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ABSTRACT

A method for active learning of hyperspectral images (HSI) is
proposed, which combines deep learning with diffusion pro-
cesses on graphs. A deep variational autoencoder extracts
smoothed, denoised features from a high-dimensional HSI,
which are then used to make labeling queries based on graph
diffusion processes. The proposed method combines the ro-
bust representations of deep learning with the mathematical
tractability of diffusion geometry, and leads to strong perfor-
mance on real HSIL.

Index Terms— hyperspectral images, variational autoen-
coders, deep clustering, active learning, semi-supervised
learning, diffusion geometry

1. INTRODUCTION

Machine learning has provided revolutionary new tools for re-
mote sensing, but state-of-the-art methods often require huge
labeled training sets. In particular, supervised deep learning
methods can achieve near-perfect labeling accuracy on high-
dimensional hyperspectral images (HSI), provided large li-
braries of labeled pixels are available [1]. This hinders the
practicality of these methods, as in many settings, data is col-
lected at a pace that far exceeds human ability to generate
corresponding labeled training data.

In order to account for this, methods that require only a
very small number of labels are needed. The active learning
regime is particularly attractive for HSI labeling problems. In
active learning, an algorithm is provided with an unlabeled
dataset, and the algorithm iteratively queries points for labels.
By choosing query points intelligently, the active learning al-
gorithm can yield the classification performance of a much
larger training set chosen uniformly at random.

We propose an active learning method for HSI based on
deep feature extraction and random walks on graphs. First, an
unsupervised variational autoencoder is used to nonlinearly
denoise and compress the high-dimensional HSI. Then, the
resulting features are considered as vertices of a graph, and a
Markov diffusion process on the graph is used to determine
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label queries and label all data points. The proposed method
combines the efficient feature learning of deep autoencoders
with the mathematical interpretability of graph diffusion pro-
cesses, and leads to strong empirical performance on real HSI.

2. BACKGROUND

2.1. Variational Autoencoders

In an autoencoder architecture, input data is cascaded through
nonlinear layers to obtain a latent representation. The latent
representation is then cascaded through nonlinear layers to
obtain output data. These two stages respectively define the
encoder and decoder. Typically, a loss function that enforces
the reconstructed output to be similar to the input is mini-
mized and the trained autoencoder learns a low-dimensional
latent feature useful for downstream tasks. In contrast to the
autoencoder, in the variational autoencoder (VAE) [2], the
output of the encoder is not a deterministic map but param-
eters of a distribution. In particular, an encoding network
maps x € R and obtains parameters of the latent variable
distribution ¢(z|x). A latent feature z sampled from this dis-
tribution is an input to a decoder that outputs & ~ p(x|z).
A typical prior for the distribution of the latent variable is a
Gaussian random variable p(z) ~ N(0,I). Given this, the
VAE optimization consists of two terms: (i) a reconstruction
loss £1 = E.q(z|2) log(p(z|2)) that enforces that the recon-
structed output Z is similar to the input x; and (ii) a Kullback-
Leibler divergence loss £o = K L(q(z|z), N(0,I)) that en-
forces that ¢(z|x) agrees with p(z). The encoder and decoder
are jointly trained by maximizing the total loss £1 + Lo.

2.2. Learning by Active Nonlinear Diffusion

The active learning algorithm employed in this paper is based
on the ideas in [3, 4, 5]. In [6], the authors propose a semi-
supervised algorithm, learning by active nonlinear diffusion
(LAND), that obtains the most important data points to query
for labels. Important features of LAND are (i) it is a princi-
pled algorithm with provable performance guarantees; (ii) it
accounts for nonlinear clusters possibly in high dimensions;
and (iii) it is robust to noise and outliers [6].

We represent an HSI as X = {z;}"_; C R" where each
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pixel is a point in RV where NV is the number of spectral
bands. Let N Ny (z;) denote the set of k-nearest neighbors of
z; in X using the Euclidean distance metric. The n xn weight
matrix W is defined as W;; = exp(—||lz; — z;||3/0?),z; €
N Ny (z;) with o denoting a scale parameter. With this, the
notion of the degree of x; naturally follows as deg(z;) :=
sz cx Wij. To define a random walk on X, we employ the

n X n transition matrix P;; = W;; / deg(z;). It can be easily
verified that P has a spectral decomposition {(A¢, ¥r)}7_;.
The diffusion distance at time t between x;, x; € X is de-
fined as Dy(zi,75) = /Dy A2 (Wo(x;) — Ve(z4))2. We
note that ¢ tells us how long the diffusion process runs. In this
paper, we use ¢ = 30 for experiments.

The main part of the LAND algorithm is to identify points
to query for labels. LAND uses a kernel density estimator
(KDE) and diffusion geometry for this task. In particular, the
KDE is defined as p(z) = >, c yn, (2) eXP(—[lz — y||3/a?)
with oy denoting a scale parameter. For x € X, let

min Di(z,y), x # argmaxp(z),
)20 oy D DY) @ 7 argmaxp(z)

ax Di(x,y),
mex t(z,y)

pe(x) = ey

x = argmax p(z),
z

be the diffusion distance to the nearest neighbor of higher
density. The maximizers of D;(x) = p(x)p:(x) are queried
for labels. These labels are propagated to other data points by
proceeding from high to low density and assigning each unla-
beled point the same label as its D;-nearest neighbor of higher
density that is labeled; see Algorithm 1 and [6] for details.

2.3. Related Work

In recent years, deep generative methods, such as generative
adversarial network (GANs) and variational autoencoder net-
works (VAEs), have been used for feature extraction in many
machine learning tasks [7, 8]. In the context of clustering, a
set of methods, known as deep clustering, propose learning
features of the data and clustering simultaneously, showing
strong empirical results [9, 10, 11]. For HSI images, several
works have employed different deep learning architectures to
extract essential features for downstream tasks such as classi-
fication [12, 13, 14, 15, 16].

Active learning is a learning paradigm where the user has
the ability to select the training data [17, 18]. The underly-
ing idea is that a few informative training samples could be
sufficient for training an algorithm and obtaining accurate re-
sults. This framework has been used in remote sensing for
HSI image classification [19, 20, 21, 22]. The main idea in
this paper is that the active learning process depends on the
representation and geometry of the data. The closest work to
ours is [23] where the authors combine active learning with
VAEs. Therein, K-means clustering is first used to partition
the space and then labels are acquired using uniform random
sampling in each partition. Given the labels, a classifier is

then trained in the latent space for the prediction task. One of
the highlights of the proposed method is that the clustering al-
gorithm LAND handles a broader class of cluster geometries
than K -means does.

We note that in contrast to the similar work [24], our
method is in the active learning framework and the feature
extraction and diffusion process via LAND are decoupled.

3. PROPOSED ALGORITHM

We propose an active learning algorithm, VAE-LAND (see
Algorithm 1), which has two main stages. The first stage is
feature extraction of an unlabeled high-dimensional dataset
using a VAE. The second stage employs the LAND algorithm
to infer the true labels. The proposed algorithm combines the
power of VAEs to extract features with diffusion geometry on
graphs to find impactful labels to query, which then propagate
to other points.

Algorithm 1: Variational Autoencoder Learning by
Active Nonlinear Diffusion (VAE-LAND)
Input: {z;}? , (Unlabeled Data); t (Time
Parameter); B (Budget); O (Labeling Oracle)

Output: Y (Labels)

1: Run VAE on unlabeled data to obtain the latent
representation {&; }7" ;.

2: Compute P and {(A¢, ¢¢) }2L, using {2;}7 ;.

3: Compute kernel density estimate {p(&;)}?_, and
{pe(2:) iy (1

4: Compute Dy (Z;) = p(&4)pe(Z4).

5: Sort the data in decreasing D, value to acquire the
ordering {Zm, }7 ;.

6: forv=1:Bdo

7:  Query O for the label L(Z,,,) of .

8 SetY(Zm,) = L(Zm,)-

9: end for

10: Sort X according to p in decreasing order as
{j’.éi };(L:l :

11: fori=1:ndo

122 ifY (&) = 0 then

13: Y (&,) =Y (2:), z; = argmin{D;(z, Zy,) |
p(z) > p(&4,) and Y () > 0}.

14:  endif

15: end for

4. EXPERIMENTAL RESULTS

We demonstrate the accuracy of the proposed algorithm
experimentally. The training of the VAE is done using
Tensorflow in Python. For doing the active learning via
LAND, we use the publicly available MATLAB code at
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https://jmurphy.math.tufts.edu/Code/. Our code can be found
at https://github.com/abiy-tasissa/VAE-LAND.  Our test
HSI dataset is the Salinas A hyperspectral dataset. The
Salinas scene was captured over Salinas Valley, Califor-
nia. The image has a spatial resolution of 3.7-meter pixels
and contains 224 spectral bands. The ground truth con-
sists of 16 classes. We consider the Salinas A dataset,
which is a subset of the Salinas dataset, and contains 6
classes. The Salinas A dataset and the ground truth data are
publicly available (http://www.ehu.eus/ccwintco/index.php/
Hyperspectral Remote_Sensing_Scenes#Salinas- A_scene).

Figure 1 shows a visual of the high-dimensional data and the
ground truth labels. The performance of the algorithm is as-
sessed using overall accuracy, defined as the ratio of correctly
estimated labels to total number of labels after optimally
aligning with the ground truth. The Salinas A HSI dataset

Fig. 1: The 86 x 83 Salinas A HSI data consists of 6 classes. Left:
the sum of all spectral bands. Right: the ground truth.
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Fig. 2: A schematic of the VAE architecture. Input is a vector in
R?24, The encoder and decoder are fully connected neural networks.
Both have three layers with 128 neurons in each layer. For all layers,
the activation function is the rectified linear unit (ReLU). The input
is cascaded through an encoder. The extracted latent feature in R*°
is then cascaded through the decoder to obtain the output vector in
R224, Unlike the standard autoencoder, the extraction of the latent
feature is not deterministic (see Section 2.1 for discussion.)

of size 83 x 86 x 224 is represented as a point cloud of size
7138 x 224. We use the unlabeled data to learn a latent space

representation of Salinas A in R*? dimensions. A schematic
of the VAE architecture is shown in Figure 2. We optimize
the VAE loss function using the Adam algorithm with learn-
ing rate set to 1074, After training the VAE, we input the
optimal latent space representation of the Salinas A dataset
to the LAND algorithm for the task of inferring the ground
truth labels of the HSI data. We compare our result to the
standard LAND algorithm that labels the Salinas A dataset
in its original representation. Since LAND is an active learn-
ing framework, we consider varying number of labeled data
points ranging from 10 to 2000. In addition, we compare the
active learning methods to query the samples with randomly
selected training data. Figure 1 compares the performance
of LAND and performance of VAE-LAND. First, for both
VAE-LAND and standard LAND, LAND queries lead to sig-
nificantly better accuracy than random queries. The proposed
algorithm, VAE-LAND, attains an accuracy of 96.97% with
just 10 labeled points. This is a 12.5% improvement to the
accuracy of the standard LAND algorithm for the same num-
ber of labeled points. The standard LAND algorithm requires
400 labeled points to reach accuracy of 90% while for the
same number of labeled points, VAE-LAND has an accuracy
of 98.35%.

Complexity and run time: The complexity of LAND is
O(Cnn + nKnn + nlog(n)) where Cn v is the cost of
computing all Ky nearest neighbors [6]. The computa-
tional cost of VAE is difficult to estimate as it depends on
several factors (e.g. architecture, activation function, choice
of SGD algorithm). In our numerical experiments, the cost
of VAE is the dominating cost. Since LAND runs on low-
dimensional features extracted from VAE, it is efficient.

5. CONCLUSIONS AND FUTURE DIRECTIONS

The proposed active learning algorithm, VAE-LAND, im-
proves over the standard LAND and gives accurate results
even when the number of queries are limited. The method
uses VAE to generate good features, and uses the diffusion
geometry-based LAND algorithm to determine query points.
The LAND algorithm then uses these queried labels to pre-
dict the labels of the unlabeled data samples. In future work,
we shall explore data models for which the algorithm has
theoretical performance guarantees.
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