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Abstract—Fine-Grained Sketch-Based Image Retrieval (FG-
SBIR) aims at finding a specific image from a large gallery given
a query sketch. Despite the widespread applicability of FG-SBIR
in many critical domains (e.g., crime activity tracking), existing
approaches still suffer from a low accuracy while being sensitive
to external noises such as unnecessary strokes in the sketch.
The retrieval performance will further deteriorate under a more
practical on-the-fly setting, where only a partially complete
sketch with only a few (noisy) strokes are available to retrieve
corresponding images. We propose a novel framework that
leverages a uniquely designed deep reinforcement learning model
that performs a dual-level exploration to deal with partial sketch
training and attention region selection. By enforcing the model’s
attention on the important regions of the original sketches, it
remains robust to unnecessary stroke noises and improve the
retrieval accuracy by a large margin. To sufficiently explore
partial sketches and locate the important regions to attend, the
model performs bootstrapped policy gradient for global explo-
ration while adjusting a standard deviation term that governs
a locator network for local exploration. The training process is
guided by a hybrid loss that integrates a reinforcement loss and
a supervised loss. A dynamic ranking reward is developed to fit
the on-the-fly image retrieval process using partial sketches. The
extensive experimentation performed on three public datasets
shows that our proposed approach achieves the state-of-the-art
performance on partial sketch based image retrieval.

Index Terms—Sketch-based image retrieval, partial sketch
matching, reinforcement learning

I. INTRODUCTION

Due to the large amounts of touch-screen devices and their

broad usage, sketch-related computer vision applications have

drawn increasing attention nowadays. Consequently, a series

of interesting research problems have emerged, including

sketch recognition, sketch representation/interpretation, sketch

generation, and sketch-based image retrieval (SBIR) [1]–[6].

Among them, SBIR, especially fine-grained SBIR, is of par-

ticular interest [4]–[6] because of its important applications in

both commercial and public safety domains. For commercial

usage, a customer can buy items online by simply drawing

sketches of items using a smartphone screen. For the public

safety applications, it provides additional support to track

criminals by drawing their sketches based on the description

and searching them in the police criminal database.

Category level SBIR is well studied in existing works [1],

[4], [5]. In this technique, based on a query sketch, it retrieves

images of the same category as the query. However, the

domain gap between sketches and images remains as a key

technical challenge. This is because a sketch captures only

object shape/contour information, which does not contain other

relevant fine-grained details in an image, such as color and

texture [2]. There are three common ways to deal with this

problem. First is sketch-image generation combining with

image recognition [7]. But this method’s performance depends

heavily on the performance of sketch-image generation, where

uncertainty is extremely high. The second approach is sketch-

image hashing [8], where sketch and image are encoded by a

deep neural network into hashing codes, then by calculating

the Hamming distance between query sketch and each cate-

gory’s image hashing cluster, we can decide which cluster’s

images should be retrieved based on the query sketch. The

last approach is finding a common sketch-image embedding

layer [4], which aims to find a common hidden space to align

both sketch and image embedding vectors. Although these

methods can reach high classification accuracy, category level

SBIR is usually not suitable in many real applications, where

people expect to see a more precise retrieval result instead of a

category of images. FG-SBIR provides a promising direction

to fulfill this demand.

Compared to the category level SBIR, FG-SBIR can explore

more fine-grained details from both sketch and image sides

and get a more precise retrieval result. FG-SBIR is initially

addressed in [9], which employed a deformable part-based

model (DPM) representation and graph matching. However,

the model performs poorly (in terms of retrieval accuracy)

whenever the situation gets complicated (e.g., adding more

abstract sketches or images from unknown categories). To

deal with more complicated settings, deep learning has been

leveraged to tackle FG-SBIR, which aims to learn both feature

representation and a cross-domain matching function jointly

[2], [3], [10]. In this research area, there are broadly two lines

of work: Siamese CNN network with a verification loss [11]

and triplet CNN with a triplet ranking loss [12] [2] [1]. The

difference in those works lies in the network structure and

the image branch. A Siamese network takes extracted edge

maps as input in the image branch for alignment with the

sketch branch, while a triplet network uses the original image

as input, which contains more information. The problem with

these models is that to reach a good retrieval performance, a

complete sketch is needed. In practice, like an online shopping

app, people like to retrieve what they want in just a few

strokes, rather than the whole detailed sketch. However, these

models can only predict on the full sketch and have poor

performance when generalizing to partial sketch cases. Simply
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Fig. 1: Partial Sketch Retrieval Performance Comparison Between DARP-SBIR and a Triplet Network Model. The top

row shows a sequence of partially complete sketches with increasing degree of completeness; the second row shows the

corresponding retrieved list of images by DARP-SBIR (yellow) and Triplet network (blue); the last rows shows the ranking

percentile of the matching image (e.g., 0.9 means the matching image is ranked in the top 10% among all candidate images).

adding partial sketches into the training set is not applicable,

as this jeopardizes the overall training performance.

Existing work to provide image retrieval based on partial

sketches is fairly scarce. One exception is the model that

combines a triplet network with a reinforcement learning (RL)

agent to predict the embedding of a partial sketch on the

fly [13]. In this model, a partial sketch is regarded as a state of

a particular time step from a full episode. The reward signal

here does not correspond to the final optimization objective

adopted by supervised training. Instead, it belongs to the

total cumulative reward in a whole episode, which is more

natural for the on-the-fly setting. As a result, RL training for

partial sketches has the potential to get better results than the

supervised training. While the model shows a promising trend

to support partial sketch based retrieval, the performance is still

much lower than the full sketch based result. The result gets

even worse when the completion degree of a partial sketch is

low as the model becomes more sensitive to the noisy stokes.

To address the fundamental challenges as outlined above,

we propose a novel framework that employs Deep reinforced

Attention Regression for Partial Sketch Based Image Retrieval

(DARP-SBIR). The proposed framework aims to deal with

partial sketches while being robust to noisy stokes to further

advance the state of the art in FG-SBIR and support the

practical on-the-fly image retrieval. While a RL agent adopted

by existing works can capture the temporal dynamics among

different stokes in a sketch to predict the embedding of a

final sketch [13], the incomplete sketches containing noisy

strokes along with a potentially large image repository make

the reward signal very sparse and delayed. The proposed

attention mechanism aims to identify the most important

regions in the sketch while ignoring the unnecessary noisy

strokes. To tackle the sparse and delayed reward signals, the

framework employs a novel bootstrapped policy gradient with

dual-level exploration that performs a global deep exploration

with a multi-head locator network and local exploration by

dynamically adjusting the covariance of the Gaussian policy.

The state space of the RL agent is maintained by a RNN

network that aggregates both the attended location and the

currently available sketch, The hidden state from the RNN

can also be used to predict the sketch embedding to formulate

a supervised learning loss, which is used to training the RNN

(and other component networks in the framework) to more

accurately capture the hidden state space. Finally, a dynamic

ranking reward function is developed to allow the agent to

pick up the relatively weak reward signal in the early phase

and then focus on the higher reward once it is better trained.

Figure 1 compares the partial sketch retrieval performance

between the proposed DARP-SBIR framework and a classical

triplet network based model [1]. From the second row, we

can see that with just a few stokes (third column), our model

can already rank the matching image in its top-4 list. DARP-
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SBIR also puts the matching image on the very top of its

retrieval list multiple steps ahead of the Triplet network, which

requires the complete sketch to do so. It is worth to note that

only a subset of stokes are included from a whole rendering

episode so the actual gap between these two models is actually

even bigger. The bottom row quantitatively evaluate the partial

sketch retrieval performance using the ranking percentile vs.

completion degree of sketches (defined in Section IV). Our

main contributions are summarised as follows:

• We design a novel framework that employs deep reinforced

attention regression to support partial sketch based on-the-

fly image retrieval.

• To handle sparse and delayed reward signals due to in-

complete sketches and noisy stokes, the RL agent performs

dual-level exploration that combines deep global exploration

through bootstrapped policy gradient and local exploration

through dynamically adjusted Gaussian covariance.

• The state space of the attention RL agent is maintained

through a RNN that dynamically aggregates both the current

attended region provided by the agent and the current

available sketch.

• A hybrid loss function is developed that combines a dynamic

ranking reward for training the RL agent and a supervised

learning loss for updating the RNN.

Extensive experiments have been conducted on three pub-

lic sketch datasets to show that our proposed DARP-SBIR

framework achieves the state-of-the-art performance on both

complete and partial sketch based image retrieval.

II. RELATED WORK

A. Category Level SBIR

Category-level sketch-image retrieval has been extensively

studied by existing works [4], [14]–[16]. There are three

mainstream methodologies in the field of category-level SBIR:

(1) sketch-image generation and image recognition, (2) sketch-

image hashing, and (3) sketch-image common embedding. For

the first group of methods, representative works like [17] use

a sketch-RNN to perform sketch-image generation and then

use image recognition to find the matching images, which

can be unreliable because the sketch-RNN may provide poor

multi-class sketch-image generation. In the second group of

work, Liu et al [18] apply a CNN-RNN two branch model to

deal with images and sketches, respectively. In their approach,

a CNN extracts static information from images, while a

RNN extracts temporal information from strokes. Finally, both

sketches and images can be encoded into hashing vectors and

SBIR is achieved by comparing the hamming distance between

the query sketch and different image clusters. The most rep-

resentative work in the third group mainly leverages a triplet

network, where a triplet input consisting of one sketch, one

positive image, and one negative image is fed into the network

to transform into hidden vectors in the common embedding

layer. Then, through a triplet loss, the sketch embedding vector

should be close to the positive image embedding vector while

moving away from the negative image’s embedding vector,

just like clustering in the hidden space [3], [4]. In this way,

by performing a simple l2 distance search in the hidden space

with the query sketch’s embedding vector, we can pick the

closest image embedding as the matching image. Since the

target is a set of images instead of a single image, category

level SBIR may not be suitable for certain applications because

its retrieval result is not precise. However, it provides a good

starting point for FG-SBIR.

B. Fine-grained SBIR

Fine-grained SBIR is a more recent research area, which

is less investigated than category level SBIR in the sketch

analysis field, partly due to the challenge in data collection.

Initially, it was addressed by a deformable part-based model

representation and graph matching [9]. After that, a num-

ber of deep learning approaches have been applied to find

the embedding space for both sketches and images [1]–[3],

[12]. Two branches training with edge map and verification

loss has been replaced by a triplet network with a ranking

loss [2], [3]. Nowadays, FG-SBIR is researched using more

complicated network structures and carefully designed losses.

For example, Yu et al. [1] proposed a deep triplet-ranking

model for instance-level FG-SBIR. Then, this paradigm is

replaced by hybrid generative-discriminative cross-domain im-

age generation [12], combined with a more sophisticated triplet

loss. Song et al. [2] propose a model, which is also a triplet

CNN. But with the introduced multi-scale coarse-fine semantic

fusion and HOLEF loss, their model is much more effective

than previous ones. Although existing models can reach better

accuracy for complete sketches, they cannot readily generalize

to incomplete ones, which is the focus of our model.

C. Reinforcement Learning based SBIR

While there has been much research effort in leveraging

reinforcement learning (RL) [19] in various computer vision

problems, RL is not commonly used for SBIR with few excep-

tions. Ayan et al. propose a partial sketch training procedure,

where RL is leveraged to trade-off between sketch recognis-

ability and the number of strokes to observe [13]. It introduces

a discount weight and negative rewards for the number of

strokes. Although the model is able to handle partial sketches,

the retrieval performance is still lower comparing to the full

sketch FG-SBIR models mentioned before. Further, the model

itself is not robust to disturbing strokes. In our model, we use a

novel attention mechanism combined with carefully designed

dual-level exploration to improve the retrieval accuracy and

avoid disturbing strokes by selecting important regions to feed

into the network.

Effective deep exploration is crucial in RL tasks where the

environment has a large action and state spaces. Various at-

tempts have been made for effective deep exploration. Inspired

from the idea of Thompson sampling [20], various posterior

sampling based approaches have been proposed [21]–[23] to

facilitate deep exploration. However, these techniques face the

problem of inefficiency and intractability. To overcome the

problems in previous approaches, randomized value function

based approaches have been proposed. Based on this idea, both
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linearly [24] as well as non-linearly [25] parameterized value

functions are proposed. Relying on a non-linearly parameter-

ized value function, Osband et al. [25] developed Bootstrapped

DQN, which combines DQN and the bootstrapping technol-

ogy. It performs well in multiple Atari games and boosts

the performance significantly. However, the training time and

computing resource cost pose a key bottleneck in a continuous

action space, like attention regression in SBIR. To solve this

problem while still leveraging the benefit of bootstrapping, we

propose bootstrapped policy gradient training to alleviate the

computation cost and further boost the performance through

effective local exploration.

TABLE I: Notations with Descriptions

Notation Description

xi the i-th input partial sketch
ei matching image embedding corresponding to xi

gi,t glimpse vector at time step t for xi

ai,t embedding vector of xi at time step t
vi,t glimpse location at time step t for xi

hi,t hidden state vector at time step t for xi

ωk
i,t binary masks for xi generated from locator head

k at time step t
Ri,t reward signal for xi at time step t
ηt threshold to adjust the dynamic ranking award

θg, θh, θa, θv parameters of the glimpse, RNN, action, and
locator networks

M the number of total episodes
N the number of partial sketches in one episode
T the number of total time steps per episode
K the number of locator heads

III. METHODOLOGY

We aim to develop a partial sketch based image retrieval

framework that is capable of overcoming the well-known lim-

itations for FG-SBIR: low retrieval accuracy and vulnerability

to disturbing strokes. To fulfill these purposes and make our

framework easy to adjust to partial sketches, we design a

novel bootstrapped policy network, which enforces dynamic

attention on the original sketch directly. Specifically, we divide

the model training into two phases. In the first phase, we train

the powerful backbone triplet Inception V3 model coupled

with a triplet loss to get the target image embedding. In

the second phase, we use the partial sketch based retrieval

framework, which consists of a glimpse network, an action

network, and a locator network to enforce dynamic visual

attention on input sketches directly by selecting important

attention regions. The selected attention location is processed

by the glimpse network along with the current (partial) sketch,

which will be sent to a RNN network to generate a hidden

state vector. The state vector can be directly used by the

action network to generate the sketch embedding. Meanwhile,

the state is also used by the locator network to produce the

updated attention location for the next time step. This dynamic

attention mechanism is the core of our design, which could

avoid noisy strokes from input sketches, as well as reduce

the input dimensionality for more efficient training. Previously

generated target image embedding is used to calculate the

ranking reward and the reinforcement loss for bootstrapped

policy gradient training to teach the model to look into the

important regions. We further leverage a supervised loss to

collectively train the glimpse, RNN, and action network to

generate the sketch embedding as close to the ground truth

image embedding as possible. Table I summarizes the major

notations used throughout the paper.

Fig. 2: Structure of the Embedding Network

A. Image Embedding Network
In order to get pre-trained ground-truth image embedding

vectors, we first train a triplet network consisting of three

branches with a shared set of parameters. The input is passed

in the form of anchor, positive and negative samples. The goal

is to minimize the distance between the anchor and the positive

samples while maximizing its distance from the negative

sample. In our case, the anchor is a sketch, the positive sample

is an image corresponding to that sketch, called the ground

truth image, while the negative sample is a random image

not corresponding to that sketch. For the network structure,

as Figure 2 shows, we add a fully connected embedding layer

with 64 neurons on the top of the feature extractor (which

is the backbone model of Resnet or InceptionV3) to get the

embedding vector. We then normalize the output embedding

vector in l2 form. On the other side, we use a soft attention

layer to extract effective part for that embedding vector to

form a final embedding vector to be utilized by the main

framework. For network training, we apply a triplet loss, which

is formulated as follows. Define a triplet {a, p, n}, where a
is anchor, p is a positive example, n is a negative example.

Assume that a and p are from the same category, while n
is not. Let ψ(·) and φ(·) denote the embedding vectors for

a sketch and image, respectively. Then, l2 distance is used

to calculate their difference, where δ+ and δ− denote the

distances to the positive and negative instances, respectively.

Finally, the triplet loss is defined as

Ltri =
1

N

N∑
n=1

max{0, μ+ δn+ − δn−} (1)

where μ is a hyper-parameter that defines a margin.
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Fig. 3: Overall Architecture of DARP-SBIR

B. Deep Reinforced Attention Regression Network

In this section, we present the architecture (see Figure 3)

of the proposed deep reinforced attention regression network

for partial sketch based image retrieval (DARP-SBIR), which

includes four key components: a glimpse network, a RNN

network, an action network, and a locator network. We de-

scribe the first three components in this section and present

the locator network next section that focuses on its unique

dual-level exploration for attention regression.

Glimpse network. As Figure 4 shows, the glimpse net-

work takes the original sketch xi and a glimpse location

vector vi,t−1 as input and extracts the information of the

retina-like representation ρ(xi,vi,t−1) around location vi,t−1

from sketch xi. It encodes the region around vi,t−1 at a

high resolution but uses a progressively lower resolution for

pixels farther from vi,t−1, resulting in a vector of lower

dimensionality than the original sketch xi. The term glimpse
is to intuitively capture the combination of these high and

low-resolution representations. The retina representation and

glimpse location are then mapped into a hidden space using

independent linear layers parameterized by θg = (θ0g , θ
1
g ;

θ2g , θ
3
g). With concatenation followed by rectified units, the

glimpse network combines both representations to produce

a final representation gi,t to be used by the RNN network

described next.

RNN network. The RNN network takes the current time

step’s glimpse vector gt and the previous hidden state vector

ht−1 as input, and outputs the current time step hidden state

vector ht. Here, the hidden state vector encodes the model’s

knowledge of the environment and is instrumental in deciding

how to act and where to deploy the glimpse sensor. The

initial hidden vector is a random 256-dimensional embedding

vector. The forward message of RNN is produced as follows:

hi,t = RNN(hi,t−1,gi,t; θh).

Action Network. The action network takes the hidden state

ht of the current time step as input and predicts the pre-

dicted final sketch representation: ai,t = ACTN(hi,t; θa). The

predicted sketch representation is then used to calculate the

Fig. 4: The Glimpse Network

distance from the corresponding image embedding vector as

the supervised loss function: Ls
i,t = ‖ai,t−ei‖2. It is worth to

note that sketch representation is predicted using the current

hidden state hi,t from the RNN network, which has aggregated

the previous hidden state and the current glimpse vector gi,t.

Recall that the glimpse vector is computed from the currently

attended region predicted by the located network (which will

be described next) and the already completed partial sketch.

C. Dynamic Attention Regression via Dual-Level Exploration

Basic locator network. The basic locator network takes the

current hidden state hi,t and maps it to a location that indicates

an important region of the sketch that the model should

attend to. To accommodate the on-the-fly retrieval of matching

images where stokes may continue to be collected to make a

partial sketch more complete, we propose to achieve dynamic

attention regression through deep reinforcement learning. In

particular, the basic locator network can be modeled as a

policy network that learns a stochastic policy π(vi,t|hi,t; θv),
where vi,t ∈ R

2 contains the (x, y) coordinates of the

predicted location. The predicted location will then be used

by the glimpse network to form the glimpse vector for the

next time step along with the available partial sketch at that

time step. Finally, the RNN will take the glimpse vector to
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transition (the environment) to the next hidden state hi,t+1.

Since the action space corresponds the locations in the sketch

image, which is continuous, we adopt a Gaussian policy:

vi,t ∼ N (LOCN(hi,t; θv),Σ) (2)

where LOCN(hi,t; θv) is the mean location predicted based

on the current hidden state and Σ = diag(σx, σy). We will

discuss how to set (σx, σy) dynamically to achieve effective

local exploration.

Dynamic ranking reward. Since the ultimate goal of the

sketch-based image retrieval is to rank the matching image

higher than other irrelevant images, it is most appropriate to

use a ranking based reward function. More intuitively, the

reward should be large if the matching image is ranked high

and small otherwise. Capturing this notion, we define the

reward signal as follows:

Ri,t = �(scorei,t ≥ ηt) (3)

where �(condition) is an indicator function taking value 1

if condition is true and 0 otherwise and ηt is a dynamically

adjusted threshold. The score of the matching image i is

defined as the reciprocal of its ranking among all images:

scorei,t =
1∑N

j=1 �(‖ej − ai,t‖22 ≤ ‖ei − ai,t‖22)
(4)

where ei and ej are the outputs of the image embedding

network for images i and j, respectively, ai,t is the predicted

final sketch representation by the action network at time step t,
and N is the total number of images available in the training

set. In the early stage of a training episode, it is desirable

to keep the threshold ηt less strict, which allows the model

to pick up the relatively weak reward signal. As the training

progresses and the model gets better, the threshold is increased

to encourage the model to seek for a higher reward. To capture

this notion, we define an adaptive threshold that depends on

an training steps as follows:

ηt =
1

1 + exp(−α× t+ β)
(5)

where α and β are hyperparameters.

Policy gradient. Based on the reward signal defined above,

the return at time-step t is computed as the total discounted

reward from t:

Gi,t =
T−t̂∑

t̂=1

γ t̂−1Ri,t+t̂ (6)

where 0 < γ ≤ 1 is a discount factor that assigns a higher

reward at an earlier stage, which has the effect to encourage

the discovery of the matching image with a less complete

partial sketch. Finally, we define the objective function for

the basic locator network as the expected return (which is the

state value) at time step t:

Li,t(θv) = Ep(hi,t:T ;θv)

⎡
⎣
T−t∑

t̂=0

γ t̂Ri,t+t̂

⎤
⎦ (7)

where the hidden state distribution depends on the policy

π(vi,t|hi,t; θv). Since the dynamics among the hidden envi-

ronment states hi,t is unknown, the expectation on the r.h.s. of

(7) cannot be analytically computed. Thus, we perform Monte

Carlo sampling to approximate the policy gradient:

∇θvLi(θv) =
T∑

t=1

Ep(hi,t:T ;θv) [∇θv log π(vi,t|hi,t)Gi,t]

≈ 1

M

M∑
m=1

T∑
t=1

∇θv log π(v
(m)
i,t |h(m)

i,t )G
(m)
i,t (8)

where v
(m)
i,t , G

(m)
i,t are samples collected during episode m for

partial sketch i at time step t where m ∈ [M ].

Dual-level exploration. The partial sketch coupled with a po-

tentially large image repository could make the reward signal

very sparse and delayed. As a result, effective exploration is

critical to ensure fast and better convergence for training the

locator network. The recently developed Bootstrapped DQN

model has been demonstrated to be a promising exploration

strategy in discrete action space scenarios [25]. In particu-

lar, Bootstrapped DQN approximates the distribution over Q
values via a bootstrapping strategy to facilitate the deep and

effective exploration. However, direct applying bootstrapped

DQN to our SBIR framework faces two key challenges. First,

it requires training two networks, including the Q network

for value approximation and a policy network to update the

policy. Second, our action space is continuous, choosing the

best action also requires solving an optimization problem. As

a result, these challenges increase both the computational time

and the difficulty of the training process, making it less suitable

for the on-the-fly image retrieval.

To deal with the key limitations presented above, we

propose a dual level exploration technique that combines

lightweight bootstrapped policy gradient (BPG) training for

global deep exploration and adaptive local exploration through

dynamically adjusting the variance of the Gaussian policy

and the ranking reward. In particular, the BPG leverages a

bootstrapped locator network with the K heads to predict

the glimpse location. In each training episode, it randomly

chooses one from K candidate heads to predict the next

location for the entire episode. To achieve the bootstrapping

behavior, the experience {hi,t,vi,t, Ri,t+1,hi,t+1} is recorded

along with a mask ωi,t ∈ {0, 1}K that is sampled from a

mask distribution Ω. This experience is used to update the k-

th locator network only when ωk
i,t = 1. As a result, different

heads will be trained using sufficiently different experiences to

ensure the bootstrapping property. The proposed BPG offers

three key advantages. First, by maintaining K heads for the

locator network and letting one head to execute one entire

episode, it effectively achieves multi-step (or deep) exploration

suitable for partial sketch matching with very sparse and

delayed reward signals. Second, each head is trained using

the bootstrapped experiences instead of from the same pool

of experiences to effectively reduce the variance and improve

the prediction accuracy. Last, by directly performing policy
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gradient, it avoids solving two optimization problems as in

deep Q-learning to improve the efficiency when dealing with

a continuous action space.

In addition to the global deep exploration using the K
heads, we equip each head with a local exploration capacity

to ensure fast and better convergence of model training. In

particular, the covariance matrix Σ = diag(σx, σy) of the

Gaussian policy in (2) plays an important to locate important

regions in a sketch for the model to attend to. Within each

head, if both σx and σy are set to very small, the head

may be concentrated on a very small neighborhood and only

performs exploitation without exploring other nearby regions.

To perform effective local exploration, we propose to assign

relatively large variances along with each coordinate in the

early steps in the training and gradually shrink them along with

the training process. Meanwhile, as shown in (5), the reward

signal is also dynamically adjusted to allow the head to pick up

a relatively weak signal in the early phase of training and then

focus on higher rewards as the head becomes better trained.

Our experimental results clearly justify the effectiveness of the

dual-level exploration strategy.

D. The Training Process

For training, we use both supervised loss coupled with

bootstrapped policy gradient loss. Given the input sketch xi

and glimpse location vector vi,t−1 from time step t−1, we use

the glimpse network to determine the glimpse representation

gi,t. Next, in the RNN network, we pass gi,t along with

the previous hidden state representation ht−1 to produce the

current hidden state vector ht. The action network then takes

ht and produces the corresponding sketch representation ai,t.
Using this representation, we compute the distance from the

corresponding image embedding vector as the supervised loss.

On the other hand, given ht, the locator network with

K heads produces the next location vi,t to be attended.

Assume that the k-th head is selected to execute the current

episode. The experience {hi,t,vi,t, Ri,t+1,hi,t+1} is recorded

along with a mask ωk
i,t to ensure the bootstrapping behavior

during model training. Again, the network finds the glimpse

considering the new location and repeats the process until

the episode complete. It should be noted that we randomly

choose the one k head from K candidate heads to predict the

next location and it is fixed for the entire episode. We repeat

the process for M episodes. Finally, we update the locator

network using (8). Next, we use the gradient of supervised

loss to update the action network, RNN network, and glimpse

network. More detailed training process is demonstrated in

Algorithm 1.

IV. EXPERIMENTS

In this section, we present our experimental results on three

real-world sketch datasets to demonstrate: (1) the state-of-the-

art performance in partial sketch based image retrieval, (2)

effectiveness of attention regression through deep reinforce-

ment learning, and (3) how the novel dual-level exploration

Algorithm 1 Training Process for DARP-SBIR Framework

Input: Training sketch set X, initial hidden state vector H0, initial
glimpse location V0, pre-trained image embedding E, total
episodes M , Time step per episode T

Output: Updated network parameterrs θg, θh, θv, θa
1: initialize supervised loss Ls

2: for m = 0;m ≤ M ;m ← m+ 1 do
3: Sample k ∼ [1, ..,K]
4: for i = 0; i ≤ N ; i ← i+ 1 do
5: Sample xi ∼ X
6: Initialize: v

(m)
i,0 , h

(m)
i,0

7: for t = 0; t ≤ T ; t ← t+ 1 do
8: Obtain retina representation ρ(xi,v

(m)
i,t )

9: Obtain g
(m)
i,t from Glimpse Network (ρ(xi,v

(m)
i,t ); θg)

10: Obtain h
(m)
i,t+1 from RNN(g

(m)
i,t ,h

(m)
i,t ; θh)

11: Obtain a
(m)
i from ACTN(h

(m)
i,t+1; θa)

12: Compute supervised loss and add to Ls

13: Compute R(m)
i,t+1 using (3)

14: Compute v
(m)
i,t using locator network θv

15: Store experience {h(m)
i,t ,v

(m)
i,t ,R(m)

i,t+1,h
(m)
i,t+1}

16: end for
17: end for
18: end for
19: Update θv using (8)
20: Update θa, θh, and θg using the supervised loss Ls

21: Repeat step 1∼20

helps to achieve better and faster convergence of the locator

network that boosts the entire image retrieval performance.

A. Datasets

We include three commonly used sketch datasets in our

evaluation. The first two datasets, including QMUL-Shoe-V21

[3], [26], [27] and QMUL-Chair-V22 [26], are specifically

designed for FG-SBIR. Both datasets contain coordinate stroke

information, enabling us to render the rasterized sketch images

at intervals for training our DARP-SBIR framework and

evaluate its retrieval performance over different stages of a

complete sketch drawing episode. In our pre-processing step,

we split the whole sketch drawing process into 17 partial

sketches, using openCV’s image dilation function to thicken

the strokes, and leveraging the flipping and rotating function

to perform data augmentation. We further include another

publicly available fine-grained sketch-image dataset, Sketchy3

[11]. We select 5 categories from this dataset to test our

framework’s retrieval performance. Table II summarizes the

key properties of all three datasets.

B. Comparison Baselines

We include four competitive comparison baselines, where

the first model primarily relies on a triplet network for both

images and sketches, two other models leverage relatively

simple reinforcement leaning models to support partial sketch

matching, and the last model that adapts the bootstrapped

1http://sketchx.eecs.qmul.ac.uk/downloads/
2http://sketchx.eecs.qmul.ac.uk/downloads/
3https://sketchy.eye.gatech.edu/
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TABLE II: Description of Datasets

Dataset Sketch Image

Description Train Test Total Train Test Total

ChairV2 725 275 1000 300 100 400

ShoeV2 6051 679 6730 1800 200 2000

Sketchy 2500 500 3000 415 85 500

DQN into our proposed framework. We present the details

of these models below:

• Triplet network: The triplet network outputs embedding

vectors for both images and sketches [1], [2]. By projecting

both images and sketches onto the embedding space, they

can be directly matched through commonly used similarity

or distance metrics.

• Triplet + Vanilla RL: To support partial sketch matching,

this model combines the triplet network for image embed-

ding with a simple policy network [28] to generate the final

sketch representation , which can then be matched with the

image embedding for retrieval.

• Triplet + PPO: In this model [13], the simple policy network

is replaced by an improved version of the PPO network [29].

The PPO network is trained with the replay memory. The

value network is trained by Monte-Carlo method and the

policy network is trained by policy gradient.

• Bootstrapped DQN: To demonstrate the effectiveness of the

proposed deep attention model with dual-level exploration,

we implement a Bootstrapped DQN [25] version of the

proposed framework by keeping all other network fixed but

replacing the locator network with a Bootstrapped DQN for

location regression.

C. Experimental Settings

We conduct a grid search to set the value of some related

parameters in the proposed framework. In particular, we

choose glimpse patches with a size of 8× 8 from the original

64×64×1 input sketch and the number of glimpses per sketch

is 12. The dimension for hidden glimpse vector gi,t is 128,

the dimension for hidden state vector hi,t is 256, the sketch

embedding dimension ai,t is 64, same as the dimension of pre-

trained image embedding ei. For the dynamic threshold given

in (5), α is set as 0.02 and β as −2 (other values in a similar

range also work well). The number of candidate heads in the

bootstrapped policy network is set as K = 6. The number of

partial sketches in one episode is typically 17. We train the

model for 1,000 epochs to get desired results. Early stop is

possible if the model doesn’t improve the validation accuracy

for a long time. The learning rate is set to be 3 × 10−4 and

the resolution scale parameter is set to 1. All the experiments

are conducted on a 4-core Intel i7 CPU and one V100 GPU

card with CUDA 10.2 and PyTorch 1.6.0. Our implementation

source code can be found using this link4.

4https://github.com/wdr123/DARP-SBIR

D. Evaluation Metrics

To properly evaluate the FG-SBIR performance under the

on-the-fly setting, we consider two categories of evaluation

metrics by following existing works in this area. In particu-

lar, to evaluate the retrieval performance based on complete

sketches, we consider the images that appear at the top of

the retrieved list as those that matter more. Therefore, our

first metric evaluates the percentage of complete sketches with

their true matching images appearing in the top-q list, which

is referred to as acc@q. To assess the retrieval performance

on partial sketches, the metric should encourage early re-

trieval [13]. Thus, we compute the mean area under the plot

of 1/rank versus the completion degree of a sketch, referred

to as area under inverse rank or short for AUIR. We further

consider the ranking percentile: (N −∑N
j=1 �(||ej −ai,t||22 ≤

||ei − ai,t||22))/N , versus the completion degree of a sketch

as another metric for partial sketch performance evaluation.

E. Comparison Results

For the comparison within different baselines, we report

the performance on both partial and complete sketch based

retrieval using AUIR and acc@5 in Table III.

Complete sketch result. First, for the complete sketch re-

trieval, the training curves of our model and other baselines

on the ChairV2 dataset are shown in Figure 5. The proposed

model outperforms all the baselines with a clear margin. The

second best model is the Triplet + PPO model that benefits

from an advanced PPO network [29]. However, no attention

mechanism is provided, making it less robust to the noisy

stokes. The Bootstrapped DQN based SBIR also performed

worse than our framework. This could be due to the sub-

optimal results obtained when optimizing over a continuous

action space. For ChairV2 dataset, we leverage a pre-trained

sketch embedding vector from [29] to initialize the RNN

hidden state vector h0. For the other two datasets, we use

a self-generated sketch embedding to initialize h0. Thus, all

the baseline models are compared under the same condition

in each dataset.

Partial sketch result. For partial sketch retrieval, we use

AUIR, which encourage early retrieval using less complete

partial sketches. Benefiting from the deep reinforced attention

regression mechanism, the proposed framework again out-

performs all the baselines on all three datasets. The Triplet

network, which is not designed for the on-the-fly retrieval,

performs the worst in most cases.

Figure 7 further compares DARP-SBIR with the second

best model, Triplet + PPO, on partial sketch retrieval through

ranking percentile vs. complete degree of a sketch by using

ChairV2 as an example. As can be seen, our model only needs

six out of sixteen strokes to reach the top-10 ranking percentile

while the Triplet + PPO needs more than 12 strokes to reach

the same ranking. Performance on the other two datasets shows

similar trends, which are omitted due to lack of space.

676

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on June 29,2022 at 20:18:47 UTC from IEEE Xplore.  Restrictions apply. 



(a) Triplet (b) Vanilla RL (c) PPO (d) DQN (e) DARP-SBIR

Fig. 5: Comparison Experiment

(a) With Attention (b) W/O Attention (c) With Exploration (d) W/O Exploration

Fig. 6: Effectiveness of Attention Regression and Dual-Level Exploration

TABLE III: Performance Comparison

Comparison Chair V2 Shoe V2 Sketchy

Model AUIR acc@5 AUIR acc@5 AUIR acc@5

Triplet network 21.05 64.47 12.05 52.34 25.00 69.50

Triplet + Vanilla RL 25.34 69.67 13.60 54.80 24.30 68.70

Triplet + PPO 33.35 75.44 15.50 57.10 27.88 71.24

Bootstrapped DQN 30.05 71.45 13.50 54.50 24.50 69.00

DARP-SBIR 35.65 79.12 18.12 60.02 32.32 73.82

(a) DARP-SBIR (b) Triplet + PPO

Fig. 7: Ranking Percentile Vs. Complete Degree (ChairV2)

F. Ablation Study

We conduct an ablation study to evaluate the effectiveness

of attention regression and the dual-level exploration used by

the bootstrapped policy network.

First, we compare the validation rewards of our model using

two variants, with attention regression and without attention

regression by using ChairV2 as an example. It is worth to note

that without attention regression, both the glimpse network

and the locator network will be removed from the framework.

The RNN network is used to capture the temporal dynamics

in the on-the-fly setting and the action network is to predict

the final sketch representation. Figure 6 (a-b) shows that the

attention mechanism plays an important role in the overall

retrieval performance by helping the framework identify the

most important regions to attend to while ignoring the noisy

stokes. Comparing to the model without attention selection

and only using supervised loss, the model with attention

mechanism gains around 75% performance boost. Also, the

model with attention mechanism could reach their maximum

performance in relatively shorter time.

We further compare our model’s performance with and

without the dual-level exploration. Figure 6 (c-d) shows that

exploration is very important in performance boosting and

reducing the training time. One thing to note, if a model only

uses attention region selection while not applying sufficient ex-

ploration, then its performance is similar to not using attention

region selection at all. This clearly demonstrate importance of

exploration in partial sketch based image retrieval that involves

very sparse and delayed reward signals.

Finally, Figure 8 shows the corresponding glimpse results

for the three datasets to highlight the importance of local

exploration (in combination with the global deep exploration).

As shown, after proper training, our model is able to focus on

the important regions of the sketches and therefore, ignoring

the unnecessary strokes drawn. The attended regions usually

cover a wide area in the sketches, partly due to the effect of

dynamically adjusting the covariance in the Gaussian policy

and the reward signal.

V. CONCLUSIONS

In this work, we propose a novel on-the-fly FG-SBIR

framework that takes attention regions directly from an orig-

inal sketch to achieve high sketch-based image retrieval per-

formance. To deal with partial sketches and provide cor-

rect predictions as early as possible, it is trained with a
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(a) ChairV2 (b) ShoeV2 (c) Sketchy

Fig. 8: Glimpse Results

bootstrapped policy network that performs novel dual-level

exploration. To deal with the sparse and delayed reward signals

in partial sketch based retrieval, we combine bootstrapping

with a K-head locator network with effective local exploration

strategies, including using an adaptive Gaussian covariance

and dynamically adjusting the reward threshold. As a result,

our framework can enforce an attention mechanism on the

original sketch directly, reaching a high accuracy while not

demanding a high computation cost. Experiments conducted

on three real-world sketch datasets clearly demonstrate the

state-of-the-art retrieval performance on both complete and

partial sketch settings.
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