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Abstract—Recommender systems have been widely used to pre-
dict users’ interests and filter information from a large number
of candidate items. However, accurately capturing the interests
of users having limited interactions with a system remains
a long-lasting challenge. Furthermore, existing recommender
systems primarily focus on predicting user preferences without
quantifying the prediction uncertainty. Uncertainty can help to
quantify the model confidence when making a recommendation
where low model confidence could serve as a more accurate
indicator of a user’s cold-start level than simply using the number
of interactions. We present a novel recommendation model that
seamlessly integrates a meta-learning module with an evidential
learning approach. The former module generalizes meta knowl-
edge to tackle cold-start recommendations by exploiting fast
adaptation. The latter quantifies both aleatoric and epistemic
uncertainty without performing expensive posterior inference.
Evidential learning achieves this by placing evidential priors and
treating the output of the meta-learning module as evidence-
based pseudo counts and learns a function to directly predict the
evidence of a target interaction. Experiments on four benchmark
datasets justify that our proposed model captures the uncertainty
of users and demonstrates its superior performance over the
state-of-the-art recommendation models.

I. INTRODUCTION

Recommender systems exploit data mining techniques and

prediction algorithms to predict users’ interest in products,

services, and information among a large number of available

items [1]. Commonly used approaches can be generally cat-

egorized as collaborative filtering-based, content-based, and

hybrid systems. Collaborative filtering methods recommend

items to the target users based on the similar taste of existing

users [2]. These methods mostly suffer from data sparsity that

leads to the cold-start problems (i.e., inability to handle new

users and/or items with limited interactions). Content-based

methods [3] address this issue by utilizing users’ demographic

information (e.g., age, gender, and location) and item content

(e.g., genres, directors, and actors of movies). While various

extra information is available for items, acquiring users’ per-

sonalized information is usually difficult due to privacy issues.

Hybrid models combine the benefits of both collaborative and

content-based systems but remain less effective to the cold-

start users/items.
Several recent works have attempted to address the cold-

start problem in recommender systems through meta-learning

[4], [5]. In particular, meta-learning models the cold-start rec-

ommendation as a few-short learning problem. By arranging

existing users’ item interaction history as the training tasks, it

learns a global meta-model that can adapt to users/items with

Table I: Epistemic uncertainty and RMSE loss for two users

from Movielens 1M based on the number of interactions.

UserID Interactions Epistemic RMSE
4515 24 0.5133 1.0345
4575 164 0.6812 1.7038

limited interactions with improved recommendation accuracy.

Most existing methods, including meta-learning models, use

the number of interactions as the primary factor to identify

cold-start users. However, they ignore the nature of the inter-

actions as not all the interactions are equally important for a

recommender system to construct an accurate (latent) profile

for users to provide effective recommendations. As certain

interactions can bring much higher value to the system than

others, it is essential to consider the value of the interactions

to most effectively tackle cold-start recommendations and

uncertainty provides an effective means to quantify such value

(as evidenced by our experimental results in SectionV-D).

Table I shows two example users from the Movielens dataset

with significantly different numbers of interactions. As can

be seen, the second user is much more active than the first

one, who has much fewer interactions and may be regarded

as cold-start. However, more interactions may not necessarily

lead to a more accurate recommendation result, which is

evidenced by a higher root mean squared error (RMSE) for

the second user. In fact, the larger recommendation error is

also reflected by a higher model (or epistemic) uncertainty.

This example, along with more illustrative examples provided

in our experiment section, helps confirm the distinct values of

different interactions further. It also implies the important role

of using uncertainty to quantify the model confidence when

making a recommendation that could indicate the cold-start

level of a user (i.e., how well the system knows the user).

In general, a recommender system’s prediction is very sen-

sitive to the observed user-item interactions, especially when

they are limited. Hence, a precise and calibrated uncertainty

estimation is useful for interpreting the model confidence in

cold-start recommendations. There are two common types of

uncertainty: aleatoric that captures the uncertainty introduced

by the noises in the data and epistemic that captures the

model uncertainty due to lack of understanding of the data

[6]. Aleatoric uncertainty can be directly estimated from

data and Bayesian models offer a natural way to capture

model uncertainty. Hence, Bayesian neural networks have

been commonly used to estimate the epistemic uncertainty of

1258

2021 IEEE International Conference on Data Mining (ICDM)

978-1-6654-2398-4/21/$31.00 ©2021 IEEE 
DOI 10.1109/ICDM51629.2021.00154

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 D

at
a 

M
in

in
g 

(I
C

D
M

) |
 9

78
-1

-6
65

4-
23

98
-4

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IC
D

M
51

62
9.

20
21

.0
01

54

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on June 29,2022 at 20:19:45 UTC from IEEE Xplore.  Restrictions apply. 



deep learning (DL) models. However, Bayesian DL models

usually conduct posterior inference through Monte Carlo (MC)

sampling, which poses a very high computational cost due to a

large number of parameters in a DL model and their complex

dependencies. Consequently, directly extending the current

DL-based recommender systems through Bayesian modeling

will prevent them from scaling to a large user-item space.

To address the above key challenges, we propose a meta

evidential learning model, referred to as MetaEDL, to provide

uncertainty-aware cold-start recommendations. By integrating

a meta-learning module with evidential learning, MetaEDL

is able to leverage all existing users’ historical interactions

to learn a global model that can easily and accurately adapt

to cold-start users with limited interactions. Furthermore,

we construct a hierarchical Bayesian model that provides a

generative process to model the likelihood of the user-item

interactions. Instead of performing an expensive posterior

inference, evidential learning is adopted to directly predict

the hyper-parameters of the posterior distributions of the

parameters in the likelihood function, using a non-Bayesian

deep neural network. These predicted hyperparameters have

a natural interpretation as pseudo counts, which can serve as

evidence to quantify the model confidence for its recommen-

dations. The main contribution of this paper is fourfold:

• A novel recommendation model that integrates meta-

learning and evidential learning to provide uncertainty-

aware cold-start recommendations.

• Bayesian posterior inference through evidential learning to

ensure good efficiency that allows a recommender system

to scale to a large user-item space.

• Using pseudo-count-based evidence that provides a deeper

insight to understand the value of different interactions

that is instrumental to provide effective uncertainty-aware

recommendations to cold-start users and accurately capture

their latent profile using limited but highly ‘informative’

interactions.

• An integrated end-to-end training process that optimizes the

embeddings and meta evidential learning modules.

We conduct extensive experiments over four real-world

datasets and compare with state-of-the-art models to demon-

strate the effectiveness of the proposed MetaEDL model.

II. RELATED WORK

Matrix Factorization. Matrix factorization (MF) based mod-

els utilize user and item latent factors [7] to make predictions.

Incorporating implicit information of users and items, the basic

MF method is extended into SVD++ [8]. Variations of these

models have also been applied to dynamic settings, including

timeSVD++ [9], dynamic Poisson Factorization (DPF) [10],

and collaborative Kalman Filter (CKF) [11].

Deep Learning Models. In recent years, deep learning-based

recommender systems [12], [13] are successfully proposed

due to their effective improvement over traditional methods.

DeepFM [13] which adapts deep learning with traditional

FM, integrates the power of deep learning and factorization

machines to learn low- and high-order feature interactions

simultaneously from the input. Cheng et al. [12] propose to

jointly train wide linear models and deep neural networks to

combine the benefits of memorization and generalization.

Graph-Based Models. Another popular line of recommenda-

tion systems is graph-based models. A graph captures high-

order user-item interactions through an iterative process to

provide effective recommendations [14]. Users and items are

represented as a bipartite graph in [15] and links are predicted

to provide recommendations.

Meta-learning. Meta-learning [16] is a few-shot learning

approach that learns from similar tasks and can generalize

quickly and efficiently for the unseen new tasks. The meta-

learning strategy introduced in [4] addresses the cold-start

problem in item recommendation. Similarly, recent works take

advantage of users’ and items’ side-information to generate

user and item embeddings and fed those embeddings to the

meta-learning to estimate user preferences [5].

Uncertainty in Recommender Systems. All the above meth-

ods primarily focus on personalized recommendation but lack

in handling uncertainty. Recently, Gaussian embedding-based

recommendation [17] attempts to capture user and item uncer-

tainty but does not measure model uncertainty. Our proposed

method not only provides an effective recommendation but

also measures both data and model uncertainty utilizing the

evidential learning approach [18].

III. PROBLEM FORMULATION

For a recommendation model, input data is represented as

{U ,I}, where U is the user set and I is the item set. We

perform recommendation and uncertainty quantification for

each user with a recommendation function as:

fθu,Eu,Ei(u, i) = {γ(u,i), ν(u,i), α(u,i), β(u,i)} ∀u ∈ U , i ∈ I
(1)

where γ(u,i) is the recommended score for item i assigned

by user u, ν(u,i), and α(u,i) are the model evidence, and

β(u,i) is a total uncertainty coming from both pseudo and

actual data samples (more details are provided along with the

meta evidential learning module) for user u on item i and

all parameters are scalar quantities, θu is user specific model

parameter; Eu, and Ei are user and item embedding module

parameters. The goal of a recommender system is to predict

the scores with confidence so that it can accurately capture a

user’s true preference on items in belief that the recommended

items are likely to be adopted by the user.

We formulate recommendations as a few-shot regression

problem in the meta-learning setting. Users are dynamically
partitioned into meta-train and meta-test sets. The meta-train

user set includes users with sufficient interactions, while the

meta-test user set includes cold-start users who have only a

few interactions. We consider a distribution over tasks P (T ),
and each user is represented as a few-shot regression task Tu
sampled from the given task distribution. In general, a task

includes a support set Su and a query set Qu. The support

set includes a user’s K interactions where K is interpreted as
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Figure 1: Overview of the proposed model.

the number of shots (i.e., interactions). The query set includes

the rest interactions of this user.

Tu ∼ P (T ) : Su = {(u, ij), r(u,ij)}Kj=1

Qu = {(u, ij), r(u,ij)}Nj=K+1

(2)

where N is the number of items a user interacted, and r(u,ij)
represents label (i.e., rating or count) from user u to item ij .

We adopt episodic training [19], where the training task

mimics the test task for efficient meta-learning. The support

set S in each episode works as the labeled training set on

which the model is trained to minimize the loss over the query

set Q. This training process is iteratively carried out episode

by episode until convergence.

IV. META EVIDENTIAL LEARNING

The proposed model consists of two major components: an

embedding module and a meta evidential learning module,

as shown in Figure 1. The embedding module generates user

and item embeddings and is forwarded to the evidential meta-

learning module, where prediction and model evidence are

produced as a final output.

A. Embedding Module

We represent user u, and item i in one hot encoding

considering unique user and item IDs: eu ∈ Rn where n

is the total number of users and ei ∈ Rm where m is the

total number of items respectively. This one hot vector is then

transformed using the embedding matrix Eu for user and Ei

for item in d-dimension: zu = Eueu and zi = Eiei. The

embedding matrix is optimized along with the model training

process. We use gradient descent to update both users and item

embedding matrices:

Eu = Eu − ξ∇Eu(LTu [fθu,Eu,Ei ])

Ei = Ei − ξ∇Ei(LTu [fθu,Eu,Ei ])
(3)

where ξ is the step size, and LTu
[fθu,Eu,Ei

] is an end-to-

end meta evidential user-specific loss and detail is given in

Equation (20).

B. Meta Evidential Learning Module

We formulate the meta-learning module as a non-Bayesian

neural network to estimate a target interaction score and

its associated evidence to learn both aleatoric and epistemic

uncertainty. We accomplish this by placing evidential priors

over the original Gaussian likelihood function and training the

neural network to infer the hyperparameters of the evidential

distribution similar to [18]. The key intuition of employing

evidential learning in recommender systems is that it allows

us to assign evidence to the predicted interaction, where the

evidence can be used to formulate the prediction score while

capturing the model confidence.

A hierarchical Bayesian model. The recommendation prob-

lem is set up in such a way that the target (e.g., rating or count),

yn, is drawn i.i.d. from a Gaussian distribution with unknown

mean and variance (μ, σ2). Model evidence can be introduced

by further placing a prior distribution on (μ, σ2), leading to a

hierarchical Bayesian model. To ensure conjugacy, we choose

a Gaussian prior on the unknown mean and an Inverse-Gamma

prior on the unknown variance:

p(yn|μ, σ2) = N (μ, σ2) (4)

p(μ|γ, σ2ν−1) = N (γ, σ2ν−1) (5)

p(σ2|α, β) = Inv-Gamma(α, β) (6)

where Inv-Gamma(z|α, β) = βα

Γ(α)

(
1
z

)α+1
exp(−β

z ) with Γ(.)
being a gamma function; γ, ν, α, and β are parameters of the

corresponding prior distributions.

Interpreting hyper-parameters. Besides serving as the pa-

rameters of the corresponding prior distributions in the hi-

erarchical Bayesian model, the hyper-parameters (γ, ν, α, β)
offer very intuitive meanings, which set the stage to use

them in the proposed evidential learning model. The best

way to show this is to couple these prior distributions with

a set of actual observations, i.e., y = (y1, ..., yN )�. Given

the Gaussian likelihood in (4), we compute joint posterior

distribution p(μ, σ2|y) factorized as p(μ|y, σ2)p(σ2|y). We

first derive the conditional posterior of μ:

p(μ|y, σ2) = N (γN , σ2
N ) (7)

γN =
ν

ν +N
γ +

1

N + ν

N∑
n=1

yn (8)

σ2
N =

σ2

ν +N
=

σ2

νN
(9)

where νN = ν + N . From (8), we can see that the posterior

mean is the convex combination of the prior mean γ and

the maximum likelihood estimation of the mean, given by
1
N

∑N
n=1 yn. Similarly, the variance in the posterior distribu-

tion is νN times smaller than the prior variance. As a result,

ν can be interpreted as the ‘effective’ prior observations for

the prior mean γ. We continue to derive the posterior of σ2:

p(σ2|y) = Inv-Gamma(αN , βN ) (10)

αN = α+
N

2
(11)

βN = β +
1

2

N∑
n=1

(yn − μ)2 (12)

First, (11) shows that after observing N data samples, the prior

parameter α is increased by N
2 to reach the posterior parameter

αN . This has the effect of treating the prior hyper-parameter
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as 2α ‘effective’ prior observations of ‘pseudo’ data samples.

Similarly, by multiplying both sides of (12) by 2, we have

2βN = 2β +

N∑
n=1

(yn − μ)2 = 2β +Nσ2
ML (13)

where σ2
ML denotes the maximum likelihood estimator of the

variance arising the from data samples (y1, ..., yN ). From this,

hyper-parameter β can be interpreted as the 2β total ‘prior’

variance arising from the corresponding 2α ‘effective’ prior

observations’ of ‘pseudo’ data samples.

Mapping hyper-parameters to evidence-based uncertainty.
The above analysis provides an intuitive interpretation of

key hyper-parameters introduced along with the prior distri-

butions in the hierarchical Bayesian model. This will help

to understand their key roles in defining different types of

uncertainties introduced next. In particular, since both ν and

α are essentially the ‘effective’ prior observations, it is natural

to treat their posterior counterpart νN and αN as the evidence
to support (or suspect) a prediction given training samples

(y1, ..., yN ). Furthermore, βN can be treated as the total

uncertainty that combines two sources of uncertainty: the prior

variance β from the pseudo samples and the variance σ2
ML of

the actually observed data samples.

We start defining the model prediction and uncertainty from

the data (referred to as aleatoric uncertainty) as

Prediction:E[μ] =γN , Aleatoric:E[σ2] =
βN

αN − 1
(14)

where both can be directly obtained as the mean from the

corresponding Gaussian and Inv-Gamma posteriors defined

in (7) and (10), respectively. It is interesting to see that the

uncertainty from the data is proportion to the total uncertainty

βN and decreases with (both pseudo and actual) observations.

Next, we quantify the uncertainty of the model prediction

(referred to as epistemic uncertainty) by showing an important

relationship with the aleatoric uncertainty through the follow-

ing theorem.

Theorem 1. Given a hierarchical Bayesian model as specified
by (4)-(6) and a set of observed (training) data samples
(y1, ..., yN ), the epistemic uncertainty that quantifies the vari-
ance of the posterior mean (as the model prediction), given
by Var[μ], is 1

νN
times of the aleatoric uncertainty:

Var[μ] =
E[σ2]

νN
=

βN

νN (αN − 1)
(15)

where νN is defined in (9).

Proof. First, note that we cannot directly use the variance

given by the posterior distribution in (7) as it is still condi-

tioned on σ2. Since Var[μ] is defined on the marginal posterior

p(μ|y), we need to further marginalize σ2, which gives

Var[μ] =

∫ ∫ [
μ2p(μ|σ2)− (E[μ])2

]
p(σ2)dμdσ2

= γ2
N − (E[μ])2 +

∫
σ2

ν
p(σ2)dσ2 =

βN

νN (αN − 1)

(16)

where we omit the dependency on y to keep the notation

uncluttered.

Now we define a loss function that is formed through the

evidence and total uncertainty parameters. Given an observed

score r(u,i) resulted from an interaction between user u and

item i, we marginalize the likelihood parameters (μ, σ2), which

gives the marginal likelihood function

p(r(u,i)|γ(u,i), ν(u,i), α(u,i), β(u,i))

=

∫ ∫
N (μ, σ2)N (γ(u,i), σ

2ν−1)IG(α(u,i), β(u,i))dμdσ
2

=St

(
r(u,i); γ(u,i),

β(u,i)(1 + ν(u,i))

ν(u,i)α(u,i)
, 2α(u,i)

)
(17)

where IG is short for Inv-Gamma and St(.) is a student-t

distribution on target variable r(u,i) with respective location

and scale parameters.

We adopt an evidential loss, which utilizes the above

marginal likelihood while computing the predicted loss. This

includes the negative log-likelihood (LNLL[fθu,Eu,Ei
]) to

maximize the marginal likelihood and an evidential regularizer

(LR[fθu,Eu,Ei ]) to impose a high penalty on the predicted

error with a low uncertainty (or a large confidence). We first

formulate the negative log-likelihood, given by

LNLL[fθu,Eu,Ei ] = − log(p(r(u,i)|γ(u,i), ν(u,i), α(u,i), β(u,i))
(18)

We formalize our own evidence regularizer, which considers

epistemic uncertainty to penalize confidently predicted errors.

We multiply the predicted error with the inverse epistemic un-

certainty that scales up the error when the predicted evidence

is high causing high inverse epistemic uncertainty and vice-

versa. Conversely, it will be less penalized if the prediction is

close to the target score:

LR[fθu,Eu,Ei
] =|r(u,i) − γ(u,i)|.

(
ν(u,i)(α(u,i) − 1)

β(u,i)

)

(19)

In the meta evidential setting, we compute the loss for a

specific user u, which can be formulated with user evidential

loss as:

LTu [fθu,Eu,Ei ] =
∑

u,i∼Tu

L[fθu,Eu,Ei(u, i)],

L[fθu,Eu,Ei
(u, i)] =LNLL[fθu,Eu,Ei

(u, i)]+

λ1LR[fθu,Eu,Ei(u, i)]

(20)

where λ1 is a regularization parameter.

The total loss is formed by aggregating all users in the

meta-train set, regularized by the L2 norm of key model

parameters. Let θu and θ denote the local (i.e., user-specific)

and global parameters of the meta evidential learner. Training

the meta evidential learning as a recommendation model can

be formulated as the following optimization problem:

min
θ

∑
Tu∼p(T )

LTu [fθu,Eu,Ei ] +
λ2

2
||θ||22,

θu = θ − η∇θLTu(fθ,Eu,Ei)

(21)
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where θu is one (or a few) gradient step updates from global

parameter θ of the meta evidential learner with η being the

step size, and λ2 is the regularization parameter.

We apply an optimization-based meta-learning approach

[20] to learn user specific factors, as shown in Figure 1. The

meta evidential learning consists of three fully connected linear

layers with ReLU activation in the first two, while the last

layer predicts ratings or count and its evidence. The input

to the meta evidential learning model is the concatenation

of user embedding (zu) and item embedding (zi) for each

user, i.e., (zu||zi). For the meta evidential learning module, the

local update is done for the user-specific parameter, which is

achieved by one or more gradients from the global parameter:

θu = θ − η∇θLTu
[fθ,Eu,Ei

] (22)

In this update, the loss function is computed with the support

set. Global update is done with the new item interactions of

each user from the query set:

θ = θ − ξ∇θ

∑
Tu∼p(T )

LTu
[fθu,Eu,Ei

] (23)

This process will continues until it converges to a good global

parameter shared by all users.

V. EXPERIMENTS

A. Dataset Description

We evaluated our model on four public benchmark datasets.

Three are explicit datasets where users provide explicit ratings:

MovieLens 1M (1M explicit ratings made by 6,040 users on

3,900 distinct movies from 04/2000 to 02/2003), Netflix (6,042

users with their interaction history from 01/2002 to 12/2005),

and Book Crossing (751 users and their interacted books

in a 4-week span during August-September of 2004); and

one implicit dataset, where users have implicit interactions,

(captured by count): Last.fm-1K dataset (listening history for

nearly 1,000 users).

B. Baselines

For comparison, we include two matrix factorization based

deep learning models: DeepFM [13] and Wide & Deep [12],

one graph based model: GC-MC [15], and a meta-learning

based recommendation model: MeLU [5].

C. Results and Discussion

The experimental results for the proposed model and base-

lines are summarized in Table II. We compute the average

RMSE considering all users with the range of deviation for all

datasets: MovieLens 1M, Book Crossing, Netflix, and Last.fm,

respectively. The proposed model benefits from the meta-

learning module, and hence it can effectively handle cold-start

users who have few interactions like those in Book Crossing

datasets. We also observe from Table II that deep learning

and graph based models have poor performance on the Book

Crossing datasets than meta-learning models like MeLU and

the proposed model achieves significant improvements. For

the last.fm dataset, the meta-learning models have shown a

clear indication of improvement again over deep learning and

graph based models is not applicable due to implicit datasets.

For the Movielens 1M and Netflix datasets, most users have

enough interactions, and hence all models achieve comparable

performances. We further provide top N NDCG performance

ranging from top 5 to 25 and their respective values for each

model. For this, we chose those test users with 30 interactions

so that we can use 25 interactions for query set to compute

NDCG. The result is consistent with the RMSE results.

D. Uncertainty-Aware Recommendations

In this set of experiments, we show how the model effec-

tively leverages predicted uncertainty to recommend the most
informative items rather than solely based on the predicted

ratings. For this, we randomly chose a test user (ID: 41)

from the Movielens-1M dataset. This user has a total of 25

interactions, and we randomly choose 20 interactions that

serve as the candidate pool to form the support set. The

remaining 5 interactions are used for a query set. We perform

uncertainty-based recommendation to tackle cold-start prob-

lem where we recommend a few items from the pool according

to their epistemic uncertainty (instead of predicted ratings).

By collecting only limited interaction results, we expect the

model to learn the most from the cold-start user (by reducing

the epistemic uncertainty) to provide more accurate recom-

mendation in the future. To demonstrate that the uncertainty-

based recommendation can lead to better future predictions,

we also employ the classical rating based recommendation to

select same number of highest rated items. After the adaptation

using the selected support set, both methods will be evaluated

on the same query set for comparison.

We first show total counts of genres and ratings by the

left and middle plots of Figure 2. From those plots, we can

clearly see that the epistemic method selects more diverse

genres with more count in others genres. It also selects items

with relatively lower ratings than the rating-based method.

This suggests that rating based recommendation seems more

specific to the adventure movies, whereas epistemic method

selects more diverse genres, including drama, adventure, and

a higher number of others genres.

We further investigate how interactions selected based on

epistemic uncertainty help to provide a better future recom-

mendation. For this, we make fast adaptation of our meta-

train model with those few interactions resulted from the

recommended items and then perform testing on the query

set. We start by adding 5 interactions and continue to add 5 in

each round until all the items in the candidate pools are used.

As we can see from the right plot of Figure 2, after adding 10

interactions based on the recommended items, the epistemic

method achieves almost optimal performance on the query set.

In contrast, the rating based method requires more than 15

interactions to achieve similar performance on the query set.

VI. CONCLUSIONS

This paper presents a novel meta evidential learning recom-

mendation framework that integrates evidential learning with
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Table II: Performance of Recommendation (average RMSE and NDCG)
Model MovieLens-1M Book Crossing Netflix Last.fm

RMSE NDCG RMSE NDCG RMSE NDCG RMSE NDCG
deepFM 1.0254±0.03 0.2913 4.0889±0.06 0.2733 0.9699±0.02 0.2915 1.1939±0.05 0.2807

Wide & Deep 1.0218±0.03 0.2932 4.1341±0.08 0.2745 0.9686±0.02 0.2944 1.1847±0.05 0.2812
GC-MC 1.0313±0.03 0.2872 4.1405±0.10 0.2712 0.9816±0.03 0.2814 N/A N/A

MeLU 1.0195±0.02 0.3308 3.7388±0.05 0.2811 0.9613±0.02 0.3265 1.0711±0.03 0.3102
MetaEDL 1.0114±0.02 0.3493 3.7026±0.04 0.3046 0.9525 ±0.02 0.3488 1.0183±0.03 0.3233

adv
ent

ure
fan

tas
y
act

ion
dra

ma
hor

ror
oth

ers

Genre

0.0

2.5

5.0

7.5

10.0

C
o
u
n
t

Rating-based
Epistemic-based

1 2 3 4 5
Rating

0

2

4

6

C
o
u
n
t

Rating-based
Epistemic-based

5 10 15 20

Interactions

1.0

1.1

1.2

1.3

1.4

R
M
S
E

Rating-based
Epistemic-based

Figure 2: Genre count and rating count for the items selected in the support set with size 10 and RMSE for the query set

meta-learning to provide uncertainty-aware cold-start recom-

mendations. The proposed framework handles the user cold-

start problem by adopting global knowledge of similar users

from their interaction information and leveraging evidential

learning for efficient posterior inference to quantify the model

confidence. Experimental results on four real-world datasets

and comparison with the state-of-the-art competitive models

clearly demonstrate the effectiveness of the proposed model.
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