

1.001

1.001

mw/o PROV-I0 Ew/ PROV-10 Elw/ ProvLake mw/o PROV-10 s w/ PROV-I0 @ w/ ProvLake mw/o PROV-10 Ew/ PROV-I0 Iw/ Provlake
£ 1.0005 2 10005 2 10005
= = 3 = 2]
= - = § - z i M q 9 = N - o o o
s & 4] A 4 < N s & ki H] & < §F £ =]
g N VRN VIEEREEE B N R B R VRN I e VRN v
5 N N NN N -] NI RN N R RN RN R 5 NN N N N
- \ \ v RN V. YRRERRERRRE £ \ N v i \
S N N N | 8 N BN N B N B | S N | N N N
N N N N N NS SV NP NG NEE NEE iR A N N N N N
2 o0e § §§} § §§ §g T o9 § §§ §§ § §§ §§ §§ §§ T oo §; ‘ §$ §§ §"
3 \ \i VY 3 YNRERRRRE = Vi VL Vi
£ N N N N | E N RN NN N RN R € Nl N N BN N
° S 0.9985 L 4 4 4 R B & 0.9985 4 A A k4 k1
] S NE BRH R N N N N N NG S R 8 i) N BN N
N N NE R S N o BN N NE N RV R N ki N NE N
0sss LI \/ M N NN 0sse LN N BN NV BN BN BN BN 0sse LN IV Yol NoM NGl N
20 40 60 80 100 120 140 160 20 40 6 80 100 120 140 160 20 40 60 80 100 120 140 160
Number of Epochs Number of Epochs Number of Epochs
(a) Tracking Overhead - 20 Config Fields (b) Tracking Overhead - 40 Config Fields (c) Tracking Overhead - 80 Config Fields
1.0E405 1.0E+05 1.0E+05
—=—w/ PROV-I0 —e—w/ ProvLake —=—w/ PROV-I0 —e—w/ ProvLake —=—w/ PROV-10 —e—w/ ProvLake
1.0E404 1.0E+04 1.0E+04
o o o
b4 3 x
g 10E+03 § 108403 ./././,,r*"’a § 1.0E403 /,,r*“’a
o o o
2 2 2
2 1.0E+02 S106402 | o w == = —w = —a & 1.0:02 =% = = 8 —8—3a
o _— S ——a—=a (3 o
> = & > >
£ - g £
1.0E+01 1.0E+01 1.0E+01
1.0E400 1.0E+00 1.0E+00
20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160
Number of Epochs Number of Epochs Number of Epochs

(d) Storage Overhead - 20 Config Fields

(e) Storage Overhead - 40 Config Fields

(f) Storage Overhead - 80 Config Fields

Figure 8: A performance comparison between PROV-IO and ProvLake.

Figure 7 (c)(d)(e) shows the H5bench-based workflow with three
different I/O patterns. The x-axis represents number of MPI ranks
and the y-axis stands for provenance size in MBs. Note that x-axis
also increases by a multiple of 2. Lines in three different colors
represents three different provenance usage scenarios (Table 3).
We can see the provenance size varies from a few KBs to 168 MBs.
Among the three I/O patterns, “write+overwrite+read” has the
highest storage overhead under usage scenario 2. This is because
the pattern includes one more I/O application (i.e., overwrite) than
“write+read” and has much more MPI processes contributing to
provenance graph than “write+append+read”. Moreover, scenario
2 also has the largest amount of tracked information (I/O API and
their duration). Note that the storage overhead in this workflow
also scales linearly.

In summary, because of the flexibility of the fine-grained PROV-
10 model, PROV-IO’s storage overhead is reasonable for all the use
cases evaluated.

6.4 Comparison with Other Frameworks

In this section, we compare PROV-IO to state-of-the-art provenance
systems. Table 4 shows the basic characteristics of Komadu [49],
ProvLake [20], and PROV-IO. We can see that all three frameworks
are derived from the base PROV-DM model, which makes the com-
parison fair. On the other hand, Komadu only supports Java pro-
grams and ProvLake only supports Python, which makes them
incompatible with many C/C++ based scientific workflows (e.g.,
DASSA and H5bench). Note that PROV-IO’s C/C++ interface is
designed for integration with major HPC I/O libraries. Once the I/O
library is integrated with PROV-IO (e.g., HDF5), the provenance
support is mostly transparent to the workflow users, i.e., users can
control the rich provenance features through a configuration file
without manually modifying their source code with APIs. Neither
Komadu nor ProvLake support such capability or transparency.

222

Table 4: Basic Characteristics of Three Frameworks.

Komadu ProvLake = PROV-IO
Base model PROV-DM PROV-DM PROV-DM
Language Java Python C/C++PythonJava
Transparency No No Hybrid

Since ProvLake has outperformed Komadu based on a previous
study [17], we focus on the comparison with ProvLake. Because
ProvLake does not support C/C++ workflows, we cannot apply it to
DASSA and H5bench. Therefore, we compare the two provenance
tools using Python-based Top Reco in the rest of this section.

Different from PROV-IO which is I/O-centric, ProvLake is *process-
oriented’. Specifically, ProvLake creates records based on the execu-
tion steps of a workflow, and the provenance data are maintained as
attribute or property of individual steps. On the contrary, PROV-IO
is not limited to the execution steps of the workflow. For example, it
can track a task in the workflow, an I/O operation invoked by a task,
a data object involved in the I/O operation, etc., all of which are
further correlated via the relations defined by the PROV-IO model
(§4.1). Such flexibility and richness is not available in ProvLake.

To make the comparison with ProvLake fair, we use the same
instrument points in the Top Reco workflow for both tools. Specifi-
cally, we instrument Top Reco at its GNN training loop and track
the training accuracy at the end of each epoch to corresponding
provenance records. Since the workflow configuration is never
changed during the entire workflow, we only add it to ProvLake’s
record once at the beginning of the workflow. In addition, to be
representative, we track three different numbers of configurations
(i.e., 20, 40, and 80).

Figure 8(a),(b),(c) compares the provenance tracking performance
of the two systems where y-axis is normalized completion time.
Figure 8 (d),(e),(f) shows the storage overhead where y-axis is size in

Session 5: HPC Toolchains, Traces, and More

HPDC 22, June 27-July 1, 2022, Minneapolis, MN, USA

Table 5: Example Queries. The diverse provenance needs can be satisfied by a few simple queries effectively.

Workflow Provenance Need Query Statement (SPARQL) # of Statements in Query
1: data_object_a prov:wasAttributedTo ?program. 3*N
DASSA file/dataset/attribute lineage 2: ?2data_object prov:wasAttributedTo program_1; (where N is backward
3: provio:wasReadBy ?10_APL propagation steps)
scenario-1 4: ?I0_API prov:wasMemberOf prov:Activity; 1
H5bench scenario-2 5: 210_API prov:wasMemberOf prov:Activity; 2
6: provio:elapsed ?duration.
7: file_a prov:wasAttributedTo ?program.
scenario-3 8: program_1 prov:actedOnBehalfOf ?thread. 3
9: thread_i prov:actedOnBehalfOf ?user.
Top Reco | metadata version control & mapping | 10: ?configuration ns1:Version ?version; 2
11: provio:hasAccuracy ?accuracy.

KB. In all figures x-axis is the number of configurations. In (a)(b)(c),
grey bars stand for the baseline without provenance tracking, green
bars show the normalized performance with PROV-IO, and red bars
show the performance with ProvLake. In (d)(e)(f), green lines stand
for PROV-IO provenance file size and red lines stand for ProvLake
provenance file size.

As shown in Figure8(a)(b)(c), both frameworks incur negligible
tracking overhead (e.g., less than 0.025%) and the PROV-IO overhead
is even lower than ProvLake for most cases. Similarly, as shown
in Figure8(d)(e)(f), PROV-IO always incurs less storage overhead,
regardless of the number of configuration fields tracked. This is
mainly because ProvLake has to track more irrelevant workflow
information not needed in the use case.

6.5 Query Effectiveness

As mentioned in §5, PROV-IO supports provenance query with
visualization. Table 5 summarizes the queries used to answer the
diverse provenance needs of the three workflow cases. We can see
that the provenance can be queried effectively and efficiently using
a few simple SPARQL statements in general. Since the number of
queries involved is small, the query time overhead is negligible in
our experiments. We discuss each case in more details below.

In DASSA, to get the backward lineage of a data product, we
can start with the program which generated the data product and
look for its input data. The same procedure can be repeated as
needed. For example, DASSA may convert “WestSac.tdms” into
“WestSac.h5” with program “tdms2h5”, and then use “decimate” to
process “WestSac.h5” into data product “decimate.h5”. To get the
backward lineage of “decimate.h5”, we first query with keywords
“decimate.h5 prov:wasAttributedTo ?program” to locate program
“decimate”, and then query “decimate”s input file “WestSac.h5” with
keywords “?file wasAttributedTo decimate”. We can use similar
queries to locate earlier predecessors (e.g., “WestSac.tdms”). As
summarized in Table 5, for each backward step, we only need three
query statements. Figure 9 shows the visualization of this example,
which follows the PROV-IO provenance model (§4.1) and highlights
the queried data lineage in blue. Other types of lineages (e.g., dataset
and attribute) can be queried and visualized in the same way.

Similarly, in H5bench, we have three types of provenance needs
(i-e., the scenarios described in §6.2) which can be answered using
1, 2, 3 SPARQL statements respectively. In Top Reco, the metadata
versioning and mapping information can be queried in 2 statements.

223

prov:wasAttributedTo

:wasAuribuledTo
1ot Lovel :wasAnributedTo
Predecessor -

prov:wasMemberOf

2nd Level

Predecessor prov:wasMemberOf

prov:wasMemberOf
provio:DataObject:File (\pmvio:Program>

decimate
prov:wasMemberOf

prov: prov:wasAttributedTo

Figure 9: An Example of DASSA Data Lineage by PROV-IO.
The graph follows the PROV-IO model; the data lineage is
highlighted in blue.

Note that the provenance needs are diverse across the real use
cases, but the number of queries needed is consistently small. This
elegant result suggests that the PROVI-IO model as well as the
entire framework is effective for scientific data on HPC systems.

7 RELATED WORK

In this section, we discuss provenance-related work and tools that
have not been covered sufficiently in the previous sections.

Database Provenance. Historically, provenance has been well
studied in databases to understand the causal relationship between
materialized views and table updates [6], [50]. The concept has
also been extended to other usages [8], [51]. In general, database
provenance may leverage the well-defined relational model and
the relatively strict transformations to capture precise provenance
within the system [52], which is not applicable for general software.
On the other hand, some query optimizations (e.g., provenance
reduction [53]) could potentially be applied to PROV-IO. Therefore,
PROV-IO and existing database tools are complementary.

OS-Level Provenance. Great efforts have also been made to cap-
ture provenance at the operating system (OS) level [11], [12], [37].
For example, PASS [11], [12] intercepts system calls via custom
kernel modules for inferring data dependencies. Similarly to these
efforts, PROV-IO recognizes the importance of I/O syscalls. But
different from PASS, PROV-IO is non-intrusive to the OS kernel.
Moreover, PROV-IO leverages the unique characteristics of HPC
workflows and systems to meet the needs of domain scientists,

Session 5: HPC Toolchains, Traces, and More

while PASS is largely inapplicable in this context. More specifically,
we elaborate on five key differences as follows:

(1) Provenance Model: PROV-IO follows the W3C specifications to
represent rich provenance information in a relational model (§4.1).
In contrast, PASS follows the conventional logging mechanism
without a general relational model, which limits its capability of
capturing and describing complex provenance. For example, PASS
has to establish the dependencies among events via a kernel-level
logger (i.e., ‘Observer’ [12]) which cannot interpret the semantics
or relations of HPC I/O library events. Consequently, PASS can
only answer relatively limited queries (e.g., ancestor of a node [12])
instead of the rich lineage defined in W3C specifications.

(2) System Architecture: PROV-IO is a user-level solution de-
signed for the HPC environment (§4.2). In contrast, PASS heavily
relies on customized kernel modules to achieve its core function-
alities. This kernel-based architecture makes PASS incompatible
with modern HPC systems. For example, neither the PASTA file
system (in PASS [11]) nor the Lasagna file system (in PASSv2 [12])
is compatible with the Lustre PFS dominant in HPC. In other words,
translating the core functionalities of PASS to HPC systems would
require substantial efforts (if possible at all), and the implications
on performance and scalability is unclear.

(3) Granularity: PROV-IO can handle fine-grained I/O prove-
nance which is critical for understanding HPC workflows (e.g.,
the lineage of an attribute of an HDF5 file), while PASS collects
relatively coarse-grained events (e.g., access to an entire file).

(4) Tracking APIs: By embedding in popular HPC I/O libraries,
PROV-IO does not require modifying the source code to track I/O
provenance. In contrast, to use PASS, users must consider how to
apply six low-level calls (e.g., pass_read, pass_mkobj [12]) to the
target applications.

(5) Storage & Query: Based on the well-defined model, PROV-IO
stores provenance as RDF triples backed by the parallel file system.
In contrast, PASS relies on its own local file system to generate
provenance as local logs. The storage representation directly affects
the user query capability. For example, PROV-IO supports querying
RDF triples via SPARQL [47], while PASS only supports a special
Path Query Language which is much less popular today.

In summary, while PROV-IO is partially inspired by the seminal
PASS designed more than a decade ago, the two works are different
due to the different goals and contexts. Therefore, we view PASS
and PROV-IO as complementary tools.

Workflow & Application Provenance. Provenance models or sys-
tems for workflows and/or applications have also been explored [18],
[20], [21], [54]. For example, Karma [21] describes a model with
a hierarchy of ‘workflow-service-application-data’. However, the
model is designed for the cloud environment and cannot cover di-
verse HPC needs (e.g., HDF5 attributes, MPI ranks). PROV-ML [18]
is a series of well-defined specifications for machine learning work-
flows. Different from PROV-ML, PROV-IO is designed for general
HPC workflows. IBM ProvLake [20] is a lineage data management
system capable of capturing data provenance across programs. Un-
like PROV-IO, ProvLake always require users to modify the source
code using its special APIs, which severely limits its usage and
scalability for complicated HPC workflows.Similar to PROV-IO,
there are a few provenance capturing tools using DBMS to store

224

HPDC 22, June 27-July 1, 2022, Minneapolis, MN, USA

queriable provenance data, but they do not follow any widely used
provenance models [55]-[57].

Other Usage of Provenance. Provenance has been applied to other
venues. For example, MOLLY uses lineage-driven fault injection
to expose bugs in fault-tolerant protocols [58]. There have been
a multitude of domain-specific or application-specific provenance
and ontology management implementations. However, they do
not capture the I/O access information that PROV-IO manages.
We believe the comprehensive provenance information enabled by
PROV-IO can also be leveraged to stimulate several data quality
and storage optimizations, which we leave as future work.

Non-Provenance Tools. In addition, great efforts have been made
to manage workflows [59], [60] or log I/O events for various pur-
poses [34], [35], [61]-[75]. While they are effective for their original
goals, they are insufficient to address provenance needs in general
due to a number of reasons: (1) no relational model to support track-
ing or querying rich provenance (e.g., various relations defined in
W3C PROV-DM [28]); (2) agnostic to the fine-grained semantics
in HPC I/O libraries (e.g., HDF5 attributes); (3) little portability
across different I/O libraries or workflow environments; (4) no
programmable interface to specify customized provenance needs.

8 CONCLUSION & FUTURE WORK

We have introduced a provenance tool called PROV-IO for scien-
tific data on HPC systems. Experiments with representative HPC
workflows show that PROV-IO can address diverse provenance
needs with reasonable overhead. We believe that PROV-IO repre-
sents a promising direction toward ensuring the rigorousness and
trustworthiness of scientific data management.

In the future, we will address the limitations mentioned in §1.5.
Moreover, in the Top Reco case studied in this paper, the domain
scientists would like to identify the best configurations across mul-
tiple runs of the workflow. In other words, there is a need of prove-
nance across multiple executions of the same workflow. Similar
cross-workflow provenance may be needed when multiple different
workflows cooperate to process shared datasets, which requires
additional modeling and interface to bridge the semantic gap be-
tween workflows. We would like to investigate such complex multi-
workflow scenario as well.

9 ACKNOWLEDGMENTS

The authors would like to thank Yogesh Simmhan (our shepherd)
and the anonymous reviewers for their insightful feedback. We also
thank Xiangyang Ju for providing the Top Reco workflow. This
work was supported in part by NSF under grants CNS-1855565,
CCF-1853714, CCF-1910747 and CNS-1943204. Any opinions, find-
ings, and conclusions expressed in this material are those of the
authors and do not necessarily reflect the views of the sponsors.
This manuscript has been authored by an author at Lawrence Berke-
ley National Laboratory under Contract No. DE-AC02-05CH11231
with the U.S. Department of Energy. The U.S. Government retains,
and the publisher, by accepting the article for publication, acknowl-
edges, that the U.S. Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the pub-
lished form of this manuscript, or allow others to do so, for U.S.
Government purposes.

Session 5: HPC Toolchains, Traces, and More

REFERENCES

(1]

(2]
(3]
(4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

K. M. Tolle et al., “The fourth paradigm: Data-intensive scientific discovery
[point of view],” Proceedings of the IEEE, vol. 99, no. 8, pp. 1334-1337, 2011. por:
10.1109/JPROC.2011.2155130.

M. D. Wilkinson et al., The fair guiding principles for scientific data management
and stewardship, 2016.

Fair principles. [Online]. Available: https://www.go-fair.org/fair- principles/
(visited on 10/04/2021).

M. Milton et al., “Trustworthy data underpin reproducible research,” Nature
Physics, vol. 16, pp. 117-119, Feb. 2020. por: 10.1038/s41567-019-0780-5.

B. Dong et al., “DASSA: Parallel DAS Data Storage and Analysis for Subsurface
Event Detection,” in 2020 IEEE International Parallel and Distributed Processing
Symposium (IPDPS’20), 2020.

P. Buneman et al., “Why and where: A characterization of data provenance,” in
Proceedings of the 8th International Conference on Database Theory (ICDT’01),
2001.

X. Niu et al., “Interoperability for provenance-aware databases using PROV
and JSON;” in 7th USENIX Workshop on the Theory and Practice of Provenance
(TaPP’15), 2015.

P. Senellart, “Provenance and probabilities in relational databases,” SIGMOD
Rec., vol. 46, no. 4, pp. 5-15, Feb. 2018, 1sSN: 0163-5808. po1: 10.1145/3186549.
3186551.

Z. Miao et al., “Going beyond provenance: Explaining query answers with
pattern-based counterbalances,” in Proceedings of the 2019 International Confer-
ence on Management of Data (SIGMOD’19), 2019.

Z. Wang et al., “A provenance storage method based on parallel database,” in
2015 2nd International Conference on Information Science and Control Engineering
(ICISCE’15), 2015.

K.-K. Muniswamy-Reddy et al., “Provenance-aware storage systems,” in Pro-
ceedings of the Annual Conference on USENIX 06 Annual Technical Conference
(ATC’06), 2006.

K.-K. Muniswamy-Reddy et al., “Layering in provenance systems,” in Proceed-
ings of the 2009 Conference on USENIX Annual Technical Conference (ATC09),
2009.

E. Jandre et al., “Provenance in collaborative in silico scientific research: A
survey,” SIGMOD Rec., vol. 49, no. 2, pp. 3651, Dec. 2020, 1ssN: 0163-5808. DOI:
10.1145/3442322.3442329.

Y. L. Simmbhan et al., “A survey of data provenance in e-science,” SIGMOD
Rec., vol. 34, no. 3, pp. 31-36, Sep. 2005, 1ssN: 0163-5808. DOI: 10.1145/1084805.
1084812.

S. B. Davidson et al., “Provenance and scientific workflows: Challenges and
opportunities,” in Proceedings of the 2008 ACM SIGMOD International Conference
on Management of Data (SIGMOD’08), 2008.

1. Suriarachchi et al, “Big provenance stream processing for data intensive com-
putations,” in 2018 IEEE 14th International Conference on eScience (eScience’18),
2018.

R. Souza et al., “Efficient runtime capture of multiworkflow data using prove-
nance,” in 2019 15th International Conference on eScience (eScience’19), 2019.

R. Souza et al., “Provenance data in the machine learning lifecycle in compu-
tational science and engineering,” in 2019 IEEE/ACM Workflows in Support of
Large-Scale Science (WORKS’19), 2019.

The prov data model - w3c. [Online]. Available: https://www.w3.org/TR/prov-
overview/ (visited on 10/04/2021).

L. Azevedo et al., “Experiencing provlake to manage the data lineage of ai
workflows,” in Meeting in Innovation in Information Systems (EISI) in Brazilian
Symposium in Information Systems (SBSI’20), 2020.

Y. L. Simmbhan et al,, “A framework for collecting provenance in data-centric
scientific workflows,” in 2006 IEEE International Conference on Web Services
(ICWS’06), 2006.

B. Howe et al., “End-to-end escience: Integrating workflow, query, visualization,
and provenance at an ocean observatory,” in 2008 IEEE Fourth International
Conference on eScience (eScience’08), 2008.

Resource description framework. [Online]. Available: https://www.w3.org/RDF/
(visited on 10/04/2021).

X. Allison et al., A graph neural network-based top quark reconstruction package.
[Online]. Available: https://indico.cern.ch/event/ 932415/ contributions/
3918265/attachments/2086561/3505362/GNN_Top_Reco_-_Allison_Xu.pdf
(visited on 10/04/2021).

H5bench. [Online]. Available: https://www.hdfgroup.org/solutions/hdf5/
(visited on 10/04/2021).

Adios. [Online]. Available: https://www.olcf.ornl.gov/center-projects/adios/.
A. Bates et al., “Trustworthy whole-system provenance for the linux kernel,” in
Proceedings of the 24th USENIX Conference on Security Symposium (Security’15),
2015.

P. Missier et al., “The w3c prov family of specifications for modelling prove-
nance metadata,” in Proceedings of the 16th International Conference on Extending
Database Technology (EDBT’13), 2013.

225

[29]
(30]
(31]
(32]

(33]

[51]

[52]

(53]

[64]

[65]

HPDC 22, June 27-July 1, 2022, Minneapolis, MN, USA

Hdf5. [Online]. Available: https://https://www.hdfgroup.org/solutions/hdf5/
(visited on 10/04/2021).

Netcdf. [Online]. Available: https://www.unidata.ucar.edu/software/netcdf/
(visited on 10/04/2021).

Automatic library tracking database at nersc. [Online]. Available: https://www.
nersc.gov/assets/altdatNERSC.pdf (visited on 10/04/2021).

T. Li et al., “H5prov: I/o performance analysis of science applications using
hdf5 file-level provenance,” in Cray User Group (CUG’19), 2019.

M. Folk et al.,, “An overview of the hdf5 technology suite and its applications,”
in Proceedings of the EDBT/ICDT 2011 Workshop on Array Databases (AD’11),
2011.

Darshan, hpc i/o characterization tool. [Online]. Available: https://www.mcs.
anl.gov/research/projects/darshan/ (visited on 10/04/2021).

S. Yellapragada et al., “Verifying io synchronization from mpi traces,” in 2021
IEEE/ACM Sixth International Parallel Data Systems Workshop (PDSW’21), 2021.
Ext4. [Online]. Available: https://ext4.wiki.kernel.org/index.php/Main_Page
(visited on 10/04/2021).

A. Gehani et al., “Spade: Support for provenance auditing in distributed en-
vironments,” in Proceedings of the 13th International Middleware Conference
(Middleware’12), 2012.

Gotcha v1.0.2. [Online]. Available: https://github.com/LLNL/GOTCHA (visited
on 10/04/2021).

Redland rdf. [Online]. Available: https://librdf.org (visited on 10/04/2021).
Apache jena. [Online]. Available: https://jena.apache.org (visited on 10/04/2021).
Neo4j. [Online]. Available: https://neo4j.com (visited on 10/04/2021).
Blazegraph. [Online]. Available: https://blazegraph.com (visited on 10/04/2021).
Apache rya. [Online]. Available: https://rya.apache.org (visited on 10/04/2021).
Anzographdb. [Online]. Available: https://cambridgesemantics.com/anzograph/
(visited on 10/04/2021).

Terse rdf triple language. [Online]. Available: https://www.w3.org/TR/turtle/
(visited on 10/04/2021).

N-triples. [Online]. Available: https://www.w3.org/TR/n-triples/ (visited on
10/04/2021).

Sparql query language for rdf. [Online]. Available: https://www.w3.org/TR/rdf-
sparql-query/ (visited on 10/04/2021).

Graphviz. [Online]. Available: https://graphviz.org (visited on 10/04/2021).

1. Suriarachchi et al., “Komadu: A capture and visualization system for scientific
data provenance,” Journal of Open Research Software, vol. 3, Mar. 2015. poI:
10.5334/jors.bq.

Y. Cui et al,, “Tracing the lineage of view data in a warehousing environment,”
ACM Trans. Database Syst., vol. 25, no. 2, pp. 179-227, Jun. 2000, 1ssN: 0362-5915.
Dor: 10.1145/357775.357777.

J. Widom, “Trio: A system for integrated management of data, accuracy, and lin-
eage,” in 2nd Biennial Conference on Innovative Data Systems Research (CIDR’05),
2005.

L. Carata et al., “A primer on provenance,” Commun. ACM, vol. 57, no. 5, pp. 52—
60, May 2014, 1ssN: 0001-0782. por1: 10.1145/2596628.

D. Deutch et al., “Hypothetical reasoning via provenance abstraction,” in Pro-
ceedings of the 2019 International Conference on Management of Data (SIG-
MOD’19), 2019.

Q. Zhou et al,, “Study in usefulness of middleware-only provenance,” in 2014
IEEE 10th International Conference on eScience (eScience’14), 2014.

Braid-db. [Online]. Available: https://github.com/ANL-Braid/DB/.

Chimbuko. [Online]. Available: https://github.com/CODARcode/Chimbuko
(visited on 10/04/2021).

J. Logan et al., “A vision for managing extreme-scale data hoards,” in IEEE 39th
International Conference on Distributed Computing Systems (ICDCS’19), 2019.
P. Alvaro et al., “Lineage-driven fault injection,” in Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data (SIGMOD’15), 2015.
Apache taverna. [Online]. Available: https://incubator.apache.org/projects/
taverna.html (visited on 10/04/2021).

Effis. [Online]. Available: https:// github.com /wdmapp / effis (visited on
10/04/2021).

M. Zheng et al., “Torturing Databases for Fun and Profit,” in 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI), 2014.

J. Cao et al,, “A generic framework for testing parallel file systems,” in 2016
1st Joint International Workshop on Parallel Data Storage and data Intensive
Scalable Computing Systems (PDSW-DISCS), 2016.

J. Cao et al, “PFault: A general framework for analyzing the reliability of
high-performance parallel file systems,” in Proceedings of the 2018 International
Conference on Supercomputing (ICS), 2018, pp. 1-11. por: 10.1145/3205289.
3205302.

R. Han et al., “A study of failure recovery and logging of high-performance
parallel file systems,” ACM Transactions on Storage (TOS), 2021. por: 10.1145/
3483447.

O. R. Gatla et al., “Understanding the fault resilience of file system checkers,”
in 9th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage),
2017.

https://doi.org/10.1109/JPROC.2011.2155130
https://www.go-fair.org/fair-principles/
https://doi.org/10.1038/s41567-019-0780-5
https://doi.org/10.1145/3186549.3186551
https://doi.org/10.1145/3186549.3186551
https://doi.org/10.1145/3442322.3442329
https://doi.org/10.1145/1084805.1084812
https://doi.org/10.1145/1084805.1084812
https://www.w3.org/TR/prov-overview/
https://www.w3.org/TR/prov-overview/
https://www.w3.org/RDF/
https://indico.cern.ch/event/932415/contributions/3918265/attachments/2086561/3505362/GNN_Top_Reco_-_Allison_Xu.pdf
https://indico.cern.ch/event/932415/contributions/3918265/attachments/2086561/3505362/GNN_Top_Reco_-_Allison_Xu.pdf
https://www.hdfgroup.org/solutions/hdf5/
https://www.olcf.ornl.gov/center-projects/adios/
https://https://www.hdfgroup.org/solutions/hdf5/
https://www.unidata.ucar.edu/software/netcdf/
https://www.nersc.gov/assets/altdatNERSC.pdf
https://www.nersc.gov/assets/altdatNERSC.pdf
https://www.mcs.anl.gov/research/projects/darshan/
https://www.mcs.anl.gov/research/projects/darshan/
https://ext4.wiki.kernel.org/index.php/Main_Page
https://github.com/LLNL/GOTCHA
https://librdf.org
https://jena.apache.org
https://neo4j.com
https://blazegraph.com
https://rya.apache.org
https://cambridgesemantics.com/anzograph/
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/n-triples/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
https://graphviz.org
https://doi.org/10.5334/jors.bq
https://doi.org/10.1145/357775.357777
https://doi.org/10.1145/2596628
https://github.com/ANL-Braid/DB/
https://github.com/CODARcode/Chimbuko
https://incubator.apache.org/projects/taverna.html
https://incubator.apache.org/projects/taverna.html
https://github.com/wdmapp/effis
https://doi.org/10.1145/3205289.3205302
https://doi.org/10.1145/3205289.3205302
https://doi.org/10.1145/3483447
https://doi.org/10.1145/3483447

Session 5: HPC Toolchains, Traces, and More

[66]
[67]

[68]

[69]

[70]

[71]

O.R. Gatla et al., “Towards robust file system checkers,” in 16th USENIX Con-
ference on File and Storage Technologies (FAST), 2018.

O.R. Gatla et al., “Towards robust file system checkers,” ACM Transactions on
Storage (TOS), vol. 14, no. 4, pp. 1-25, 2018. por: 10.1145/3281031.

D. Zhang et al., “Sentilog: Anomaly detecting on parallel file systems via log-
based sentiment analysis,” in Proceedings of the 13th ACM Workshop on Hot
Topics in Storage and File Systems (HotStorage), 2021.

D. Dai et al., “A performance study of lustre file system checker: Bottlenecks and
potentials,” in 2019 35th Symposium on Mass Storage Systems and Technologies
(MSST), 2019.

E. Xu et al., “Understanding ssd reliability in large-scale cloud systems,” in 2018
IEEE/ACM 3rd International Workshop on Parallel Data Storage & Data Intensive
Scalable Computing Systems (PDSW-DISCS), 2018.

E. Xu et al., “Lessons and actions: What we learned from 10k {ssd-related }
storage system failures,” in 2019 USENIX Annual Technical Conference (USENIX
ATC), 2019.

226

[72]

(73]

[74]

HPDC 22, June 27-July 1, 2022, Minneapolis, MN, USA

Y. Shi et al., “A Command-Level Study of Linux Kernel Bugs,” in 2017 Inter-
national Conference on Computing, Networking and Communications (ICNC),
2017.

M. Zheng et al., “Gmprof: A low-overhead, fine-grained profiling approach for
GPU programs,” in 19th International Conference on High Performance Comput-
ing (HiPC), 2012. por: 10.1109/HiPC.2012.6507475.

D. Huang et al., “LiU: Hiding disk access latency for HPC applications with a
new SSD-enabled data layout,” in 2013 IEEE 21st International Symposium on
Modelling, Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS), 2013.

D. Zhang et al., “Benchmarking for Observability: The Case of Diagnosing
Storage Failures,” BenchCouncil Transactions on Benchmarks, Standards and
Evaluations (TBench), vol. 1, no. 1, 2021. por: 10.1016/j.tbench.2021.100006.

https://doi.org/10.1145/3281031
https://doi.org/10.1109/HiPC.2012.6507475
https://doi.org/10.1016/j.tbench.2021.100006

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Limitations of State-of-the-art Tools
	1.3 Key Insights & Contributions
	1.4 Experimental Methodology & Artifact Availability
	1.5 Limitations of PROV-IO

	2 Background
	2.1 W3C Provenance Standard
	2.2 HPC I/O Libraries

	3 Case Studies
	3.1 Top Reco - Lineage of configurations
	3.2 DASSA - Lineage of Data Products
	3.3 H5bench - Data usage and I/O performance
	3.4 Summary

	4 PROV-IO Design
	4.1 PROV-IO Model
	4.2 PROV-IO Architecture

	5 PROV-IO Implementation
	6 Evaluation
	6.1 Experimental Methodology
	6.2 Performance of Provenance Tracking
	6.3 Storage Requirements
	6.4 Comparison with Other Frameworks
	6.5 Query Effectiveness

	7 Related Work
	8 Conclusion & Future Work
	9 Acknowledgments

