
Simulating Random Walks in Random Streams

John Kallaugher∗ Michael Kapralov† Eric Price‡

Abstract

The random order graph streaming model has received significant attention recently, with problems such as
matching size estimation, component counting, and the evaluation of bounded degree constant query testable
properties shown to admit surprisingly space efficient algorithms.

The main result of this paper is a space efficient single pass random order streaming algorithm for simulating
nearly independent random walks that start at uniformly random vertices. We show that the distribution of
k-step walks from b vertices chosen uniformly at random can be approximated up to error ε per walk using

(1/ε)O(k)2O(k2)
· b words of space with a single pass over a randomly ordered stream of edges, solving an open

problem of Peng and Sohler [SODA ‘18]. Applications of our result include the estimation of the average
return probability of the k-step walk (the trace of the kth power of the random walk matrix) as well as the
estimation of PageRank. We complement our algorithm with a strong impossibility result for directed graphs.

∗UT Austin
†EPFL
‡UT Austin

Copyright © 2022 by National Technology
& Engineering Solutions of Sandia, LLC

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/2

9
/2

2
 t

o
 2

4
.2

4
3
.1

5
5
.1

3
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Contents

1 Introduction 1

1.1 Algorithmic Techniques . 4

1.2 Lower Bound Techniques . 5

1.3 Related Work . 6

2 Basic Definitions and Claims 6

2.1 Stream Model . 6

2.2 Algorithm . 8

3 Analysis of WalkFromTemplate 9

3.1 Useful Technical Results . 10

3.2 Proof of Lemma 3.1 . 10

4 Near-Independence of Constructed Walks 12

4.1 Notation . 15

4.2 Proof of Lemma 4.1 . 15

4.3 Near-Independence of Hybrid Algorithm . 19

5 Proof of Theorem 1.3 20

6 Digraph Lower Bound 22

6.1 Graph Distribution . 23

6.2 Random Walks . 23

6.3 PageRank . 24

A Omitted Proofs of Technical Results 28

B Generating Timestamps in the Stream 30

C Proofs of Corollary 1.5 and Corollary 1.6 30

D Proof of Lemma 6.3 31

E Lower Bound for Chosen Vertices 32

E.1 Graph Distribution . 33

Copyright © 2022 by National Technology
& Engineering Solutions of Sandia, LLC

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/2

9
/2

2
 t

o
 2

4
.2

4
3
.1

5
5
.1

3
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1 Introduction

The random order streaming model for computation on graphs has been the focus of much attention recently,
resulting in truly sublinear algorithms for several fundamental graph problems, i.e. algorithms whose space
complexity is sublinear in the number of vertices (as opposed to edges) in the input graph [KKS14, CJMM17,
MMPS17, PS18, KMNT20]. This is in sharp contrast to adversarially ordered streams, where Ω(n) space is often
needed to solve even the most basic computational problems on graphs [FKM+04]. This brings several fundamental
problems on graph streams (matching size, number of connected components, constant query testable properties
in bounded degree graphs) into the same regime as basic statistical queries such as heavy hitters, frequency
moment estimation and distinct elements [AMS96]—problems that can be solved using space polylogarithmic in
the length of the stream.

Sampling random walks has numerous applications in large graph analysis (e.g., [ST13, ACL06, AP09,
COP03]), so it has received quite a bit of attention in the adversarial streaming model [SGP11, Jin19, CKP+21].
However, while these results are useful for dense graphs, they all require Ω(n) space.

We show that the random order model allows us to break this barrier. For random order streams we give an
algorithm that generates b walks that are ε-approximate to k-step random walks from uniformly random starting
vertices1, using (1ε)

O(k) · 2O(k2) · b words of space, independent of the graph size n. This solves an open problem
of Peng and Sohler on estimating return probabilities of random walks ([PS18], page 23).

The exponential dependence on poly(k) here seems likely to be necessary, at least up to the power of k, as
recent work [CKKP21] has shown that finding a length-` component in a graph where every component is of
length at most ` requires `Ω(`) space in a model close2 to random-order streaming. Performing a k = Θ

(
`2
)

random walk from a randomly chosen vertex would suffice for this, and so we expect any such algorithm needs

at least kΩ(
√
k) space.

Our algorithm immediately implies sublinear algorithms for graph analytics based on short random walks,
such as return probability estimation or PageRank. Consider PageRank with a constant reset probability α. For
a “topic” T ⊂ V —think, “news websites” or “websites about gardening”—we can view the total PageRank of T as
a measure of the importance of that topic to the graph. Our walk sampling algorithm lets us estimate the total
PageRank of T to within ε using Oα,ε(1) space.

Our algorithmic results are for undirected graphs, because directed graphs are hard: we show that sampling
walks from directed graphs (or just estimating PageRank) requires Ω(n) space in random order streams.

Our results. We now state our results formally. We will need the definition of ε-closeness of distributions
below:

Definition 1.1. (Pointwise ε-closeness of distributions) We say that a distribution p ∈ R
U
+ is ε-close

pointwise to a distribution q ∈ R
U
+ if for every u ∈ U one has

p(u) ∈ [1− ε, 1 + ε] · q(u).

We now define the notion of an ε-approximate sample of a k-step random walk:

Definition 1.2. (ε-approximate sample) Given G = (V,E) and a vertex u ∈ V we say that (X0, X1, . . . , Xk)
is an ε-approximate sample of the k-step random walk started at u if the distribution of (X0, X1, . . . , Xk) is ε-close
pointwise to the distribution of the k-step walk started at u (see Definition 1.1).

Main result. Our main result is an algorithm for generating nearly independent ε-approximate samples of
the k-step walk in the input graph G presented as a randomly ordered stream:

1Previous work has considered this problem when the start vertex is adversarially chosen and given to the algorithm before

processing the stream. Unfortunately o(n) space is impossible in this setting, as if the start vertex is in, say, a two-edge path, finding

the second edge of the path will be difficult in the 50% of cases it arrives after the first. For a formal lower bounds see Appendix E.
2This lower bound applies when edges are grouped into pairs, and the pairs arrive in a uniformly random order. It does not

necessarily imply lower bounds on fully random-order streaming, but it seems unlikely that this particular structure would make the

problem dramatically harder.

Copyright © 2022 by National Technology
& Engineering Solutions of Sandia, LLC

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/2

9
/2

2
 t

o
 2

4
.2

4
3
.1

5
5
.1

3
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Theorem 1.3. There exists a constant c′ > 0 such that for every n-vertex graph G, for every ε ∈ (n−1/1000, 1/2),

b ≤ n1/100, and 1 ≤ k ≤ min
{

c′ logn
log(1/ε) ,

√
c′ log n

}
, the following holds:

The output of SimulateWalks(k, ε, b) (Algorithm 4 below) is (n−1/100 + 2−b)-close in TV distance to the
distribution of b independent ε-approximate samples of the k-step random walk in G started at vertices chosen
uniformly at random. The space complexity of SimulateWalks(k, ε, b) is upper bounded by (1/ε)O(k) · 2O(k2) · b.

Using random walk sampling as a primitive, we give algorithms for two important graph problems: computing
the average return probability of k-step random walks and estimating the PageRank of a subset of nodes.

Return probability estimation. For every integer k ≥ 1 and u ∈ V let pku ∈ R
V denote the distribution

of the simple k-step random walk started at u. The average return probability of k-step random walks in G is

(1.1) rp(G) =
1

n

∑

u∈V

pku(u).

We say that r̂p(G) estimates rp(G) with precision ε ∈ (0, 1) if

(1.2) |rp(G)− r̂p(G)| ≤ ε.

Remark 1.4. Note that if the input graph G consists of disjoint connected components with mixing time bounded
by o(k), then rp(G) is very close to the number of connected components in G. In particular, if every component
in G has size at most q, the mixing times are bounded by qO(1), so this gives another algorithm for approximately
counting the number of connected components in G using space 2poly(q), which is comparable to [PS18].

In general, the average return probability can be viewed as a more robust measure of connectivity than the
number of components.

Our algorithm for approximating the average return probability is ApproxRP (Algorithm 1 below).

Algorithm 1 ApproxRP: approximate average k-step return probability over u ∈ V

1: procedure ApproxRP(k, ε) . k is the desired walk length, ε ∈ (0, 1) is a precision parameter
2: b← D

ε2 for a sufficiently large constant D > 0
3: (vi)i∈[b] ← SimulateWalks(k, ε, b)

4: return 1
b · |{i :∈ [b] : vik = vi0}| . Empirical return probability

5: end procedure

Corollary 1.5. There exists a constant c′ > 0 such that for every graph G = (V,E), |V | = n, |E| = m, for every

ε ∈ (n−1/1000, 1/2) and 1 ≤ k ≤ min
{

c′ logn
log(1/ε) ,

√
c′ log n

}
the following conditions hold.

Algorithm ApproxRP(ε, k) (Algorithm 1 below) computes an ε-approximation to the average return proba-

bility of a k-step random walk in G given as a random order stream using space (1/ε)O(k) · 2O(k2) with probability
at least 9/10 over the randomness of the stream and its internal randomness.

The proof of Corollary 1.5 follows from Theorem 1.3 by standard concentration inequalities and is presented
in Appendix C.

Estimating PageRank. For a reset probability α ∈ (0, 1) the PageRank vector with reset probability α,
denoted by pα ∈ R

V , satisfies

pα = α · 1
n
+ (1− α)Mpα,

where M is the random walk transition matrix of G. We give an algorithm (ApproxPageRank, Algorithm 2
below) that, given a membership oracle for a subset T ⊆ V , computes an approximation p̂α(T) to pα(T) =∑

u∈T pα(u) such that

(1.3) |p̂α(T)− pα(T)| ≤ ε.

Copyright © 2022 by National Technology
& Engineering Solutions of Sandia, LLC

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/2

9
/2

2
 t

o
 2

4
.2

4
3
.1

5
5
.1

3
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Our algorithm exploits the fact that PageRank with reset probability α is a mixture of distributions of random
walks started with the uniform distribution over vertices of G whose length follows the geometric distribution
with parameter α. Specifically,

pα = (I − (1− α)M)−1 · α1
n
=
∑

k≥0

α(1− α)kMk · 1
n

Therefore, an additive ε-approximation to the PageRank pα(T) of a set T as per (1.3) can be obtained by
truncating the sum above to its first O(1

α log(1/ε)) terms and estimating them using SimulateWalks, our
algorithm for generating independent samples of random walks. This is exactly what ApproxPageRank
(Algorithm 2 below) does.

Algorithm 2 ApproxPageRank: approximate PageRank with reset probability α ∈ (0, 1) on target set T up
to ε additive error.

1: procedure ApproxPageRank(α, T, ε) . Approximate PageRank of T ⊆ V
2: . α is the reset probability, ε is the additive precision
3: . T is given by a membership oracle
4: b← D

ε2 for a sufficiently large constant D > 0
5: (vi)i∈[b] ← SimulateWalks(d 2α log(1/ε)e, ε, b · d 2α · log(1/ε)e)
6: . Increase the number of sampled walks to account for different lengths
7: for j = 0 to d 2α log(1/ε)e do
8: W (j)← walks vi with i between b · j + 1 and b · j truncated to j steps.
9: . W (j) are nearly independent collections of s walks of length j

10: end for
11: p̂← 0
12: for i = 1 to b do
13: J ← Geom(α) . J = j with probability α(1− α)j for every integer j ≥ 0
14: If J > d 2α log(1/ε)e then continue
15: if ith walk in W (J) ends in T then . Use membership oracle for T
16: p̂← p̂+ 1

b
17: end if
18: end for
19: return p̂
20: end procedure

Corollary 1.6. There exists a constant c′ > 0 such that for every graph G = (V,E), |V | = n, |E| = m, for every

α ∈ (0, 1), every ε ∈
(
2−o(

√
logn), 1/2

)
such that 1

α ≤
√
logn

4 log(1/ε) the following conditions hold.

For every T ⊆ V ApproxPageRank (Algorithm 2) approximates pα(T) for constant α ∈ (0, 1) up to additive

error ε with probability at least 9/10 using (1/ε)O(1
α

log(1/ε)) ·2O(1
α2 log2(1/ε)) space given a randomly ordered stream

of edges of G, assuming a membership oracle for the target set T .

The proof of Corollary 1.6 follows from Theorem 1.3 by standard concentration inequalities and is presented
in Appendix C.

Lower bounds for directed graphs. PageRank was first studied for directed graphs, and so it is natural
to ask if it is possible to extend these algorithms to that setting. We show that it is not, and in fact both sampling
from the random walk distribution and approximating the PageRank of a vertex set in a directed graph require
Ω(n) bit of storage. This holds even if we restrict to approximating the distribution of very short random walks.

Theorem 1.7. For any constant ε < 1/4, the following holds for all k ≥ 3 and all n: there is a family of
directed graphs with no more than n vertices and edges such that any random order streaming algorithm that
ε-approximates the distribution of length-k random walks on graphs drawn from the family uses Ω(n) bits of space,
with a constant factor depending only on ε.

Copyright © 2022 by National Technology
& Engineering Solutions of Sandia, LLC

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/2

9
/2

2
 t

o
 2

4
.2

4
3
.1

5
5
.1

3
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Theorem 1.8. Let α be a given (constant) reset probability for PageRank. For any constants ε < (1− α)3 − 1
2 ,

δ < 1/4, the following holds for all n: there is a family of directed graphs with no more than n vertices and
edges such that any random order streaming algorithm that returns a ε additive approximation to the PageRank
of vertex sets in these graphs with probability 1− δ uses Ω(n) bits of space, with a constant factor depending only
on α, ε, and δ.

Note that this second lower bound applies only when (1 − α)3 > 1/2, i.e. α must not be much greater than
0.2. In applications α is typically 0.15, so this is a reasonable assumption.

1.1 Algorithmic Techniques In what follows we discuss the main challenges involved in obtaining Theo-
rem 1.3 and the key ideas behind our approach. A natural approach would be to sample a large collection of
vertices in the graph uniformly at random, and to then try simulating k-step walks from them using the random
order of the stream. Most of these simulations will fail, but our hope is that with a reasonably large (specifically,

εO(k)2−O(k2)) probability τ , we will successfully output a nearly-uniform random walk from each start vertex,
and that, when we don’t succeed, we will know that we failed.

How could we simulate a walk from a given vertex v using the random stream? One idea might be: starting
with v, repeatedly take the next edge incident on the current vertex, and stop after k steps (or output ⊥ if the
stream terminates before the kth step). The intuition is that a random walk has a 1/k! chance of appearing in
the stream in order, but this approach has two problems. First, it never traverses the same edge twice, while a
random walk has a good chance of doing so whenever it encounters a low-degree vertex. Second, even for walks
where every edge is distinct, the probability that it outputs a given path is not proportional to the probability
of that path arising as a random walk. For example, when starting at the endpoint of a path, a length-2 walk
occurs with probability 1/2 and is sampled with probability 1/2 (if the adjacent edge precedes the next edge out);
but when starting in the middle of a path, the first adjacent edge is more likely to precede the next edge out,
increasing the probability of sampling a length-2 walk to 2/3.

Repeated edges. We fix the first issue by associating each walk (e1, e2, . . . , ek) with a template π, a sequence
of numbers that encodes the amount of ‘backtracking’ that the walk (e1, e2, . . . , ek) does. Formally, we define:

Definition 1.9. (Walk template) A k-walk template is a tuple π ∈ Πk, where Πk := [1]× [2]× [3]× . . .× [k].

Definition 1.10. (A walk conforming with a template) We say that a walk e = (e1, e2, . . . , ek) ∈ Ek

conforms with a template π ∈ Πk if for every j ∈ [k] one has

πj = min{i ∈ [k] : ei = ej}.

Similarly, for ` ∈ [k] we say that a walk e = (e1, e2, . . . , e`) ∈ E` conforms with a template π ∈ Πk if for every
j ∈ [`] one has

πj = min{i ∈ [`] : ei = ej}.

Note that a walk (e1, e2, . . . , ek) conforms with a template π ∈ Πk if and only if for every j ∈ [k], πj is the first
time the edge ej appears in the walk.

Because every walk (e1, e2, . . . , ek) conforms with exactly one template, our random walk generation procedure
can proceed by first sampling a template uniformly at random, and then generating a walk that conforms with
that template.

Debiasing the estimate. To address the second issue with the naive approach—that the probability we
find a given walk is not proportional to the random walk probability—we modify the walk procedure slightly to
not always follow the next edge out of each vertex. Instead, we choose our first edge out of the start vertex v
uniformly at random from the edges incident to v in the first η fraction of the stream, for a small parameter η;
our second edge is chosen uniformly from the edges incident to this vertex in the second η fraction of the stream,
and so on. But this is subject to conforming to the template—in step j, if πj 6= j, we ignore the jth η fraction of
the stream and instead reuse the πth

j edge we’ve already taken.

Copyright © 2022 by National Technology
& Engineering Solutions of Sandia, LLC

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/2

9
/2

2
 t

o
 2

4
.2

4
3
.1

5
5
.1

3
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

With this approach, we can correct differences in the probability of finding each walk. The probability that
we find a given walk is (i) 1/k!, the probability that we sample the right template, times (ii) an η factor for each
distinct edge in the walk, the probability that the stream is such that it is possible for our algorithm’s random
choices to find this walk, times (iii) the probability that our algorithm makes the correct choices to find the walk.
This last probability depends on the stream, being the product over steps of the inverse number of edges incident
to the previous vertex in the appropriate η fraction of the stream. The key is that this probability p is known
after we see the stream; so if we knew the true random walk probability q for this walk, we could rejection sample
with probability proportional to q/p to output walks under the correct distribution.

So how can we estimate the correct probability q of a given random walk with small expected error? The
random walk probability q is

∏k
j=1

1
dj−1

, where dj−1 is the degree of the (j − 1)th vertex in the walk (with

d0 being the starting degree). We can estimate each dj by watching the stream after we finish the sampling
procedure; this will contain a (1 − kη) fraction of the stream. One might expect this to introduce an error of

about (1 − kη)k ≈ e−k2η in our estimate of q, but in fact the error can be much larger because a vertex may be
visited as many as Θ(k) times in a walk.

For a constant-degree vertex, there is an ηk chance that we will miss at least one of its edges, in which case
our estimate will be off by a constant factor, which could in turn lead to a 2Θ(k) relative error in q if the vertex
appears Θ(k) times in the walk, for η2Θ(k) expected relative error. For this reason we need to set η < 2−Θ(k),

which leads to the final 2−O(k2) term in τ , and thus the 2O(k
2) term in our space complexity.

Repetition and near-independence. The above argument leads to an O(k)-space algorithm that, with

probability 2−O(k2), outputs a nearly uniform random walk. To make this useful, we need to repeat it at least
s = 2O(k2) times so that we may actually find walks. The challenge here is that these are not independent
repetitions: the output of the algorithm depends on the random order of the stream, which is shared by each
copy of the algorithm.

Fortunately, the repetitions are nearly independent. Knowing the path taken in a given attempt to sample
a walk tells us something about the arrival times of the other edges incident to the vertices visited in that walk,
but it is independent of edges not incident to vertices on the path. If the graph had no high degree vertices—say,
the maximum degree were n1/4—this would be sufficient: the probability that any given walk visits a degree-d
vertex is at most kd/n < n−.7, so if s < n.01 we will probably never visit two adjacent vertices.

For high-degree vertices we need a different analysis: a high-degree vertex v will with high probability have
many edges as possibilities in each stage, so knowing the behavior of s other walks only has a small effect on which
edges are likely to be followed after visiting v. Formally, we introduce a hybrid algorithm where the behavior
on high degree vertices is independent of the stream, show that the distribution of the output of the original
algorithm is close to that of the hybrid algorithm, then use the above argument for low degree vertices.

1.2 Lower Bound Techniques Our lower bound is based on the following property of directed graphs: if a
vertex has high in-degree but low out-degree, that vertex can cause the vast majority of random walks in a graph
to be “channeled” into one path. If this path has multiple edges any algorithm that estimates the random walk
distribution or the PageRank vector will need to observe all of them, which is inherently difficult as later edges
in the path will not be recognized as significant unless they arrive after all the earlier edges. This is depicted in
Figure 1.

Formally, we give a method for encoding an instance of the Indexing problem in a graph stream, similar to
techniques used in [CCM16]. In the Indexing problem, Alice has an n bit string x and Bob an index I. Alice
must send Bob a message that allows him to guess the value of xI . It is known that Alice must send Ω(n) bits if
she wants to succeed at this task.

Ordinarily it is difficult to encode communication problems as random order graph streams, as the fact that
the edges may arrive in any order makes it difficult to assign parts of the graph to different players. We evade
this difficulty by making use of the fact that the indexing problem is hard even if the players are guaranteed a
uniform distribution on their inputs and only have to succeed with probability 1/2 + ε for some constant ε.

In our method, Bob encodes his index as a single edge from a high in-degree vertex, and Alice encodes her

Copyright © 2022 by National Technology
& Engineering Solutions of Sandia, LLC

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/2

9
/2

2
 t

o
 2

4
.2

4
3
.1

5
5
.1

3
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

u v w

Figure 1: A directed graph that makes it hard to find walks. Most walks in the graph start at one of the vertices
on the left and then go into u, then v, then w. But if vw arrives before uv it is impossible to know that it should
be part of all of these walks.

bits as n edges that it might point to, with each pointing to a vertex representing 0 or 1. Therefore, almost all
random walks in the graph end at a vertex representing xI , and a large fraction of the PageRank vector’s weight
will be on this vertex.

As the edges are required to arrive in a uniformly random order, sometimes Alice’s edges may arrive after
Bob’s edge, in which case Bob is responsible for inserting them in the stream. them. In that case he simply
guesses what they should be. This means that half the time the graph will encode a random answer rather than
a solution to Indexing, but this is still sufficient for him to succeed more than half the time. This encoding is
illustrated in Figure 2.

1.3 Related Work For adversarial streams the problem of generating a k-step walk out of a given starting
vertex was first considered in a paper of [SGP11], where it is shown how to generate n walks of length k using

Õ(
√
k) passes over the stream and Õ(n) space. The work of [Jin19] gives a single pass algorithm with space

complexity Õ(n ·
√
k) undirected graphs, and shows that this is best possible. Another recent work [CKP+21]

gives two-pass algorithms for generating walks of length k in general (even directed) graphs using Õ(n ·
√
k) space,

which they also show it essentially best possible.

2 Basic Definitions and Claims

Basic notation. For any integer a ≥ 1 we write [a] = {1, 2, . . . , a}. For any set S we use U(S) to denote the
uniform distribution on S. For a pair of (discrete) random variables X and Y we let dTV (X,Y) denote the total
variation distance between X and Y , which equals one half of the `1 distance between their distributions. For a
vertex v ∈ V we write d(v) to denote the degree of v in G, and δ(v) to denote the set of its incident edges. For
an integer k ≥ 0 and two vertices u, v ∈ V we write pkv(u) to denote the probability that the simple random walk
started at v reaches u after k steps. We assume for simplicity that the graph does not have isolated vertices (all
our algorithms can be easily adapted to handle isolated vertices, so this is without loss of generality).

2.1 Stream Model We assume that we receive the edges of the graph in a uniformly random order. We think
of this order as being generated by assigning each edge f ∈ E a “timestamp” tf ∈ [0, 1] uniformly at random. The
edges are then presented to the algorithm in ascending order of timestamp.

Typically a random-order stream does not come with such timestamps. However, as we show in Appendix B,
an algorithm can generate timestamps distributed appropriately using just O(log n) extra space, for any desired
1/ poly(n) accuracy (this will suffice, as we can set the accuracy to e.g. 1/n100 and with very high probability the
output of the algorithm will not be influenced by changing any number of timestamps by that much).

We assume knowledge of m, the number of edges in the graph. This assumption, however, can be removed by
‘guessing’ the right value of m (by running several copies of the algorithm in parallel), at the expense of a mild
loss in the space complexity.

Copyright © 2022 by National Technology
& Engineering Solutions of Sandia, LLC

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/2

9
/2

2
 t

o
 2

4
.2

4
3
.1

5
5
.1

3
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

x
I

1

0

(a) Encoding an instance of Indexing in a directed graph. The high in-degree vertex will have one outgoing edge, encoding
Bob’s index I, which will point to one of n vertices, each of which encodes one of Alice’s bits x by pointing to one of two
corresponding loops.

x{0,1,5,6,7,8} I y{2,3,4,9}

(b) Converting the encoding into a random-order stream. The edges that do not depend on Alice or Bob’s input can be
inserted using shared randomness, and so are ignored here. Those of Alice’s edges that should arrive before Bob’s edge are
encoded as normal, but those that arrive after are instead inserted by Bob by chosing a random guess y for Alice’s input.
Half of the time the edge encoding xI arrives before the edge encoding I, and the other half of the time there is still a 0.5
chance of Bob guessing correctly, so the encoding is “correct” with probability 0.75.

Figure 2: Encoding an instance of Indexing as a random-order graph stream.

Copyright © 2022 by National Technology
& Engineering Solutions of Sandia, LLC

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/2

9
/2

2
 t

o
 2

4
.2

4
3
.1

5
5
.1

3
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

2.2 Algorithm Our walk sampling algorithm (SamplesWithReset, Algorithm 3 below) is quite simple:
it samples a large enough set of nodes uniformly at random, together with independent uniformly random
templates for every sampled node. It then runs our random walk generation procedure (WalkFromTemplate)
from each such node, and outputs a sample of the runs that do not return FAIL (i.e., those invocations of
WalkFromTemplate that terminate with a valid walk).

Algorithm 3 SamplesWithReset: simulate s samples of k-step walk started from uniformly random vertices,
with reset (i.e., allowing walks to fail)

1: procedure SamplesWithReset(k, ε, s)
2: . k is the desired walk length, ε ∈ (0, 1) is a precision parameter
3: η ← ε8 · 2−Ck . For a large enough constant C > 0
4: vi0 ← independent uniform sample from V for i ∈ [s]
5: for i ∈ [s] do
6: Choose πi ∼ U(Πk) . Πk is the set of walk templates of length k, see Definition 1.9
7: vi ←WalkFromTemplate(vi0, π

i, k, η) . Run in parallel on the same stream
8: end for
9: return (vi)i∈[s]

10: end procedure

Algorithm 4 SimulateWalks: simulate a samples of k-step walk started from uniformly random vertices

1: procedure SimulateWalks(ε, k, b)
2: . k is the desired walk length, ε ∈ (0, 1) is a precision parameter
3: s← b · 100η−k · k! . Increase number of starting nodes to account for failed walks
4: (vi)i∈[s] ← SamplesWithReset(k, ε, s)
5: if at least b of the walks (vi)i∈[s] succeeded then
6: return the first b successful walks
7: else
8: return FAIL
9: end if

10: end procedure

Overview of random walk generation (WalkFromTemplate). Our main random walk generation
procedure is WalkFromTemplate (Algorithm 5 below). The procedure gets as input a starting vertex, a
template π, the target length of the walk and a parameter η that corresponds to the fraction of the stream
that is used to generate a single step of the walk. Setting η small lets us limit various correlations, but hurts
the performance, since the probability of WalkFromTemplate terminating with a valid walk (as opposed to
outputting FAIL) is about ηk.

The procedure WalkFromTemplate itself is natural: it partitions the first k · η fraction of the stream into
intervals of length η, and for every j ∈ [k] either it uses the jth interval to sample a new edge (if the template π
prescribes this, i.e. satisfies πj = j; see line 5 of Algorithm 5), or it takes the corresponding previously traversed
edge if the template π prescribes this, i.e. satisfies πj < j, and the corresponding edge is in the neighborhood of
the current vertex (see line 11 of Algorithm 5). The sampling is done using reservoir sampling, and therefore is
space efficient.

After k phases, having constructed a candidate walk (f1, f2, . . . , fk), the algorithm first uses the empirical
batches to infer a partition of the candidate walk into batches, and then uses this information to perform rejection
sampling. The goal of rejection sampling is to reduce the probability of picking up a walk to be proportional to
the product of the inverse degrees of the first k vertices in the walk, i.e. to the correct probability. To achieve this
WalkFromTemplate maintains the probability pk of having collected the walk (f1, . . . , fk). The algorithm then

uses the remainder of the stream to compute estimates (d̂j)
k−1
j=0 , of the degrees of the vertices on the candidate

Copyright © 2022 by National Technology
& Engineering Solutions of Sandia, LLC

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/2

9
/2

2
 t

o
 2

4
.2

4
3
.1

5
5
.1

3
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

walk, and keeps the candidate walk with probability proportional to p−1
k

∏k−1
j=1 (1/d̂j) (see line 20 of Algorithm 5).

The algorithm is formally described as Algorithm 5 below. For a stream σ and parameters α, β ∈ [0, 1] we
define

σ[α, β) = {e ∈ E : te ∈ [α, β)} .
Recall that we think of every edge e ∈ E as being assigned an independent uniformly random timestamp te ∈ [0, 1],
and the edges being presented in increasing order of these timestamps (see Section 2.1 for more discussion of this
assumption).

Algorithm 5 WalkFromTemplate: generate a random walk from starting vertex u0 that conforms with a
template π

1: procedure WalkFromTemplate(u0, π, k, η) . k is the desired walk length, u0 is the starting vertex
2: for j = 1 to k do
3: u← uj−1

4: if πj = j then
5: Hj ← edges in δ(u) ∩ σ[η · (j − 1), η · j)
6: If Hj = ∅ then return FAIL
7: fj ← U(Hj) . Implemented using reservoir sampling
8: γj ← 1

|Hj | · η
9: else

10: If fπj
6∈ δ(u) then return FAIL

11: fj ← fπj

12: γj ← 1
13: end if
14: uj ← endpoint of fj other than u
15: end for
16: for j ∈ [k] do . Compute degree estimates for vertices on the walk

17: d̂j−1 ← degree of uj−1 in {f1, . . . , fk} ∪ σ[η · k, 1]
18: end for
19: α←∏

j∈[k] min(η

γj d̂j−1
, 1) . Done in postprocessing

20: return (u0, . . . , uk) with probability α and return FAIL otherwise
21: end procedure

In what follows we prove that, if we set our parameters appropriately, each walk is output with almost the
correct probability.

We assume that parameters n, k and η satisfy the following:

(P1) k ≤ c log n/ log log n for a small constant c > 0

(P2) η ∈ (n−1/100, 2−Ck) for a sufficiently large constant C ≥ 8

3 Analysis of WalkFromTemplate

Lemma 3.1. For every integer k ≥ 1 and real number η satisfying (P1) and (P2), and every π ∈ Πk, the
following holds:

For every v ∈ V and every length k walk v = (v0, v1, . . . , vk−1, vk) from v0 = v, an invocation of
WalkFromTemplate(v, π, k, η) (Algorithm 5) outputs v with probability

p ∈
[
1, 1 + η1/7

]
· ηk ·

∏

j∈[k]

1

d(vj−1)
,

if v conforms with π and with probability 0 otherwise.

Copyright © 2022 by National Technology
& Engineering Solutions of Sandia, LLC

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/2

9
/2

2
 t

o
 2

4
.2

4
3
.1

5
5
.1

3
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

The following corollary is an immediate consequence of Lemma 3.1:

Corollary 3.2. For every integer k ≥ 1 and real number η satisfying (P1) and (P2), the following holds for π
sampled from U(Πk):

For every v ∈ V and every length k walk v = (v0, v1, . . . , vk−1, vk) from v0 = v, an invocation of
WalkFromTemplate(v, π, k, η) (Algorithm 5) outputs v with probability

p ∈
[
1, 1 + O

(
η1/7

)]
· 1
k!
· ηk ·

∏

j∈[k]

1

d(vj−1)
.

Proof. Per Definition 1.10 there exists a unique template π′ ∈ Π` that v conforms with. The walk v conforms
with any extension π of π′ to a template in Πk, and no other template. For every such π the corresponding
invocation of WalkFromTemplate(v0, π, k, η) constructs v at the end of the first ` iterations of its main loop
with probability

(3.4) p ∈
[
1, 1 + O

(
η1/7

)]
· η` ·

∏

j∈[`]

1

d(vj−1)

by Lemma 3.1, and with probability zero for other π. Thus, the result follows since π is selected uniformly at
random from Πk.

3.1 Useful Technical Results The following are results that will be useful in our analysis. Proofs are deferred
to Appendix A.

Recall that for integer k ≥ 0 and two vertices u, v ∈ V we write pkv(u) to denote the probability that the
simple random walk started at v reaches u after k steps.

Claim 3.3. Let v ∈ V be chosen uniformly at random in a graph with no isolated vertices. Then for every u ∈ V
and k ≥ 0 one has Ev∼U(V)[p

k
v(u)] ≤ d(u)/n.

The following is a consquence of Bennett’s inequality.

Lemma 3.4. Let Y =
∑

i αiXi, where αi ∈ {0, 1} and Xi ∼ Ber(η) are independent for some η ∈ (0, 1/50). Then
for every d ≥∑i αi

Pr[Y ≥ d/2] ≤ (3η)d/5.

Lemma 3.5. Let E1, . . . , Ek, Z1, . . . , Zk be arbitrarily correlated random variables. Let η̃ ∈ (0, e−5k) and the
positive integers (qi)

k
i=1 be such that, for all i ∈ [k], Ei ∈ {0, 1}, E[Ei] ≤ η̃qi/5, Zi ∈ [0, 1], and E[Zi] ≤ η̃. Then

E

[
k∏

i=1

(1 + Zi + qiEi)

]
≤ 1 + 3kη̃1/5.

3.2 Proof of Lemma 3.1 We now prove Lemma 3.1, restated here for convenience of the reader.

Lemma 3.6. For every integer k ≥ 1 and real number η satisfying (P1) and (P2), and every π ∈ Πk, the
following holds:

For every v ∈ V and every length k walk v = (v0, v1, . . . , vk−1, vk) from v0 = v, an invocation of
WalkFromTemplate(v, π, k, η) (Algorithm 5) outputs v with probability

p ∈
[
1, 1 + η1/7

]
· ηk ·

∏

j∈[k]

1

d(vj−1)
,

if v conforms with π and with probability 0 otherwise.

Copyright © 2022 by National Technology
& Engineering Solutions of Sandia, LLC

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/2

9
/2

2
 t

o
 2

4
.2

4
3
.1

5
5
.1

3
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Proof. There are three sources of randomness in WalkFromTemplate (Algorithm 5): the stream σ, the reservoir
sampling r to find the path, and the rejection sampling at the end. We first analyze the event F that a given
walk v is “collected”, meaning that is found but might be rejected in the final rejection sampling step. We use F
to denote the indicator variable associated with F .

For j ∈ [k] let ej = (vj−1, vj). Let

(3.5) Γ :=
{
σ a stream : ∀j ∈ [k] such that πj = j one has tej ∈ [η(j − 1), η · j)

}
.

This is the set of streams σ such that collecting v is possible: for every σ 6∈ Γ we have F = 0 always. Similarly,
if v does not conform to π then F = 0. For any fixed σ ∈ Γ and v that conforms to π, we have

(3.6) Pr
r
[F] =

∏

j∈[k]:πj=j

1

|Hj |
,

where (as in Algorithm 5) Hj is the set of edges that could could be taken in stage j.

Define

(3.7) p :=
k∏

j=1

γj = η|π| ·
∏

j∈[k]:πj=j

1

|Hj |
= η|π| Pr

r
[F],

where we let |π| := |{j ∈ [k] : πj = j}|. We note that |π| ≤ k for every π. This implies that, for any stream σ ∈ Γ
and π that v conforms to,

E
r

[
1

p
F

]
= η−|π|.

Since Pr[σ ∈ Γ] = η|π|, this means

E
σ,r

[
1

p
F

]
= 1.(3.8)

Define d̂(vj) to be the degree of vj in v ∪ σ[ηk, 1], so d̂j = d̂(vj) when F occurs, and define q := ηk
∏k

i=1
1

d̂(vj−1)

and q∗ := ηk
∏k

i=1
1

d(vj−1)
. Note that, for any v, q∗ depends only on the graph and is independent of the

stream order and the randomness of the algorithm. If v is collected, then it is output with probability

α =
∏

j∈[k] min
(

η

γj d̂j−1
, 1
)
, which satisfies

q∗

p
≤ α ≤ q

p
.(3.9)

The upper bound follows from ignoring the min(·, 1) in the expression, and the lower bound follows from the fact

that γj =
η

|Hj | ≥
η

d(vj−1)
and d̂(vj) ≤ d(vj) for all j, so

min

(
η

γj d̂(vj−1)
, 1

)
≥ min

(
η

γjd(vj−1)
, 1

)
=

η

γjd(vj−1)
.

We would like to bound the probability v is output over the streams and internal randomness, which is

E
σ,r

[αF].(3.10)

Lower bound. By (3.9) and (3.8),

E
σ,r

[αF] = E
σ,r

[
αp

1

p
F

]
≥ E

σ,r

[
q∗

1

p
F

]
= q∗(3.11)

as q∗ is independent of the stream order and the randomness of the algorithm.

Copyright © 2022 by National Technology
& Engineering Solutions of Sandia, LLC

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/2

9
/2

2
 t

o
 2

4
.2

4
3
.1

5
5
.1

3
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Upper bound. We have that

E
σ,r

[αF] ≤ E
σ,r

[
q

p
F

]
= E

σ

[
q · 1σ∈Γ · E

r

[
1

p
F

∣∣∣∣σ
]]

= E
σ

[
q · 1σ∈Γ · η−|π|

]
= E

σ
[q|σ ∈ Γ].

So it suffices to show that q is not much bigger than q∗ on average over streams in Γ.

For any given i ∈ {0, 1, . . . , k− 1}, consider the distribution of the degree estimate d̂(vi) over σ ∈ Γ. If vi has

` distinct incident edges among the walk v, then those edges will always count in d̂(vi). Every other edge will
count if and only if its timestamp is at least kη, which is an independent binary random variable with expectation
1− kη. Let Yi denote the number of edges that do not count, so d̂(vi) = d(vi)− Yi and Yi ∼ B(d(vi)− `, kη). We
now analyze

E
σ

[
q

q∗

∣∣∣∣σ ∈ Γ

]
= E

σ

[
k−1∏

i=0

d(vi)

d̂(vi)

∣∣∣∣∣σ ∈ Γ

]
= E

σ

[
k−1∏

i=0

d(vi)

d(vi)− Yi

∣∣∣∣∣σ ∈ Γ

]
.

Define Ii to be the event that Yi ≥ d(vi)/2. By the Bennett inequality corollary Lemma 3.4, if the constant
in (P2) is chosen to be large enough,

Pr[Ii] ≤ (3kη)d(vi)/5.

On the other hand, when Ii does not occur and Yi < d(vi)/2 we have

d(vi)

d(vi)− Yi
=




∞∑

j=0

(Yi/d(vi))
j


 ≤ 1 + 2Yi/d(vi).

Let Zi = 2Yi/d(vi) when Ii holds and 0 otherwise. Since d̂(vi) ≥ 1, we always have d(vi)

d̂(vi)
≤ d(vi). Therefore

d(vi)

d̂(vi)
≤ 1 + Zi + d(vi)Ii.

where Ii is the indicator for Ii. We can now apply Lemma 3.5 (if the constant in (P2) is chosen to be large
enough) to (I0, . . . , Ik−1), (Z0, . . . , Zk−1), and η̃ = 3kη, to say that

E
σ

[
q

q∗

∣∣∣∣σ ∈ Γ

]
= E

σ

[
k−1∏

i=0

d(vi)

d̂(vi)

∣∣∣∣∣σ ∈ Γ

]
≤ 1 + 3k(3kη)1/5.

Therefore the probability we output v satisfies

E
σ,r

[αF] ≤ E
σ
[q|σ ∈ Γ] = q∗ E

σ

[
q

q∗

∣∣∣∣σ ∈ Γ

]
≤ (1 + 3k(3kη)1/5)q∗.

For η < 2−Ck for sufficiently large C, this is at most (1 + η1/7)q∗ as desired.

4 Near-Independence of Constructed Walks

In this section we prove that the walks constructed by SamplesWithReset(k, ε, s) (Algorithm 3) are close to
independent in total variation distance. We introduce a useful modified version of SamplesWithReset and
WalkFromTemplate, as well as some notation, before stating the key formal lemmas.

Hybrid SamplesWithReset and WalkFromTemplate algorithms. As a first step we show that the
output distribution of SamplesWithReset (which relies on WalkFromTemplate) is close in total variation
distance to the output distribution of a modified version SamplesWithResetHybrid (which in turn relies on
a modified WalkFromTemplateHybrid) – see Algorithm 6 and Algorithm 8 below.

The main reason behind the introduction of this algorithm is that it will be easier to prove near-independence
of several walks generated on the same stream by SamplesWithResetHybrid than to perform the same
analysis directly on SamplesWithReset. The proof of closeness of the output of SamplesWithReset

Copyright © 2022 by National Technology
& Engineering Solutions of Sandia, LLC

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/2

9
/2

2
 t

o
 2

4
.2

4
3
.1

5
5
.1

3
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

and SamplesWithResetHybrid in distribution proceeds by the ‘hybrid argument’, and to facilitate this
argument the procedure WalkFromTemplateHybrid takes a parameter j∗, and changes its behavior relative to
WalkFromTemplate in the first j∗ iterations of the outer loop. We note that WalkFromTemplateHybrid is
not an actual algorithm that can be run on a stream (it uses information that is not available as the stream comes
in, such as exact vertex degrees and exact vertex neighborhoods), and is only a useful construct that facilitates
analysis.

Algorithm 6 SamplesWithResetHybrid: simulate s samples of k-step walk started from uniformly random
vertices, with reset (i.e., allowing walks to fail)

1: procedure SamplesWithResetHybrid(k, ε, s, j∗)
2: . k is the desired walk length, ε ∈ (0, 1) is a precision parameter
3: η ← ε8 · 2−Ck . For a large enough constant C > 0
4: vi0 ← independent uniform sample from V for i ∈ [s]
5: for i ∈ [s] do
6: Choose πi ∼ U(Πk) . Πk is the set of walk templates of length k, see Definition 1.9
7: vi ←WalkFromTemplateHybrid(vi0, π

i, k, η, j∗) . Run in parallel on the same stream
8: end for
9: return (vi)i∈[s]

10: end procedure

Algorithm 7 SimulateWalksHybrid: : simulate b samples of k-step walk started from uniformly random
vertices

1: procedure SimulateWalksHybrid(k, ε, b, j∗)
2: . k is the desired walk length, ε ∈ (0, 1) is a precision parameter
3: η ← ε8 · 2−Ck . For a large enough constant C > 0
4: s← b · 100η−k · k! . Increase number of starting nodes to account for failed walks
5: vi0 ← independent uniform sample from V for i ∈ [s]
6: (vi)i∈[s] ← SamplesWithResetHybrid(k, ε, s, j∗)
7: if at least b of the walks (vi)i∈[s] succeeded then
8: return the first b successful walks
9: else

10: return FAIL
11: end if
12: end procedure

We first define

(4.12) L = {u ∈ V : d(u) ≤ n1/4}

to be the set of ‘low degree’ vertices in the graph (the threshold of n1/4 is somewhat arbitrary, but in general
this threshold cannot be too high; in particular, it needs to be bounded away from n by at least an s2 factor,
where s is the number of samples used in SamplesWithReset). For the first j∗ iterations of the main loop
WalkFromTemplateHybrid (Algorithm 8)

• if the current vertex u is a high degree vertex (belongs to V \L), samples its next edge uniformly at random
from δ(u), without using the stream (see line 6)

• when estimating vertex degrees, uses (appropriately scaled) exact degrees for high degree vertices (see
line 21), for all j ≤ j∗.

The changes introduced in WalkFromTemplate (Algorithm 5) with respect to WalkFromTemplateHybrid
are highlighted in red in Algorithm 8.

Copyright © 2022 by National Technology
& Engineering Solutions of Sandia, LLC

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/2

9
/2

2
 t

o
 2

4
.2

4
3
.1

5
5
.1

3
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

There is one other difference in the implementations of WalkFromTemplate and WalkFromTemplate-
Hybrid, which does not affect the output but is convenient for the analysis: in WalkFromTemplateHybrid,
the rejection sampling is done progressively. The final acceptance probability αk for a walk equals the acceptance
probability α in WalkFromTemplate, and the intermediate acceptance probabilities αj let us show that the
intermediate states are spread out comparably to a uniform random walk (proved in Lemma 4.6).

This means that the chance a random walk is still accepted after j steps is

αj :=

j∏

g=1

min(
η

γgd̂
j
g−1, 1

)

The following lemma shows that the output distribution of SamplesWithReset(k, ε, s) is close to
SamplesWithResetHybrid(k, ε, s, k) in total variation distance:

Lemma 4.1. Assuming (P1), (P2) and s ≤ n1/30, for every input graph G, we have that the out-
put of SamplesWithReset(k, ε, s) is O(s · n−1/10)-close in total variation distance to the output of
SamplesWithResetHybrid(k, ε, s, k).

The proof of Lemma 4.1 is presented in Section 4.2 below.

Algorithm 8 WalkFromTemplateHybrid: generate a random walk from starting vertex u0 that conforms
with a template π, modified on high degree vertices

1: procedure WalkFromTemplateHybrid(v0, π, k, η, j
∗) . k is the desired walk length, u0 is the starting

vertex
2: for j = 1 to k do
3: u← vj−1

4: if πj = j then
5: If u ∈ V \ L and j ≤ j∗ then
6: Hj ← δ(u)
7: else
8: Hj ← edges in δ(u) ∩ σ[η · (j − 1), η · j)
9: If Hj = ∅ then return FAIL

10: fj ← U(Hj) . Implemented using reservoir sampling
11: If u ∈ V \ L and j ≤ j∗ then γj ← 1

d(u) else γj ← 1
|Hj | · η

12: else
13: If fπj

6∈ δ(u) then return FAIL
14: fj ← fπj

15: γj ← 1
16: end if
17: vj ← endpoint of fj other than u
18: for g ∈ [j] do . Compute degree estimates for vertices on the walk

19: d̂jg−1 ← degree of vg−1 in {f1, . . . , fj} ∪ σ[η · k, 1]
20: If vg−1 ∈ V \ L and g ≤ j∗ then

21: d̂jg−1 ← (1− kη)d(vg−1)
22: end for
23: αj ←

∏j
g=1 min{ η

γg·d̂j

g−1

, 1} . Observe that αj ≤ αj−1

24: return FAIL with probability 1− αj/αj−1

25: . Note that the chance of returning FAIL by step j is 1− αj .
26: end for
27: return (v0, . . . , vk)
28: end procedure

Copyright © 2022 by National Technology
& Engineering Solutions of Sandia, LLC

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/2

9
/2

2
 t

o
 2

4
.2

4
3
.1

5
5
.1

3
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

4.1 Notation A length-` “partial” walk v = (v0, . . . , v`) ∈ (V ∪{⊥})`+1 consists of at least 1 vertex of a random
walk, followed (possibly) by a series of ⊥. A collection of s partial walks is ~v = (vi)i∈[s].

Definition 4.2. (Sampled and collected vertices) We say that a partial walk v is “collected” by an
execution of WalkFromTemplateHybrid(k, ε, η, `), if for each j, vj is the value set by the algorithm or ⊥
if the algorithm returns FAIL before setting vj.

We say that a partial walk v is “sampled” by an execution of WalkFromTemplateHybrid in the same
situation, except that vj = ⊥ if the algorithm rejects vj by returning FAIL in round j.

For an invocation of SamplesWithResetHybrid(k, ε, s, `), we say that ~v is collected or sampled if
(v1, . . . ,vs) are sampled or generated by the s executions of WalkFromTemplateHybrid, respectively.

In other words, if the walk fails at the end of round j, the walk that is “collected” still includes vj , while the walk
that is sampled does not (if the walk succeeds, or if the algorithm returns FAIL in line 9 or 13, they are identical).

Definition 4.3. For a length-` partial walk v we define its neighborhood

Ψ(v) =
⋃

0≤j≤`,vj∈L

δ(vj).

For a collection of walks ~v we define

Ψ(~v) =
⋃

v

Ψ(v).

Definition 4.4. For j ∈ 0, 1, . . . , k let Fj denote the following random variables:

1. The partial walks ~v≤j−1 := (vi≤j−1)i∈[s] sampled by SamplesWithResetHybrid(k, ε, s, j).

2. Timestamps of edges in Ψ(~v≤j−1), i.e.

{(f, tf) : f ∈ Ψ(~v≤j−1)} .

3. The internal randomness of SamplesWithResetHybrid(k, ε, s, j) (Algorithm 6) used up to step j − 1.

We let F0 = ∅.

Definition 4.5. For a collection of walks ~v and j ∈ [k] we define E∗
j := Ψ(~v≤j−1) ∪ {(vij−1, v

i′

j−1) | i, i′ ∈ [s]}
to contain all edges out of low degree vertices in the first j steps of any walk, combined with all edges between
vertices visited at position j − 1 in the different walks.

4.2 Proof of Lemma 4.1

Lemma 4.6. Let v ∈ V uniformly at random and π ∼ U(Πk), and consider the execution of
WalkFromTemplateHybrid(v, π, k, η, 0). We have for any u ∈ V and j ∈ [k] that

Pr[vj = u | vj 6= ⊥] ≤ 2d(u)/n.

Proof. Let pjv(u) be the probability that a j-step random walk from v ends at u. By Claim 3.3, Ev∼U(V)

[
pjv(u)

]
≤

d(u)/n.

First, consider j = k. The distribution of vk is the same as for the last vertex uk output by
WalkFromTemplate(v, π, k, η). Therefore, per Corollary 3.2,

Pr[vk = u] ∈ [1, 1 +O(η1/7)] · λ · pkv(u)

Copyright © 2022 by National Technology
& Engineering Solutions of Sandia, LLC

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/2

9
/2

2
 t

o
 2

4
.2

4
3
.1

5
5
.1

3
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

for λ = 1
k!η

k independent of u and v. Now, conditioning on vk 6= ⊥ increases this probability by at most a factor
of 1/λ, as vk 6= ⊥ will always hold if the sampled template corresponds to a valid walk out of v0 (which happens
with probability at least 1/k!) and every edge on that walk is in the right length-η window (which happens with
probability ηk), and so Pr[vk 6= ⊥] ≥ λ. Therefore,

Pr[vk = u | vk 6= ⊥] ≤ (1 +O(η1/7))pkv(u) ≤ 2d(u)/n.

For j < k, we note that vj is distributed essentially the same as the last vertex uj output by WalkFromTem-

plate(v, π, j, η). (There is one difference: it would be identical if the the d̂ computed in Line 17 of Walk-
FromTemplate used σ[ηj, 1] rather than σ[ηk, 1]. But this difference has no bearing on the proof of Corollary 3.2,
which just uses that this interval includes [η99/100, 1) but not [0, ηj].) So we still have that vj is distributed within
a 1 +O(η1/7) factor of being proportional to a true j-step random walk, and the result holds.

Claim 4.7. For j ∈ [k] the posterior distribution of (tf)f∈E given Fj is a product distribution. For every
f ∈ E \ E∗

j the distribution of tf is uniform on [0, 1].

Proof. The only edge timestamps that influence Fj are those of edges in Ψ(~v≤j−1), and so as we are conditioning
on the value of all of those, and the prior distribution of (tf)f∈E is a product distribution of uniform distributions,
the result follows.

Lemma 4.8. For every j ∈ [k], consider the execution of SamplesWithResetHybrid(k, ε, s, j − 1). Let Hi
j be

the value of Hj in invocation i of WalkFromTemplateHybrid. For every Fj, one has with probability at least
1 − n−2 over timestamps of edges in E \ E∗

j that, for every i ∈ [s] such that πi
j = j and vij−1 ∈ V \ L, we have

that:
(1− n−1/9)η · d(vij−1) ≤ |Hi

j | ≤ (1 + n−1/9)η · d(vij−1),

and
(1− n−1/9)η · d(vij−1) ≤ |Hi

j \ E∗
j | ≤ (1 + n−1/9)η · d(vij−1).

Finally, for every such i ∈ [s] with vij−1 ∈ V \ L and every g ∈ [k], the degree estimate d̂gj−1 in invocation i
satisfies

(1− n−1/9)(1− kη) · d(vij−1) ≤ d̂(vjj−1) ≤ (1 + n−1/9)(1− kη) · d(vij−1).

Proof. For each such u = vij−1, the edges in S := δ(u) \ E∗
j have timestamps that are independent and uniform

in [0, 1].

Therefore |Hi
j ∩ S| is distributed as the binomial variable B(|S|, η), so by the Chernoff bound we have with

1− 1
n3 probability that ∣∣|Hi

j ∩ S| − η|S|
∣∣ ≤

√
2η|S| log 2n3.

Suppose this happens. Every remaining edge, in E∗
j ∩ δ(u), is between u and another vertex collected in some

walk in v; hence there are at most sk such edges.

Then by the triangle inequality:

∣∣|Hi
j | − ηd(u)

∣∣ ≤
∣∣|Hi

j | − |Hi
j ∩ S|

∣∣+
∣∣|Hi

j ∩ S| − η|S|
∣∣+
∣∣ηd(u)− η|S|

∣∣

≤ sk +
√
2ηd(u) log 2n3 + ηsk

≤ ηd(u) ·
(

2sk

ηd(u)
+

√
2 log 2n3

ηd(u)

)

≤ n−1/9ηd(u).

where the last step uses that d(u) ≥ n1/4, η ≥ n−1/100, s ≤ n1/30, k ≤ log n, and n is sufficiently large. The
bound on |Hi

j \ E∗
j | = |Hi

j ∩ S| is the same, omitting the first of the three terms in the triangle inequality. We
then union bound over i ∈ [s].

Copyright © 2022 by National Technology
& Engineering Solutions of Sandia, LLC

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/2

9
/2

2
 t

o
 2

4
.2

4
3
.1

5
5
.1

3
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

We bound d̂gj−1 similarly: let a be the number of edges in S that lie in σ[ηk, 1], which is B(|S|, (1− kη)), and

so with 1− 1
n3 probability ∣∣a− (1− kη)|S|

∣∣ ≤
√

2(1− kη)|S| log 2n3.

Then since d̂gj−1 only differs from a on E∗
j ∩ δ(u),

∣∣d̂gj−1 − (1− kη)d(u)
∣∣ ≤

√
2(1− kη)d(u) log 2n3 + sk + (1− kη)sk ≤ n−1/9(1− kη)d(u)

and we again union bound over i.

We first analyze the vertices collected in each step, ignoring the rejection probability. We then include the
rejection probability, to analyze the vertices sampled in each step.

Lemma 4.9. For j ∈ [k], let (ui
j)i∈[s] denote the vertices collected by SamplesWithResetHybrid(k, ε, s, j − 1)

at step j, and (ũi
j)i∈[s] denote the vertices collected by SamplesWithResetHybrid(k, ε, s, j) at step j. For every

Fj the total variation distance between (ui
j)i∈[s] and (ũi

j)i∈[s] conditioned on Fj is bounded by O(sn−1/9).

Proof. Define
I = {i ∈ [s] : vij−1 ∈ V \ L},

where for every i ∈ [s], vij−1 ∈ V ∪ {⊥} is the (j − 1)th vertex collected on the ith walk, where we let vij−1 = ⊥
if the ith walk terminated before the (j − 1)th step. Note that I ⊆ [s], and is quite possibly a proper subset:
vij could be a low degree vertex, and we may also have vij = ⊥ for some i ∈ [s]. Also note that (vi<j)i∈[s], the
set of the first j − 1 vertices traversed by the constructed walks, is a function of Fj (see Definition 4.4), and in
particular I also is.

We now modify the sampling of edges incident on high degree vertices in the invocation of
SamplesWithResetHybrid(k, ε, s, j) to avoid E∗

j , and bound the corresponding loss in total variation distance.

Observe that for every choice of Fj for every i ∈ I,
∣∣δ(vij−1) ∩ E∗

j

∣∣ ≤ sk, so the total variation distance between

the uniform distribution over δ(vij−1) and the uniform distribution over δ(vij−1) \ E∗
j is bounded by sk/n1/4.

Define (xi
j)i∈[s] to match ũi

j for i /∈ I, and for i ∈ I to be sampled from U(δ(vij−1) \E∗
j as opposed to U(δ(vij−1))

in line 10 in the jth step of SamplesWithResetHybrid(k, ε, s, j), so TV ((ũi
j)i∈[s], (x

i
j−1)i∈[s]) ≤ O(s2k ·n−1/4).

We now perform a similar modification to the edges sampled by high degree vertices at the jth step in the
invocation of SamplesWithResetHybrid(k, ε, s, j − 1). Let H̃i

j = Hi
j \ E∗

j .

By Lemma 4.8, with 1− n−2 probability we have both

(4.13) (1− n−1/9)η · d(vij−1) ≤ |Hi
j | ≤ (1 + n−1/9)η · d(vij−1).

and

(4.14) (1− n−1/9)η · d(vij−1) ≤ |H̃i
j | ≤ (1 + n−1/9)η · d(vij−1).

for every i ∈ I.
Conditioned on this high probability event EH , we have using (4.13) and (4.14) that for every choice of Fj

for every i ∈ I the total variation distance between the uniform distribution over Hi
j and the uniform distribution

over H̃i
j is bounded by O(n−1/9). Therefore we can define (yij)i∈[s] to match ui

j for i /∈ I, and for i ∈ I to sample

from U(H̃i
j) as opposed to U(Hi

j) in line 10 in the jth step of SamplesWithResetHybrid(k, ε, s, j − 1). This

satisfies dTV ((u
i
j)i∈[s], (y

i
j)i∈[s]) ≤ O(sn−1/9).

Now, (xi
j)i∈[s] and (yij)i∈[s] are identically distributed conditioned on Fj and EH . To see this, note that

SamplesWithResetHybrid(k, ε, s, j − 1) and SamplesWithResetHybrid(k, ε, s, j) behave identically for

i /∈ I. For i ∈ I, xi
j ∼ U(δ(vij−1) \E∗

j) and yij ∼ U(H̃i
j), both independently of the algorithms’ behavior on i′ 6= i.

Copyright © 2022 by National Technology
& Engineering Solutions of Sandia, LLC

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/2

9
/2

2
 t

o
 2

4
.2

4
3
.1

5
5
.1

3
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Since H̃i
j is a random binomial sample of δ(vij−1) \ E∗

j , yij is also uniform over δ(vij−1) \ E∗
j conditioned on |H̃i

j |,
as long as H̃i

j 6= ∅; thus it is conditioned on EH .

As a result, the outputs of the unmodified calls to SamplesWithResetHybrid(k, ε, s, j − 1) and
SamplesWithResetHybrid(k, ε, s, j) are O(s2kn−1/4 + n−2 + sn−1/9) = O(sn−1/9) close in total variation
distance.

Lemma 4.10. For j ∈ [k], if (vij)i∈[s] denote the vertices sampled by SamplesWithResetHybrid(k, ε, s, j − 1)

at step j, and (ṽij)i∈[s] denote the vertices sampled by SamplesWithResetHybrid(k, ε, s, j) at step j, then for

every Fj the total variation distance between (vij)i∈[s] and (ṽij)i∈[s] is bounded by O(sn−1/9).

Proof. By Lemma 4.9, the distribution of vertices collected in step j is O(sn−1/9) close in total variation distance.
Therefore it suffices to show that the rejection sampling is similarly close.

We condition on Fj . Let (ui
j)i∈[s] denote the vertices collected by SamplesWithResetHybrid(k, ε, s, j−1)

at step j, and (ũi
j)i∈[s] denote the vertices collected by SamplesWithResetHybrid(k, ε, s, j) at step j. By

Lemma 4.9 the total variation distance between (ui
j)i∈[s] and (ũi

j)i∈[s] is bounded by O(sn−1/9). In what follows
we analyze the rejection sampling step in line 24 of WalkFromTemplateHybrid. We show that the fact that the
degrees of vertices in V \L are estimated using their actual degrees (in line 21 of WalkFromTemplateHybrid)
as opposed to using the stream (in line 17 of WalkFromTemplate) leads to only O(s · n−1/9) contribution to
total variation distance.

We note that degree estimates computed for vertices in L (i.e., low degree vertices) are the same in both
invocations of SamplesWithResetHybrid, and consider vertices in V \ L, i.e. high degree vertices. Let
u = ui

j−1 for some i ∈ [s], and suppose that u ∈ V \ L.

Define

λ =

j−1∏

g=1

min

(
η

γg d̂
j

g−1

, 1

)

min

(
η

γg d̂
j−1
g−1

, 1

) .

Since d̂j−1
g−1 ≤ d̂jg−1, λ ≤ 1. The probability that u is accepted by the rejection sampling is

αj

αj−1
= λmin

(
η

γj d̂
j
j−1

, 1

)
.

The only difference in the rejection sampling between the two executions is that γj and d̂jj−1 are different. Let

γj , d̃
j
j−1 be the values in the j∗ = j − 1 case, and γ̃j =

1
d(u) ,

̂̃
d
j

j−1 = (1− kη)d(u) be the values these take in the

j∗ = j case. The total variation incurred by this change in rejection sampling probability is thus

δ ≤

∣∣∣∣∣∣∣
λmin

(
η

γj d̂
j
j−1

, 1

)
− λmin




η

γ̃j
̂̃
d
j

j−1

, 1




∣∣∣∣∣∣∣

≤ λ

∣∣∣∣∣
η

γj d̂
j
j−1

− η

(1− ηk)

∣∣∣∣∣

≤
∣∣∣∣∣
|Hj |
d̂jj−1

− η

(1− ηk)

∣∣∣∣∣ .

Now, by Lemma 4.8, conditioned on Fj with at least 1− n−2 probability we have

|Hj | ∈ (1± n−1/9)ηd(u)

Copyright © 2022 by National Technology
& Engineering Solutions of Sandia, LLC

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/2

9
/2

2
 t

o
 2

4
.2

4
3
.1

5
5
.1

3
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

and

d̂jj−1 ∈ (1± n−1/9)(1− kη)d(u)

so that

δ ≤ η

(1− ηk)
·
(
1 + n−1/9

1− n−1/9
− 1

)
= O(η/n1/9).

The net result is that every high degree vertex u has a rejection sampling step that is O(n−1/9) close in the two
cases. This means that all s rejection sampling steps are O(sn−1/9) close in the two cases. Combining with with
the collection being close (Lemma 4.9) gives the result.

Proof of Lemma 4.1: We use induction on Lemma 4.10. The result follows by noting that SamplesWith-
Reset(k, ε, s) is the same as SamplesWithResetHybrid(k, ε, s, 0) and applying triangle inequality for total
variation distance, to get a total variation distance of O(skn−1/9) ≤ O(sn−1/10) for k = O(log n).

4.3 Near-Independence of Hybrid Algorithm To establish the near-independence of our walks, we
compare the output distribution of SamplesWithResetHybrid(k, ε, s, k) run on a random order stream σ
to the output of an auxiliary version of SamplesWithResetHybrid(k, ε, s, k), in which the invocations of
WalkFromTemplateHybrid(vi0, π

i, k, η, k) are run on independent streams σ̃i.

Let ~v denote the s partial walks sampled (see Definition 4.2) by WalkFromTemplateHybrid(vi0, π
i, k, η, k)

on stream σ, and let ~w denote the s partial walks that would be sampled if the s invocations each used their own
independent random streams (σ̃1, . . . , σ̃n).

Definition 4.11. We say a collection of (partial) walks ~w is “well-separated” if for all w,w′ ∈ ~w we have
Ψ(w) ∩Ψ(w′) = ∅.

Well-separatedness is equivalent to the conditions:

• No vertex in L is visited in more than one walk.

• No pair of adjacent vertices in L is visited in more than one walk.

Lemma 4.12. ~w is well-separated with 1−O(k · n−1/11) probability.

Proof. By induction on Lemma 4.10, the distribution of walks generated by SamplesWithResetHy-
brid(k, ε, 1, k) and SamplesWithResetHybrid(k, ε, 1, 0) are O(kn−1/9) close in total variation distance. There-
fore it suffices to show this lemma for for ~w drawn from s calls to WalkFromTemplateHybrid(vi0, π

i, k, η, 0)
on independent random streams, i.e. j∗ = 0 rather than j∗ = k.

Let pj(u) = Pr[wi
j = u] be the marginal probability of sampling vertex u in step j, which is independent and

identically distributed over i ∈ [s]. By Lemma 4.6, pj(u) ≤ d(u)/n for all u and j.

Consider any j, j′ ∈ [k] and distinct i, i′ ∈ [s]. For any fixed u ∈ L, the probability that wi
j = u = wi′

j′ is

pj(u)
2 ≤ d(u)2/n2 ≤ 1/n3/2. Taking a union bound over (sk)2 choices of (i, j, i′, j′) and n of u, the chance that

any vertex in L is visited in more than one walk is at most (sk)2/n1/2.

For any fixed edge (u, v) ∈ (L×L)∩E, the probability that wi
j = u and wi′

j′ = v is at most pj(u)pj(v) ≤ 1/n3/2.

Taking a union bound over the n · n1/4 total edges out of vertices in L, the chance this ever happens is at most
(sk)2/n1/4.

When ~w is well-separated, the edges whose timestamps are looked at by WalkFromTemplateHy-
brid(vi0, π

i, k, η, k) are different across each invocation i ∈ [s]. This lets us couple the independent streams
case to the dependent streams case.

Copyright © 2022 by National Technology
& Engineering Solutions of Sandia, LLC

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/2

9
/2

2
 t

o
 2

4
.2

4
3
.1

5
5
.1

3
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Lemma 4.13. Assuming (P1), (P2) and s ≤ n1/30, for every input graph G

dTV (~w, ~v) ≤ n−1/12

Proof. We partition the internal randomness used by SamplesWithResetHybrid into s disjoint independent
random strings R1, . . . , Rs, such that for every i ∈ [s] the ith invocation of WalkFromTemplateHybrid uses
string Ri.

Note that the behavior of the ith invocation of WalkFromTemplateHybrid is fully determined by its
randomness Ri and by the timestamps of edges in Ψ(wi) (the low-degree vertices; see Definition 4.3). Given these
timestamps, WalkFromTemplateHybrid is invariant under other changes to the stream.

Let E denote the event that the independent walk case ~w is “well-separated”, meaning the Ψ(wi) do not
overlap. Per Lemma 4.12, E holds with 1−O(kn−1/11) probability. When E holds, we can “couple” the independent
stream result ~w to the single stream result ~v because each element ~vi depends on disjoint edges in the stream.
That is, we use the timestamps used by the independent walk algorithms to construct a single stream that
is both correctly distributed (all of its timestamps uniform and independent) such that, if every instance of
WalkFromTemplateHybrid was run on this stream, their executions would be identical to the executions of
the original independent copies of WalkFromTemplateHybrid whenever E holds.

We now give the details of coupling ~w and ~v under E . We construct a distribution D of a single stream and
internal randomness (σ,R) from (σ̃i, Ri)i∈[s]), such that the marginal distribution of (σ,R) is that of the stream
and randomness underlying ~v, and so that, if the stream and randomness underling ~v is set to be (σ,R), ~w = ~v
whenever E holds.

Given the independent streams (σ̃i)i∈[s], we can construct the dependent instance (σ,R) as follows. We set

R = R̃, and just need to fix the timestamps of edges in σ. For each edge f ∈ E, we say that an edge f ∈ E is
covered by i ∈ [s] if f ∈ Ψ(wi). For f ∈ E, let tf be the timestamp of f in σ and t̃if be the timestamp of f in σ̃i.
We set

(4.15) tf =

{
t̃if if i is the smallest that covers f

U [0, 1] if f is not covered by any i ∈ [s].

Note that the resulting distribution of (tf)f∈E is indeed a product of uniform distributions over [0, 1]. Indeed, one
can think of (tf)f∈E using the principle of deferred decisions: starting with v10 , we run WalkFromTemplate-
Hybrid from v10 , sampling timestamps of edges as soon as they are needed, and then proceeding for v20 , v

3
0 , . . . , v

s
0.

The first time the edge is covered by a walk, its timestamp is sampled from the uniform distribution, independently
of the other timestamps, as required.

It remains to note that conditioned on E for every f ∈ E there exists at most one i ∈ [s] such that f is covered
by i. Therefore, when E holds, the timestamps of Ψ(wi) are the same in σ and σ̃i. Since the randomness is also
the same, this means vi = wi for each i, or ~v = ~w. Since E occurs with probability 1 − kn−1/11, we have that
the two outputs match with probability 1− kn−1/11 > 1− n−1/12, as desired.

5 Proof of Theorem 1.3

We now give

Proof of Theorem 1.3:

Correctness. Let S = (v10 , . . . , v
s
0), where vi0 ∼ U(V) are chosen uniformly at random with replacement. We

consider four distribution on walks in our proof, which we define below.

Walks generated by SamplesWithReset on independent streams. Let σ1, . . . , σs be independent
random order streams. Let ~v∗ = (vi

∗)i∈[s] denote walks generated by SamplesWithReset(k, ε, s) (Algorithm 3),

where the ith walk is generated on σi.

Walks generated by SamplesWithResetHybrid on independent streams. Let σ1, . . . , σs be indepen-
dent random order streams. Let ~x = (xi)i∈[s] denote walks generated by SamplesWithResetHybrid(k, ε, s, k)

(Algorithm 6), where the ith walk is generated on σi.

Copyright © 2022 by National Technology
& Engineering Solutions of Sandia, LLC

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/2

9
/2

2
 t

o
 2

4
.2

4
3
.1

5
5
.1

3
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Walks generated by SamplesWithResetHybrid on a joint stream. Let ~y = (yi)i∈[s] denote walks
generated by SamplesWithResetHybrid(k, ε, s, k) (Algorithm 6), where every walk is generate on the same
stream σ.

Walks generated by SamplesWithReset on a joint stream. Let ~v = (vi)i∈[s] denote walks generated
by SamplesWithReset(k, ε, s) (Algorithm 3), where every walk is generate on the same stream σ.

Proof outline. Note that ~v is the random variable that we obtain from our random order streaming
algorithm SamplesWithReset. We first show that it is close in distribution to ~v∗, and then show that the
distribution of ~v∗ is such that SimulateWalks has the desired property.

Step 1: showing that ~v∗ ≈ ~v. By Lemma 4.1,

dTV (~v, ~y) ≤ O(s · n−1/10)

Second, by Lemma 4.13,

dTV (~y, ~x) ≤ n−1/12.

Third, by Lemma 4.1 invoked with s = 1 applied to each independent stream, together with triangle inequality
for total variation distance, we have

dTV (~x, ~v∗) ≤
s∑

i=1

dTV (x
i,vi

∗) ≤ O(s · n−1/10).

Indeed, running SamplesWithReset (respectively SamplesWithResetHybrid) with every internal invoca-
tion of WalkFromTemplate using a separate stream is equivalent to a concatenation of independent instances of
SamplesWithReset (respectively SamplesWithResetHybrid) with s = 1. Combining these three equations,
the triangle inequality gives

dTV (~v, ~v∗) ≤ O(sn−1/10) + n−1/12 < n−1/100

for sufficiently large n, which it will be when c′ is sufficiently small, as
√
c′ log n ≥ 1.

Step 2: verifying preconditions of Lemma 4.1 and Lemma 4.13. We now verify that (P1) and (P2)
hold. Let the constants c, C > 0 be the ones chosen in Lemma 3.1. First, (P1) is satisfied since

k ≤
√

c′ log n ≤ c log n/ log log n

for a sufficiently small constant c′ > 0 by assumption. The upper bound in (P2) is satisfied since

η = ε8 · 2−Ck ≤ 2−Ck

by the choice of η in Algorithm 3. The lower bound in (P2) is satisfied since

η = ε8 · 2−Ck ≥ n−1/101 · 2−Ck = n−1/101−o(1) ≥ n−1/100,

since ε ≥ n−1/1000 and 2Ck = 2O(
√
logn) = no(1) by the assumption on k. Furthermore, we have

s = b · (1/ε)O(k) · 2O(k2) ≤ n1/100 · 2O(c′ logn) ≤ n1/30

since b ≤ n1/100 by assumption of the theorem and

k ≤ min

{
c′ log n

log(1/ε)
,
√
c′ log n

}

for a sufficiently small c′ > 0 by assumption of the theorem.

Copyright © 2022 by National Technology
& Engineering Solutions of Sandia, LLC

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/2

9
/2

2
 t

o
 2

4
.2

4
3
.1

5
5
.1

3
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Step 3: showing that ~v∗ leads to the required distribution. The output of SimulateWalks
(Algorithm 4) is the first b successful walks from SamplesWithReset, which is (per step 1) n−1/100-close
to the first b successful walks from ~v∗, for s = b · 100η−k · k!.

For any fixed k-step walk w, let

p∗(w) :=
1

n

k−1∏

i=0

1

d(wi)

be the true probability that a k-step random walk from a uniform vertex equals w. By taking the average of
Corollary 3.2 over uniform initial vertices v, we have for any i ∈ [s] that

Pr[vi
∗ = w] ∈ [1, 1 +O(η1/7)] · η

k

k!
· p∗(w).

As a result,

Pr[vi
∗ = w | vi

∗ succeeds] ∈ [1, 1 +O(η1/7)] · p∗(w)(5.16)

and

Pr[vi
∗ succeeds] ≥ ηk

k!
.

By construction, the vi
∗ are independent across i ∈ [s]. We expect at least ηk

k! s = 100b repetitions to succeed, so by
a Chernoff bound at least a will succeed with at least 1−2−b probability. Therefore the output of SimulateWalks
is (n−1/100 + 2−b)-close to the distribution of a independent samples from (vi

∗ = w | vi
∗ succeeds). By (5.16),

each such sample is O(η1/7) < ε-close to a uniform random walk.

Step 4: space complexity. The expected space complexity of a single invocation of WalkFromTemplate
(Algorithm 5) is O(k), so the overall space complexity is (1/ε)O(k)2O(k2)b, as required.

6 Digraph Lower Bound

In this section, we prove that both sampling random walks and approximating the PageRank of a given vertex
set are hard in directed graph streams.

Theorem 6.1. For any constant ε < 1/4, the following holds for all k ≥ 3 and all n: there is a family of
directed graphs with no more than n vertices and edges such that any random order streaming algorithm that
ε-approximates the distribution of length-k random walks on graphs drawn from the family uses Ω(n) bits of space,
with a constant factor depending only on ε.

Theorem 6.2. Let α be a given (constant) reset probability for PageRank. For any constants ε < (1− α)3 − 1
2 ,

δ < 1/4, the following holds for all n: there is a family of directed graphs with no more than n vertices and
edges such that any random order streaming algorithm that returns a ε additive approximation to the PageRank
of vertex sets in these graphs with probability 1− δ uses Ω(n) bits of space, with a constant factor depending only
on α, ε, and δ.

We will prove these by a reduction from INDEXn. In this one-way communication problem Alice has a string
x ∈ {0, 1}n while Bob has an index I ∈ [n]. Alice must send Bob a message such that he can determine xI .
We will show that a uniform instance of this problem can be converted into a random graph stream such that
approximating the random walk distribution or the PageRank vector allows solving indexing.

The following is a well-known consequence of information theory—for completeness, we include a proof in
Appendix D.

Lemma 6.3. Let ε > 0 be any constant. Any protocol that solves INDEXn on a uniform input with probability
1/2 + ε requires Ω(n) communication in expectation.

Copyright © 2022 by National Technology
& Engineering Solutions of Sandia, LLC

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/2

9
/2

2
 t

o
 2

4
.2

4
3
.1

5
5
.1

3
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

6.1 Graph Distribution We start by defining a distribution on length-O(n) directed graph streams that Alice
and Bob can construct (with a prefix belonging to Alice and a postfix belonging to Bob, and interleaved edges
that they construct using shared randomness that are independent of their input) using their inputs to INDEXn.

We will show that the graph streams correspond to randomly choosing a graph and then uniformly permuting
its edges, and any algorithm that generates a distribution that is ε-close to either the random walk distribution
or the PageRank distribution for some constant ε < 1/4 will be able to use this to solve INDEXn.

Vertices. There will be βn vertices (ai)
βn
i=1 where β ∈ N>0 is a constant depending on ε, a single vertex b, n

vertices (ci)
n
i=1, and two pairs of vertices {d0, e0}, {d1, e1}. Every vertex in the graph will have a path to either

{d0, e0} or {d1, e1}, which will function as “sink” sets.

Fixed Edges. These edges will not depend on either player’s input. The players can use shared randomness
to insert them uniformly at random among their other edges.

They are (aib)
βn
i=1, i.e. a star of βn edges pointing into b and the four edges d0e0, e0d0, d1e1, and e1d1 (i.e.

meaning that each of {d0, e0} and {d1, e1} is a 2-vertex loop).

Alice’s edges. Let π be a uniformly random permutation of [n], and let J be drawn uniformly from
{0, . . . , n}. These will be used to define the boundary between Bob’s edges and Alice’s edges.

Recall that Alice’s input is a string x ∈ {0, 1}n. For each i ∈ [J], Alice has the edge cπ(i)dxπ(i)
, with cπ(1)dxπ(1)

first, cπ(2)dxπ(2)
second, and so on.

Bob’s edges Recall that Bob has the index I. His first edge will be bcI . Then, for each i ∈ {J + 1, . . . n},
he has the edge cπ(i)dyπ(i)

, where y is a random n-bit string.

Lemma 6.4. The graph stream described above is a uniformly random order graph stream.

Proof. Fix any value of Bob’s index I. If we were to randomly draw a string z ∈ {0, 1}n, randomly order edges
(cidzi)

n
i=1, and then insert bcI and then our fixed edges randomly in this stream, this would give a uniformly

random order graph stream (corresponding to drawing a graph from a fixed distribution and then randomly
permuting its edges).

But this would also be identically distributed to our graph stream, as the strings x and y are both drawn
uniformly at random from {0, 1}n. So we have a uniformly random graph stream.

Lemma 6.5. With probability 3/4, every vertex in (ai)
βn
i=1 has a length-3 path from it to {dxI

, exI
}, and (up to

prefixes) that is the only path out of that vertex.

Proof. Each has an edge to b, which has a single edge to cJ . With probability 1/2, π(I) ≤ J , and so the unique
edge out of cJ points to dxI

. Otherwise, it points to dyI
, which is dxI

with probability 1/2, as y is drawn at
random.

We will now prove that both the random walk distribution and the PageRank vector on this graph can be
used to determine the answer to INDEXn. Note that there are no vertices with out-degree 0 in this graph, so we
do not need to concern ourselves with what a random walk or the PageRank walk should do when encountering
such a vertex.

6.2 Random Walks

Lemma 6.6. Let A be any algorithm using S space such that, when given a sample from the distribution on graph
streams above, the output of A is ε-close in total variation distance to sampling a k-step random walk from a
random vertex in the graph given by the stream, where k ≥ 3. Then there is a protocol for INDEXn on uniform
inputs that uses S space and succeeds with probability 3/4− ε− 6/β.

Proof. The protocol will be as follows:

Copyright © 2022 by National Technology
& Engineering Solutions of Sandia, LLC

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/2

9
/2

2
 t

o
 2

4
.2

4
3
.1

5
5
.1

3
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

1. Alice and Bob use their INDEX input to construct a corresponding random graph stream.

2. Using S bits of communication from Alice to Bob, they run A on the stream.

3. If the walk output by A ends in {dz, ez} for z ∈ {0, 1}, Bob answers z. Otherwise he answers arbitrarily.

Now, by Lemma 6.5, with probability 3/4 any length-k random walk starting from a vertex in (ai)
βn
i=1 will reach

{dxI
, exI
}, and as that set has no out-edges it will stay there. The probability of starting at one of these vertices

is

βn

βn+ 1 + n+ 4
=

1

1 + 1/β + 5/nβ

=
1

1 + 6/β

≤ 1− 6/β

and so the probability that the distribution given by A ends in {dxI
, exI
} is at least

3/4− ε− 6/β

proving the correctness of the protocol. The construction of the stream itself is done entirely with public
randomness, so this gives an S bit public randomness protocol. As we are working with a fixed input distribution,
this means that there is also an S bit private randomness protocol, by fixing whichever set of public random bits
maximizes the probability of success over the uniform distribution.

We are now ready to prove Theorem 1.7.

Theorem 6.7. For any constant ε < 1/4, the following holds for all k ≥ 3 and all n: there is a family of
directed graphs with no more than n vertices and edges such that any random order streaming algorithm that
ε-approximates the distribution of length-k random walks on graphs drawn from the family uses Ω(n) bits of space,
with a constant factor depending only on ε.

Proof. Set β = 12
1/4−ε . Then, for each n, we can construct the family given by the stream distribution described

in section 6.1 from INDEXn′ , where n′ = Ω(n) while keeping the total number of vertices and edges below n. By
Lemma 6.6, any algorithm that ε-approximates the distribution of length-k random walks on graphs drawn from
this family gives a protocol for INDEXn′ that succeeds with probability

3/4− ε− 6/β = 1/2 +
1/4− ε

2

and so by Lemma 6.3 it uses Ω(n′) = Ω(n) space, where the constant depends only on ε and β. So as β depends
only on ε the result follows.

6.3 PageRank

Lemma 6.8. With probability at least 3/4 over the construction of the graph stream, the PageRank vector with
reset probability α has support at least (1− 6/β)(1− α)3 on {dxI

, exI
}.

Proof. Recall that the PageRank vector is the stationary distribution of the Markov chain in which each step is
a random walk step with probability (1 − α) and a jump to a uniformly random vertex with probability α. By
Lemma 6.5, with probability 3/4 over the graph generation process, every length-3 or greater walk from a vertex

in (ai)
βn
i=1 reaches {dxI

, exI
}, and as this set has no out-edges, it stays there.

Suppose this holds. Then starting from any point, after k ≥ 3 steps on the chain, sufficient criteria to be in
{dxI

, exI
} are that

Copyright © 2022 by National Technology
& Engineering Solutions of Sandia, LLC

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/2

9
/2

2
 t

o
 2

4
.2

4
3
.1

5
5
.1

3
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

(1) There has been at least one jump, but not in the last 3 steps.

(2) That jump went to a vector in (ai)
βn
i=1.

Criterion (1) will hold with probability at least

(1− (1− α)k−3)(1− α)3

which converges to (1 − α)3 as k → ∞. Conditioned on this, criterion (2) will hold with probability
βn

βn+1+n+2 ≥ 1 − 6/β. So as k → ∞, the probability that a walk on the chain is in {dxI
, exI
} converges to

at least
(1− 6/β)(1− α)3

completing the proof.

Lemma 6.9. Let A be any algorithm using S space such that, when given a sample from the distribution on graph
streams above, it with probability 1 − δ outputs an ε-additive approximation to the PageRank of the set {d0, e0}
with reset probability α, where ε < (1 − 6/β)(1 − α)3 − 1/2. Then there is a protocol for INDEXn on uniform
inputs that uses S space and succeeds with probability 3/4− δ.

Proof. The protocol will be as follows:

1. Alice and Bob use their INDEX input to construct a corresponding random graph stream.

2. Using S bits of communication from Alice to Bob, they run A on the stream, estimating the PageRank of
{d0, e0}.

3. If the sample output by A is at least 1/2, Bob outputs 0. Otherwise he outputs 1.

Now, by Lemma 6.8, with probability 3/4, the PageRank vector of the graph has support at least

(1− 6/β)(1− α)3

on {dxI
, exI
} and so with probability 3/4− δ, the algorithm will report the correct answer.

The construction of the stream itself is done entirely with public randomness, so this gives an S bit public
randomness protocol. As we are working with a fixed input distribution, this means that there is also an S bit
private randomness protocol, by fixing whichever set of public random bits maximizes the probability of success
over the uniform distribution.

We are now ready to prove Theorem 1.8.

Theorem 6.10. Let α be a given (constant) reset probability for PageRank. For any constants ε < (1−α)3 − 1
2 ,

δ < 1/4, the following holds for all n: there is a family of directed graphs with no more than n vertices and
edges such that any random order streaming algorithm that returns a ε additive approximation to the PageRank
of vertex sets in these graphs with probability 1− δ uses Ω(n) bits of space, with a constant factor depending only
on α, ε, and δ.

Proof. Set β = 12
(1−α)3− 1

2−ε
. Then, for each n, we can construct the family given by the stream distribution

described in section 6.1 from INDEXn′ , where n′ = Ω(n) while keeping the total number of vertices and edges
below n. By Lemma 6.9, as

(1− 6/β)(1− α)3 − 1/2 ≥ (1− α)3 − 6/β − 1/2 ≥ 1

2
((1− α)3 − 1/2 + ε) > ε

this gives a protocol for INDEXn′ that succeeds with probability

3/4− δ > 1/2

and so by Lemma 6.3 it uses Ω(n′) = Ω(n) space, where the constant depends only on α, ε, and β. So as β
depends only on α and ε the result follows.

Copyright © 2022 by National Technology
& Engineering Solutions of Sandia, LLC

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/2

9
/2

2
 t

o
 2

4
.2

4
3
.1

5
5
.1

3
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Acknowledgements

Michael Kapralov was supported by ERC Starting Grant 759471.

John Kallaugher and Eric Price were supported by NSF Award CCF-1751040 (CAREER).

John was also supported by Laboratory Directed Research and Development program at Sandia National
Laboratories, a multimission laboratory managed and operated by National Technology and Engineering Solutions
of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of
Energy’s National Nuclear Security Administration under contract DE-NA-0003525. Also supported by the U.S.
Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Accelerated Research
in Quantum Computing program.

References

[ACL06] Reid Andersen, Fan R. K. Chung, and Kevin J. Lang. Local graph partitioning using pagerank vectors. In
47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), 21-24 October 2006, Berkeley,
California, USA, Proceedings, pages 475–486. IEEE Computer Society, 2006.

[AMS96] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the frequency moments. In
Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania,
USA, May 22-24, 1996, pages 20–29. ACM, 1996.

[AP09] Reid Andersen and Yuval Peres. Finding sparse cuts locally using evolving sets. In Proceedings of the 41st Annual
ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 235–244.
ACM, 2009.

[BLM13] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration Inequalities - A Nonasymptotic Theory
of Independence. Oxford University Press, 2013.

[CCM16] Amit Chakrabarti, Graham Cormode, and Andrew McGregor. Robust lower bounds for communication and
stream computation. Theory of Computing, 12(10):1–35, 2016.

[CJMM17] Graham Cormode, Hossein Jowhari, Morteza Monemizadeh, and S. Muthukrishnan. The sparse awakens:
Streaming algorithms for matching size estimation in sparse graphs. In 25th Annual European Symposium on
Algorithms, ESA 2017, September 4-6, 2017, Vienna, Austria, volume 87 of LIPIcs, pages 29:1–29:15. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

[CKKP21] Ashish Chiplunkar, John Kallaugher, Michael Kapralov, and Eric Price. Approximating local graph structure
in almost random order streams, 2021.

[CKP+21] Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, Zhao Song, and Huacheng Yu. Near-optimal
two-pass streaming algorithm for sampling random walks over directed graphs. In 48th International Colloquium on
Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference),
volume 198 of LIPIcs, pages 52:1–52:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[COP03] Moses Charikar, Liadan O’Callaghan, and Rina Panigrahy. Better streaming algorithms for clustering problems.
In Proceedings of the 35th Annual ACM Symposium on Theory of Computing, June 9-11, 2003, San Diego, CA, USA,
pages 30–39. ACM, 2003.

[CT91] Thomas M. Cover and Joy A. Thomas. Elements of information theory. Wiley series in telecommunications. Wiley,
New York, 1991.

[DN03] Herbert A. David and Haikady N. Nagaraja. Order Statistics. John Wiley, Hoboken, N.J, 3rd ed. edition, 2003.
[FKM+04] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. On graph problems

in a semi-streaming model. In Automata, Languages and Programming: 31st International Colloquium, ICALP 2004,
Turku, Finland, July 12-16, 2004. Proceedings, volume 3142 of Lecture Notes in Computer Science, pages 531–543.
Springer, 2004.

[Jin19] Ce Jin. Simulating random walks on graphs in the streaming model. In 10th Innovations in Theoretical Computer
Science Conference, ITCS 2019, January 10-12, 2019, San Diego, California, USA, volume 124 of LIPIcs, pages
46:1–46:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[KKS14] Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Approximating matching size from random streams.
In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland,
Oregon, USA, January 5-7, 2014, pages 734–751. SIAM, 2014.

[KMNT20] Michael Kapralov, Slobodan Mitrovic, Ashkan Norouzi-Fard, and Jakab Tardos. Space efficient approximation
to maximum matching size from uniform edge samples. In Proceedings of the 2020 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 1753–1772. SIAM, 2020.

Copyright © 2022 by National Technology
& Engineering Solutions of Sandia, LLC

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/2

9
/2

2
 t

o
 2

4
.2

4
3
.1

5
5
.1

3
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

[MMPS17] Morteza Monemizadeh, S. Muthukrishnan, Pan Peng, and Christian Sohler. Testable bounded degree
graph properties are random order streamable. In 44th International Colloquium on Automata, Languages, and
Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 131:1–131:14. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

[PS18] Pan Peng and Christian Sohler. Estimating graph parameters from random order streams. In Proceedings of
the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’18, page 2449–2466, USA, 2018.
Society for Industrial and Applied Mathematics.

[SGP11] Atish Das Sarma, Sreenivas Gollapudi, and Rina Panigrahy. Estimating pagerank on graph streams. J. ACM,
58(3):13:1–13:19, 2011.

[ST13] Daniel A. Spielman and Shang-Hua Teng. A local clustering algorithm for massive graphs and its application to
nearly linear time graph partitioning. SIAM J. Comput., 42(1):1–26, 2013.

Copyright © 2022 by National Technology
& Engineering Solutions of Sandia, LLC

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/2

9
/2

2
 t

o
 2

4
.2

4
3
.1

5
5
.1

3
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

A Omitted Proofs of Technical Results

Claim A.1. Let v ∈ V be chosen uniformly at random in a graph with no isolated vertices. Then for every u ∈ V
and k ≥ 0 one has Ev∼U(V)[p

k
v(u)] ≤ d(u)/n.

Proof. The base case is given by k = 0: we have Ev∼U(V)[p
k
v(u)] = 1/n ≤ d(u)/n. The inductive step is given by:

E
v∼U(V)

[
pk+1
v (u)

]
=

∑

w∈δ(u)

1

d(w)
E

v∼U(v)

[
pkv(w)

]

≤
∑

w∈δ(u)

1

d(w)
· d(w)

n

=
d(u)

n
.

We will require Bennett’s inequality.

Theorem A.2. (Bennett’s inequality, Theorem 2.9 in [BLM13]) Let X1, . . . , Xn be independent random
variables with finite variance such that Xi ≤ b for some b > 0 almost surely for all i ∈ [n]. Let

S =
∑

i∈[n]

(Xi − E[Xi])

and let v =
∑

i∈[n] E[X
2
i]. Then for any t > 0

Pr[S ≥ t] ≤ exp

(
− v

b2
h

(
bt

v

))
,

where h(u) = (1 + u) ln(1 + u)− u for u > 0.

In applying Bennett’s inequality, we will need the following two properties of h:

Claim A.3. The function v · h
(
1
v

)
is monotone decreasing in v, where h(u) = (1 + u) ln(1 + u)− u for u > 0.

Proof.

d

dv

(
v · h

(
1

v

))
=

d

dv

(
v ·
[(

1 +
1

v

)
ln

(
1 +

1

v

)
− 1

v

])

=
d

dv

(
(v + 1) ln

(
1 +

1

v

)
− 1

)

=
d

dv
((v + 1)(ln(v + 1)− ln v)− 1)

= ln (v + 1)− ln v + 1− 1− 1/v

= ln (1 + 1/v)− 1/v

≤ 0

since ln(1 + x) ≤ x for all x ∈ (−1,+∞).

Claim A.4. For every u ≥ 0 one has h(u) = (1 + u) ln(1 + u)− u ≥ 1
2u lnu.

Copyright © 2022 by National Technology
& Engineering Solutions of Sandia, LLC

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/2

9
/2

2
 t

o
 2

4
.2

4
3
.1

5
5
.1

3
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Proof. When u = 0 both sides are equal, so it will suffice to verify that

d

du

(
(1 + u) ln(1 + u)− u− 1

2
u lnu

)
= −1

2
− 1

2
lnu+ ln(1 + u),

is nonnegative for all u ≥ 0. The latter claim can be verified by observing that the function on the rhs above goes
to +∞ as u→ 0+ and as u→ +∞, and its derivative

d

du

(
−1

2
− 1

2
lnu+ ln(1 + u)

)
= − 1

2u
+

1

1 + u

has exactly one zero at u = 1, where h(u) is positive: − 1
2 − 1

2 lnu+ ln(1 + u)
∣∣
u=1

= − 1
2 + ln 2 > 0.

Lemma A.5. Let Y =
∑

i αiXi, where αi ∈ {0, 1} and Xi ∼ Ber(η) are independent for some η ∈ (0, 1/50).
Then for every d ≥∑i αi

Pr[Y ≥ d/2] ≤ (3η)d/5.

Proof. We have αiXi ≤ 1 with probability 1, and

v =
∑

i

E[(αiXi)
2] ≤

∑

i

E[αiXi] = ηd.

Noting that the function vh(xv) is monotone decreasing in v for any x ≥ 0 (by applying Claim A.3 after rescaling
v), we get, letting t = (1/2− η)d in Bennett’s inequality (Theorem A.2) with b = 1, t = (1/2− η)d, and v,

Pr

[
∑

i

αiXi ≥ d/2

]
= Pr

[
∑

i

αiXi − E[αiXi] ≥ (1/2− η)d

]

≤ exp

(
−v · h

(
(1/2− η)d

v

))

≤ exp

(
−ηd · h

(
(1/2− η)d

ηd

))

= exp

(
−ηd · h

(
1/2− η

η

))

Noting that h(u) ≥ 1
2u lnu for all u ≥ 0 by Claim A.4, we get

Pr [Y ≥ d/2] ≤ exp

(
−1

2
ηd · 1/2− η

η
· ln ((1/2− η)/η)

)

≤ exp (−(d/5) · ln(1/3η))
≤ (3η)d/5

Lemma A.6. Let E1, . . . , Ek, Z1, . . . , Zk be arbitrarily correlated random variables. Let η̃ ∈ (0, e−5k) and the
positive integers (qi)

k
i=1 be such that, for all i ∈ [k], Ei ∈ {0, 1}, E[Ei] ≤ η̃qi/5, Zi ∈ [0, 1], and E[Zi] ≤ η̃. Then

E

[
k∏

i=1

(1 + Zi + qiEi)

]
≤ 1 + 3kη̃1/5.

Proof. We expand the product and show that each monomial is small in expectation. There are 3k terms, each
of the form

E


∏

i∈S1

Zi

∏

j∈S2

qjEj




Copyright © 2022 by National Technology
& Engineering Solutions of Sandia, LLC

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/2

9
/2

2
 t

o
 2

4
.2

4
3
.1

5
5
.1

3
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

for disjoint sets S1, S2 ⊆ [k]. First, S1 = S2 = ∅ corresponds to the leading 1 term. Next, when S1 6= ∅ but
S2 = ∅, we have for any i∗ ∈ S1 that

E


Zi∗ ·

∏

i∈S1\{i∗}
Zi


 ≤ E[Zi∗] = η̃.

Finally, if S2 6= ∅, let j∗ ∈ S2 be of maximal qj∗ , and define q = qj∗ . Then

E


∏

i∈S1

Zi

∏

j∈S2

qjEj


 ≤


∏

j∈S2

qj


Pr[Ej∗] ≤ qk · η̃q/5

We now upper bound the last term on the rhs. The function

f(q) = qk · η̃q/5

has, for all positive integers q,

f(q + 1)/f(q) = (1 + 1/q)kη̃1/5 ≤ 2kη̃1/5 < (e5kη̃)1/5 ≤ 1.

Therefore f(q) is maximized (over positive integers) when q = 1 and f(q) = η̃1/5. Therefore every term other
than the leading 1 is at most η̃1/5. There are 3k terms, giving the result.

B Generating Timestamps in the Stream

In this section we show how an algorithm can generate n timestamps in a streaming manner, corresponding to
drawing n uniform random variables from (0, 1) and then presenting each in order with poly(1/n) precision, using
O(log n) bits of space.

Let (Xi)
n
i=1 denote n variables drawn independently from U(0, 1) and then ordered so that Xi ≤ Xi+1 for all

i ∈ [n− 1]. By standard results on the order statistics (see e.g. page 17 of [DN03]), the distribution of (Xi)
n
i=j+1

depends only on Xj , and in particular they are distributed as drawing (n− j) samples from (Xj , 1).

So then, to generate (Xi)
n
i=1 with poly(1/n) precision in the stream it will suffice to, at each step i+ 1, use

Xi to generate Xi+1 (as sampling from the minimum of k random variables to poly(1/n) precision can be done
in O(log n) space). We will only need to store one previous variable at a time, to poly(1/n) precision, and so this
algorithm will require only O(log n) space.

C Proofs of Corollary 1.5 and Corollary 1.6

Proof of Corollary 1.5: By Theorem 1.3 the output of SamplesWithReset is 2−Ω(D)-close in total variation
distance to a samples of ε-approximate samples of the k-step walk in G. We first analyze the algorithm assuming
full independence of (vi)i∈[a]. Under this assumption we have

(1−O(ε)) · rp(G) ≤ E
v
i [vik = vi0] ≤ (1 +O(ε)) · rp(G),

and get by Chebyshev’s inequality, using that a = D
ε2 for a sufficiently large constant D > 0,

Pr



∣∣∣∣∣∣
1

a

∑

i∈[a]

I[vik = vi0]− rp(G)

∣∣∣∣∣∣
> ε


 ≤ 99/100.

Since the true (vi)i∈[a] are 2−Ω(D)-close to independent, the success probability is lower bounded by 9/10 as long
as D is larger than an absolute constant, as required.

Proof of Corollary 1.6: We assume that the walks output by the invocation of ApproxPageR-
ank(Algorithm 2) are independent, and account for the 2−Ω(D) additional term in the failure probability due
to the total variation distance to independence at the end of the proof.

Copyright © 2022 by National Technology
& Engineering Solutions of Sandia, LLC

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/2

9
/2

2
 t

o
 2

4
.2

4
3
.1

5
5
.1

3
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Define the truncated PageRank vector p̄α by

p̄α =

d 2
α

log 1/εe∑

k=0

α(1− α)kMk · 1
n
,

and note that under the full independence assumption of the walks we get that the estimator p̂ computed by
Algorithm 2 satisfies

E[p̂] = p̄α(T).

We thus get by Chebyshev’s inequality, using that a = D
ε2 for a sufficiently large constant D > 0,

Pr [|p̂− p̄α(T)| > ε/2] ≤ 99/100.

We now note that

|pα(T)− p̄α(T)| ≤ ‖pα − p̄α‖1

=

∥∥∥∥∥∥

∑

k> 2
α

log 1/ε

α(1− α)kMk · 1
n

∥∥∥∥∥∥
1

≤ (1− α)
2
α

log 1/ε

≤ ε/2

since ε < 1/2 by assumption of the corollary.

It remains to note that since the walks output by the invocation of ApproxPageRankare 2−Ω(D)-close
to independent, we have by combining the above two bounds that |p̂ − pα(T)| ≤ ε with probability at least
99/100− 2−Ω(D) ≥ 9/10 as long as D is larger than an absolute constant, as required.

Finally, we verify that the preconditions of Theorem 1.3 are satisfied. We invoke Theorem 1.3 with
k =

⌈
2
α log(1/ε)

⌉
. Letting c′ be the constant from Theorem 1.3, we get, using the assumption that ε = 2−o(

√
logn),

that

min

{
c′ log n

log(1/ε)
,
√

c′ log n

}
=
√
c′ log n.

Thus, using the assumption of the corollary that 1
α ≤

√
logn

4 log(1/ε) , we get

k =

⌈
2

α
log(1/ε)

⌉
≤
√

c′ log n,

as required.

D Proof of Lemma 6.3

In this section we give a proof of Lemma 6.3 through a standard information-theoretic argument. We will need
the following definitions and results from information theory (see, e.g. [CT91]).

For random variables X, Y , Z, with px = Pr[X = x], define

Entropy H(X) = EX [− log pX]. For p ∈ [0, 1] we write H(p) for the entropy of a Bernoulli random variable with
parameter p.

Conditional Entropy H(X|Y) = EY [EX [− log pX |Y]].

Mutual Information I(X;Y) = H(X)−H(X|Y) = H(Y)−H(Y |X)

Conditional Mutual Information I(X;Y |Z) = H(X|Z)−H(X|Y, Z)

Copyright © 2022 by National Technology
& Engineering Solutions of Sandia, LLC

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/2

9
/2

2
 t

o
 2

4
.2

4
3
.1

5
5
.1

3
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

We will use the fact that H(p) is concave and uniquely maximized at p = 1/2, the fact that I((Xi)
n
i=1;Y) =∑n

i=1 I(Xi;Y |(Xj)
i
j=1), and Fano’s data processing inequality.

Theorem D.1. (Fano’s inequality) Let X, Y be discrete random variables, and Pe = Pr[g(Y) 6= X], where g
is some function on the support of Y and X is supported on X . Then

H(Pe) + Pe(log |X | − 1) ≥ H(X|Y)

Lemma D.2. Let ε > 0 be any constant. Any protocol that solves INDEXn on a uniform input with probability
1/2 + ε requires Ω(n) communication in expectation.

Proof. Suppose we had such a protocol. Then for each i ∈ [n], with X as xi, the ith bit of Alice’s input, and Y
as the message M she sends, and Pe as the probability that Bob gives the wrong answer when I = i, we have

H(Pe) ≥ H(X|Y)

as Xi is supported on two elements. So for each i ∈ [n], if pi is the probability Bob succeeds when I = i, we have

H(xi|M) ≤ H(1− pi) = H(pi)

Then, as the protocol succeeds with probability 1/2+ε, and Bob’s index I is uniform on [n], 1/2+ε =
∑n

i=1 pi,
so

I(x;M) =

n∑

i=1

I(xi;M |(xj)
i
j=1)

=

n∑

i=1

(
H(xi|(xj)

i
j=1)−H(xi|M, (xj)

i
j=1))

)

=

n∑

i=1

(
1−H(xi|M, (xj)

i
j=1)

)
as the xi are independent

≥ n−
n∑

i=1

H(xi|M)

≥ n−
n∑

i=1

H(pi)

≥ n

(
1−H

(
n∑

i=1

pi

))
by concavity

= n(1−H(1/2 + ε))

= Ω(n)

as ε is a non-zero constant. So in particular H(M) = Ω(n) and so M is at least n bits on average.

E Lower Bound for Chosen Vertices

In this appendix, we prove that, if instead of sampling a walk from a randomly chosen vertex we need to sample a

walk from a chosen vertex, any algorithm that gives better than a 1/2−2−2−b k
2 c-approximation to the distribution

of length k ≥ 2 random walks on undirected graphs needs at least Ω(n) space.

Theorem E.1. For any constant ε < 1/4−2−2−b k
2 c, the following holds for all k ≥ 2 and all n: there is a family

of (undirected) graphs with n vertices and edges such that any algorithm that, when given a specified vertex v and
then the graph as a random order stream, ε-approximates the distribution of length-k random walks on graphs
drawn from the family uses Ω(n) bits of space, with a constant factor depending only on ε.

Copyright © 2022 by National Technology
& Engineering Solutions of Sandia, LLC

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/2

9
/2

2
 t

o
 2

4
.2

4
3
.1

5
5
.1

3
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

The proof will be a simplified version of the hardness proof for digraphs given in Section 6. We will prove that any
algorithm giving such an approximation gives a protocol solving INDEXn−3 on a random instance with probability
a constant factor greater than 1/4. We restate the lower bound on INDEXn here for convenience. Recall that for
INDEXn Alice’s input is a string x ∈ {0, 1}n, Bob’s an index I ∈ [n], and their objective is for Alice to send Bob
a message such that Bob can determine xI .

Lemma E.2. Let ε > 0 be any constant. Any protocol that solves INDEXn on a uniform input with probability
1/2 + ε requires Ω(n) communication in expectation.

E.1 Graph Distribution We start by defining a distribution on length-(n−3) undirected graph streams that
Alice and Bob can construct (with a prefix belonging to Alice and a postfix belonging to Bob) using their inputs
to INDEXn−3.

We will show that the graph streams correspond to randomly choosing a graph and then uniformly permuting
its edges, and any algorithm that generates a distribution that is ε-close to the distribution of walks starting at

a specified vertex for some constant ε < 1/4− 2−2−b k
2 c will be able to use this to solve INDEXn−3.

Vertices. There will be 1 vertex a, n − 3 vertices (bi)
n−3
i=1 , and two vertices c0, c1. a will be in a 2-edge

component with one of c0, c1.

Alice’s edges. Let π be a uniformly random permutation of [n], and let J be drawn uniformly from
{0, . . . , n}. These will be used to define the boundary between Bob’s edges and Alice’s edges.

Recall that Alice’s input is a string x ∈ {0, 1}n. For each i ∈ [J], Alice has the edge bπ(i)cxπ(i)
, with bπ(1)cxπ(1)

first, bπ(2)cxπ(2)
second, and so on.

Bob’s edges Recall that Bob has the index I. His first edge will be abI . Then, for each i ∈ {J + 1, . . . n},
he has the edge bπ(i)cyπ(i)

, where y is a random n-bit string.

Lemma E.3. The graph stream described above is a uniformly random order graph stream.

Proof. Fix any value of Bob’s index I. If we were to randomly draw a string z ∈ {0, 1}n, randomly order edges
(biczi)

n
i=1, and then insert abI randomly in this stream, this would give a uniformly random order graph stream

(corresponding to drawing a graph from a fixed distribution and then randomly permuting its edges).

But this would also be identically distributed to our graph stream, as the strings x and y are both drawn
uniformly at random from {0, 1}n. So we have a uniformly random graph stream.

Lemma E.4. With probability 3/4, a at one end of a 2-edge path with cxI
at the other end. Otherwise it is at one

end of a 2-edge path with cxI
at the other end.

Proof. There is an edge between a and bJ , and with probability 1/2, π(I) ≤ J , and so the only other edge incident
to bJ is incident to cxI

. Otherwise, it is incident to cyI
, which is cxI

with probability 1/2, as y is drawn at random.

We will now prove that the random walk distribution from a can be used to determine the answer to
INDEXn−3.

Lemma E.5. Let A be any algorithm using S space such that, when given a sample from the distribution on graph
streams above, the output of A is ε-close in total variation distance to sampling a k-step random walk from a,
where k ≥ 2. Then there is a protocol for INDEXn−3 on uniform inputs that uses S space and succeeds with

probability 3
4 − 2−2−b k

2 c − ε.

Proof. The protocol will be as follows:

1. Alice and Bob use their INDEX input to construct a corresponding random graph stream.

Copyright © 2022 by National Technology
& Engineering Solutions of Sandia, LLC

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/2

9
/2

2
 t

o
 2

4
.2

4
3
.1

5
5
.1

3
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

2. Using S bits of communication from Alice to Bob, they run A on the stream.

3. If the walk output by A ever reaches cb for some b ∈ {0, 1}, output i. Otherwise output a random b ∈ {0, 1}.

Now, by Lemma E.4, a is at one end of a 2-edge path with one of c0, c1 at the other end, and there is a 3/4 chance
it is cxI

. So there is a

1− 2−b k
2 c

probability any walk from a reaches a vertex in c0, c1. If the walk output by A does this the protocol succeeds with
probability 3/4 and otherwise it succeeds with probability 1/2. So the correct answer is returned with probability
at least

(1− 2−b k
2 c)3

4
+ (2−b k

2 c)1
2
− ε =

3

4
− 2−2−b k

2 c − ε

proving the correctness of the protocol. The construction of the stream itself is done entirely with public
randomness, so this gives an S bit public randomness protocol. As we are working with a fixed input distribution,
this means that there is also an S bit private randomness protocol, by fixing whichever set of public random bits
maximizes the probability of success over the uniform distribution.

This then proves Theorem E.1, as any algorithm that can output a constant ε < 1/4−2−2−b k
2 c approximation

to the random walk distribution will give a protocol for INDEXn−3 that works with a probability at least a constant
greater than 1/2.

Copyright © 2022 by National Technology
& Engineering Solutions of Sandia, LLC

Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/2

9
/2

2
 t

o
 2

4
.2

4
3
.1

5
5
.1

3
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

