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Abstract—Recommender systems have been widely used to pre-
dict users’ interests and filter information from a large number
of candidate items. However, accurately capturing the interests

Table I: Epistemic uncertainty and RMSE loss for two users
from Movielens 1M based on the number of interactions.

. . . . . . . UserID Interactions | Epistemic | RMSE
of users having limited interactions with a system remains 7515 o 035133 10345
a long-lasting challenge. Furthermore, existing recommender 4575 l64 0:6812 1:7038

systems primarily focus on predicting user preferences without
quantifying the prediction uncertainty. Uncertainty can help to
quantify the model confidence when making a recommendation
where low model confidence could serve as a more accurate
indicator of a user’s cold-start level than simply using the number
of interactions. We present a novel recommendation model that
seamlessly integrates a meta-learning module with an evidential
learning approach. The former module generalizes meta knowl-
edge to tackle cold-start recommendations by exploiting fast
adaptation. The latter quantifies both aleatoric and epistemic
uncertainty without performing expensive posterior inference.
Evidential learning achieves this by placing evidential priors and
treating the output of the meta-learning module as evidence-
based pseudo counts and learns a function to directly predict the
evidence of a target interaction. Experiments on four benchmark
datasets justify that our proposed model captures the uncertainty
of users and demonstrates its superior performance over the
state-of-the-art recommendation models.

I. INTRODUCTION

Recommender systems exploit data mining techniques and
prediction algorithms to predict users’ interest in products,
services, and information among a large number of available
items [1]. Commonly used approaches can be generally cat-
egorized as collaborative filtering-based, content-based, and
hybrid systems. Collaborative filtering methods recommend
items to the target users based on the similar taste of existing
users [2]. These methods mostly suffer from data sparsity that
leads to the cold-start problems (i.e., inability to handle new
users and/or items with limited interactions). Content-based
methods [3] address this issue by utilizing users’ demographic
information (e.g., age, gender, and location) and item content
(e.g., genres, directors, and actors of movies). While various
extra information is available for items, acquiring users’ per-
sonalized information is usually difficult due to privacy issues.
Hybrid models combine the benefits of both collaborative and
content-based systems but remain less effective to the cold-
start users/items.

Several recent works have attempted to address the cold-
start problem in recommender systems through meta-learning
[4], [5]. In particular, meta-learning models the cold-start rec-
ommendation as a few-short learning problem. By arranging
existing users’ item interaction history as the training tasks, it
learns a global meta-model that can adapt to users/items with

limited interactions with improved recommendation accuracy.
Most existing methods, including meta-learning models, use
the number of interactions as the primary factor to identify
cold-start users. However, they ignore the nature of the inter-
actions as not all the interactions are equally important for a
recommender system to construct an accurate (latent) profile
for users to provide effective recommendations. As certain
interactions can bring much higher value to the system than
others, it is essential to consider the value of the interactions
to most effectively tackle cold-start recommendations and
uncertainty provides an effective means to quantify such value
(as evidenced by our experimental results in SectionV-D).

Table I shows two example users from the Movielens dataset
with significantly different numbers of interactions. As can
be seen, the second user is much more active than the first
one, who has much fewer interactions and may be regarded
as cold-start. However, more interactions may not necessarily
lead to a more accurate recommendation result, which is
evidenced by a higher root mean squared error (RMSE) for
the second user. In fact, the larger recommendation error is
also reflected by a higher model (or epistemic) uncertainty.
This example, along with more illustrative examples provided
in our experiment section, helps confirm the distinct values of
different interactions further. It also implies the important role
of using uncertainty to quantify the model confidence when
making a recommendation that could indicate the cold-start
level of a user (i.e., how well the system knows the user).

In general, a recommender system’s prediction is very sen-
sitive to the observed user-item interactions, especially when
they are limited. Hence, a precise and calibrated uncertainty
estimation is useful for interpreting the model confidence in
cold-start recommendations. There are two common types of
uncertainty: aleatoric that captures the uncertainty introduced
by the noises in the data and epistemic that captures the
model uncertainty due to lack of understanding of the data
[6]. Aleatoric uncertainty can be directly estimated from
data and Bayesian models offer a natural way to capture
model uncertainty. Hence, Bayesian neural networks have
been commonly used to estimate the epistemic uncertainty of
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deep learning (DL) models. However, Bayesian DL models

usually conduct posterior inference through Monte Carlo (MC)

sampling, which poses a very high computational cost due to a

large number of parameters in a DL model and their complex

dependencies. Consequently, directly extending the current

DL-based recommender systems through Bayesian modeling

will prevent them from scaling to a large user-item space.
To address the above key challenges, we propose a meta

evidential learning model, referred to as MetaEDL, to provide
uncertainty-aware cold-start recommendations. By integrating

a meta-learning module with evidential learning, MetaEDL

is able to leverage all existing users’ historical interactions

to learn a global model that can easily and accurately adapt
to cold-start users with limited interactions. Furthermore,

we construct a hierarchical Bayesian model that provides a

generative process to model the likelihood of the user-item

interactions. Instead of performing an expensive posterior
inference, evidential learning is adopted to directly predict
the hyper-parameters of the posterior distributions of the
parameters in the likelihood function, using a non-Bayesian
deep neural network. These predicted hyperparameters have

a natural interpretation as pseudo counts, which can serve as

evidence to quantify the model confidence for its recommen-

dations. The main contribution of this paper is fourfold:

¢ A novel recommendation model that integrates meta-
learning and evidential learning to provide uncertainty-
aware cold-start recommendations.

« Bayesian posterior inference through evidential learning to
ensure good efficiency that allows a recommender system
to scale to a large user-item space.

« Using pseudo-count-based evidence that provides a deeper
insight to understand the value of different interactions
that is instrumental to provide effective uncertainty-aware
recommendations to cold-start users and accurately capture
their latent profile using limited but highly ‘informative’
interactions.

o An integrated end-to-end training process that optimizes the
embeddings and meta evidential learning modules.

We conduct extensive experiments over four real-world

datasets and compare with state-of-the-art models to demon-

strate the effectiveness of the proposed MetaEDL model.

II. RELATED WORK

Matrix Factorization. Matrix factorization (MF) based mod-
els utilize user and item latent factors [7] to make predictions.
Incorporating implicit information of users and items, the basic
MF method is extended into SVD++ [8]. Variations of these
models have also been applied to dynamic settings, including
timeSVD++ [9], dynamic Poisson Factorization (DPF) [10],
and collaborative Kalman Filter (CKF) [11].

Deep Learning Models. In recent years, deep learning-based
recommender systems [12], [13] are successfully proposed
due to their effective improvement over traditional methods.
DeepFM [13] which adapts deep learning with traditional
FM, integrates the power of deep learning and factorization

machines to learn low- and high-order feature interactions
simultaneously from the input. Cheng et al. [12] propose to
jointly train wide linear models and deep neural networks to
combine the benefits of memorization and generalization.

Graph-Based Models. Another popular line of recommenda-
tion systems is graph-based models. A graph captures high-
order user-item interactions through an iterative process to
provide effective recommendations [14]. Users and items are
represented as a bipartite graph in [15] and links are predicted
to provide recommendations.

Meta-learning. Meta-learning [16] is a few-shot learning
approach that learns from similar tasks and can generalize
quickly and efficiently for the unseen new tasks. The meta-
learning strategy introduced in [4] addresses the cold-start
problem in item recommendation. Similarly, recent works take
advantage of users’ and items’ side-information to generate
user and item embeddings and fed those embeddings to the
meta-learning to estimate user preferences [5].

Uncertainty in Recommender Systems. All the above meth-
ods primarily focus on personalized recommendation but lack
in handling uncertainty. Recently, Gaussian embedding-based
recommendation [17] attempts to capture user and item uncer-
tainty but does not measure model uncertainty. Our proposed
method not only provides an effective recommendation but
also measures both data and model uncertainty utilizing the
evidential learning approach [18].

III. PROBLEM FORMULATION

For a recommendation model, input data is represented as
{U,I}, where U is the user set and I is the item set. We
perform recommendation and uncertainty quantification for
each user with a recommendation function as:

feu,Eu,Ei (U, Z) = {'—Y(u,i)v V(u,i)s Cu,i)s ﬁ(u,i)} Yu € u7 1€

ey
where 7, is the recommended score for item i assigned
by user u, V(y;), and «(, ) are the model evidence, and
B(u,s) is a total uncertainty coming from both pseudo and
actual data samples (more details are provided along with the
meta evidential learning module) for user w on item ¢ and
all parameters are scalar quantities, #,, is user specific model
parameter; F,, and E; are user and item embedding module
parameters. The goal of a recommender system is to predict
the scores with confidence so that it can accurately capture a
user’s true preference on items in belief that the recommended
items are likely to be adopted by the user.

We formulate recommendations as a few-shot regression
problem in the meta-learning setting. Users are dynamically
partitioned into meta-train and meta-test sets. The meta-train
user set includes users with sufficient interactions, while the
meta-test user set includes cold-start users who have only a
few interactions. We consider a distribution over tasks P(7),
and each user is represented as a few-shot regression task 7,
sampled from the given task distribution. In general, a task
includes a support set S,, and a query set Q,,. The support
set includes a user’s K interactions where K is interpreted as
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Figure 1: Overview of the proposed model.

the number of shots (i.e., interactions). The query set includes
the rest interactions of this user.

: K
Tur~ P(T): Sy = {(u77’j)7r(ﬂ,i:j)}j:1
: N

Qu = {(t:15),7(ui) j=K 41

where N is the number of items a user interacted, and 7, ;,)
represents label (i.e., rating or count) from user u to item 7;.
We adopt episodic training [19], where the training task
mimics the test task for efficient meta-learning. The support
set S in each episode works as the labeled training set on
which the model is trained to minimize the loss over the query

set Q. This training process is iteratively carried out episode
by episode until convergence.

2

IV. META EVIDENTIAL LEARNING

The proposed model consists of two major components: an
embedding module and a meta evidential learning module,
as shown in Figure 1. The embedding module generates user
and item embeddings and is forwarded to the evidential meta-
learning module, where prediction and model evidence are
produced as a final output.

A. Embedding Module

We represent user u, and item ¢ in one hot encoding
considering unique user and item IDs: e, € R™ where n
is the total number of users and e; € R™ where m is the
total number of items respectively. This one hot vector is then
transformed using the embedding matrix E,, for user and F;
for item in d-dimension: z, = FE,e, and z; = FE;e;. The
embedding matrix is optimized along with the model training
process. We use gradient descent to update both users and item
embedding matrices:

Ey =By =&V, (L1, [fo, E..5])
Ei = Ei =&V, (L1, [fo,.5..8])
where ¢ is the step size, and L7, [fy, k., k] is an end-to-

end meta evidential user-specific loss and detail is given in
Equation (20).

3)

B. Meta Evidential Learning Module

We formulate the meta-learning module as a non-Bayesian
neural network to estimate a target interaction score and
its associated evidence to learn both aleatoric and epistemic
uncertainty. We accomplish this by placing evidential priors
over the original Gaussian likelihood function and training the

neural network to infer the hyperparameters of the evidential
distribution similar to [18]. The key intuition of employing
evidential learning in recommender systems is that it allows
us to assign evidence to the predicted interaction, where the
evidence can be used to formulate the prediction score while
capturing the model confidence.

A hierarchical Bayesian model. The recommendation prob-
lem is set up in such a way that the target (e.g., rating or count),
Un, 1s drawn i.i.d. from a Gaussian distribution with unknown
mean and variance (p1, 2). Model evidence can be introduced
by further placing a prior distribution on (i, o%), leading to a
hierarchical Bayesian model. To ensure conjugacy, we choose
a Gaussian prior on the unknown mean and an Inverse-Gamma
prior on the unknown variance:

p(ynlp, o) = N(p, %) 4)
p(uly, o’ v™") = N(y,0%v71) Q)
p(0?|a, ) = Inv-Gamma(a, ) (6)

where Inv-Gamma(z|a, 8) = F?Z) (%)QH exp(—g) with I'(.)
being a gamma function; v, v, , and 3 are parameters of the

corresponding prior distributions.

Interpreting hyper-parameters. Besides serving as the pa-
rameters of the corresponding prior distributions in the hi-
erarchical Bayesian model, the hyper-parameters (v, v, a, ()
offer very intuitive meanings, which set the stage to use
them in the proposed evidential learning model. The best
way to show this is to couple these prior distributions with
a set of actual observations, i.e, y = (y1,...,yn) . Given
the Gaussian likelihood in (4), we compute joint posterior
distribution p(u, 0?|y) factorized as p(uly,o?)p(c?|y). We
first derive the conditional posterior of p:

p(uly,0?) = N(yw, 0%) 7
v 1 N
= 8
N V+N7+N+Vn§yn (8)
2 2
2 o o
= = — 9
ON= TN n &)

where vy = v + N. From (8), we can see that the posterior
mean is the convex combination of the prior mean 7y and
the maximum likelihood estimation of the mean, given by
% 25:1 Yn. Similarly, the variance in the posterior distribu-
tion is v times smaller than the prior variance. As a result,
v can be interpreted as the ‘effective’ prior observations for
the prior mean . We continue to derive the posterior of o

p(02|y) = Inv-Gamma(ay, Bn) (10)
ay = o+ g (11)

| N
B :/3+§;(yn - p)? (12)

First, (11) shows that after observing N data samples, the prior

parameter « is increased by % to reach the posterior parameter

an. This has the effect of treating the prior hyper-parameter
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as 2« ‘effective’ prior observations of ‘pseudo’ data samples.
Similarly, by multiplying both sides of (12) by 2, we have

QﬂN—26+Z Yn — M

n=1

=28+ No2,  (13)

where 02,, denotes the maximum likelihood estimator of the
variance arising the from data samples (y1, ..., yn ). From this,
hyper-parameter 5 can be interpreted as the 2 total ‘prior’
variance arising from the corresponding 2« ‘effective’ prior
observations’ of ‘pseudo’ data samples.

Mapping hyper-parameters to evidence-based uncertainty.
The above analysis provides an intuitive interpretation of
key hyper-parameters introduced along with the prior distri-
butions in the hierarchical Bayesian model. This will help
to understand their key roles in defining different types of
uncertainties introduced next. In particular, since both v and
« are essentially the ‘effective’ prior observations, it is natural
to treat their posterior counterpart vy and ay as the evidence
to support (or suspect) a prediction given training samples
(y1,...,yn). Furthermore, Sy can be treated as the total
uncertainty that combines two sources of uncertainty: the prior
variance 8 from the pseudo samples and the variance 0'12\/[ ., of
the actually observed data samples.

We start defining the model prediction and uncertainty from
the data (referred to as aleatoric uncertainty) as

(14)

_ BN
_F)/N ) ay — 1
where both can be directly obtained as the mean from the
corresponding Gaussian and Inv-Gamma posteriors defined
in (7) and (10), respectively. It is interesting to see that the
uncertainty from the data is proportion to the total uncertainty
B and decreases with (both pseudo and actual) observations.
Next, we quantify the uncertainty of the model prediction
(referred to as epistemic uncertainty) by showing an important
relationship with the aleatoric uncertainty through the follow-

ing theorem.

Prediction: E[u] Aleatoric: E[0?]

Theorem 1. Given a hierarchical Bayesian model as specified
by (4)-(6) and a set of observed (training) data samples
(y1, ---, YN ), the epistemic uncertainty that quantifies the vari-
ance of the posterior mean (as the model prediction), given
by Var|u), is LN times of the aleatoric uncertainty:

E[o?] _ BN
UN VN(aN *1)

Varlu] = (15)

where vy is defined in (9).

Proof. First, note that we cannot directly use the variance
given by the posterior distribution in (7) as it is still condi-
tioned on o2. Since Var[u] is defined on the marginal posterior
p(ply), we need to further marginalize o, which gives

Var[u] = / / [12p(ulo?) = (Elu)?] p(o?)dpdo®

0.2
e e e

(16)
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where we omit the dependency on y to keep the notation
uncluttered. O

Now we define a loss function that is formed through the
evidence and total uncertainty parameters. Given an observed
score 1, ;) resulted from an interaction between user w and
item 4, we marginalize the likelihood parameters (y, 02), which
gives the marginal likelihood function

r(u %) "Y(u i) V(u i) X(u,i)y ﬁ(u z))
//N o DIG(au,iys Beuiy)dpdo®

=St <T(u,i); V(usi)s ) 2a(u,i)>

where IG is short for Inv-Gamma and St(.) is a student-t
distribution on target variable r(, ;) with respective location
and scale parameters.

We adopt an evidential loss, which utilizes the above
marginal likelihood while computing the predicted loss. This
includes the negative log-likelihood (LNEE([fy, g, E,]) to
maximize the marginal likelihood and an evidential regularizer
(LE[fo, E,.5,]) to impose a high penalty on the predicted
error with a low uncertainty (or a large confidence). We first
formulate the negative log-likelihood, given by

’Y(u,i)v o’

ﬁ(u,i)(l + Vi)

V(u,i) X (uyi)

a7

LN fo, B.m] =

—1og(P(7 (u,i) [ V(i) > Y,y Cusiy> Beusiy)
(18)
We formalize our own evidence regularizer, which considers
epistemic uncertainty to penalize confidently predicted errors.
We multiply the predicted error with the inverse epistemic un-
certainty that scales up the error when the predicted evidence
is high causing high inverse epistemic uncertainty and vice-
versa. Conversely, it will be less penalized if the prediction is
close to the target score:

Vi) (Q(ui) — 1))
Bui)
(19)
In the meta evidential setting, we compute the loss for a
specific user u, which can be formulated with user evidential
loss as:

LR fo, 5..5.] =I7 i) = Vui) | <

Z ‘C[fé)u,Eu,Ei, (uvi)}v

u, i~ Ty,
—llNLL[fe BB (u, 1))+

where A\; is a regularization parameter.

The total loss is formed by aggregating all users in the
meta-train set, regularized by the Lo norm of key model
parameters. Let 6, and € denote the local (i.e., user-specific)
and global parameters of the meta evidential learner. Training
the meta evidential learning as a recommendation model can
be formulated as the following optimization problem:

A
> ﬁn[feu,Eu,Ei]Jr?Qll@H%v

Tur~p(T)

0w =0 — VoL, (fo.E,.E)

LT, fo, B, E]=

Lfo. 5.5, (u,1)] (20

min
0

21)
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where 6, is one (or a few) gradient step updates from global
parameter 6 of the meta evidential learner with 7 being the
step size, and Ay is the regularization parameter.

We apply an optimization-based meta-learning approach
[20] to learn user specific factors, as shown in Figure 1. The
meta evidential learning consists of three fully connected linear
layers with ReLU activation in the first two, while the last
layer predicts ratings or count and its evidence. The input
to the meta evidential learning model is the concatenation
of user embedding (z,) and item embedding (z;) for each
user, i.e., (z,]|2;). For the meta evidential learning module, the
local update is done for the user-specific parameter, which is
achieved by one or more gradients from the global parameter:

0y =0 — VoL, [fo,E, E,] (22)

In this update, the loss function is computed with the support
set. Global update is done with the new item interactions of
each user from the query set:

0=0-¢Vg > Lylfo,E..5]
Tur~p(T)

(23)

This process will continues until it converges to a good global
parameter shared by all users.

V. EXPERIMENTS
A. Dataset Description

We evaluated our model on four public benchmark datasets.
Three are explicit datasets where users provide explicit ratings:
MovieLens 1M (1M explicit ratings made by 6,040 users on
3,900 distinct movies from 04/2000 to 02/2003), Netflix (6,042
users with their interaction history from 01/2002 to 12/2005),
and Book Crossing (751 users and their interacted books
in a 4-week span during August-September of 2004); and
one implicit dataset, where users have implicit interactions,
(captured by count): Last.fm-1K dataset (listening history for
nearly 1,000 users).

B. Baselines

For comparison, we include two matrix factorization based
deep learning models: DeepFM [13] and Wide & Deep [12],
one graph based model: GC-MC [15], and a meta-learning
based recommendation model: MeLU [5].

C. Results and Discussion

The experimental results for the proposed model and base-
lines are summarized in Table II. We compute the average
RMSE considering all users with the range of deviation for all
datasets: MovieLens 1M, Book Crossing, Netflix, and Last.fm,
respectively. The proposed model benefits from the meta-
learning module, and hence it can effectively handle cold-start
users who have few interactions like those in Book Crossing
datasets. We also observe from Table II that deep learning
and graph based models have poor performance on the Book
Crossing datasets than meta-learning models like MeLU and
the proposed model achieves significant improvements. For
the last.fm dataset, the meta-learning models have shown a
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clear indication of improvement again over deep learning and
graph based models is not applicable due to implicit datasets.
For the Movielens 1M and Netflix datasets, most users have
enough interactions, and hence all models achieve comparable
performances. We further provide top N NDCG performance
ranging from top 5 to 25 and their respective values for each
model. For this, we chose those test users with 30 interactions
so that we can use 25 interactions for query set to compute
NDCG. The result is consistent with the RMSE results.

D. Uncertainty-Aware Recommendations

In this set of experiments, we show how the model effec-
tively leverages predicted uncertainty to recommend the most
informative items rather than solely based on the predicted
ratings. For this, we randomly chose a test user (ID: 41)
from the Movielens-1M dataset. This user has a total of 25
interactions, and we randomly choose 20 interactions that
serve as the candidate pool to form the support set. The
remaining 5 interactions are used for a query set. We perform
uncertainty-based recommendation to tackle cold-start prob-
lem where we recommend a few items from the pool according
to their epistemic uncertainty (instead of predicted ratings).
By collecting only limited interaction results, we expect the
model to learn the most from the cold-start user (by reducing
the epistemic uncertainty) to provide more accurate recom-
mendation in the future. To demonstrate that the uncertainty-
based recommendation can lead to better future predictions,
we also employ the classical rating based recommendation to
select same number of highest rated items. After the adaptation
using the selected support set, both methods will be evaluated
on the same query set for comparison.

We first show total counts of genres and ratings by the
left and middle plots of Figure 2. From those plots, we can
clearly see that the epistemic method selects more diverse
genres with more count in others genres. It also selects items
with relatively lower ratings than the rating-based method.
This suggests that rating based recommendation seems more
specific to the adventure movies, whereas epistemic method
selects more diverse genres, including drama, adventure, and
a higher number of others genres.

We further investigate how interactions selected based on
epistemic uncertainty help to provide a better future recom-
mendation. For this, we make fast adaptation of our meta-
train model with those few interactions resulted from the
recommended items and then perform testing on the query
set. We start by adding 5 interactions and continue to add 5 in
each round until all the items in the candidate pools are used.
As we can see from the right plot of Figure 2, after adding 10
interactions based on the recommended items, the epistemic
method achieves almost optimal performance on the query set.
In contrast, the rating based method requires more than 15
interactions to achieve similar performance on the query set.

VI. CONCLUSIONS

This paper presents a novel meta evidential learning recom-
mendation framework that integrates evidential learning with
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Table II: Performance of Recommendation (average RMSE and NDCG)

Model MovieLens-1M Book Crossing Netflix Last.fm
RMSE NDCG RMSE NDCG RMSE NDCG RMSE NDCG
deepFM | 1.025440.03 | 0.2913 | 4.0889+0.06 | 0.2733 | 0.9699+0.02 | 0.2915 | 1.193940.05 | 0.2807
Wide & Deep | 1.0218+0.03 | 0.2932 | 4.1341£0.08 | 0.2745 | 0.968640.02 | 0.2944 | 1.1847+0.05 | 0.2812
GC-MC | 1.0313£0.03 | 0.2872 | 4.140540.10 | 0.2712 | 0.9816+0.03 | 0.2814 N/A N/A
MeLU | 1.0195+0.02 | 0.3308 | 3.7388+0.05 | 0.2811 0.9613+0.02 | 0.3265 | 1.0711+0.03 | 0.3102
MetaEDL | 1.0114+0.02 | 0.3493 | 3.7026+0.04 | 0.3046 | 0.9525 +0.02 | 0.3488 | 1.0183+0.03 | 0.3233
10.0 I Rating-based I Rating-based --+-Rating-based
EEEpistemic-based I Epistemic-based --+--Epistemic-based
4; 7.5 o 4
S 5.0 3
O S
o
2.5 2
1.1
) e A0 0l oS
. I A SR S 1.0 RS K o
Genre Rating Interactions

Figure 2: Genre count and rating count for the items selected in the support set with size 10 and RMSE for the query set

meta-learning to provide uncertainty-aware cold-start recom-
mendations. The proposed framework handles the user cold-
start problem by adopting global knowledge of similar users
from their interaction information and leveraging evidential
learning for efficient posterior inference to quantify the model
confidence. Experimental results on four real-world datasets
and comparison with the state-of-the-art competitive models
clearly demonstrate the effectiveness of the proposed model.
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