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ABSTRACT

Clustering algorithms partition a dataset into groups of
similar points. The primary contribution of this article is
the Multiscale Spatially-Regularized Diffusion Learning (M-
SRDL) clustering algorithm, which uses spatially-regularized
diffusion distances to efficiently and accurately learn multiple
scales of latent structure in hyperspectral images (HSI). The
M-SRDL clustering algorithm extracts clusterings at many
scales from an HSI and outputs these clusterings’ variation
of information-barycenter as an exemplar for all underlying
cluster structure. We show that incorporating spatial regu-
larization into a multiscale clustering framework corresponds
to smoother and more coherent clusters when applied to HSI
data and leads to more accurate clustering labels.

Index Terms— Clustering, Diffusion Geometry, Hierar-
chical Clustering, Hyperspectral Imagery, Unsupervised Ma-
chine Learning

1. INTRODUCTION

Hyperspectral images (HSIs) are datasets storing reflectance
at many electromagnetic bands. HSIs provide a rich charac-
terization of a scene, enabling the precise discrimination of
materials based on variations within pixels’ spectral signa-
tures. Indeed, success at material discrimination using HSIs
has led to hyperspectral imagery’s emergence as an important
data source in remote sensing [1]. However, HSIs are gener-
ated in large quantities, making manual analysis is infeasible.
Moreover, HSIs are very high-dimensional and typically en-
code multiple scales of latent structure, ranging from coarse
to fine in scale [2, 3, 4, 5]. Thus, efficient algorithms are
needed to automatically learn multiscale structure from HSIs.

The main contribution of this article is the Multiscale
Spatially-Regularized Diffusion Learning (M-SRDL) al-
gorithm, which is a multiscale extension of the Spatially-
Regularized Diffusion Learning (SRDL) algorithm [6]. SRDL
uses spatially-regularized diffusion distances to efficiently ex-
tract a fixed scale of cluster structure from an HSI [6]. To
learn multiscale structure from an HSI, M-SRDL varies a dif-
fusion time parameter in SRDL [2]. M-SRDL then finds the
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variation of information (VI)-barycenter of the extracted clus-
terings: the partition of the HSI that best represents all scales
of learned cluster structure [2, 7]. In this sense, M-SRDL sug-
gests multiple clusterings at different scales in addition to the
one that best represents all underlying multiscale structure.

We organize this article in the following way. Background
on unsupervised learning, diffusion geometry, and spatial reg-
ularization is provided in Section 2. M-SRDL is introduced
in Section 3. Numerical experiments are presented in Section
4, and conclusions are given in Section 5.

2. BACKGROUND

A clustering algorithm partitions an HSI X = {xi}ni=1 ⊂
RD (interpreted as a point cloud, where n is the number of
pixels and D is the number of spectral bands) into clusters
of data points, denoted X1, X2, . . . , XK [8]. The partition
C = {Xk}Kk=1 is called a clustering of X , and each pixel
may be assigned a unique label corresponding to its Xk. In
a good clustering of X , data from the same cluster are “sim-
ilar,” while data from different clusters are “dissimilar.” The
specific notion of similarity between points varies across the
many clustering algorithms in the literature [3, 4, 5, 8, 9, 10].

2.1. Background on Diffusion Geometry

Data-dependent, diffusion-based mappings are highly effec-
tive at capturing an HSI’s intrinsic low-dimensionality [11,
12]. These methods treat data points as nodes in an undi-
rected graph. Edges between points are encoded in a weight
matrix: Wij = exp(−‖xi − xj‖22/σ2), where σ is a scale
parameter reflecting the interaction radius between points.
Define the Markov transition matrix for a random walk on
X by P = D−1W , where Dii =

∑n
j=1Wij . Assuming

P ∈ Rn×n is reversible, aperiodic, and irreducible, there
exists a unique q ∈ R1×n satisfying qP = q. Denote (right)
eigenvector-eigenvalue pairs of P by {(ψi, λi)}ni=1, sorted so
that 1 = |λ1| > |λ2| ≥ . . . |λn| ≥ 0. The first K eigenvec-
tors of P tend to concentrate on theK most highly-connected
components of the underlying graph, making them useful for
clustering.

Diffusion distances, defined for xi, xj ∈ X at time t ≥ 0

by Dt(xi, xj) =
√∑n

k=1 |(P t)ik − (P t)jk|2/qk [11, 12],
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are a data-dependent distance metric well-suited to the clus-
tering problem [2, 9]. If clusters are well-separated and
coherent, within-cluster diffusion distances will be small
relative to between-cluster diffusion distances [9]. The dif-
fusion map Ψt(x) = (ψ1(x), |λ2|tψ2(x), . . . , |λn|tψn(x))
is a closely related concept [11, 12]. Indeed, diffusion dis-
tances can be identified as Euclidean distances in a data-
dependent feature space consisting of diffusion map coordi-
nates: Dt(x, y) = ‖Ψt(x)− Ψt(y)‖2 [11].

The time parameter t is linked to the scale of structure that
can be separated using diffusion distances [2, 11, 12]. Small t
enables the detection of fine-scale local structure, while larger
t enables the detection of macro-scale global structures. Thus,
the diffusion time parameter may be varied to learn the rich
multiscale structure encoded in HSI data [2].

2.2. The SRDL Clustering Algorithm

Nearby HSI pixels tend to come from the same cluster. Thus,
incorporating spatial geometry (where pixels are located
within the HSI) into a clustering algorithm may result in
smoother clusters [6, 13, 14]. The SRDL algorithm (Algo-
rithm 1) modifies the graph underlying P to directly incor-
porate spatial geometry into the diffusion process [6]. More
precisely, each x is connected to its N `2-nearest neighbors,
chosen from pixels within a (2R+1)×(2R+1) spatial square
centered at x in the original image, where R ∈ N is called the
spatial window. Thus, nearby pixels may have edges between
them, but pixels from different segments of the image will
not. Diffusion distances computed using this modified graph
are called spatially-regularized diffusion distances [6].

Fix t ≥ 0 so that there is a single scale of latent cluster
structure to be learned. Let p(x) be a kernel density estimator
(KDE) capturing empirical density:

p(x) =
1

Z

∑
y∈NNN (x)

exp

(
− ‖x− y‖22

σ2
0

)
,

where NNN (x) is the set of the N points in X closest to x in
`2-distance, σ0 is a KDE bandwidth, and Z is a normalization
constant so that

∑
x∈X p(x) = 1. Let ρt(x) be defined as

ρt(x) =


max
y∈X

Dt(x, y) x = argmax
y∈X

p(y),

min
y∈X
{Dt(x, y)|p(y) ≥ p(x)} otherwise.

Thus, ρt(x) returns the diffusion distance at time t between x
and itsDt-nearest neighbor of higher density, capturing diffu-
sion geometry underlying the HSI. Maximizers of Dt(x) :=
p(x)ρt(x) are, thus, points with large p-values (i.e., high den-
sity) and large ρt-values (i.e., high diffusion distances from
any other high-density points). These maximizers are defined
as data modes and are assigned unique cluster labels.

SRDL labels non-modal points in two stages. In the La-
beling Stage 1, for each non-modal point x ∈ X , SRDL finds

Algorithm 1: Spatially-Regularized Diffusion
Learning (SRDL) clustering algorithm [6]

Input: X (data), t (time step), N (no. nearest
neighbors) σ (scale parameter), σ0 (KDE
bandwidth), R (spatial window)

Output: C (clustering), K (no. clusters)
1 Build KNN graph with N `2-nearest neighbors

within a spatial window R > 0. Weight edges
according to a Gaussian kernel with scale parameter
σ. Compute P from this graph;

2 Compute Dt(x) = p(x)ρt(x), where p(x) and ρt(x)
are computed as described in Section 2.2;

3 Solve K = argmin1≤k≤n−1Dt(xmk
)/Dt(xmk+1

),
where {xmk

}nk=1 is a sorting of the points in X
according to Dt(x) in non-increasing order.
Label data modes C(xmk

) = k for k = 1, . . . ,K;
4 Labeling Stage 1: In order of non-increasing p(x),

for each x ∈ X , find x∗ and C(s)(x) (if it exists), as
described in Section 2.2. If C(s)(x) exists and
C(x∗) = C(s)(x), then set C(x) = C(x∗).
Otherwise, skip x in Labeling Stage 1;

5 Labeling Stage 2: In order of non-increasing p(x),
for each x ∈ X , find x∗ and C(s)(x) (if it exists), as
described in Section 2.2. If C(s)(x) exists, set
C(x) = C(s)(x). Otherwise, set C(x) = C(x∗).

x∗ = argminy∈X{Dt(x, y) | C(y) 6= 0 ∧ p(y) ≥ p(x)}: the
Dt-nearest neighbor of x that is higher density and already
labeled. SRDL then establishes the spatial consensus label
of x, namely the majority among the spatial neighbors of x,
denoted C(s)(x). If the label of x∗ agrees with the spatial con-
sensus label of x, then SRDL assigns x that label. If not, x is
skipped in the first labeling stage. In Labeling Stage 2, each
unlabeled point is given its spatial consensus label (if one ex-
ists). If not, SRDL assigns the label the Dt-nearest neighbor
that is higher-density and already labeled.

3. THE M-SRDL CLUSTERING ALGORITHM

SRDL has been shown to be effective on a number of syn-
thetic and real HSIs [6], but it is limited in that it focuses
on a single clustering scale. In this section, we introduce
a multiscale extension of SRDL, which we call the Multi-
scale Spatially-Regularized Diffusion Learning (M-SRDL)
clustering algorithm (provided in Algorithm 2). M-SRDL
implements SRDL at an exponential range of time scales t ∈
{0, 1, 2, 22, . . . , 2T }, where T = dlog2[log|λ2(P )|(

2τ
min(q) )]e.

This cut-off is chosen so that, if t ≥ 2T , max
x,y∈X

Dt(x, y) ≤ τ .

Hence, τ � 1 can be interpreted as a threshold for how small
diffusion distances are allowed to become before terminating
cluster analysis. Importantly, since M-SRDL uses SRDL to
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Algorithm 2: Multiscale Spatially-Regularized Dif-
fusion Learning (M-SRDL) clustering algorithm

Input: X (data), τ (threshold) σ (scale parameter),
σ0 (KDE bandwidth), R (spatial window)

Output: Ct∗ (optimal clustering), Kt∗ (no. clusters)
1 Build KNN graph with N `2-nearest neighbors

within a spatial window of R > 0. Weight edges
according to a Gaussian kernel with scale parameter
σ. Compute P and q from this graph;

2 Compute T = dlog2[log|λ2(P )|(
2τ

min(s) )]e. For each
time step ti ∈ {0, 1, 2, 22, . . . , 2T }, calculate
[Cti ,Kti ] = SRDL(X, ti, N, σ, σ0, R);

3 For each t ∈ J =
{
t
∣∣Kti ∈ [2, n2 )

}
, calculate

V I(tot)(Ct) =
∑
u∈J V I(Ct, Cu) ;

4 Solve Ct∗ = argmin{V I(tot)(Ct) | t ∈ J} and let Kt∗

be the number of clusters in Ct∗ ;

extract clusterings, spatial regularization is incorporated into
label assignments at all scales.

After extracting multiscale cluster structure from the HSI,
M-SRDL solves Ct∗ = argmint∈J

∑
u∈J V I(Ct, Cu), where

J =
{
ti|Kti ∈ [2, n2 )

}
is the set of time steps during which

SRDL extracts nontrivial clusterings of X and V I is the vari-
ation of information (VI) distance metric between cluster-
ings of X [7]. The clustering Ct∗ can be interpreted as the
V I-barycenter of nontrivial clusterings generated by SRDL.
Thus, M-SRDL integrates information gained from spatially-
regularized partitions at multiple scales into a single represen-
tative clustering of X [2, 6].

4. NUMERICAL EXPERIMENTS

In this section, we present analysis of M-SRDL on the real-
world Salinas A HSI (Fig. 1) [15], which was generated
by the Airborne Visible/Infrared Imaging Spectrometer over
farmland in Salinas Valley, California, USA. This HSI en-
codes 224 spectral bands across an 83× 86 image.

In Fig. 2, we evaluate M-SRDL on the Salinas A HSI

Fig. 1: Ground truth labels and spectra of a random sample of
pixels from the Salinas A HSI [15].
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and compare its clusterings against those of the M-LUND
algorithm [2]. M-LUND is a multiscale extension of the
LUND algorithm [9], which is identical to SRDL except that
LUND does not include spatial regularization into its pre-
dictions. More precisely, LUND relies on a standard KNN
graph to build P and does not use spatial consensus to la-
bel non-modal points. M-LUND learns multiscale structure
from X by varying the input t of LUND and outputs the
V I-barycenter of learned nontrivial cluster structure as a
clustering exemplar. Thus, the one difference between these
two algorithms and their predictions is that M-SRDL in-
corporates spatial geometry into its labeling and M-LUND
does not. If spatial regularization changes neither λ2(P )
nor min(q), M-SRDL and M-LUND have identical compu-
tational complexity [2, 6]. M-SRDL and M-LUND were
implemented using the same parameters N = 100, σ = 1.30,
σ0 = 3.6 × 10−3, and τ = 10−5. We set R = 12 when
evaluating M-SRDL.

Both M-LUND and M-SRDL successfully extracted mul-
tiscale structure from the HSI (Fig. 2). Indeed, clusters are
observed to merge as t increases, reflecting that fewer diffu-
sion map coordinates contribute to diffusion distances. How-
ever, spatial regularization clearly improved spatial smooth-
ness of clusters, especially near cluster boundaries in the 1st
and 2nd rows of Fig. 2. Indeed, while M-LUND assigned
noisy labels to cluster boundaries, the spatial separation be-
tween clusters was strong for M-SRDL clusterings. Both
methods assigned the coarsest clustering (Kt∗ = 2 for M-
LUND and Kt∗ = 3 for M-SRDL) as V I-barycenters. The
normalized mutual information [7] between these clusterings
and the ground truth labels were 0.3016 for M-SRDL and
0.2836 for M-LUND respectively. Thus, spatial regulariza-
tion resulted in a partition closer to the ground truth labels.

Software to replicate numerical experiments is available
at https://github.com/sampolk/MultiscaleDiffusionClustering.

5. CONCLUSIONS

We conclude that spatially-regularized diffusion geometry is
well-equipped for finding latent multiscale structure in high-
dimensional images like HSIs and that spatial regularization
improves cluster coherence. Future work includes extending
past performance guarantees for M-LUND [2] to account for
spatial regularization, which we observe improves the spatial
coherence of cluster structure in the Salinas A HSI. Also,
we expect that M-SRDL can be adapted for active learning,
wherein a carefully chosen subset of pixels are queried for
ground truth labels and exploited for semisupevised label
propagation to the entire HSI [14, 16, 17, 18].
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