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Abstract
This paper is concerned with a bilinear control problem for enhancing convection-
cooling via an incompressible velocity field. Both optimal open-loop control and
closed-loop feedback control designs are addressed. First and second order optimal-
ity conditions for characterizing the optimal solution are discussed. In particular, the
method of instantaneous control is applied to establish the feedback laws. Moreover,
the construction of feedback laws is also investigated by directly utilizing the optimal-
ity system with appropriate numerical discretization schemes. Computationally, it is
much easier to implement the closed-loop feedback control than the optimal open-loop
control, as the latter requires to solve the state equations forward in time, coupled with
the adjoint equations backward in time together with a nonlinear optimality condition.
Rigorous analysis and numerical experiments are presented to demonstrate our ideas
and validate the efficacy of the control designs.
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1 Introduction

The question of the influence of advection on diffusion is a topic of fundamental
interest in engineering and natural sciences with broad applications ranging from
heat transfer, chemical mixing on small and large scales, to preventing the spread-
ing of pollutants in geophysical flows. Convection-cooling is the mechanism where
heat is transferred from a hot object into the ambient air or liquid. In general, there
are two types of convectional cooling: natural convection cooling and the forced air
convection cooling (cf. [2, 4, 37]). The latter is used in designs where the enclosures
or environment do not offer an effective natural cooling performance. In this work,
we are aiming at understanding what flows are efficient in enhancing cooling or the
homogenization process and whether it is possible to construct such flows by utilizing
the information of the temperature only. Specifically, we are interested in the control
designs for convection-cooling via incompressible fluid flows. To this end, we consider
the diffusion-convection model for a cooling application in a two dimensional open
bounded and connected domain � ⊂ R

2 with a Lipschitz boundary �. The system of
equations reads

∂T

∂t
= κ�T − v · ∇T in �, (1.1)

∇ · v = 0 in �, (1.2)

where T is the temperature, κ > 0 is the thermal diffusivity, and v is a divergence
free vector field. Neumann boundary condition for temperature and no-slip boundary
condition for velocity are considered, i.e.,

∂T

∂n

∣
∣
∣
�

= 0 and v|� = 0. (1.3)

The initial condition is given by

T (x, 0) = T0(x). (1.4)

The diffusion-convection model (1.1)–(1.4) is one of the most studied PDEs in
both mathematical and physical literature. Of special note is that the flow velocity will
be taken as the control input in this work. This naturally leads to a bilinear control
problem. In particular, we like to understand what is the optimal flow velocity that
accelerates the convergence of the temperature to its average, and construct such
velocity in a feedback form. Constantin et al. in [16] provided a sharp characterization
of incompressible flows that produce a significantly stronger dissipative effect than
dissipation alone. However, constructing an optimal velocity field in a feedback form
is non-trivial. One of the well-known approaches is to solve the related Hamilton–
Jacobi–Bellam (HJB) differential equation, yet it suffers the curse of dimensionality.
In this work, we are aiming at investigating a feasible nonlinear feedback control law
for convection-cooling based on the instantaneous control design and establish the
corresponding stabilization results. The fundamental idea of instantaneous control is
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built upon an optimal control problem, which essentially gives rise to a sub-optimal
feedback law.Moreover, we also investigate the construction of feedback laws directly
utilizing the discretized optimality conditions.As a first step to implement the feedback
control design,we startwith an optimal control problem seeking for a velocity field that
minimizes the variance of the temperature distribution. The problem can be formulated
as follows: find an incompressible velocity v that minimizes

J (v) = α

2
‖T (x, t f ) − 〈T (x, t f )〉‖2L2 + β

2

∫ t f

0
‖T − 〈T 〉‖2L2 dt + γ

2
‖v‖2Uad

(P)

for a given t f > 0, subject to (1.1)–(1.4), where 〈T 〉 = 1
|�|

∫

�
T dx stands for the

spatial average of temperature, α, β ≥ 0 and γ > 0 are the state and control weight
parameters, respectively, andUad stands for the set of admissible control. The param-
eters α and β do not vanish simultaneously.

For the convenience of our discussion, we first introduce the following spaces

H = {v ∈ L2(�) : ∇ · v = 0, v · n|� = 0}, V = {v ∈ H1
0 (�) : ∇ · v = 0}.

The most relevant work on optimal control of the scalar field via incompressible fluid
flows can be found in (cf. [1, 23, 29–35, 42]), with applications to heat transfer, fluid
mixing and optical flow control problems. Due to the advection term v · ∇T , the
control-to-state map v 	→ T is bilinear, and hence problem (P) becomes non-convex
and the optimal solution may not be unique in general. The choice of Uad plays a
key role in proving the existence of an optimal solution and deriving the optimality
conditions. Establishing the existence of an optimal velocity field will involve a com-
pactness argument associated with the control-to-state map. To obtain a steady flow,
Liu in [42] penalized the magnitude of the time derivative of v in the cost functional,
however, this resulted in a nonlinear wave type of optimality conditions, which are
difficult to implement numerically. Barbu and Marinoschi in [1] showed the existence
of an optimal solution for v ∈ L2(0, t f ; H), yet the challenge was encountered in
deriving the first order optimality conditions. For v ∈ L2(0, t f ; H), it is not smooth
enough to allow the differentiability of the state equations. Consequently, the varia-
tional inequality or the Euler-Lagrange method can not be directly applied. Instead,
an approximating control approach was employed in [1], which first considered the
velocity in a much smoother space and then showed the convergence of the optimality
conditions for the approximating control problem to the original one. Moreover, as
shown in [1,Theorem 6], if further assume that v ∈ L∞(0, t f ; L∞(�) ∩ H), then the
uniqueness of the optimal controller can be obtained by showing the uniqueness of the
optimality system under certain conditions. Similar ideas have been adopted in (cf.
[33, 34]). A recent work by Glowinski et al. in [23] has conducted a numerical study
on optimization algorithms for solving problem (P).

Motivated by the need of reducing the effects of rotation on the flow and the shear
stress at the boundary in the cooling process, in this work we are interested inminimiz-
ing the magnitude of the strain tensor (cf. [21, 42]), which is equivalent to minimize
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‖∇v‖L2 . In this case, we set

Uad = L2(0, t f ; V ) (1.5)

equipped with the norm ‖v‖Uad = ‖v‖L2(0,t f ;H1(�)). The regularity of Uad defined
by (1.5) will allow us to carry out the Gâteaux differentiability of the state equations.
Then the optimality conditions can be established by directly employing a varia-
tional inequality or the Euler-Lagrange method. However, to numerically implement
the resulting optimality system for problem (P), one has to solve the state equa-
tions forward in time, coupled with the adjoint equations backward in time together
with a nonlinear optimality condition. Straightforward use of this result can result in
extremely high computational costs. Instantaneous control design is a powerful tool
for dealing with the computational limitations of open-loop control, while providing a
feedback law for flow control problems at a sustainable control cost (cf. [8, 12, 14, 26,
28, 53]). The idea behind it is that it successively determines approximations of the
objective function while marching forward in time. The uncontrolled dynamical sys-
tem is first discretized in time. Then, at selected time slices an instantaneous version of
the cost functional is approximately minimized subject to a stationary system, whose
structure depends on the chosen discretization method. The control obtained is used to
steer the system to the next time slice, where the procedure is repeated (cf. [28]). This
method is closely tied to receding horizon control (RHC) or model predictive control
(MPC) with finite time horizon (cf. [3, 22, 46, 47]). Essentially, instantaneous control
is a discrete-in-time and suboptimal feedback control approach and can be interpreted
as the stable time discretization of a closed-loop control law (cf. [13, 25, 26, 28, 38,
45]). On the other hand, given the optimality system, it is natural to ask whether it is
possible to obtain the equivalent feedback laws by first solving it restricted to each
time slice and then marching forward in time. Following the convention, without any
ambiguity, we will call the former “discretize-then-optimize (DTO)" approach and the
latter “optimize-then-discretize (OTD)" approach in this work.

The remainder of this paper is organized as follows. In Sect. 2, the first order opti-
mality conditions are established for solving an optimal solution using a variational
inequality (cf. [39]). Then the second order necessary conditions are derived to char-
actering the solution when the control weight γ is sufficiently large. In Sect. 3, the
feedback control is constructed using both DTO and OTD approaches, which turn
out to be the same feedback law under appropriate discretization schemes. The well-
posedness and asymptotic behavior of the closed-loop system will be also addressed.
Numerical implementation of our control designs are presented in Sect. 4, where sev-
eral numerical experiments are conducted to compare the effectiveness of the optimal
control and the feedback control for convection-cooling.

In the sequel, the symbol C denotes a generic positive constant, which is allowed
to depend on the domain as well as on indicated parameters without ambiguity.
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2 Existence and Optimality Conditions

In this section, we discuss the existence of an optimal solution to problem (P) and
derive the first and second order optimality conditions for characterizing the optimal
control by utilizing a variational inequality (cf. [39]).

Theorem 2.1 For T0 ∈ L∞(�), there exists at least one optimal solution v ∈ Uad to
problem (P).

The proof of the existence for v ∈ Uad follows the similar approaches as in [1,Theorem
1] for v ∈ L2(0, t f ; H). The details are omitted here. To establish the optimality
conditions, however, it is critical to understand the regularity properties of the solution
to the state equations for v ∈ Uad.

The following results will be often used in this work. The detailed proof of next
lemma can be found in (cf. [51]).

Lemma 2.2 Let v ∈ L2(0; t f ; H1(�)), d = 2, 3, φ ∈ L2(0; t f ; H1(�)), and ψ ∈
H1(�). Then we have

∣
∣
∣
∣

∫

�

(v · ∇φ)ψ dx

∣
∣
∣
∣
≤ ‖v‖L4‖∇φ‖L2‖ψ‖L4 ≤ C‖v‖H1‖φ‖H1‖ψ‖H1 , (2.1)

and hence,

v · ∇φ ∈ L1(0, t f ; (H1(�))′). (2.2)

Moreover, if ∇ · v = 0 and v|� = 0, then

∫

�

(v · ∇φ)ψ dx = −
∫

�

φv · ∇ψ dx . (2.3)

In addition, since the velocity field is incompressible with no-slip boundary condi-
tion, it is easy to check that given zero Neumann boundary condition, the average of
the temperature satisfies

〈T 〉 = 〈T0〉, ∀t ∈ [0, t f ]. (2.4)

In fact, taking the integral of (1.1) over � and applying Stokes formula (cf. [51])
together with (1.2)–(1.3) yields

d

dt

(∫

�

T dx

)

= κ

∫

�

�T dx −
∫

�

v · ∇T dx

= κ

∫

�

∂T

∂n
dx −

∫

�

(v · n)T dx +
∫

�

(∇ · v)T dx = 0,

and therefore (2.4) follows.
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Lemma 2.3 Let T0 ∈ L∞(�) ∩ H1(�). For v ∈ Uad, there exists a unique solution to
the state equations (1.1)–(1.3), which satisfies

T ∈ (L∞(0, t f ; L∞(�) ∩ H1(�)) ∩ L2(0, t f ; H2(�)). (2.5)

Proof Without loss of generality, we assume that 〈T0〉 = 0, then T = T − 〈T 〉 due
to (2.4). Otherwise, we can always replace T by T − 〈T 〉 in the following proof. For
T0 ∈ L∞(�) and v ∈ L2(0, t f ; H), the existence of a unique weak solution T to
(1.1)–(1.4) has been shown in [1,Theorem 1]. Moreover,

T ∈ C([0, t f ]; L2(�)) ∩ L2(0, t f ; H1(�)) ∩ L∞(0, t f ; L∞(�)). (2.6)

To see (2.6), taking the inner product of (1.1) with T and integrating by parts using
(1.3), we have

1

2

d‖T ‖2
L2

dt
+ κ‖∇T ‖2L2 = −

∫

�

(v · ∇T )T dx = −1

2

∫

�

v · ∇(T 2) dx

= −1

2

(∫

�

(v · n) T 2 dx −
∫

�

(∇ · v) T 2 dx

)

= 0, (2.7)

which gives

‖T ‖2L2 + 2κ
∫ t

0
‖∇T ‖2L2 dt = ‖T0‖2L2 , t ∈ [0, t f ]. (2.8)

Furthermore, since ∂T
∂t ∈ L2(0, t f ; (H1(�))′), by Aubin-Lions Lemma we have T ∈

C([0, t f ]; L2(�)).
Analogously, taking the inner product of (1.1) with T N−1 for a positive even integer

N and then letting N → ∞ we get

sup
t∈[0,t f ]

‖T ‖L∞ ≤ ‖T0‖L∞ . (2.9)

This estimate can be also achieved by using the Stampacchia theory. The reader is
referred to [1, 49] for details. To see the higher regularity of T in (2.5), taking the
inner product of (1.1) with −�T and using Green’s formula follow

1

2

d‖∇T ‖2
L2

dt
+ κ‖�T ‖2L2 = −

∫

�

∇(v · ∇T ) · ∇T dx (2.10)

= −
∫

�

∂ jvi∂i T ∂ j T dx − 1

2

∫

�

vi∂i (∂ j T ∂ j T ) dx (2.11)

= −
∫

�

∂ jvi∂i T ∂ j T dx − 1

2

(∫

�

vi ni (∂ j T ∂ j T ) dx −
∫

�

∂ivi (∂ j T ∂ j T ) dx

)

= −
∫

�

∂ jvi∂i T ∂ j T dx ≤ ‖∇v‖L2‖∇T ‖2L4 ≤ C‖∇v‖L2‖∇T ‖L2‖�T ‖L2
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≤ C‖∇v‖2L2‖∇T ‖2L2 + κ

2
‖�T ‖2L2 , (2.12)

where from (2.10) to (2.11) we used Einstein’s summation convection, i.e.,∇(v ·∇T ) ·
∇T = ∂ j (vi∂i T )∂ j T . From (2.12) we get

d‖∇T ‖2
L2

dt
+ κ‖�T ‖2L2 ≤ C‖∇v‖2L2‖∇T ‖2L2 , (2.13)

and hence, using Grönwall’s inequality gives

sup
t∈[0,t f ]

‖∇T ‖L2 ≤ eC
∫ t f
0 ‖∇v‖2

L2
dt‖∇T0‖L2 < ∞. (2.14)

Moreover, from (2.13) we have

κ

∫ t f

0
‖�T ‖2L2 dt ≤ C

∫ t f

0
‖∇v‖2L2‖∇T ‖2L2 dt+‖∇T0‖2L2

≤ C‖v‖2Uad
sup

t∈[0,t f ]
‖∇T ‖L2+‖∇T0‖2L2 < ∞,

which completes the proof. ��

2.1 Optimality Conditions

Let A = −P� be the Stokes operator withD(A) = V ∩ H2(�), where P : L2(�) →
H is the Leray projector (cf. [15,p. 31]). Note that A is a strictly positive and self-
adjoint operator. Moreover, define D : L2(�) → L2(�) such that DT = T − 〈T 〉.
Then the cost functional is equivalent to

J (v) = α

2
(D∗DT (t f ), T (t f )) + β

2

∫ t f

0
(D∗DT , T ) dt + γ

2

∫ t f

0
(Av, v) dt .

(2.15)

As shown in [35], it is easy to versify that D = D∗ and D2 = D, thus the operator
norm ‖D‖L(L2(�)) ≤ 1. In fact, for any T , φ ∈ L2(�), since 〈T 〉 and 〈φ〉 are constants,
we have

1

|�|
∫

�

T 〈φ〉 dx = 〈T 〉〈φ〉 = 1

|�|
∫

�

〈T 〉φ dx .

Therefore,

(DT , φ) =
∫

�

(T − 〈T 〉)φ dx =
∫

�

Tφ dx −
∫

�

〈T 〉φ dx

=
∫

�

Tφ dx −
∫

�

T 〈φ〉 dx = (T , φ − 〈φ〉) = (T , Dφ),
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which says that D is a self-adjoint operator on L2(�), i.e., D = D∗. Moreover, since

〈T − 〈T 〉〉 = 1

|�|
∫

�

(T − 〈T 〉) dx = 〈T 〉 − 〈T 〉 = 0,

it is straightforward to verify that

D∗DT = D(DT ) = D(T − 〈T 〉) = T − 〈T 〉 − 〈T − 〈T 〉〉 = DT ,

which implies that D2 = D, and hence the operator norm ‖D‖L(L2(�)) ≤ 1.
Now we derive the first order necessary optimality conditions for problem (P) by

using a variational inequality (cf. [39]), that is, if v is an optimal solution of problem
(P), then there holds

J ′(v) · (w − v) ≥ 0, w ∈ Uad. (2.16)

To establish the Gâteaux differentiability of J (v), we first check the Gâteaux differ-
entiability of T with respect to v. Let z be the Gâteaux derivative of T with respect to
v in the direction of h ∈ Uad, i.e., z = T ′(v) · h. Then z satisfies

∂z

∂t
= κ�z − v · ∇z − h · ∇T ,

∂z

∂n

∣
∣
∣
�

= 0, (2.17)

with z0(x) = z(x, 0) = 0. Moreover,

〈z〉 = 〈z0〉 = 0, ∀t ∈ [0, t f ]. (2.18)

To show existence of (2.17), we first establish an a prior estimate of z. Taking the
inner product of (2.17) with z and applying (2.3), we get

1

2

d‖z‖2
L2

dt
+ κ‖∇z‖2L2 =

∫

�

T (h · ∇z) dx ≤ ‖T ‖L∞‖h‖L2‖∇z‖L2

≤ 1

2κ
‖T ‖2L∞‖h‖2L2 + κ

2
‖∇z‖2L2 ,

which implies

d‖z‖2
L2

dt
+ κ‖∇z‖2L2 ≤ 1

κ
‖T ‖2L∞‖h‖2L2 .

With the help of Lemma 2.2 and (2.8) we have

‖z‖2L2+κ

∫ t

0
‖∇z‖2L2 ds≤ 1

κ

∫ t

0
‖T ‖2L∞‖h‖2L2 ds≤C

κ
‖T0‖2L∞‖h‖2Uad

, t ∈ [0, t f ]. (2.19)
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Based on Lemma 2.2, (2.8) and (2.19), it is clear that v · ∇z and h · ∇T ∈
L1(0, t f ; (H1(�))′), thus ∂z

∂t ∈ L1(0, t f ; (H1(�))′). According to [51,Theorem 3.1],
there exists a unique solution to (2.17) and z ∈ L∞(0, t f ; L2(�))∩L2(0, t f ; H1(�)).
Therefore, T (v) is Gâteaux differentiable for v ∈ Uad, so is J (v).

The following theorem establishes the first order optimality conditions satisfied by
the optimal control and state.

Theorem 2.4 If v is the optimal solution to problem (P) and T is the corresponding
solution to the state equations (1.1)–(1.4). Then there exists an adjoint state q such
that the optimal triplet (v, T , q) satisfies

∂T

∂t
= κ�T − v · ∇T ,

∂T

∂n

∣
∣
∣
�

= 0, T (0) = T0, (2.20)

− ∂q

∂t
= κ�q + v · ∇q + βD∗DT ,

∂q

∂n

∣
∣
∣
�

= 0, q(t f ) = αD∗DT (t f ),

(2.21)

− γ�v + ∇ p = q∇T , ∇ · v = 0, v|� = 0, (2.22)

where pressure p ∈ L2(�) satisfies
∫

�
p dx = 0.

Proof The first order necessary optimality system for v ∈ L2(0, t f ; H) has been
derived in [1,Theorems 3-5] using an approximate control approach. However, since
J is Gâteaux differentiable for v ∈ Uad in our current work as shown in Theorem 2.4,
we are able to directly apply the variational inequality (2.16) to establish this result.

First multiply (2.17) by q and integrate over�× (0, t f ). Then applying integration
by parts and Green’s formula together with (2.3), we have

(z(t f ), q(t f )) −
∫ t f

0

(

z,
∂q

∂t

)

dt =
∫ t f

0
(z, κ�q) dt +

∫ t f

0
(z, v · ∇q) dt .

On the other hand,

J ′(v) · h =α(D∗DT (t f ), z(t f )) + β

∫ t f

0
(D∗DT , z) dt + γ

∫ t f

0
(Av, h) dt .

(2.23)

Now let the adjoint state q satisfy (2.21). The Gâteaux derivative of J becomes

J ′(v) · h = (q(t f ), z(t f )) −
∫ t f

0

(
∂q

∂t
+ κ�q + v · ∇q, z

)

dt + γ

∫ t f

0
(Av, h) dt

=
∫ t f

0

(

q,
∂z

∂t
− κ�z + v · ∇z

)

dt + γ

∫ t f

0
(Av, h) dt

=
∫ t f

0
(q,−h · ∇T ) dt + γ

∫ t f

0
(Av, h) dt

=
∫ t f

0
(−q∇T , h) dt + γ

∫ t f

0
(Av, h) dt . (2.24)
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Therefore, if vopt is the optimal solution, then J ′(vopt) · h ≥ 0 for any h ∈ Uad. This
implies

γ Avopt − P(q∇T ) = 0 or − γ�vopt + ∇ p − q∇T = 0 (2.25)

for some p ∈ L2(�) with
∫

�
p dx = 0.

Moreover, applying similar approaches as in Lemma 2.3 and (2.9) and noting that
‖D‖L(L2(�)) ≤ 1, we have

‖q(t)‖2L2 + κ

∫ t f

t
‖∇q‖2L2 dτ ≤ 1

κ
β2

∫ t f

t
‖T ‖2L2 dτ + α2‖T (t f )‖2L2

≤ C(T0, t f ), t ∈ [0, t f ], (2.26)

and sup
t∈[0,t f ]

‖q‖L∞ ≤ β

∫ t f

0
‖DT ‖L∞ dt + α‖DT (t f )‖L∞ ≤ C(T0, t f ), (2.27)

for some constant C(T0, t f ) depending on T0 and t f . This completes the proof. ��
Note that the uniqueness of the solution to the optimality system (2.20)–(2.22) can

be obtained under certain conditions on T0, t f and γ . The proof follows the same as
in [1,Theorem 6]. Moreover, we have the following regularity results for any optimal
triplet (v, T , q) satisfying (2.20)–(2.22). The proof is presented in Appendix 1.

Corollary 2.5 If T0 ∈ H2(�) with ∂T0
∂n |� = 0 and (v, T , q) satisfies the first order

necessary optimality system (2.20)–(2.22), then

v ∈ L∞(0, t f ; V ∩ H2(�)), T ∈ L∞(0, t f ; H2(�)) ∩ L2(0, t f ; H3(�)). (2.28)

With the help of these properties, we can further address the second order necessary
optimality conditions for characterizing the optimal solutions.

Theorem 2.6 Let v be an optimal solution to problem (P) and the triplet (v, T , q)

satisfy the first order necessary optimality system (2.20)–(2.22). If γ > 0 is sufficiently
large, then there exists some constant c0 > 0 such that

J ′′(v) · (h, h) ≥ c0‖h‖2Uad
, (2.29)

for h ∈ Uad.

The proof of Theorem 2.6 is given in Appendix 1. However, the regularity of Uad is
not sufficient for J to have the twice Gâteaux differentiability in general.

3 Feedback Control Law Based on Instantaneous Control Design

With the understanding of the optimal control design in our disposal, we are in the
position to construct a feedback control law based on the method of instantaneous
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control and compare the DTO approach with the OTD approach. The former, as men-
tioned earlier, is to first discretize the uncontrolled state equations in time and conduct
the optimization procedure over discrete time steps, and then progress recursively in
time (cf. [26, 28]). In contrast, the latter is to directly discretize the optimality system
(2.20)–(2.22) on one step time sub-interval, and then carry the information for the
next time sub-interval, where the state and the adjoint equations will be formulated
forward and backward in time, respectively, but just for one step. Finally, we observe
that under appropriate time discretization schemes, these two approaches lead to the
same nonlinear continuous feedback controller. Its effectiveness will be compared
with the optimal control numerically in Sect. 4.

3.1 Discretize-then-Optimize Approach

Consider a uniform partition of [0, t f ] and let τ = t f
n+1 for n ∈ N and ti = iτ, i =

0, 1, . . . , n. Using the semi-implict Euler’s method for discretizing the state equations
(1.1) in time gives, for i = 0, 1, . . . , n,

T i+1 − T i

τ
= κ�T i+1 − vi+1 · ∇T i , that is, (I − κτ�)T i+1 = T i − τvi+1 · ∇T i ,

(3.1)

where T 0 = T0. Let α = 0, β = 1, Ui
ad = V , and 〈T i+1〉 = 1

τ

∫ ti+1
ti

〈T 〉 ds. Given T i

at ti , we solve for the control vi+1 at ti+1 by minimizing the following instantaneous
version of the cost functional J in (P):

J i+1(vi+1) = 1

2

∫

�

|T i+1 − 〈T i+1〉|2 dx + γ

2

∫

�

|A1/2vi+1|2 dx (Pi+1)

= 1

2
(D∗DT i+1, T i+1) + γ

2
(Avi+1, vi+1)

subject to (3.1). Again using a similar variational inequality as shown in proof of
Theorem 2.4, we have

(J i+1)′(vi+1) · hi+1 = (D∗DT i+1, zi+1) + γ (Avi+1, hi+1)

for hi+1 ∈ Ui+1
ad , where zi+1 = (T i+1)′(vi+1) · hi+1 satisfies

(I − κτ�)zi+1 = −τhi+1 · ∇T i , i = 0, 1, . . . , n. (3.2)

Define the adjoint state qi+1 such that

(I − κτ�)qi+1 = D∗DT i+1. (3.3)
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Then with the help of (3.2)–(3.3), we get

(J i+1)′(vi+1) · hi+1 = ((I − κτ�)qi+1, zi+1) + γ (Avi+1, hi+1)

= −(qi+1, τhi+1 · ∇T i ) + γ (Avi+1, hi+1)

= −(τqi+1∇T i , hi+1) + γ (Avi+1, hi+1),

which implies that if vi+1 is an optimal solution to problem (Pi+1), then it satisfies a
Stokes equation

γ Avi+1 − τP(qi+1∇T i ) = 0 or

− γ�vi+1 + ∇ pi+1 − τqi+1∇T i = 0, i = 0, 1, . . . , n, (3.4)

for some pi+1 ∈ L2(�) with
∫

�
pi+1 dx = 0.

Let Eτ = I − κτ� with domain D(Eτ ) = {T ∈ H2(�) : ∂T
∂n |� = 0}. Then Eτ is

a strictly positive elliptic operator for κτ > 0. In summary, the optimality system for
problem (Pi+1) is governed by, for i = 0, 1, . . . n,

⎧

⎪⎨

⎪⎩

EτT i+1 = T i − τvi+1 · ∇T i , ∂T i+1

∂n |� = 0,

Eτqi+1 = D∗DT i+1,
∂qi+1

∂n |� = 0,

−γ�vi+1 + ∇ pi+1 = τqi+1∇T i , ∇ · vi+1 = 0, vi+1|� = 0.

(3.5)

The optimality system (3.5) admits a unique solution due to the quadratic cost func-
tional and the uniqueness of solution to the discretized state equation (3.1).

To construct a feasible feedback control law based on the nonlinear optimality
system (3.5),we suggest first solvingqi+1 = E−1

τ D∗DT i+1 from the second equation,
and then obtain an implicit approximation to vi+1 from the third equation

−γ�vi+1 + ∇ pi+1 = τ(E−1
τ D∗DT i+1)∇T i , ∇ · vi+1 = 0, vi+1|� = 0,

(3.6)

or equivalently vi+1 = τ
γ
A−1

P((E−1
τ D∗DT i+1)∇T i ). Upon plugging this implicit

instantaneous control vi+1 into the first equation, we get an implicit time marching
scheme from T i to T i+1:

(I − κτ�)T i+1 = EτT
i+1 =

T i − τ
τ

γ
[A−1

P((E−1
τ D∗DT i+1)∇T i )] · ∇T i , i = 0, 1, . . . , n.

The above nonlinear scheme is not suitable for computation, but it turns out to be a
semi-implicit time discretization (with the time step size τ ) of a closed-loop dynamical
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system (retain τ as a parameter )

∂T

∂t
= κ�T − τ

γ
[A−1

P((E−1
τ D∗DT )∇T )

︸ ︷︷ ︸

v

] · ∇T , T (0) = T0, (3.7)

where the continuous control v is given by the nonlinear feedback law :

v = τ

γ
A−1

P((E−1
τ D∗DT )∇T ) or − γ�v + ∇ p = τ((E−1

τ D∗DT )∇T ). (3.8)

Although no theoretical guarantee in optimality, we examine the performance of the
feedback law in minimizing the objective functional J numerically, which can be
computed much more efficiently than the optimal control.

Remark 3.1 Note that if solving velocity explicitly in (3.8) using T i+1 = E−1
τ T i and

vi0 = 0 for each iteration, we would have

v = τ

γ
A−1

P((E−1
τ D∗DE−1

τ T )∇T ) or − γ�v + ∇ p = τ((E−1
τ D∗DE−1

τ T )∇T ),

(3.9)

which involves a more regularized T compared to (3.8). Also, the gradient decent
method is not used for solving vi+1 as in [26, 28], yet the optimality condition (3.4)
is directly called. This way will keep the control weight γ in the closed-loop system.
By properly choosing this parameter and step size τ , one can establish the well-
posedness and stability of the closed-loop system (see Theorem 3.3). Moreover, once
the continuous closed-loop dynamical system is derived, τ only plays a role as a
parameter associated with the feedback control law. It does not indicate the time step
size in the numerical simulation of the nonlinear closed-loop system.

3.2 Optimize-then-Discretize Approach

Alternatively, motivated by the idea of instantaneous control, we consider a direct
application of the optimality system (2.20)–(2.22) derived in Theorem 2.4 to formulate
the feedback law. To this end, letting τ = t f /(n+1) and ti = iτ, i = 0, 1, · · · , n+1,
we divide the global time interval [0, t f ] into uniformly spaced sub-intervals Ii =
[ti , ti+1], and then solve the continuous optimal control problem (P) restricted to each
interval Ii sequentially, where for i ≥ 1 the initial condition of T on Ii is given
by the solution from the previous sub-interval Ii−1. Let T |Ii , q|Ii , v|Ii denotes the
desired continuous state, adjoint state, and optimal control on each sub-interval Ii ,
respectively. According to Theorem 2.4, the localized optimality system defined on Ii
reads (only consider the case α = 0, β = 1)

∂T |Ii
∂t

= κ�T |Ii − v|Ii · ∇T |Ii ,
∂T |Ii
∂n

∣
∣
∣
�

= 0, T |Ii (·, ti ) = T |Ii−1(·, ti ), (3.10)
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− ∂q|Ii
∂t

= κ�q|Ii + v|Ii · ∇q|Ii + D∗DT |Ii ,
∂q|Ii
∂n

∣
∣
∣
�

= 0, q|Ii (ti+1) = 0,

(3.11)

− γ�v|Ii + ∇ p|Ii = q|Ii ∇T |Ii , ∇ · v|Ii = 0, v|Ii |� = 0, (3.12)

where all involved variables are continuously defined in Ii only. For simplicity, wewill
drop the restriction notation |Ii in the following time discretization scheme on Ii . Let
T i , T i+1, qi , qi+1, vi , vi+1 denote the finite difference approximation to T , q, v at the
two end points ti , ti+1 of the sub-interval Ii , respectively. Applying a semi-implicit
Euler time scheme with the same step size τ to the localized optimality conditions on
Ii we obtain a semi-discretized optimality system (dropped the cumbersome notation
|Ii )

EτT
i+1 = T i − τvi+1 · ∇T i ,

∂T i+1

∂n

∣
∣
∣
�

= 0, T i = T |Ii−1(·, ti ) (3.13)

Eτq
i = qi+1 + τ(vi+1 · ∇qi+1 + D∗DT i+1),

∂qi

∂n

∣
∣
∣
�

= 0, qi+1 = 0, (3.14)

− γ�vi+1 + ∇ pi+1 = qi∇T i , ∇ · vi+1 = 0, vi+1|� = 0. (3.15)

Here the adjoint state q is defined only locally on each time sub-interval Ii , which
is different from the global adjoint state on [0, t f ]. The semi-implicit scheme is also
applied for the nonlinear term q∇T on the right hand side of the optimality condition
(3.12). Specifically, q on the right-hand-side of (3.15) is chosen to be on ti , which
will be solved backward in i . In fact, from (3.14), using qi+1 = 0 we obtain qi =
τ E−1

τ D∗DT i+1. Therefore, the optimality condition becomes

−γ�vi+1 + ∇ pi+1 = τ(E−1
τ D∗DT i+1)∇T i , (3.16)

which results in the same nonlinear feedback law as in (3.8) and so is the closed-
loop system (3.7). Such an equivalence is due to the particular semi-discretization
schemes we used in derivation, however, the outcome may be quite different with
other semi-discretization schemes.

Remark 3.2 We notice that the time discretization scheme of the state equations deter-
mines the resulting feedback law, how to effectively handle the discretization of the
advective term is the key in the instantaneous design for this type of bilinear control
problems. If a fully implicit time discretization was applied, it would generate a more
complicated nonlinear feedback law that causes an additional layer of difficulty in ana-
lyzing the closed-loop system. It is in general also difficult to estimate the performance
of such feedback laws.

3.3 Well-Posedness and Asymptotic Behavior of the Closed-Loop System

First recall that the incompressible velocityfield neither engenders energy to the system
nor consumes any via pure advection as time evolves. The variance ‖DT ‖L2 decays
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exponentially due to dissipation alone (see Remark 5.1 in Appendix 1). However,
the feedback law does help enhance cooling or homogenization of the temperature
distribution shown in our numerical experiments as well as quantified by the “mix-
norm" (see Remark 3.4). Without loss of generality, we assume 〈T0〉 = 0 in the
rest of our discussion, then by (2.4) we have 〈T 〉 = 0 for any t ∈ [0, t f ]. Thus
D∗DT = DT = T . Also, since

P((E−1
τ T )∇T ) = P(∇((E−1

τ T )T )) − T∇(E−1
τ T )) = −P(T∇(E−1

τ T )),

the closed-loop system (3.7) becomes

∂T

∂t
= κ�T + τ

γ
A−1

P(T∇(E−1
τ T )) · ∇T , T (0) = T0. (3.17)

Let η = E−1
τ T for any T ∈ L2(�). Then it is easy to see that η satisfies

Eτ η = (I − κτ�)η = T ,
∂η

∂n

∣
∣
∣
�

= 0, (3.18)

and

‖∇η‖2L2 ≤ 1

2κτ
‖T ‖2L2 . (3.19)

With the help of (3.19) and (2.8)–(2.9), we have

‖Av‖2L2 = τ 2

γ 2 ‖P(T∇(E−1
τ T ))‖2L2 ≤ C

τ 2

γ 2 ‖T ‖2L∞‖∇(E−1
τ T ))‖2L2

≤ Cτ

κγ 2 ‖T0‖2L∞‖T0‖2L2 , (3.20)

which implies

sup
t∈[0,t f ]

‖v‖2H2 ≤ Cτ

κγ 2 ‖T0‖2L∞‖T0‖2L2 . (3.21)

Now we are ready to address the well-posedness and asymptotic behavior of the
closed-loop system.

Theorem 3.3 For T0 ∈ H1(�) ∩ L∞(�), there exists a unique solution to (3.17).
Moreover, if τ

γ 2 is sufficiently small, then there exists a constant δ0 > 0 such that

‖∇T ‖2L2 ≤ e−δ0t‖∇T0‖2L2 , (3.22)
∫ ∞

0
‖�T ‖2L2 dt ≤ C(T0, κ, γ, τ ). (3.23)
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In addition, if T0 ∈ H2(�) with ∂T0
∂n |� = 0, then there exists a constant δ1 > 0 such

that

‖�T ‖2L2 ≤ e−δ1t‖�T0‖2L2 , (3.24)
∫ ∞

0
‖∇(�T )‖2L2 dt ≤ C(T0, κ, γ, τ ), (3.25)

and
∥
∥
∥
∥

∂T

∂t

∥
∥
∥
∥
L2

≤ C(κ, γ, τ )e−max{δ0,δ1}t‖�T0‖L2 . (3.26)

Proof With the help of Lemma 2.3, it suffices to show the uniqueness of the solution.
We first assume that there are two solutions T1 and T2 satisfying (3.17) and let vi be
the velocity corresponding to Ti , i = 1, 2. Set θ = T1 − T2 and W = v1 − v2, then θ

and W satisfy

∂θ

∂t
= κ�θ − v1 · ∇θ − W · ∇T2,

∂θ

∂n

∣
∣
∣
�

= 0,

θ(x, 0) = 0,
(3.27)

and 〈θ〉 = 0. Taking the inner product of (3.28) with θ follows

1

2

d‖θ‖2
L2

dt
+ κ‖∇θ‖L2 = (−W · ∇T2, θ) = (T2,W · ∇θ)

≤ ‖T2‖L∞‖W‖L2‖∇θ‖L2 ≤ ‖T2‖2L∞‖W‖2L2 + κ

2
‖∇θ‖L2 .

Thus

d‖θ‖2
L2

dt
+ κ‖∇θ‖L2 ≤ C‖T0‖2L∞‖W‖2L2 , (3.28)

where

‖W‖2L2 = ‖v1 − v2‖2L2 = τ

γ
‖A−1

P(θ∇(E−1
τ T1) + T2∇(E−1

τ θ))‖2L2 . (3.29)

Applying (3.19) to the right hand side of (3.29) yields

‖A−1
P(θ∇(E−1

τ T1) + T2∇(E−1
τ θ))‖2L2

=
(

sup
ψ∈D(A)

∫

�
[P(θ∇(E−1

τ T1) + T2∇(E−1
τ θ))]ψ dx

‖ψ‖H2

)2

≤
(

sup
ψ∈D(A)

C(‖θ‖L2‖∇(E−1
τ T1)‖L2 + ‖T2‖L2‖∇(E−1

τ θ)‖L2)‖ψ‖L∞

‖ψ‖H2

)2

(3.30)
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≤ C(‖θ‖2L2

1

2κτ
‖T0‖2L2 + ‖T0‖2L2

1

2κτ
‖θ‖2L2) ≤ C

1

κτ
‖T0‖2L2‖θ‖2L2 , (3.31)

where from (3.30) to (3.31) we used Agmon’s inequality (cf. [50]) that

‖ψ‖L∞ ≤ C‖ψ‖H1+ε , ∀ε > 0, (3.32)

for 2D domain. Thus (3.28) satisfies

d‖θ‖2
L2

dt
≤ C

γ κ
‖T0‖2L∞‖T0‖2L2‖θ‖2L2 . (3.33)

Since ‖θ0‖L2 = 0, by Grönwall inequality it is clear that ‖θ‖L2 = 0. Therefore, the
uniqueness of the solution is established.

To see (3.22)–(3.25), we first recall the a priori estimates on ‖∇T ‖L2 and ‖�T ‖
obtained in (2.13) and Corollary 2.5. Using (2.13) together with Poincaré inequality
and (3.21) we have

d‖∇T ‖2
L2

dt
+ Cκ‖∇T ‖2L2 ≤ d‖∇T ‖2

L2

dt
+ κ‖�T ‖2L2

≤ C‖∇v‖2L2‖∇T ‖2L2 ≤ Cτ

κγ 2 ‖T0‖2L∞‖T0‖2L2‖∇T ‖2L2 , (3.34)

which implies that if τ
γ 2 is chosen sufficiently small such that

Cκ − Cτ

κγ 2 ‖T0‖2L∞‖T0‖2L2 ≥ δ0 > 0,

then (3.22) holds. Moreover, from (3.34) we can easily verify (3.23).
In addition, in light of (5.3) we also have

d‖�T ‖2
L2

dt
+ κ‖�T ‖2L2 ≤ d‖�T ‖2

L2

dt
+ Cκ‖∇(−�T )‖2L2

≤ C‖v‖2H2‖�T ‖2L2 ≤ Cτ

κγ 2 ‖T0‖2L∞‖T0‖2L2‖�T ‖2L2 .

Analogously, if τ
γ 2 is sufficiently small such that

Cκ − Cτ

κγ 2 ‖T0‖2L∞‖T0‖2L2 ≥ δ1 > 0,

then (3.24)–(3.25) hold. Consequently,

‖∂T

∂t
‖L2 ≤ κ‖�T ‖L2 + ‖v · ∇T ‖L2
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≤ κe−δ1t‖�T0‖2L2 + Cτ 1/2

κ1/2γ
‖T0‖L∞‖T0‖L2e−δ0t‖∇T0‖2L2 ,

which yields (3.26). This completes the proof. ��

Remark 3.4 Note that the estimates in (3.22)–(3.26) only provide upper bounds for
the decay rates of the temperature evolution, which also hold when τ is set to be zero,
i.e., v = 0 or no advection. However, our numerical results indicate that the feedback
law always performs better than “do nothing" with properly chosen parameters. On
the other hand, if using the “mix-norm", in terms of the dual norm (Hs(�))′ for any
s > 0, for quantifying homogenization of a scalar field, which are sensitive for both
diffusion and pure advection effects (cf. [31–34, 40, 41, 43, 52]), we realize that the
decay rate of ‖T ‖(H1(�))′ is indeed enhanced by the nonlinear feedback law. To see
this, taking the inner product of (3.17) with η = E−1

τ T defined in (3.18) and using
(2.3), we obtain

1

2

d(‖η‖2
L2 + κτ‖∇η‖L2 )

dt
+ κ‖∇η‖2L2 + κ2τ‖�η‖2L2 = τ

γ
(A−1

P(T∇(E−1
τ T )) · ∇T , E−1

τ T )

= − τ

γ
(A−1

P(T∇(E−1
τ T )),P(T∇(E−1

τ T ))) = − τ

γ
‖A−1/2

P(T∇(E−1
τ T ))‖2L2 ,

and therefore,

1

2

d(‖η‖2
L2 + κτ‖∇η‖2

L2)

dt
+ κ‖∇η‖2L2 + κ2τ‖�η‖2L2

+ τ

γ
‖A−1/2

P(T∇(E−1
τ T ))‖2L2 = 0. (3.35)

Similarly, if v = 0, let η = (I − �)T in � with ∂η
∂n |� = 0. Then

1

2

d(‖η‖2
L2 + ‖∇η‖2

L2)

dt
+ κ‖∇η‖2L2 + κ‖�η‖2L2 = 0. (3.36)

Since ‖T ‖(H1(�))′ is equivalent to ‖η‖H1 for a fixed τ > 0, compared to (3.36) it
is clear that the decay rate of ‖η‖H1 is accelerated in (3.35) with the presence of
the positive nonlinear term by setting τ = 1

κ
. However, due to the complexity of

the nonlinearity together with the Leray projector, it is rather challenging to have a
thorough understanding of this nonlinear mechanism in enhancing convection-cooling
or the homogenization process.

Remark 3.5 Given 〈T0〉 = 0, it is possible that v = 0 if T happens to be the
eigenfunction of Eτ associated with some eigenvalue λ0, since P(T∇(E−1

τ T )) =
λ−1
0 P(T∇T ) = (2λ0)−1

P(∇(T 2)) = 0. Depending on the domain �, one may avoid
this situation by choosing an appropriate parameter τ .
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4 Numerical Examples

In this section we present some numerical examples to validate the performance of
our control designs. We will iteratively solve the nonlinear optimality system in The-
orem 2.4 via the standard Picard iteration (with the linearization of the velocity filed
v):

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂T (k+1)

∂t = κ�T (k+1) − v(k) · ∇T (k+1), ∂T (k+1)

∂n |� = 0, T (k+1)(0) = T0

− ∂q(k+1)

∂t = κ�q(k+1) + v(k) · ∇q(k+1) + βD∗DT (k+1),
∂q(k+1)

∂n |� = 0,

q(k+1)(T ) = αD∗DT (k+1)(t f ),

−γ�v(k+1) + ∇ p(k+1) = q(k+1)∇T (k+1), ∇ · v(k+1) = 0, v(k+1)|� = 0,

(4.1)

where v(k) denotes the velocity field at k-th Picard iteration with v(0) being a given
zero initial guess. In implementation of the Picard iteration, we will use a uniform
mesh with center finite difference scheme in space (with a step size �x = 1/Nx and
�y = 1/Ny in x and y direction respectively) and semi-implicit Euler scheme in
time (with a step size �t = t f /Nt ), where the Stokes equation is discretized by the
MAC scheme. Clearly, the Picard iteration is expensive since it consists of forward
marching in T , backward marching in q , and solving Nt Stokes equations over all
time points. Define a nonlinear iterative mapping G : v(k) → v(k+1). If the above
Picard iteration is assumed to converge in certain norm under suitable assumptions
(e.g. γ is not too small), that is, limk→∞ v(k) = v exists, then the Picard iteration
essentially finds a fixed point v of the nonlinear mapping G, i.e., v = G(v). Since our
problem is non-convex, such a fixed point in general may not be unique, and which
fixed point the Picard iteration may (locally) converge to depends highly on the ini-
tial guess and the numerical implementation method (such as the used discretization
schemes). For faster convergence, we will interpolate the coarse mesh solution as a
reasonably good initial guess, where the mesh sizes is doubled in refinement starting
with (Nx , Ny, Nt ) = (10, 10, 10). If convergent, the convergence rate of the Picard
iteration can be very slow, depending on the given model parameters. Anderson accel-
eration (AA) technique [54] can be employed to significantly speed up the convergence
of the Picard iteration. Our numerical results show that such a Picard iteration based
on AA technique converges very fast, and its implementation is much simpler than the
standard Newton method that requires to solve a large-scale Jacobian system at each
iteration. We mention that the local convergence radius of Newton iterations is usu-
ally much smaller than that of the Picard iterations, which however can be combined
with the Picard iterations. More robust nonlinear solvers are desirable for solving the
optimality system, which will be part of our future work.

The nonlinear feedback control is more straightforward to compute. We solve the
closed-loop continuous nonlinear parabolic PDEs by a standard semi-implicit Euler
scheme in time (with the same step size �t), where the nonlinear convection term
(desired control) involving a Stokes equation is treated explicitly for better computa-
tional efficiency and the same MAC scheme is employed for the underlying Stokes
equations. The simulation of close-loop feedback control system is expected to be
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more efficient than the open-loop optimal control whenever the number of Picard
iterations for convergence is not small.

All numerical simulations are implemented using MATLAB on a laptop PC with
Intel(R) Core(TM) i7-7700HQ CPU@2.80GHz CPU and 32GB RAM, where CPU
times (in seconds) are estimated by the timing functions tic/toc. The stopping
tolerance for theAA-Picard iteration (with 5memory iterations) is 10−5.Wechoose the
spatial domain � = (0, 1)2, the diffusion coefficient κ = 0.05, the penalty parameter
γ = 0.025, and t f = 1 in all tested examples. For the feedback control system, we
will test a few selected parameter τ ∈ {0.25, 0.5, 0.75, 1} ⊂ (0, t f ] and then plot the
best choice for an illustrative comparison. For a fixed γ , a very small τ gives little or
insignificant control effects, while a very large τ leads to stronger control that may
greatly increase objective functionals. The optimal choice of parameter τ seems to be
non-trivial and it highly depends on the penalty parameter γ and the nonlinearity.

For the purpose of direct comparison, we write the objective functional into three
terms:

J (v) = α

2
‖T (x, t f ) − 〈T (x, t f )〉‖2L2

︸ ︷︷ ︸

=:Jα

+ β

2

∫ t f

0
‖T − 〈T 〉‖2L2 dt

︸ ︷︷ ︸

=:Jβ

+ γ

2
‖v‖2Uad

︸ ︷︷ ︸

=:Jγ

,

where Jα ≡ 0 if choosing α = 0 and Jγ ≡ 0 if there is no control (v = 0). For a fair
comparison, we will only consider the case with α = 0 in the following examples.
We highlight that the nonlinear feedback control derived in the previous section is
sub-optimal and its performance may be problem dependent and also sensitive to the
choice of slicing parameter τ , the control weight γ , as well as the initial temperature
distribution. Our current numerical schemes may only find local minimizers since a
global minimizer for such a non-convex optimization problem is in general difficult
(or NP-hard) to find, which requires global optimization techniques that are beyond
our reach.

4.1 Example 1

The first example uses the smooth initial condition with an oval-shaped bump given
by

T0(x, y) = 10

(

0.5 + 1

π
arctan

(

10(1 − 32(x − 0.25)2 − 16(y − 0.25)2)
))

,

where the initial heated region is located within an ellipse centered at (0.25, 0.25). We
compare the control outcomes of three different scenarios: no control, optimal control
and feedback control (with different choices of τ ). Table 1 reports the attained different
objective functionals and control measurements, where ‘Iter’ denotes the number of
Picard iterations used for solving the nonlinear optimality system, and the two control
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Table 1 Control performance comparison of Example 1 with Neumann BC (α = 0, β = 1, γ = 0.025)

Control (Nx , Ny , Nt ) J (v) Jβ Jγ �∇ · v�∞ �v�∞ Iter CPU

None (v = 0) (160,160,160) 1.559 1.559 0.000 0.000 0.00 – 15.0

Optimal (160,160,160) 1.114 0.852 0.263 0.006 1.89 21 766.5

Feedback (τ = 0.25) (160,160,160) 1.380 1.352 0.028 0.010 0.57 – 230.2

Feedback (τ = 0.5) (160,160,160) 1.170 1.011 0.159 0.014 1.22 – 228.9

Feedback (τ = 0.75) (160,160,160) 1.150 0.838 0.312 0.017 1.96 – 229.4

Feedback (τ = 1.0) (160,160,160) 1.207 0.757 0.449 0.020 2.62 – 229.4

measurements are computed as the maximum over [0, t f ] by

�∇ · v�∞ := max
0≤t≤t f

‖∇ · v(t)‖L2(�), �v�∞ := max
0≤t≤t f

‖v(t)‖L2(�).

We mention that the divergence-free condition ∇ · v = 0 holds only approximately
due to discretization errors. As expected, the computation of feedback control costs
much less CPU times than the optimal control (with over 8 million decision variables
for velocity field with a 160 × 160 × 160 mesh). Figures 1 and 2 show the decay of
‖DT (t)‖ and ‖v(t)‖ and the snapshots of temperature distribution and control velocity
field at different time points, respectively. The exponential decay of ‖DT (t)‖ with no
control is observed which clearly verifies our analysis (see Remark 5.1), and the decay
rates via controlled advection are anticipated to be faster. For this particular example,
the feedback control (with the choice τ = 0.75) and the optimal control provide about
26.2% and 28.5% reduction, respectively, in the objective functionals compared to
the case with no control. Moreover, both controls (based on very different numerical
implementations) generate very similar dynamical patterns as shown in Figures 1 and
2. This example also suggests that the feedback control law can be as effective as the
optimal control. Nevertheless, we acknowledge that the optimal choice of parameter
τ is a non-trivial task, which merits further analysis. Numerically we do observe the
best choice of τ lies between 0.5 and 1.

4.2 Example 2

The second example considers the smooth initial condition with two oval-shaped
bumps defined by

T0(x, y) = 10

(

0.5 + 1

π
arctan

(

10(1 − 32(x − 0.25)2 − 16(y − 0.25)2)
))

+ 10

(

0.5 + 1

π
arctan

(

10(1 − 32(x − 0.75)2 − 16(y − 0.25)2)
))

,

where the two heated regions are located within two ellipses centered at (0.25, 0.25)
and (0.75, 0.25). Table 2 reports the attained different objective functionals and con-
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Fig. 1 The snapshots of state T (t) at different time points for Example 1 (t f = 1, τ = 0.75, α = 0, β = 1)

trol measurements. Figures 3 and 4 present the decay of ‖DT (t)‖ and ‖v(t)‖ and the
snapshots of temperature distribution and control velocity field at different time points,
respectively. Similar toExample 1, the feedback control (with the choice τ = 0.75) and
optimal control provide about 26.2% and 29.4% reduction, respectively, in the objec-
tive functionals compared to the case with no control. However, Fig. 3 demonstrates
that different controls may lead to very different evolution of temperature distribution.

4.3 Example 3

For the sake of numerical test, the third example examines the initial condition with
two squared bumps given by

T0(x, y) = 10 × 1S,

with S = [0, 0.5)2 ∪ (0.5, 1]2 and 1 denotes the indicator function. In this case, the
initial condition T0 is indeed discontinuous, but it will be quickly smoothed out due
to diffusion. Table 3 reports the attained different objective functionals and control
measurements. Figures 5 and 6 present the decay of ‖DT (t)‖ and ‖v(t)‖ and the
snapshots of temperature distribution and control velocity field at different time points,
respectively. Compared with no control, the optimal control provides 22.8% reduction
in J (v), while the feedback control (with τ = 1) attains only 7.7% reduction in
J (v). The controlled dynamics demonstrate quite different pattern during the early
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Fig. 2 The snapshots of control v(t) at different time points for Example 1 (t f = 1, τ = 0.75,α = 0, β = 1)

Table 2 Control performance comparison of Example 2 with Neumann BC (α = 0, β = 1, γ = 0.025)

Control (Nx , Ny , Nt ) J (v) Jβ Jγ �∇ · v�∞ �v�∞ Iter CPU

None (v = 0) (160,160,160) 2.296 2.296 0.000 0.000 0.00 – 13.2

Optimal (160,160,160) 1.622 1.163 0.460 0.013 1.95 14 528.6

Feedback (τ = 0.25) (160,160,160) 2.030 1.990 0.040 0.013 0.61 – 223.3

Feedback (τ = 0.5) (160,160,160) 1.766 1.557 0.209 0.017 1.32 – 223.5

Feedback (τ = 0.75) (160,160,160) 1.695 1.269 0.427 0.020 1.93 – 225.4

Feedback (τ = 1.0) (160,160,160) 1.730 1.091 0.638 0.023 2.46 – 224.5

stage. Again, the computation of optimal control costs about three times longer CPU
time than the feedback control. This example shows that the sub-optimal feedback
control may be far away from being optimal. Similar results can be obtained with the
corresponding smoothed initial condition (e.g. use smooth rounded squares as heated
source).

To illustrate how the performance of feedback control depends on the key parameter
τ ≥ 0, we plot in Fig. 7 the values of J (v) as a function of τ ∈ [0, 2]. It shows the
best choice of τ lies in the open interval (1.2, 1.4). This can also be seen from the last
three rows in Table 3, where the feedback control with τ = 1.25 provides a slightly
smaller J (v) than with τ = 1.0. Based on the previous examples, the best value of
τ > 0 seems to be problem dependent, which may not necessarily be less than t f = 1,
although it was originated as a step size.
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Fig. 3 The snapshots of state T (t) at different time points for Example 2 (t f = 1, τ = 0.75, α = 0, β = 1)

Fig. 4 The snapshots of control v(t) at different time points for Example 2 (t f = 1, τ = 0.75,α = 0, β = 1)
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Table 3 Control performance comparison of Example 3 with Neumann BC (α = 0, β = 1, γ = 0.025)

Control (Nx , Ny , Nt ) J (v) Jβ Jγ �∇ · v�∞ �v�∞ Iter CPU

None (v = 0) (160,160,160) 3.950 3.950 0.000 0.000 0.00 – 12.8

Optimal (160,160,160) 3.049 2.144 0.905 0.019 2.41 19 741.3

Feedback (τ = 0.25) (160,160,160) 3.942 3.941 0.002 0.000 0.07 – 231.2

Feedback (τ = 0.5) (160,160,160) 3.919 3.901 0.018 0.001 0.17 – 229.6

Feedback (τ = 0.75) (160,160,160) 3.805 3.602 0.203 0.002 0.66 – 230.0

Feedback (τ = 1.0) (160,160,160) 3.647 3.090 0.557 0.004 1.38 – 230.0

Feedback (τ = 1.25) (160,160,160) 3.599 2.750 0.849 0.007 1.99 – 228.5

Feedback (τ = 1.5) (160,160,160) 3.617 2.536 1.081 0.009 2.47 – 228.6

Feedback (τ = 1.75) (160,160,160) 3.660 2.391 1.269 0.011 2.87 – 228.7

Fig. 5 The snapshots of state T (t) at different time points for Example 3 (t f = 1, τ = 1, α = 0, β = 1)

5 Conclusions

In the current work, we have discussed both optimal and feedback controls for
convection-cooling via incompressible fluid flows. First and second necessary opti-
mality conditions were derived for solving and characterizing the optimal control.
Motivated by the method of instantaneous control, we investigated the idea of directly
constructing the feedback laws by making use of the optimality conditions together
with numerical discretization schemes. Our numerical experiments demonstrated the
effectiveness of the different control designs. In particular, the sub-optimal feedback
control demonstrates comparable performances as the optimal control in some cases.
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Fig. 6 The snapshots of control v(t) at different time points for Example 3 (t f = 1, τ = 1, α = 0, β = 1)

Fig. 7 Feedback control: the value of J (v) as a function of the parameter τ ∈ [0, 2] for Example 3 (t f = 1,
α = 0, β = 1)

However, there is no rigorous proof for justifying the optimality of the feedback law.
Understanding how exactly the mechanism of the nonlinear feedback law plays in
the enhancement of convection-cooling or homogenization of a general scalar field,
especially, its relation to the diffusivity κ , the parameter τ as well as the control weight
γ , requires a more in-depth analysis. The aforementioned issues will be investigated
in our future work.

Acknowledgements W.Hu was partially supported by the NSF Grants DMS-1813570 and DMS-2111486.
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Appendix

Proof of Corollary 2.5. Without loss of generality, we assume that 〈T0〉 = 0. First, using
the optimality condition (2.25) together with (2.8) and (2.27), we get

∫ t f

0
‖v‖2H2 dt ≤ C

∫ t f

0
‖q∇T ‖2L2 dt ≤ C sup

t∈[0,t f ]
‖q‖2L∞

∫ t f

0
‖∇T ‖2L2 dt ≤ C(T0, t f ).

(5.1)

Moreover, by (2.14) and (2.27) we have

sup
t∈[0,t f ]

‖v‖H2 ≤ C sup
t∈[0,t f ]

‖q∇T ‖L2 ≤ C sup
t∈[0,t f ]

‖q‖L∞ sup
t∈[0,t f ]

‖∇T ‖L2 ≤ C(T0, t f ).

(5.2)

To obtain a higher regularity of T , we take the inner product of (2.20) with (−�)2T
and get

1

2

d‖�T ‖2
L2

dt
+ κ‖∇(−�T )‖2L2 = −(v · ∇T , (−�)2T ) = (∇(v · ∇T ),∇((−�)T ))

≤ C‖∇(v · ∇T )‖L2‖∇((−�)T ‖L2 ≤ C(‖∇v · ∇T ‖L2

+ ‖v · ∇(∇T )‖L2)‖∇((−�)T ‖L2

≤ C(‖∇v‖2H1‖�T ‖2L2 + ‖v‖2L∞‖�T ‖2L2) + κ

2
‖∇((−�)T ‖2L2 .

This follows

d‖�T ‖2
L2

dt
+ κ‖∇((−�)T ‖2L2 ≤ C(‖∇v‖2H1 + ‖v‖2L∞ )‖�T ‖2L2 ≤ C‖v‖2H2‖�T ‖2L2 ,

(5.3)

where we used Agmon’s inequality (3.32) in the last inequality. Therefore, applying
(5.1) to (5.3) yields

sup
t∈[0,t f ]

‖�T ‖L2 ≤ eC
∫ t f
0 ‖v‖2

H2 dt‖�T0‖L2 < ∞ (5.4)

and

κ

∫ t f

0
‖∇((−�)T ‖2L2 dt ≤ C

∫ t f

0
‖v‖2H2‖�T ‖2L2 dt + ‖�T0‖2L2 < ∞. (5.5)

This completes the proof. ��
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Proof of Theorem 2.6. Let hi ∈ Uad and zi = T ′(v) · hi , i = 1, 2. Then we have

∂zi
∂t

= κ�zi − v · ∇zi − hi · ∇T ,
∂zi
∂n

|� = 0,

zi (x, 0) = 0.
(5.6)

In light of Corollary 2.5, we can also obtain a higher regularity of zi , i = 1, 2, than
(2.19). To see this, taking the inner produce of (5.6)with−�zi and noting that 〈zi 〉 = 0
by (2.18), we obtain

1

2

d‖∇zi‖2L2

dt
+ κ‖�zi‖2L2 ≤ ‖v‖L∞‖∇zi‖L2‖�zi‖L2 + ‖hi‖L4‖∇T ‖L4‖�zi‖L2

≤ C‖v‖2L∞‖∇zi‖2L2 + C‖∇hi‖2L2‖�T ‖2L2 + κ

2
‖�zi‖L2 . (5.7)

Thus

d‖∇zi‖2L2

dt
+ κ‖�zi‖2L2 ≤ C‖v‖2L∞‖∇zi‖2L2 + C‖∇hi‖2L2‖�T ‖2L2 ,

where by (5.4),

∫ t f

0
‖∇hi‖2L2‖�T ‖2L2 dt ≤ sup

t∈[0,t f ]
‖�T ‖2L2

∫ t f

0
‖∇hi‖2L2 dt ≤ C(T0, t f )‖hi‖2Uad

.

Consequently,

sup
t∈[0,t f ]

‖∇zi‖2L2 ≤
∫ t f

0
eC

∫ t f
τ ‖v‖2L∞ ds‖∇hi‖2L2‖�T ‖2L2 dτ ≤ C(T0, t f )‖hi‖2Uad

(5.8)

and

κ

∫ t f

0
‖�zi‖2L2 ≤ C

∫ t f

0
(‖v‖2L∞‖∇zi‖2L2 + ‖∇hi‖2L2‖�T ‖2L2) dt ≤ C(T0, t f )‖h‖2Uad

.

Next, let Z = z′1(v) · h2. Then Z satisfies

∂Z

∂t
= κ�Z − h2 · ∇z1 − v · ∇Z − h1 · ∇z2,

∂Z

∂n
|� = 0,

Z(x, 0) = 0, (5.9)

and 〈Z〉 = 0. Applying an L2-estimate for Z gives

1

2

d‖Z‖2
L2

dt
+ κ‖∇Z‖2L2 ≤ ‖∇h2‖L2‖∇z1‖L2‖∇Z‖L2 + ‖∇h1‖L2‖∇z2‖L2‖∇Z‖L2
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≤ ‖∇h2‖2L2‖∇z1‖2L2 + κ

4
‖∇Z‖2L2 + ‖∇h1‖2L2‖∇z2‖2L2 + κ

4
‖∇Z‖2L2 ,

which, together with (5.8), follows

d‖Z‖2
L2

dt
+ κ‖∇Z‖2L2 ≤ C(‖∇h2‖2L2‖∇z1‖2L2 + ‖∇h1‖2L2‖∇z2‖2L2)

≤ C(T0, t f )(‖∇h2‖2L2‖h1‖2Uad
+ ‖∇h1‖2L2‖h2‖2Uad

).

Therefore,

‖Z‖2L2 + κ

∫ t

0
‖∇Z‖2L2 dt ≤ C(T0, t f )‖h1‖2Uad

‖h2‖2Uad
, t ∈ [0, t f ]. (5.10)

By Lemma 2.2, (2.19) and (5.10), it can be easily verified that the terms on the right
hand side of (5.9) are all in L1(0, t f ; (H1(�))′), and hence ∂Z

∂t ∈ L1(0, t f ; (H1(�))′).
Thus there exists a unique solution to (5.9), which implies that T (v) is twice Gâteaux
differentiable at v ∈ Uad satisfying the optimality condition (2.22), with respect to h1
and h2, so is J (v).

Now differentiating J ′(v) · h1 once again in the direction h2 ∈ Uad gives

J ′′(v) · (h1, h2) = α(D∗Dz2(t f ), z1(t f )) + α(D∗DT (t f ), Z(t f ))

+ β

∫ t f

0
(D∗Dz2, z1) dt

+ β

∫ t f

0
(D∗DT , Z) dt + γ

∫ t f

0
(Ah2, h1) dt . (5.11)

Next taking the inner product of (5.9) with q and applying (2.3), we get

α(D∗DT (t f ), Z(t f )) −
∫ t f

0

(

Z ,
∂q

∂t

)

dt = κ

∫ t f

0
(Z , �q) dt +

∫ t f

0
(z1, h2 · ∇q) dt

+
∫ t f

0
(Z , v · ∇q) dt +

∫ t f

0
(z2, h1 · ∇q) dt .

With the help of the adjoint equations (2.21), we obtain

α(D∗DT (t f ), Z(t f )) + β

∫ t f

0
(Z , D∗DT ) dt

=
∫ t f

0
(z1, h2 · ∇q) dt +

∫ t f

0
(z2, h1 · ∇q) dt .

Therefore, (5.11) becomes

J ′′(v) · (h1, h2) = α(D∗Dz2(t f ), z1(t f )) + β

∫ t f

0
(D∗Dz2, z1) dt
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+
∫ t f

0
(z1, h2 · ∇q) dt

+
∫ t f

0
(z2, h1 · ∇q)) dt + γ

∫ t f

0
(Ah2, h1) dt .

Setting h1 = h2 = h and z1 = z2 = z = T ′(v) · h follows

J ′′(v) · (h, h) = α‖Dz(t f )‖2L2 + β

∫ t f

0
‖Dz‖2L2 dt

+ 2
∫ t f

0
(z, h · ∇q) dt + γ

∫ t f

0
‖A1/2h‖2L2 dt . (5.12)

Furthermore, by (2.1), (2.19), (2.26) and (5.8), we get

‖Dz(t f )‖2L2 ≤ C

κ
‖T0‖2L∞‖h‖2Uad

,

∫ t f

0
‖Dz‖2L2 dt ≤ C

∫ t f

0
‖∇z‖2L2 dt ≤ C

κ2 ‖T0‖2L∞‖h‖2Uad
,

and

∣
∣
∣
∣

∫ t f

0
(z, h · ∇q) dt

∣
∣
∣
∣
≤ C

∫ t f

0
‖∇z‖L2‖∇h‖L2‖∇q‖L2 dt

≤ C sup
t∈[0,t f ]

‖∇z‖L2

(∫ t f

0
‖∇h‖2L2

)1/2 (∫ t f

0
‖∇q‖2L2 dt

)1/2

≤ C(T0, t f )‖h‖2Uad
.

As a result,

|J ′′(v) · (h, h)| ≤ C(T0, t f )

(
α

κ
+ β

κ2

)

‖T0‖2L∞‖h‖2Uad
+ γ ‖h‖2Uad

= (C(T0, t f , κ, α, β) + γ )‖h‖2Uad

and

J ′′(v) · (h, h) ≥ −2
∫ t f

0
(z, h · ∇q) dt + γ

∫ t f

0
‖A1/2h‖2L2 dt

= (γ − C(T0, t f , κ, α, β))‖h‖2Uad
.

Therefore, letting γ large enough such that

γ − C(T0, t f , κ, α, β) ≥ c0 > 0, (5.13)

we obtain (2.29). ��
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Remark 5.1 For T0 ∈ L2(�) and v ∈ L2(0,∞; H), ‖DT ‖L2 obeys an exponential
decay rate in time.

Proof Taking the inner product of (1.1) with D∗DT and applying Greens’ formula
and (2.3), we have

1

2

d‖DT ‖2
L2

dt
= κ(�T , D∗DT ) − (v · ∇T , D∗DT )

= κ〈∂T
∂n

, D∗DT 〉〉� − κ(∇T ,∇(D∗DT )) + (T , v · ∇(D∗DT )).

(5.14)

Since 〈T 〉 = 〈T0〉 and D∗D = D, we have ∇(D∗DT ) = ∇(DT ) = ∇(T − 〈T 〉) =
∇T , and hence using Stokes formula follows

(T , v · ∇(D∗DT )) = 1

2

∫

�

v · ∇(T 2) dx = 0.

Therefore, (5.14) becomes

1

2

d‖DT ‖2
L2

dt
+ κ‖∇(DT )‖2L2 = 0. (5.15)

Further applying Grönwall’s inequality and Poincaré inequality we derive that

‖DT ‖2L2 ≤ e−Cκt‖DT0‖2L2 , (5.16)

which establishes the claim. ��
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