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Abstract
The problem of parameter identification appears in many physical applications.
A parameter of particular interest in cancer treatment is permeability, which
modulates the fluidic streamlines in the tumor microenvironment. Most of the
existing permeability identification techniques are invasive and not feasible to
identify the permeability with minimal interference with the porous structure in
their working conditions. In this paper, a theoretical framework utilizing partial
differential equation (PDE)-constrained optimization strategies is established
to identify a spatially distributed permeability of a porous structure from its
modulated external velocity field measured around the structure. In particular,
the flow around and through the porous media are governed by the steady-state
Navier–Stokes–Darcymodel. The performanceof our approach is validated via
numerical and experimental tests for the permeability of a 3D printed porous
surrogate in a micro-fluidic chip based on the sampled optical velocity mea-
surement. Both numerical and experimental results show a high precision of
the permeability estimation.
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1. Introduction

In many physical applications including cancer treatment, permeability is a critical property
of the structures under investigation. Some of the major fields, wherein the importance of per-
meability is endorsed and its estimation is well-studied, include material science [4, 10, 59],
petroleum engineering [11], geoscience and reservoir engineering [3, 19, 22, 67], and tissue
engineering [15, 39, 60]. However, the role of this parameter has been often overlooked in
cancer treatment.

In cancer treatment, permeability is an important property of tumor tissue which modulates
the interstitial flow in tumor micro-environment [57] and thus the drug delivery. In tumor tis-
sue, the permeability is defined by cells density, alignment, and attachment [27]. Extracellular
matrix (ECM) is a non-cellular component of the tumor micro-environment which plays an
important role in stabilizing the spatial alignment of the cells and defines the tumor permeabil-
ity [27]. The role of the tumor microenvironment and ECM in targeted drug delivery is studied
in (e.g. [16, 27, 33, 57, 74, 76, 78]). Adjusting the ECM has been considered in [26, 33, 74]
to enhance the drug delivery by means of weakening the ECM structure. In this regard, esti-
mation of the permeability helps to optimize the modulation of the microenvironment towards
increasing the drug transportation [27, 47, 55, 57].

In general, two different strategies have been considered in literature to estimate the per-
meability of a porous structure, namely, numerical and experimental approaches. Experimen-
tal estimation of the permeability is commonly used in literature. An experimental set-up is
designed to characterize the pressure drop under flow dynamics through the porous structure.
Estimation of the permeability is then followed by a form of Darcy’s law (e.g. [37, 54, 60, 61]).
Common issues with most experimental set-ups are uncertainties and constraints in sample
preparation as well as complexity of the measurements. These complexities are often imposed
by the assumptions required for the permeability estimation. Furthermore, the porosity of the
media is assumed to be uniformly defined and distributed.

Numerical approximation of the permeability is mainly based on solving a form of flow
equations over an approximate porous geometry. For this purpose, the porous structure is
required to be imaged often via micro-ct/x-ray [11, 22, 29, 59] and then replaced by its void
connected pathways. In most cases, the void structure is approximated by a pore-network
model. The permeability is defined by estimated flow dynamics, normally in formof a capillary
pressure drop, and a Darcy-like law governing the flow transport in the pore-network model
[3, 11, 22, 28, 59, 73]. The efficiency and reliability of these approach depend on the imaging
resolution and the pore-network approximation validity [7, 22].

In other numerical efforts to estimate the permeability, the void structure of the porous
media is approximated by a simple and computationally efficient geometry over which the
flow dynamics are solved on the pore scale. In one of the early works, the flow dynamics
were solved over a simplified void geometry via finite element method (FEM) [75]. Later,
more realistic void structures have been considered where accelerated numerical methods like
lattice Boltzmann method [29, 51, 68, 71], moving particle simulation [53, 58], and even more
complicated computational fluid dynamics (CFD) methods [42, 65] were proposed to define
the velocity field in the porous phase and thus permeability. For structured void geometries,
semi-empirical techniques, namely homogenization methods, are considered [15, 56]. Other
empirical methods of permeability estimation are resorting to deep learning [31] and fractal
theory coupled with microscopic Seepage flow theory [77].

The aforementioned numerical methods predominantly focus on the estimation of the void
structure of the porous media. However, this information is often not provided or hard to
acquire in many applications. This limitation highlights the need for a less-invasive tool to
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study the flow dynamics interaction with the porous structure and estimating the permeabil-
ity. The contribution of this work is twofold. First, a rigorous mathematical framework is
established for the problem of distributed parameter identification of a nonlinear steady-state
Navior–Stokes–Darcy model. Second, a numerical and experimental toolbox is developed for
the estimation of the permeability of a tumor surrogate in vitro.

The parameter estimation of linear infinite-dimensional systems is well-established and
reviewed in [6]. Solving the inverse problem for both linear and nonlinear PDEs with par-
ticular applications is studies in [46]. Other examples for specific classes of partial differential
equations can be found in (e.g. [12, 23, 24, 30, 32, 34–36, 38, 44, 45, 49, 66]). In these stud-
ies, often, the inverse problem is solved using variational approach in which a cost function is
minimized. More detailed analysis for general PDEs can be found in [25].

In general, two classes of optimization approaches for parameter estimation are often
employed, namely, via stochastic optimization [62] and deterministic optimization [50] to min-
imize the difference between the model output and the system measurement. In this work, a
deterministic optimization problem is formulated to estimate a spatially distributed perme-
ability of a 3D porous surrogate in the continuum space. The objective is to minimize the
difference between the optical measurements of the external velocity field and its correspond-
ing flow solution of the Navier–Stokes–Darcy equations over a predefined measurement set.
The optimization-based parameter estimation provides a theoretical treatment that is flexible
for adjusting the microfluidic experimental design to different applications. We shall prove the
existence of an optimal solution and derive the first-order optimality conditions for solving
such a solution using the adjoint method.

Regarding the numerical and experimental implementation, developing an in vitromodel for
studying the properties of the tumor tissue, particularly its permeability, is a critical step toward
translating new therapeutic nano-medicines into clinical application. In this work, we shall
establish a noninvasive numerical and experimental framework for estimating the permeability
on amicrofluidic chip. The proposed approach imposes less restrictive conditions on themicro-
environment of the porous surrogate to be identified comparedwith the proposed techniques in
the literature (e.g. [17, 18, 54]). The micro-fluidic chip is designed to mimic in vivo conditions
of the tumor environment under flow in micro-scale. Concrete examples will be presented to
demonstrate our ideas and design. Our theoretical/experimental parameter estimation approach
can be easily extended and adapted to different applications and potentially in vivo permeability
identification.

2. Problem statement

This work mainly focuses on the estimation of the permeability of a porous structure from
the velocity field measurement sampled around the structure. In particular, the steady-state
Navier–Stokes–Darcy model is utilized to describe the flow and the porous media. The
unknown parameter will be identified by minimizing the difference between the predicted
velocity and its corresponding experimental measurement. To demonstrate the idea, a 2D cross
section of a potential 3D microfluidic channel is shown in figure 1.

We have the following assumptions on the domain geometry for our investigation.

Assumption 2.1. Let Ωf ⊂ R
3 be an open bounded and connected domain, with a locally

Lipschitz boundary Γf . The boundaries Σw, Σi, Σo, and Σc are open subsets of Σf , which are
sufficiently smooth and satisfy
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Figure 1. 2D cross section of a potential 3D microfluidic channel.

Σk ∩ Σl = ∅ for k, l ∈ {w, i, o, c}, k �= l,

Σf = Σ̄w ∪ Σ̄i ∪ Σ̄o ∪ Σ̄c.

Similarly, let Ωs ⊂ R
3 be an open bounded and connected domain, with a locally Lipschitz

boundary Γs. The boundary Σc and Σr are open subsets of Σs, which are sufficiently smooth
and satisfy

Σk ∩ Σl = ∅ for k, l ∈ {c, r}, k �= l,

Σs = Σ̄c ∪ Σ̄r.

2.1. Steady-state Navier–Stokes–Darcy model

We consider a steady-state flow represented by the stationary Navier–Stokes equations [70].
Furthermore, the flow through the porous structure is defined by Darcy’s law (e.g. [5, 8, 52]).
The flow equations are solved in a channel enclosing the porous structure. The domain over
which the flow dynamics is defined is divided into two sub-domains: the domain that is occu-
pied by only the flow denoted by Ωf and the one where both porous structure and flow are
present. The domain of porous structure is denoted byΩs. The flow dynamics inΩf are defined
by the pressure p and the velocity vector u = (u1, u2, u3)T over ∈ Ωf . Let u and p denote the
flow velocity and pressure around the porous structure. By mass and momentum conservation,
the Navier–Stokes equations are governed by

ρ(u · ∇u)+∇p−∇ · (μ(∇u+ (∇uT))) = 0 (2.1)

∇ · u = 0, (2.2)

where ρ is the fluid density and μ is the fluid viscosity. The effect of the external force gravity
is assumed to be negligible and, hence, neglected in our formulation. In the domain Ωs of the
porous structure, the flow equation is defined by Darcy’s law and conservation of mass. Let φ
denote the pressure along the porous structure. The flow through the porous structure is defined
by (e.g. [5, 8, 52])

−∇ ·
(
κ

μ
∇φ

)
= 0, (2.3)

where κ(·) is the permeability coefficient of the porous structure, depending on the spatial
variable due to the non-homogeneous porous structure.
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The boundaries consist of the boundaries of the flow domain Ωf and the boundaries of the
porous structure domainΩs. Note that these two domains share a boundary. The boundaries of
the flow domain include the walls of the channelΣw, the inletΣi, the outletΣo, and the surface
Σc of the porous structure which is in contact with the external flow. The boundaries of the
porous structure are the contact surface Σc and the rest of the structure surface Σr.

The first part of boundary conditions are composed of no-slip condition on the surface Σw,
a uniform known velocity profile at the flow inlet boundaryΣi, and a uniform known pressure
at the flow outlet boundaryΣo. These conditions can be stated as

u = 0 on Σw, (2.4)

u = u0 on Σi, (2.5)

u× no = 0 on Σo, (2.6)

ρ
|u|2
2

+ p− no · T(u)no = p0, on Σo, (2.7)

where T(u) = μ(∇u+ (∇u)T) and no is the outward normal vector to the boundary Σo. Let
nsf be the outward normal vector to the boundaryΣc pointing from Ωs to Ωf . Then nfs = −nsf
stands for the outward normal vector to the boundaryΣc pointing fromΩf toΩs. At the surface
of the porous structure Σc, conservation of mass leads to

u · nsf = q · nsf on Σc, (2.8)

where

q = −κ

μ
∇φ (2.9)

is the discharge velocity of the fluid relative to the solid. Similarly, balancing the normal
components of the stress over the surface Σc results in

ρ
|u|2
2

+ p− nsf · T(u)nsf = φ on Σc. (2.10)

The tangential component of the fluid stress is assumed to be proportional to the slip rate as
described by the Beavers–Joseph–Saffman slip condition,

τ · T(u)nsf =
βμ√
κ
u · τ on Σc, (2.11)

where β is the slip rate and τ is any vector linearly represented by τ 1 and τ 2, which form a
local orthonormal basis for the tangent plane to the boundary Σc of domain Ωs. Finally, the
flow flux on the surface Γr is given by

q · nr = q0(x) on Σr, (2.12)

where nr is the outward normal vector to the boundaryΣr of domain Ωs.
Let Pτ be the projection onto the local tangential plane that can be explicitly defined as

Pτu =
2∑
i=1

(u · τi)τi = u− (u · nsf)nsf = u− (u · nfs)nfs. (2.13)
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2.2. The problem of permeability identification

As mentioned earlier, the objective of the current work is to identify the unknown permeability
κ(·) based on the sampled data from the velocity field measurements. Consider that the velocity
measurements are taken as the local measurements over subdomainsΩi, i = 1, 2, . . . ,m, of the
flow domainΩf , centered at some point ξi ∈ Ωf with radius εi > 0. Let	y = [y1, y2, . . . , ym]T ∈
R
m denote the experimental samples of the velocity field measurements, X = (L2(Ωf))3,

and Y = R
m be the output measurement space. Define the output measurement operator C :

X →Y by

	y = Cu =
[∫

Ωf

cΩ1 (x)u dx,
∫
Ωf

cΩ2 (x)u dx, . . . ,
∫
Ωf

cΩm (x)u dx

]T
, ∀ u ∈ X ,

(2.14)

where cΩi(·) is defined by

cΩi (x) =

⎧⎨
⎩

1
εi

if |x − ξi| � εi,

0 otherwise.
(2.15)

In other words, yi = 1
εi

∫
Ωi
u dx, i = 1, 2, . . . ,m.

We formulate the parameter identification problem as the following minimization problem

J(κ) =
1
2
‖Cu−	yref‖2Y +

α

2
‖κ‖2

K
, (P)

subject to (2.1)–(2.12), for some weight parameter α > 0, where 	yref ∈ R
m is a given refer-

ence velocity vector and K stands for the set of admissible functions for κ(·). Since the output
measurement usually involves noises, to unify the optimal solution we consider a regularized
optimization criterion defined as the Tikhonov functional. The choice of K is tied to the phys-
ical properties as well as the need to establish the existence of an optimal solution and the
first-order optimality conditions for solving such a solution. Since κ(·) is the coefficient of∇p
and∇φ, which also appears in the interface condition (2.11), the mapping κ �→ u is nonlinear.
As a result, problem (P) becomes non-convex. In fact, the nonlinearity of the Navier–Stokes
equations has been shown to disturb the convexity (e.g. [1], p 307), let along the nonlinear
coupling of these equations with Darcy’s law. Therefore, the uniqueness of the optimal solu-
tion may not hold in general. Moreover, to establish the optimality conditions, mathematically,
it is critical to identify the appropriate regularity for K as to allow the differentiability of the
mapping κ �→ u. Since the tumor tissue is not experiencing sharp variation, it is reasonable to
assume that the permeability is sufficiently regular.

The remainder of this paper is organized as follows. The weak formulation and well-
posedness of the system model are addressed in section 3. A rigorous proof of the existence of
an optimal solution is presented in section 4. The first-order optimality conditions for charac-
terizing and solving the optimal solution are established in section 5 using the adjoint method.
Finally, the numerical and experimental test results are demonstrated in section 6. This work
is concluded in section 7.

In the sequel, the symbol C denotes a generic positive constant, which is allowed to depend
on the domain as well as on indicated parameters without ambiguity.
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3. Weak formulation of the system model

For the convenience of our discussion, we define the affine space

V1
u0
(Ωf) = {u ∈ (H1(Ωf))3 : div u = 0, u|Σw = 0, u|Σi = u0, and u× n|Σo = 0},

and the function spaces

V1
0 (Ωf) = {u ∈ (H1(Ωf))3 : div u = 0, u|Σw∪Σi = 0, and u× no|Σo = 0},

V = V1
0 (Ωf)× H1(Ωs),

H = (L2(Ωf))3 × L2(Ωs).

Moreover, let

K = {κ ∈ H1(Ωs) : 0 < κl � κ � κu < ∞, a.e. x ∈ Ωs},

where kl and ku are positive constants. Let (·, ·)D denote the L2-inner product on the domain D
(D = Ωf or Ωs) and 〈·, ·〉 denote the L2-inner product on the domain boundary or the duality
paring between the Banach space X and its dual space X∗.

To define the weak solution of the coupled Navier–Stokes–Darcy problem (2.1)–(2.12), we
first introduce the associated bilinear and trilinear forms.

For the Navier–Stokes equations (2.1) over Ωf , taking the inner product of its linear part
with w ∈ V1

0 (Ωf) and using the boundary conditions (2.4)–(2.11) we obtain(
−∇ ·

(
μ(∇u+ (∇u)T)+∇p,w

)
Ωf

=
1
2μ

∫
Ωf

T(u) · T(w)dx −
∫
Σo∪Σc

(T(u)n) · w dx +
∫
Σo∪Σc

p(w · n)dx

=
1
2μ

∫
Ωf

T(u) · T(w)dx −
∫
Σc

(T(u)nfs) · [(w · nfs)nfs + Pτw] dx

−
∫
Σo

(T(u)no) · w dx +
∫
Σc

(pnfs) · [(w · nfs)nfs + Pτw] dx +
∫
Σo

p(w · no)dx

=
1
2μ

∫
Ωf

T(u) · T(w)dx +
∫
Σc

φ(w · nfs)dx −
ρ

2

∫
Σc

|u|2(w · nfs)dx

+

∫
Σc

βμ√
κ
(Pτu) · (Pτw)dx +

∫
Σo

p0(w · no)dx −
ρ

2

∫
Σo

|u|2(w · no)dx,

where n|Σo = no and n|Σc = nfs. Now define the bilinear form af(·, ·) : V1
0 (Ωf)× V1

0 (Ωf)
→ R by

af(u,w) =
1
2μ

∫
Ωf

T(u) · T(w)dx +
∫
Σc

φ(w · nfs)dx +
∫
Σc

βμ√
κ
(Pτu) · (Pτw)dx

+

∫
Σo

p0(w · no)dx −
ρ

2

∫
Σo∪Σc

|u|2(w · n)dx. (3.1)

Next define the trilinear form b(·, ·, ·) : V1
0 (Ωf)× V1

0 (Ωf)× V1
0 (Ωf)→ R. Note that

u · ∇u = ω × u+
1
2
∇|u|2, ω = ∇× v.

7
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For w ∈ V1
0 (Ωf), we have

b(u, u,w) = (ρ(u · ∇u),w)Ωf
= ρ((∇× u)× u),w)Ωf

+ ρ

(
1
2
∇|u|2,w

)
Ωf

= ρ((∇× u)× u),w)Ωf
+

ρ

2

∫
Σo∪Σc

|u|2(w · n)dx. (3.2)

For the porous media over Ωs, the bilinear form as(·, ·) : H1(Ωf)× H1(Ωf)→ R is defined by

as(φ,ψ) = −
〈
κ

μ
∇φ · n,ψ

〉
Σc∪Σr

+

(
κ

μ
∇φ,∇ψ

)
Ωs

= 〈u · nsf,ψ〉Σc + 〈q0,ψ〉Σr +

(
κ

μ
∇φ,∇ψ

)
Ωs

. (3.3)

Given (3.1)–(3.3), the weak formulation of the governing system (2.1)–(2.12) is then
defined as follows: find (u,φ) ∈ V1

u0
(Ωf)× H1(Ωs) such that

ā((u,φ); (w,ψ))+ b̄(u, u,w) = L(w,ψ), ∀ (w,ψ) ∈ V , (3.4)

where

ā((u,φ); (w,ψ)) =
1
2μ

∫
Ωf

T(u) · T(w)dx +
∫
Σc

φ(w · nfs)dx +
∫
Σc

βμ√
κ
× (Pτu) · (Pτw)dx,

+

∫
Σc

(u · nsf)ψ dx +
∫
Ωs

κ

μ
∇φ · ∇ψ dx, (3.5)

for ∀ (u,φ), (w,ψ) ∈ (H1(Ωf))3 × H1(Ωs),

b̄(u, v,w) =
∫
Ωf

ρ((∇× u)× v) · w dx, ∀ u, v,w ∈ (H1(Ωf))3 (3.6)

L(w,ψ) =
∫
Σo

p0(w · no)dx +
∫
Σr

q0ψ dx, ∀ w ∈ (H1(Ωf))3,ψ ∈ H1(Ωs).

(3.7)

Lemma 3.1. The bilinear form ā(·, ·) : V × V → R is continuous and coercive.

Proof. (Please refer to appendix A.) �

Furthermore, for the trilinear form b(·, ·, ·) we have for u, v,w ∈ (H1(Ωf))3,

b̄(u, v,w) =
∫
Ωf

ρ((∇× u)× v) · w dx

� ρ‖∇u‖L2(Ωf)
‖v‖L4(Ωf)

‖w‖L4(Ωf)

� Cb̄ρ‖u‖H1(Ωf)
‖v‖H1(Ωf)

‖w‖H1(Ωf)
, (3.8)

for some Cb̄ > 0 depending only on Ωf . In particular, since ((∇× u)× v) · v = 0, it follows

b̄(u, v, v) = 0. (3.9)

8
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Similarly,

L(w,ψ) � ‖p0‖L2(Σo)‖w‖L2(Σo) + ‖q0‖L2(Σr)‖ψ‖L2(Σr)

� C(‖p0‖L2(Σo), ‖q0‖L2(Σr))(‖w‖L2(Σo) + ‖ψ‖L2(Σr)). (3.10)

To deal with the non-homogeneous boundary conditions for the Navier–Stokes equations,
we let u0 ∈ (H1/2(Σi))3, p0 ∈ L2(Σo), and assume that there exits a function ũ ∈ (H1(Ωf))3 such
that

∇ · ũ = 0 in Ωf, (3.11)

ũ = 0 on Σw, ũ = u0 on Σi, and ũ× no = 0 on Σo. (3.12)

Moreover, by trace theorem we get

‖ũ‖H1(Ωf)
� c0‖u0‖H1/2(Σi)

(3.13)

for some constant c0 > 0. The existence of ũ ∈ (H1(Ωf))3 satisfying (3.11) and (3.12) will not
be addressed here. The detailed discussion for this problemwith smooth domains and Dirichlet
boundary conditions can be found in [63, chapter 2], and with Lipschitz domains and mixed
boundary conditions can be found in (e.g. [14, 20, 43, 48]). We shall simply study (2.1)–(2.12)
assuming the existence of ũ satisfying (3.11) and (3.12).

The following lemma can be established by slightly modifying the proof of [20, lemma 2.3,
chapter IV] for Lipschitz domains.

Lemma 3.2. There exists ũ = ũ(γ0) satisfying (3.11) and (3.12) such that

b̄(ū, ũ, ū) � γ0‖ū‖2H1(Ωf)
, (3.14)

for every γ0 > 0.

Note that the velocity u we are seeking for satisfies u− ũ ∈ V1
0 (Ωf). Making a change of

variable by letting

ū = u− ũ, (3.15)

the weak form (3.4) becomes

ā((ū+ ũ,φ); (w,ψ))+ b̄(ū+ ũ, ū+ ũ,w) = L(w,ψ),

where

ā((ū+ ũ,φ); (w,ψ)) = ā((ū,φ); (w,ψ))+ ā((ũ, 0); (w,ψ))

and

b̄(ū+ ũ, ū+ ũ,w) = b̄(ū, ū,w)+ b̄(ū, ũ,w)+ b̄(ũ, ū,w)+ b̄(ũ, ũ,w).

In other words, we seek for (ū,φ) ∈ V satisfying the following weak formulation

ā((ū,φ); (w,ψ))+ b̄(ū, ũ,w)+ b̄(ũ, ū,w)+ b̄(ū, ū,w)

= L(w,ψ)− ā((ũ, 0); (w,ψ))− b̄(ũ, ũ,w), ∀ (w,ψ) ∈ V. (3.16)

9



Inverse Problems 38 (2022) 065002 S Afshar and W Hu

3.1. Well-posedness of the steady-state Navier–Stokes–Darcy problem

Definition 3.3. Let u0 ∈ H1/2(Σi), p0 ∈ L2(Σo), q0 ∈ L2(Σr) and (κ, β) ∈ K× R
+. (u,φ) ∈

V1
u0
(Ωs)× H1(Ωs) is said to be a weak solution of equations (2.1)–(2.12), if ū = u− ũ ∈ V1

0 (Ω)
and (ū,φ) satisfies (3.16) for any (w,ψ) ∈ V .

The following theorem establish the well-posedness of the weak form (3.16).

Theorem 3.1. For given ρ, μ, β,κl > 0, let u0 ∈ H1/2(Σi), p0 ∈ L2(Σo), q0 ∈ L2(Σr), and
κ ∈ K. Then there exists at least one solution (ū,φ) ∈ V to the weak formulation (3.16).
Moreover,

‖ū‖H1(Ωf)
+ ‖φ‖H1(Ωs) � C(‖u0‖H1/2(Σi)

, ‖p0‖L2(Σo), ‖q0‖L2(Σr)), (3.17)

and hence

‖u‖H1(Ωf)
+ ‖φ‖H1(Ωs) � Cu(‖u0‖H1/2(Σi)

, ‖p0‖L2(Σo), ‖q0‖L2(Σr)), (3.18)

for some constants C and Cu depending on the model input data u0, p0, q0, and the parameters
ρ, μ, β, and κl.

Proof. (Refer to appendix A) �
The uniqueness of the solution can be obtained using the similar procedures as in (e.g.

[13, 63]) by imposing large Reynolds number μ and permeability κ or small data of the model,
i.e., u0, p0, q0, β.

4. Existence of an optimal solution

In this section, we address the existence of an optimal solution to problem (P). Note that
the uniqueness of the solution to the 3D steady state Navier–Stokes–Darcy model can be
obtained for small data (similar to conditions used in [63, theorem 1.6, chapter II, p 120]).
However, uniqueness of the state equations is not required for the existence of a solution to an
optimization problem.

Define ‖κ‖2
K
= ‖∇κ‖2

L2(Ωs)
+ ‖κ‖2

L2(Ωs)
. Then the cost functional J can be rewritten as

J(κ) =
1
2
‖Cu− yref‖2Y +

α

2
(‖κ‖2L2(Ωs)

+ ‖∇κ‖2L2(Ωs)
), κl � κ � κu. (4.1)

Theorem 4.1. Let u0 ∈ H1/2(Σi), p0 ∈ L2(Σo), q0 ∈ L2(Σr). There exists an optimal solution
κ ∈ K to problem (P).

Proof. Since J(·) is bounded from below, we can choose a minimizing sequence {κn} ⊂ K

such that

lim
n→∞

J(κn) = inf
κ∈K

J(κ). (4.2)

By the definition of J(·), the sequence {kn} is uniformly bounded in K, and hence there exists
a subsequence, still denoted by {kn}, such that

kn → k∗ weakly in H1(Ωs)

kn → k∗ strongly in H1/2(Ωs) and L
2(Ωs). (4.3)

10
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For u0 ∈ H1/2(Σi), p0 ∈ L2(Σo), q0 ∈ L2(Σr), let {(un,φn)} be a corresponding weak solution
of the state equations (2.1)–(2.12) based on definition 3.3. Let ūn = un − ũ. According to
(3.17), {(ūn,φn)} is bounded in V , thus there exists a subsequence, still denoted by {(ūn,φn)}
such that

(ūn,φn)→ (ū∗,φ∗) weakly in V , (4.4)

(ūn,φn)→ (ū∗,φ∗) strongly in L2(Ωf)× L2(Ωs). (4.5)

Let u∗ = ū∗ + ũ. Next we verify that (u∗,φ∗) is the solution associated with κ∗ based on
definition 3.3. Note that (ūn,φn) satisfies

ā((ūn,φn); (w,ψ))+ b(ūn, ūn,w) = L(p0, q0)+ ā(ũ, 0; (w,ψ))

− b(ūn, ũ,w)− b(ũ, ūn,w)− b(ũ, ũ,w), (4.6)

for any (w,ψ) ∈ (C∞(Ωf) ∩ V0
0 (Ωf))× C∞(Ωf). Due to the strong converge of (ūn,φn) ∈

L2(Ωf)× L2(Ωs), it is straightforward to pass to the limit in the linear terms of
ā((ūn,φn); (w,ψ)), b(ūn, ũ,w) and b(ũ, ūn,w). In light of (3.5) and (3.6), it remains to show
that passing limit in the following nonlinear terms are possible

I1(κn, ūn) =
∫
Σc

βμ√
κn

(Pτ ūn) · (Pτw)dx,

I2(κn,φn) =
∫
Ωs

κn
μ
∇φn · ∇ψ dx,

and

I3(ūn) =
∫
Ωf

ρ((∇× ūn)× ūn) · w dx.

First, note that

|I1(κn,φn)− I1(κ∗,φ∗)| =
∣∣∣∣
∫
Σc

(
βμ
√
κn

(Pτ ūn)−
βμ√
κ∗ (Pτ ū

∗)

)
· (Pτw)dx

∣∣∣∣
=

∣∣∣∣
∫
Σc

(
βμ
√
κn

(Pτ ūn)−
βμ
√
κn

(Pτ ū
∗)

+
βμ√
κn

(Pτ ū
∗)− βμ√

κ∗ (Pτ ū
∗)

)
· (Pτw)dx

∣∣∣∣
=

∣∣∣∣
∫
Σc

(
βμ
√
κn

(Pτ ūn − Pτ ū
∗)+ βμ

(
1

√
κn

− 1√
κ∗

)
(Pτ ū

∗)

)
· (Pτw)dx

∣∣∣∣
� βμ√

κl
〈Pτ ūn − Pτ ū

∗,Pτw〉(H1/2
00 (Σc))′ ,H

1/2
00 (Σc)

+ βμ

∣∣∣∣
∫
Σc

(
1√
κn

− 1√
κ∗

)
(Pτ ū

∗) · (Pτw)dx

∣∣∣∣
� βμ

√
κl
‖ūn − ū∗‖L2(Ωf)

‖w‖H1(Ωf)

+ βμ

∣∣∣∣
∫
Σc

(
1

√
κn

− 1√
κ∗

)
(Pτ ū

∗) · (Pτw)dx

∣∣∣∣ , (4.7)

11
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where the first term on the right-hand side of (4.7) converges to zero due to (4.5). Here
H1/2

00 (Σc) is a non-closed subspace ofH1/2(Γc) and has a continuous zero extension toH1/2(Σf)

[41, p 66]. It can be equivalently defined as the restriction of H1(Ωf) to Σc, i.e., H
1/2
00 (Σc) =

H1(Ωf)|Γc . Moreover, since

1√
κn

− 1√
κ∗ =

√
κ∗ − √

κn√
κnκ∗ =

(κ∗ − κn)√
κnκ∗(

√
κn +

√
κ∗)

,

by (4.3) we get ∣∣∣∣
∫
Σc

(κ∗ − κn)√
κnκ∗(

√
κn +

√
κ∗)

(Pτ ū
∗) · (Pτw)dx

∣∣∣∣
� ‖ (κ∗ − κn)√

κnκ∗(
√
κn +

√
κ∗)

‖L2(∂Ωs)‖Pτ ū
∗‖L4(∂Ωf)

‖Pτw‖L4(∂Ωf)

� C
‖κ∗ − κn‖H1/2(Ωs)

2κ3/2
l

‖ū∗‖H1/2(∂Ωf)
‖w‖H1/2(∂Ωf)

� C
‖κ∗ − κn‖H1/2(Ωs)

2κ3/2
l

‖ū∗‖H1(Ωf)
‖w‖H1(Ωf)

→ 0,

which follows

I1(κn,φn)→ I1(κ∗,φ∗). (4.8)

Next, given (3.18), (4.3) and (4.4), and∇ψ ∈ L∞(Ωs), we have

|I2(κn,φn)− I2(κ∗,φ∗)|

=

∣∣∣∣
∫
Ωs

(
κn
μ
∇φn −

κ∗

μ
∇φ∗

)
· ∇ψ dx

∣∣∣∣
=

1
μ

∣∣∣∣
∫
Ωs

(
(κn − κ∗)∇φn + κ∗(∇φn −∇φ∗)

)
· ∇ψ dx

∣∣∣∣
� 1

μ
‖κn − κ∗‖L2(Ωs)‖∇φn‖L2(Ωs)‖∇ψ‖L∞(Ωs)

+
1
μ

∣∣∣∣
∫
Ωs

(κ∗(∇φn −∇φ∗)) · ∇ψ dx

∣∣∣∣→ 0,

and hence

I2(κn,φn)→ I2(κ∗,φ∗). (4.9)

Lastly, recall that

I3(ūn) =
∫
Ωf

(∇× ūn)× ūn · w dx

=

∫
∂Ωf

(ūnini)ūn jw j dx −
∫
Ωf

ūniūni∂iw j dx −
1
2

∫
∂Ωf

winiūniūni dx,

12
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then it follows from (4.5) that

I3(ūn)→ I3(ū∗). (4.10)

With the help of (4.7)–(4.10), we can pass to the limit in (4.6). Moreover, since (C∞(Ωf) ∩
V0
0 (Ωf))× C∞(Ωf) is dense in V , we have

ā((ū∗,φ∗); (w,ψ))+ b(ū∗, ū∗,w) = L(p0, q0)+ ā(ũ, 0; (w,ψ))

− b(ū∗, ũ,w)− b(ũ, ū∗,w)− b(ũ, ũ,w)

hold for any (w,ψ) ∈ V . Therefore, (u∗,φ∗) is indeed the weak solution corresponding to κ∗.
Finally, since the output measurement operator C is bounded and the norm is weakly lower

semicontinuous, we have

‖Cu∗ −	yref‖2Y � lim
n→∞

‖Cun −	yref‖2Y

and

‖κ∗‖2
K
� lim

n→∞
‖κn‖2K.

Therefore,

J(κ∗) � lim
n→∞

inf J(κn),

which indicates that κ∗ is the optimal solution to problem (P). This completes the proof. �

5. Adjoint approach and optimality conditions

To establish the first-order optimality conditions for solving the optimal solution to problem
(P), we utilize the variational inequality together with the adjoint method (e.g. [25, chapter 1,
section 1.6.2], [40, p 10]). The variational inequality states that if κ∗ is an optimal solution,
then

J′(k∗) · (κ− κ∗) � 0, ∀ κ ∈ K. (5.1)

To interpret (5.1) explicitly, it is key to derive the adjoint system associated with problem (P).

5.1. First variation of the governing system

As a first step to derive the adjoint system, we examine the Gâteaux differentiability of the
state (u(κ),φ(κ)) with respect to κ ∈ K and establish the first variation of the state equations.

Lemma 5.1. For given (u,φ) ∈ V1
u0
(Ωs)× H1(Ωs) and h ∈ H1(Ωs) ∩ L∞(Ωs), there exists a

unique solution (v, z) ∈ V1
0 (Ωf)× H1(Ωs) to the following equations

13
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ρ(v · ∇u+ u · ∇v) = −∇p̃+∇ · (μ(∇v + (∇v)T)), (5.2)

∇ · v = 0, (5.3)

where p̃ ∈ L2(Ω), and

−∇ ·
(
1
μ
h∇φ

)
−∇ ·

(
κ

μ
∇z

)
= 0, (5.4)

with boundary conditions

v = 0 on Σw, (5.5)

v = 0 on Σi, (5.6)

v × no = 0 on Σo, (5.7)

ρvTu+ p̃− nsf · T(v)nsf = 0, on Σo. (5.8)

Moreover,

v · nsf = q̃ · nsf on Σc, (5.9)

q̃ · nr = 0 on Σr, (5.10)

where

q̃ = − 1
μ
h∇φ− κ

μ
∇z, (5.11)

and

ρvTu+ p̃− nsf · T(v)nsf = z, on Σc. (5.12)

The Beavers–Joseph–Saffman slip condition leads to

τsf · T(v)nsf = − βμ

2κ3/2
h(u · τsf)+

βμ√
κ
(v · τsf) on Σc. (5.13)

The flow flux on the surface Γr becomes

q̃ · nr = 0 on Σr. (5.14)

Proof. It is easy to verify that the weak formulation of the equations (5.2)–(5.10) reads

āvar((v, z); (w,ψ))+ b̄(v, u,w)+ b̄(u, v,w) = 0, (5.15)

where āvar(·; ·) : V × V → R is given by

14
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āvar((v, z); (w,ψ))

=
1
2μ

∫
Ωf

T(v) · T(w)dx +
∫
Σc

z(w · nfs)dx

−
∫
Σc

(
βμ

2κ3/2
h

)
(Pτu) · (Pτw)dx +

∫
Σc

βμ√
κ
(Pτ v) · (Pτw)dx

+

∫
Σc

(v · nsf)ψ dx +
∫
Ωs

1
μ
h(∇φ · ∇ψ)dx +

∫
Ωs

κ

μ
∇z · ∇ψ dx. (5.16)

Based on (3.5) and (5.16), we can rewrite (5.15) as

ā((v, z); (w,ψ))+ b̄(v, u,w)+ b̄(u, v,w) =
∫
Σc

(
βμ

2κ3/2
h

)
(Pτu) · (Pτw)dx

−
∫
Ωs

1
μ
h(∇φ · ∇ψ)dx. (5.17)

Now let (w,ψ) = (v, z). Then (5.17) becomes

ā((v, z); (v, z))+ b̄(v, u, v) =
∫
Σc

(
βμ

2κ3/2
h

)
(Pτu) · (Pτ v)dx

−
∫
Ωs

1
μ
h(∇φ · ∇z)dx. (5.18)

Next, we show that the left-hand side of (5.18) is coercive. By (A.2) we have

ā((v, z); (v, z)) � α0(‖v‖2H1(Ωf)
+ ‖z‖2H1(Ωf)

). (5.19)

Moreover, using (3.8) together with Ladyzhenskaya and Young’s inequalities, we get

b̄(v, u, v) � ρ‖∇v‖L2(Ωf)
‖u‖L4(Ωf)

‖v‖L4(Ωf)

� Cρ‖v‖H1(Ωf)
‖u‖H1(Ωf)

‖v‖1/4
L2(Ωf)

‖v‖3/4
H1(Ωf)

= Cρ‖u‖H1(Ωf)
D−1(‖v‖1/4

L2(Ωf)
D‖v‖7/4

H1(Ωf)
)

� Cρ‖u‖H1(Ωf)
D−1

(
1
8
‖v‖2L2(Ωf)

+
7
8
(D8/7‖v‖2H1(Ωf)

)

)

� Cρ‖u‖H1(Ωf)
D−1 1

8
‖v‖2L2(Ωf)

+
7
8
Cρ‖u‖H1(Ωf)

D1/7‖v‖2H1(Ωf)

� C(ρ,α0, ‖u‖H1(Ωf)
)‖v‖2L2(Ωf)

+
α0

4
‖v‖2H1(Ωf)

, (5.20)

where D = ( 2α0
7Cρ‖u‖H1(Ωf)

)7. Thus, the coercivity of ā((·, ·); (·, ·))+ b̄(·, u, ·) follows, that is,

ā((v, z); (v, z))+ b̄(v, u, v)+ C(ρ,α0, ‖u‖H1(Ωf)
)‖v‖2L2(Ωf)

� α0(‖v‖2H1(Ωf)
+ ‖z‖2H1(Ωf)

)

−
(
C(ρ,α0, ‖u‖H1(Ωf)

)‖v‖2L2(Ωf)
+

α0

4
‖v‖2H1(Ωf)

)
15
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+ C(ρ,α0, ‖u‖H1(Ωf)
)‖v‖2L2(Ωf)

� 3
4
α0(‖v‖2H1(Ωf)

+ ‖z‖2H1(Ωf)
). (5.21)

Furthermore, the terms on the right-hand side of (5.18) satisfy∣∣∣∣
∫
Σc

(
βμ

2κ3/2
h

)
(Pτu) · (Pτ v)dx

∣∣∣∣ � βμ

2κ3/2
l

‖h‖L∞(Ωs)‖Pτu‖L2(Σc)‖Pτ v‖L2(Σc)

� CΣc

βμ

κ
3/2
l

‖h‖L∞(Ωs)‖u‖H1(Ωf)
‖v‖H1(Ωf)

(5.22)

for some constant CΣc > 0 depending only on Ωf , and∣∣∣∣
∫
Ωs

1
μ
h(∇φ · ∇z)dx

∣∣∣∣ � 1
μ
‖h‖L∞(Ωs)‖φ‖H1(Ωs)‖z‖H1(Ωf)

. (5.23)

Therefore, by (5.18), (5.22) and (5.23) we have

ā((v, z); (v, z))+ b̄(v, u, v)

� C(μ, β,κl, ‖u‖H1(Ωf)
, ‖φ‖H1(Ωs))‖h‖L∞(Ωs)(‖v‖H1(Ωf)

+ ‖z‖H1(Ωs)).

The existence of a unique solution follows immediately from Lax–Milgram theorem. This
completes the proof. �

Lemma 5.2. For given ρ,μ, β, kl, ku > 0, let u0 ∈ H1/2(Σi), p0 ∈ L2(Σo) and q0 ∈ L2(Σr)
be sufficiently small such that ‖u‖H1(Ωf)

is sufficiently small. Then the mapping κ �→ (u,φ),
from K to V has a Gâteaux derivative (u′(κ),φ′(κ)) in every feasible direction h ∈ H1(Ωs) ∩
L∞(Ωs). Moreover, if letting (v(κ), z(κ)) = (u′(κ) · h,φ′(κ) · h), then there exists q̃(k) = q′(κ) ·
h ∈ L2(Ωf) such that (v(k), z(k)) satisfies the equations (5.2)–(5.10).

Proof. To start with, we let Φ(k) = (u(κ),φ(κ)), Ψ(κ) = (v(κ), z(κ)) = (u′(κ) · h,φ′(κ) · h),
and show that Φ(k) is locally Gâteaux differentiable at κ ∈ K in the feasible direction h ∈
H1(Ωs) ∩ L∞(Ωs), that is,

min
λ→0

|Φ(κ+ λh)− Φ(κ)− λΨ(κ)) |
|λ| = 0, (5.24)

for ∀0 �= λ ∈ R such that κ+ λh ∈ K. Using (3.4)–(3.7) and (5.17), it is straightforward to
verify that Φ(κ+ λh)− Φ(κ)− λΨ(κ) satisfies the following weak formulation

0 = ā((u(κ+ λh),φ(κ+ λh)); (w,ψ))+ b̄(u(κ+ λh), u(κ+ λh),w)

− [ā((u(κ),φ(κ)); (w,ψ))+ b̄(u(κ), u(κ),w)]

− λ

[
ā((v(κ), z(κ)); (w,ψ))+ b̄(v(κ), u(κ),w)+ b̄(u(κ), v(κ),w)

−
(∫

Σc

(
βμ

2κ3/2
h

)
(Pτu(κ)) · (Pτw)dx −

∫
Ωs

1
μ
h(∇φ(κ) · ∇ψ)dx

)]
,

(5.25)
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where

b̄(u(κ+ λh), u(κ+ λh),w)− b̄(u(κ), u(κ),w)

− λ(b̄(v(κ), u(κ),w)+ b̄(u(κ), v(κ),w))

= b̄(u(κ+ λh)− u(κ)− λv(κ), u(k+ λh),w)

+ b̄(u(κ), u(κ+ λh)− u(κ)− λv(κ),w)

+ λb̄(v(κ), u(k+ λh)− u(κ),w) (5.26)

and

ā((u(κ+ λh),φ(κ+ λh)); (w,ψ))− ā((u(κ),φ(κ)); (w,ψ))

− λā((v(κ), z(κ)); (w,ψ))

= ā((u(κ+ λh)− u(κ)− λv(κ),φ(κ+ λh)− φ(κ)− λz(κ)); (w,ψ))

+

(∫
Σc

(
βμ√
κ+ λh

− βμ√
κ

)
Pτ (u(κ+ λh)) · (Pτw)dx

)

+

(∫
Ωs

λ

μ
h(∇φ(κ+ λh) · ∇ψ)dx

)
. (5.27)

Combining (5.25) with (5.26) and (5.27) follows

0 = ā((u(κ+ λh)− u(κ)− λv(κ),φ(κ+ λh)− φ(κ)− λz(κ)); (w,ψ))

+

(∫
Σc

(
βμ√
κ+ λh

− βμ√
κ

)
Pτ (u(κ+ λh)) · (Pτw)dx

)

+

(∫
Ωs

λ

μ
h(∇φ(κ+ λh) · ∇ψ)dx

)
+ b̄ (u(κ+ λh)− u(κ)

− λv(κ), u(k+ λh),w)+ b̄(u(κ), u(κ+ λh)− u(κ)− λv(κ),w)

+ λb̄(v(κ), u(k+ λh)− u(κ),w)+ λ

(∫
Σc

(
βμ

2κ3/2
h

)

× (Pτu(κ)) · (Pτw)dx −
∫
Ωs

1
μ
h(∇φ(κ) · ∇ψ)dx

)

= ā((u(κ+ λh)− u(κ)− λv(κ),φ(κ+ λh)− φ(κ)− λz(κ)); (w,ψ))

+

(∫
Σc

(
βμ√
κ+ λh

− βμ√
κ
+ λ

βμ

2κ3/2
h

)
Pτ (u(κ+ λh)) · (Pτw)dx

)

+

(∫
Ωs

λ

μ
h(∇(φ(κ+ λh)− φ(k)) · ∇ψ)dx

)
+ b̄ (u(κ+ λh)− u(κ)− λv(κ),

× u(k+ λh),w)+ b̄(u(κ), u(κ+ λh)− u(κ)− λv(κ),w)+ λb̄ (v(κ), u(k+ λh)

− u(κ),w)− λ

∫
Σc

(
βμ

2κ3/2
h

)
(Pτ (u(k+ λh)− u(κ)) · (Pτw)dx. (5.28)
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To simplify the expression, we let R = u(κ+ λh)− u(κ)− λv(κ),H = φ(κ+ λh)− φ(κ)−
λz(κ) and set (w,ψ) = (R,H). Then (5.28) becomes

0 = ā((R,H); (R,H))

+

(∫
Σc

(
βμ√
κ+ λh

− βμ√
κ
+ λ

βμ

2κ3/2
h

)
Pτ (u(κ+ λh)) · (PτR)dx

)

+

∫
Ωs

λ

μ
h (∇(φ(κ+ λh)− φ(k)) · ∇H dx

+ b̄(R, u(k+ λh),R)+ b̄(u(κ),R,R)+ λb̄(v(κ),R+ λv(κ),R)

− λ

(∫
Σc

(
βμ

2κ3/2
h

)
(Pτ (u(κ+ λh)− u(κ)) · (PτR)dx

)
, (5.29)

where b̄(u(κ),R,R) = 0 and λb̄(v(κ),R+ λv(κ),R) = λ2b̄(v(κ), v(κ),R).
In the next step, we show that δu = u(κ+ λh)− u(κ) and δφ = φ(κ+ λh)− φ(k) are of

order λ. First, based on (3.4) we have

0 = ā((u(κ+ λh),φ(κ+ λh)); (w,ψ))+ b̄(u(κ+ λh), u(κ+ λh),w)

− [ā((u(κ),φ(κ)); (w,ψ))+ b̄(u(κ), u(κ),w)], (5.30)

where

ā((u(κ+ λh),φ(κ+ λh)); (w,ψ))− ā((u(κ),φ(κ)); (w,ψ))

= ā((u(κ+ λh)− u(κ),φ(κ+ λh)− φ(κ)); (w,ψ))

+

(∫
Σc

(
βμ√
κ+ λh

− βμ√
κ

)
Pτ (u(κ+ λh)) · (Pτw)dx

)

+

(∫
Ωs

λ

μ
h(∇φ(κ+ λh) · ∇ψ)dx

)
(5.31)

and

b̄(u(κ+ λh), u(κ+ λh),w)− b̄(u(κ), u(κ),w)

= b̄(u(κ+ λh)− u(κ), u(k+ λh),w)+ b̄(u(κ), u(κ+ λh)− u(κ),w).

(5.32)

Substituting (5.32) and (5.31) into (5.30), given b̄(u(κ), δu, δu) = 0, and setting (w,ψ) =
(δu, δφ) lead to

0 = ā((δu, δφ); (δu, δφ))+ b̄(δu, u(k+ λh), δu)

+

(∫
Σc

(
βμ√
κ+ λh

− βμ√
κ

)
Pτ (u(κ+ λh)) · (Pτ δu)dx

)

+

(∫
Ωs

λ

μ
h(∇φ(κ+ λh) · ∇ψ)dx

)
.
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Applying (3.18), (5.22) and (A.2) that ‖u(κ+ λh)‖H1(Ωf)
+ ‖φ(u+ λh)‖H1(Ωs) � Cu,

we have

α0(‖δu‖2H1(Ωf)
+ ‖δφ‖2H1(Ωs)

)

� ā((δu, δφ); (δu, δφ))

� |b̄(δu, u(k+ λh), δu)|

+

∣∣∣∣
∫
Σc

(
βμ√
κ+ λh

− βμ√
κ

)
Pτ (u(κ+ λh)) · (Pτ δu)dx

∣∣∣∣
+

∣∣∣∣
∫
Ωs

λ

μ
h(∇φ(κ+ λh) · ∇δφ)dx

∣∣∣∣
� Cb̄ρ‖u(k+ λh)‖H1(Ω)‖δu‖2H1(Ω)

+ CΣc

∥∥∥∥ βμ√
κ+ λh

− βμ√
κ

∥∥∥∥
L∞(Ωs)

‖u(κ+ λh)‖H1(Ωf)
‖δu‖H1(Ωf)

+ |λ| ‖h‖L
∞(Ωs)

μ
‖φ(κ+ λh)‖H1(Ωs)‖δφ‖H1(Ωs)

� Cb̄ρCu‖δu‖2H1(Ω) + CΣc |λ|‖h‖L∞(Ωs)
βμ

2κ3/2
l

Cu‖δu‖H1(Ωf)

+ |λ|‖h‖L∞(Ωs)
1
μ
Cu‖δφ‖H1(Ωs)

which follows

(α0 − Cb̄ρCu)(‖δu‖2H1(Ωf)
+ ‖δφ‖2H1(Ωs)

)

� Cu

(
CΣc

βμ

2κ3/2
l

+
1
μ

)
|λ|‖h‖L∞(Ωs)(‖δu‖2H1(Ωf)

+ ‖δφ‖2H1(Ωs)
)1/2. (5.33)

According to (A.5), we know that ‖u(κ+ λh)‖H1(Ωf)
and ‖φ(κ+ λh)‖H1(Ωs) can be arbitrarily

small by letting ‖u0‖H1/2(Σi)
, ‖p0‖L2(Σo), and ‖q0‖L2(Σr) be small enough. In particular, if u0, p0

and q0 are chosen such that

Cu <
α0

Cb̄ρ
, (5.34)

then α0 − Cb̄ρCu > 0, and therefore,

(‖δu‖2H1(Ωf)
+ ‖δφ‖2H1(Ωs)

)1/2 � Ch|λ|‖h‖L∞(Ωs), (5.35)

for some constant Ch > 0. Now substituting (5.22), (5.33) and (A.2) into (5.29) yields
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α0(‖R‖2H1(Ωf)
+ ‖H‖2H1(Ωs)

)

� ā((R,H); (R,H))

�
∣∣∣∣
∫
Σc

(
βμ√
κ+ λh

− βμ√
κ
+ λ

βμ

2κ3/2
h

)
Pτ (u(κ+ λh)) · (PτR)dx

∣∣∣∣
+

∣∣∣∣
∫
Ωs

λ

μ
h(∇δφ(k) · ∇H)dx

∣∣∣∣
+
∣∣b̄(R, u(k+ λh),R)

∣∣+ λ2
∣∣b̄(v(κ), v(κ),R)∣∣

+ |λ|
∣∣∣∣
∫
Σc

(
βμ

2κ3/2
h

)
(Pτ δu) · (PτR)dx

∣∣∣∣
� CΣcCu

∥∥∥∥ βμ√
κ+ λh

− βμ√
κ
+ λ

βμ

2κ3/2
h

∥∥∥∥
L∞(Ωs)

‖R‖H1(Ωf)

+
λ2

μ
‖h‖2L∞(Ωs)Ch‖H‖H1(Ωs)

+ Cb̄ρCu‖R‖2H1(Ω) + λ2Cb̄ρ‖v(κ)‖2H1(Ωf)
‖R‖H1(Ωf)

+ λ2‖h‖2L∞(Ωs)CΣcCh

(
βμ

2κ3/2
l

)
‖R‖H1(Ωf)

)
, (5.36)

where
∥∥∥ βμ√

κ+λh
− βμ√

κ
+ λ βμ

2κ3/2
h
∥∥∥
L∞(Ωs)

� 3βμ

8k5/2l

λ2‖h‖2L∞(Ωs)
based on Taylor’s expansion. Thus

from (5.36) we get

(α0 − Cb̄ρCu)‖(R,H)‖2 � λ2

(
CΣcCu

3βμ

8k5/2l

‖h‖2L∞(Ωs)

+
1
μ
Ch‖h‖2L∞(Ωs) + Cb̄ρ‖v(κ)‖2H1(Ωf)

+ ChCΣc

(
βμ

2κ3/2
l

)
‖h‖2L∞(Ωs)

)
‖(R,H)‖, (5.37)

where ‖(R,H)‖ = (‖R‖2H1(Ωf)
+ ‖H‖2H1(Ωs)

)1/2. Note that by lemma 5.1 we have v ∈ V1
0 (Ωf).

Therefore, (5.37) indicates that

‖(R,H)‖ � Cλ2, (5.38)

for some constant C > 0, and hence (5.24) holds. This completes the proof. �

5.2. Adjoint system

With the understanding of the first variation of (u(κ),φ(κ)) with respect to κ ∈ K, we proceed
to derive the adjoint system associated with problem (P).

Theorem 5.1. Let (w,ψ) be the adjoint state. Then it satisfies the following equations
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ρ((∇u)Tw − u · ∇w)+∇Q−∇ · (μ(∇w + (∇w)T)) = C∗(Cu− yref), (5.39)

∇ · w = 0, (5.40)

−∇ ·
(
κ

μ
∇ψ

)
= 0, (5.41)

with boundary conditions

w = 0 on Σi ∪Σw, (5.42)

Q− no · T(w)no = 0 on Σo, (5.43)

w × no = 0 on Σo, (5.44)

Q− nfs · T(w)nfs = −ψ on Σc (5.45)

−Pτ (T(w)nfs)−
βμ√
κ
Pτw = ρ(u ∧ w) on Σc, (5.46)

w · nsf +
κ

μ

∂ψ

∂nsf
= 0 on Σc, (5.47)

−κ

μ

∂ψ

∂nr
= 0 on Σr, (5.48)

where C∗ : Rm → (L2(Ωf))3 is the L2-adjoint operator of C.

The detailed derivation is presented in appendix A. The following result on the well-
posedness of the adjoint system can be easily established using the similar procedures as in
the proof of lemma 5.1.

Theorem 5.2. For u ∈ V1
0 (Ωf) and κ ∈ K, there exists a unique solution (w,ψ) ∈ V1

0 (Ωf)×
H1(Ωs) to the adjoint system (5.39)–(5.48).

In addition, one can easily verify the following relation between the linearized state
equations (5.2)–(5.10) and the adjoint equations (5.39)–(5.48), that is, for (v, z), (w,ψ) ∈ V,

0 = (ρ(v · ∇u+ u · ∇v),w)Ωf
+
(
∇p̃−∇ · (μ(∇v + (∇v)T),w)Ωf

+

(
−∇ ·

(
1
μ
h∇φ

)
,ψ

)
Ωs

+

(
−∇ ·

(
κ

μ
∇z

)
,ψ

)
Ωs

= ρ(v, (∇u)Tw)Ωf − ρ(v, u · ∇w)Ωf +
(
v,∇Q−∇ · (μ(∇w + (∇w)T))

Ωf

+

∫
Σc

(
− βμ

2κ3/2
h

)
(Pτu) · (Pτw)dx +

(
1
μ
h∇φ,∇ψ

)
Ωs

+

(
z,−∇ ·

(
κ

μ
∇ψ

))
Ωs

=
(
v, C∗(Cu−	yref)

)
Ωf

−
∫
Σc

(
βμ

2κ3/2
h

)
(Pτu) · (Pτw)dx +

(
1
μ
h∇φ,∇ψ

)
Ωs

,

which indicates that

(
v, C∗(Cu−	yref)

)
Ωf

=

∫
Σc

(
βμ

2κ3/2
h

)
(Pτu) · (Pτw)dx −

(
1
μ
h∇φ,∇ψ

)
Ωs

. (5.49)

More detailed proof is given by (A.22) and (A.23) in appendix A.
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With the knowledge of the adjoint system at our disposal, we are now ready to derive the
first-order optimality conditions for solving the optimal solution to problem (P).

Theorem5.3. Ifκ∗ ∈ K is the optimal solution to problem (P), thenκ∗ satisfies the following
variational inequality

J′(κ∗) · (κ− κ∗)

=

∫
Σc

βμ

2κ∗3/2 (κ− κ∗)(Pτu
∗) · (Pτw

∗)dx −
(
1
μ
(κ− κ∗)∇φ∗,∇ψ∗

)
Ωs

+ α(κ∗,κ− κ∗)Ωs + α(∇κ∗,∇(κ− κ∗))Ωs � 0, ∀ κ ∈ K, (5.50)

where (u∗,φ∗) and (w∗,ψ∗) are the state and adjoint state vectors associated with k∗, satisfying
the state equations (2.1)–(2.12) and the adjoint equations (5.39)–(5.48), respectively.

Proof. If κ∗ ∈ X is the optimal solution to problem (P) and (u∗,φ∗) and (w∗,ψ∗) are the
corresponding state and adjoint state vectors, then by (4.1) and (5.1) the following variational
inequality holds

J′(κ∗) · (κ− κ∗) = (C∗(Cu∗ −	yref), u∗
′) · (κ− κ∗)

)
Ωf

+ α(κ∗,κ− κ∗)Ωs + α(∇κ∗,∇(κ− κ∗))Ωs � 0, (5.51)

for any κ ∈ K. Moreover, with the help of (5.49) we get

(
C∗(Cu∗ −	yref), u∗

′ · (κ− κ∗)
)
Ωf

=

∫
Σc

βμ

2κ∗3/2 (κ− κ∗)(Pτu
∗) · (Pτw

∗)dx

−
(
1
μ
(κ− κ∗)∇φ∗,∇ψ∗

)
Ωs

. (5.52)

Combining (5.51) with (5.52) yields (5.50), which completes the proof. �
As shown in theorem 5.3, the optimality condition (5.50) together with the state

equations (2.1)–(2.12) and the adjoint equations (5.39)–(5.48) are highly nonlinear and
strongly coupled. For the sake of real-life applications as well as numerical implementation, it
is more realistic to approximate the permeability by functions of finite dimension. To be spe-
cific, we assume that the permeability is a weighted summation of regular functions. In other
words, we let

κ =
M∑
i=1

kibi, (5.53)

where {b1, b2, . . . , bM} ⊂ H1(Ωs) ∩ L∞(Ωs) is chosen such that it forms a basis of a finite
dimensional Hilbert space HM = span{bi}Mi=1 equipped with H1-norm. The coefficients ki ∈
R, i = 1, 2, . . . ,M, are the weight parameters to be determined through optimization. Let 	k =
[k1, . . . , kM]T,	b = [b1, b2, . . . , bM]T, B0 = [(bi, b j)]i, j=1,2,...,M , and B1 = [(∇bi,∇b j)]i, j=1,2,...,M .
Note that both B0 > 0 and B1 > 0 are positive definite matrices. Then problem (P) can be
reformulated as

min
	k∈KM

J(	k) = min
	k∈KM

(
1
2
‖Cu− yref‖2Y +

α

2
	kT(B0 + B1)	k

)
, (5.54)
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where KM = {	k ∈ R
M : κl � κ = 	kT	b � κu}. In this case, the optimality condition (5.1) can

be interpreted more explicitly as in (e.g.[64, lemma 2.26 and theorem 2.27], [25, lemma 1.12])
from the variational inequality involving box constraints as stated in corollaries 5.3 and 5.4.

Corollary 5.3. If κ∗ =
∑M

i=1k
∗
i bi is an optimal solution to problem (5.54), then it satisfies

κ∗ = min{κu, max{κl, κ̃}}, (5.55)

for almost every x ∈ Ωs, where κ̃ =
∑M

i=1k̃ibi satisfies the following optimality conditions∫
Σc

βμ

2κ̃3/2
b j(Pτu

∗) · (Pτw
∗)dx −

(
1
μ
b j∇φ∗,∇ψ∗

)
Ωs

+ α

M∑
i=1

k̃i(bi, b j)Ωs + α

M∑
i=1

k̃i(∇bi,∇b j)Ωs = 0, (5.56)

for j = 1, 2, . . . ,M, where (u∗,φ∗) and (w∗,ψ∗) are the state and adjoint state vec-
tors associated with κ∗, satisfying the state equations (2.1)–(2.12) and the adjoint
equations (5.39)–(5.48), respectively.

Corollary 5.4. If κ∗ is a constant, then the set of admissible functions is reduced to the
interval K = [κl,κu] ⊂ R. The optimal solution κ∗ is defined by

κ∗ = min{κu, max{κl, k̃}}, (5.57)

where κ̃ satisfies

1
2κ̃3/2

∫
Σc

βμ(Pτu
∗) · (Pτw

∗)dx −
(
1
μ
∇φ∗,∇ψ∗

)
Ωs

+ ακ̃ = 0, (5.58)

were (u∗,φ∗) and (w∗,ψ∗) are the state and adjoint state vectors associated with k∗, satis-
fying the state equations (2.1)–(2.12) and the adjoint equations (5.39)–(5.48), respectively.
Moreover, there exists at most one optimal solution κ∗ ∈ K if α is sufficiently large.

Since the function f (k̃) = 1
2k̃3/2

∫
Σc
βμ(Pτu∗) · (Pτw

∗)dx −
(

1
μ
∇φ∗,∇ψ∗

)
Ωs

+ αk̃ has at

least one zero and it is monotonously increasing if α > max{0, 34κ
−5/2
u

∫
Σc
βμ(Pτu∗) ·

(Pτw
∗)dx}, the uniqueness of the optimal solution follows immediately.

Note that the Gâteaux derivative of the cost functional J′(	k) is a linear functional on HM

which is a Hilbert space equipped with H1(Ωs)-norm, thus DJ(κ) ∈ HM can be treated as the
Riesz representation of J′(κ) (e.g. [25, p 67]) in our numerical implementation. Therefore,
DJ(κ) can be expressed as a linear combination of bj’s and this leads to the following form

DJ(κ) :=
M∑
i=1

(DJ(κ))ibi, (5.59)

where (DJ(κ))i stands for the coefficient of DJ(κ) associated with the basis function bj.
Using (5.56), we can obtain the following linear system
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〈DJ(κ), b j〉H′
M ,HM =

M∑
i=1

(DJ(κ))i(bi, b j)L2(Ωs)

=

∫
Σc

βμ

2κ3/2
b j(Pτu

∗) · (Pτw
∗)dx −

(
1
μ
b j∇φ∗,∇ψ∗

)
Ωs

+ α(κ, b j)Ωs + α(∇κ,∇b j)Ωs , j = 1, . . . ,M. (5.60)

Let ηj denote the right-hand side of (5.60), 	η = [η1, . . . , ηM]T, and 	g = [(DJ(κ))1, . . . ,
(DJ(κ))M]T. Then system (5.60) is reduced to B0	g = 	η, and thus

	g = B−1
0 	η, (5.61)

where B−1
0 can be computed beforehand.

In the next section, we shall construct a gradient decent based algorithm to implement the
optimality conditions numerically.

6. Numerical simulation and experimental results

In this section, an iterative optimization algorithm is constructed to identify the permeabil-
ity utilizing the gradient decent method and corollary 5.3. The objective of this section is to
identify the permeability of a porous micro-structure in a microfluidic chip. The algorithm is
first examined in a numerical example simulating the flow dynamics around a surrogate with
a uniformly distributed permeability coefficient a 3D micro-fluidic channel. The surrogate is a
spherical porous structure attached in the middle of the channel and to the ceiling.

Next we construct the gradient decent based algorithm for solving the permeability κ of
form (5.53). Given a set of basis functions {b1, b2, . . . , bM} ⊂ H1(Ωs) ∩ L∞(Ωs), the iterative
gradient descent algorithm is summarized as follows.

• Step 1: for i = 0, set the initial vector 	k(0) = [k(0)1 , . . . , k(0)M ]T such that 0.5× 10−14 �
κ(0) = 	k(0)

T	b � 1 and compute the derivativeDJ(κ(i)) using (5.59) and (5.61) for κ = κ(0).
Define the descent direction V (0) = −(1+ γ)J(κ(0))γDJ(κ(0)) for γ > 0. Also define a
forgetting factor αf > 0 and learning rate λ(i) (λ(0) = 1).

• Step 2: choose the parameter α(0) > 0 such that k(0)j and α(0)V (0)
j , j = 1, 2, . . . ,M, have

the same order of magnitude, where V (i)
j is the jth coefficients of V (i) represented

by the basis functions in the Hilbert space HM . Compute the new parameter κ(i+1) =
min{1, max{0.5× 10−14,κ(i) + α(i)V (i)}}.

• Step 3: for i > 0, compute the derivative DJ(κ(i)) using (5.59) and (5.61) for κ = κ(i) and
choose the parameter α(i) > 0 such that (1+ γ)α(i)J(κ(i))γ |DJ(κ(i))| � ᾱf|V (i−1)| for some
ᾱf > 0 satisfying ᾱf + αf < 1. Define the descent direction V (i) = αfV (i−1) + ᾱDJ(κ(i)),
where ᾱ = −(1− αf)(1+ γ)α(i)J(κ(i))γ .

• Step 4: readjust λ(i) such that λ(i) < λ(i−1).
• Step 5: if ‖κ(i+1) − κ(i)‖/‖κ(i)‖ � εstop or i > Nstop > 0 stop the iteration; otherwise set
κ(i+1) = min{1, max{0.5× 10−14,κ(i) + λ(i)V (i)}} and redefine V (i) = (κ(i+1) − κ(i))/λ(i)

and go to step 3.

The algorithm is designed such that it provides fast convergence with linear rate. At each
step we calculate the descent direction as the weighted summation of two terms: the first term is
borrowed from the previous descent direction and the second term (1+ γ)α(i)J(κ(i))γDJ(κ(i)) is
proportional to the Gâteaux derivative. The parameter (1+ γ)J(κ(i))γ adjusts the magnitude of
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Figure 2. Themeasurement space composed of three perpendicular lines, two horizontal
lines 100 μm above xy-plane and the third line along z-axis.

the second term according to the observation error, andα(i) and αf are chosen to ensure that the
norm of descent direction reduces in time. λ(i) is adjusted to compensate for the chattering near
optimal solution. We pick this parameter or learning rate to get smaller by a factor whenever
chattering occurs. Finally, α(0) is set such that the maximum move towards optimal solution
happens at the initial step.

For this choice of parameters, it can be shown that the projected gradient algorithm above
follows a linear convergence rate. However, the proof is not within the scope of this paper and
will be addressed in our future work on numerical study of this problem.

In order to check validity of the algorithm, we tested a similar numerical phantom in which
the permeability is assumed to be constant. The optimality conditions are addressed in corollary
5.4. For this constant permeability estimation experiment, we have set the regularization term
to zero in the cost functional. Although for more complex and spatial dependent permeability
identification, the regularization parameter can be treated as a hyperparameter (optimization
parameters) and adjusted depending on the experimental set-up. These parameters are selected
by trial and error to increase the convergence rate.

In the current work, the flow equations and its adjoint problem were solved using FEM in
COMSOL. For this purpose, the weak representation of the system and linear base functions
over tetrahedral elements were utilized to approximate the system with a finite-dimensional
one. In this setting, the conservation equation is treated as a separate equation and both velocity
and pressure are obtained from solving a coupled set of nonlinear algebraic equations. An
example of FEM application for Navier–Stokes equations can be found in [21]. We have used
COMSOL 3.5 to solve the flow and adjoint equations viaMATLAB livelink iteratively, without
explicitly calculating the matrix form algebraic equations, where we used a fine mesh around
the spherical structure and a coarse mesh away from this structure.

For the experimental tests, we implemented the algorithm in an experimental set-up with a
3D printed porous scaffold of different pore sizes in the microfluidic channel. The permeability
of the surrogates is estimated using the velocity measurements along three perpendicular lines
(figure 2). These lines are numerically shown to have maximum sensitivity to permeability
variation.

6.1. Numerical example

We first examine the performance of the iterative optimization algorithm in a numerical
example resembling the surrogate micro-environment. Since the upper bound of permeabil-
ity never reaches 1, we set κu = 1 m2. On the other hand, for κ < 0.5× 10−14 m2, the flow

25



Inverse Problems 38 (2022) 065002 S Afshar and W Hu

Figure 3. Velocity solution in flow direction at three different planes.

dynamics around the surrogate will not experience any variation subject to small perturbations
of the permeability of the same order of magnitude. Thus we set κl = 0.5× 10−14 m2. The
flow equations were solved for a known constant permeability coefficient. Here, in the refer-
ence model the permeability is κ = 1.88× 10−13 m2 and the slip rate coefficient is β = 0.1.
The system’s response was augmented with white noise and used as experimental data. Next,
the synthesized experimental data was utilized to reconstruct the permeability via a recursive
gradient based technique.

A 2D cross section of the 3D channel used in the numerical simulations is shown in figure 1.
The channel dimensions are 4× 25× 0.25 mm. The porous structure is assumed to be spheri-
cal of radius 50 μm and its protrusion inside the channel is 150 μm. Furthermore, the velocity
at the channel input Σi is U0 = 6.6× 10−5 m s−1, the input flow source at Σr is q0(x) =
2× 10−5 m s−1, and we have used the mechanical properties of the water. The slip rate coef-
ficient β was chosen according to the values reported in [9] given the range of porosity and
permeability coefficient (β = 0.1).

In permeability identification of the porous surrogate, λ0 = 1 and λi+1 = λi/2 whenever
(Vi,Vi+1)Ωs � 0. In order to choose the parameter αi satisfying condition of step 3, we set
αi = 10 and keep dividing by a0 = 1.1 such that ᾱf + αf < 1 and ᾱfDJ(κi) < Vi−1. Other
parameters of the iterative algorithm are γ = 1 and αf = 0.2. These parameters are chosen by
trial and error to increase the convergence rate.

At each iteration, the system was solved for updated parameter and the solution was used to
solve the adjoint problem.Moreover, the solution of the adjoint problem was utilized to define
the gradient vector. The velocity profiles around the porous micro-structure for κ = 1.88×
10−13 m2 at different cross-sections are shown in figure 3. We have solved the optimization
problem for two different initial conditions κ = 1.88× 10−7 m2 and κ = 1.88× 10−9 m2.
The initial guess is selected based on the range of identifiability of the permeability, that is,
κ � 0.5× 10−14 m2. For κ < 0.5× 10−14 m2, the flow dynamics around the surrogate will
not experience any variation subject to small perturbations of the permeability of the same
order. Therefore, we know that the initial guess must be larger that this value. To this end, we
chose the initial guess to be five and seven order of magnitude larger than the minimum value.
In microfluidic chip, larger permeability values lead to less sensitivity in the velocity profile as
a function of permeability and thus uncertainty in the identification process.

The convergence of the permeability and its corresponding output error convergence
are depicted in figure 4. The sampled measurement defined by (2.14) over the subdomain
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Figure 4. Convergence of the output error L2-norm over measurement space (a) and
convergence of the permeability to κ = 1.88× 10−13 (b) at different consecutive itera-
tion.

Figure 5. 3D structure of the fluidic chip (a) and 3D printed porous surrogate (b) used
in in vitro experiments.

ΩY = ∪m
i=1Ωi shown in figure 2 where the measurement setsΩi span across three perpendicular

lines. It is evident from these figures that the permeability coefficient can be recovered in a few
iterations less than 10.
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Figure 6. Convergence of output error L2-norm over the measurement space (a) and
convergence of permeability estimate (b) for three different pore sizes for the porous
structure shown in figure 5.

Figure 7. Log–log plot of the permeability estimate as a function of pore size for three
different pore sizes for the structure shown in figure 5.

6.2. Experimental validation

Next, the proposed optimization based approach was implemented in the estimation of the
permeability of a 3D printed porous scaffold on a fluidic chip experimentally. The width of
the chip was downsized from 4 mm to increase the velocity around the porous surrogate. The
porous surrogate of 200 μm diameter is printed using Nanoscribe 3D printing (Nanoscribe’s
3D laser lithography system, Photonic Professional GT) to the floor of the microchannel. The
protrusion depth is 50 μm. The porous structure is designed by excluding a 3D scaffold from
a solid sphere (figure 5(b)) with three different pore sizes (3, 5, and 10 μm in diameter). For
this structure, the permeability satisfies
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κ ∝ D2

4
, (6.1)

where D denotes the pores diameter.
We propose to use optical observations to measure the flow velocity field around the 3D

printed surrogate, where the velocity field is then utilized to estimate the surrogate permeabil-
ity. The velocity field was measured using a well-established particle image velocimetry (PIV)
technique [2, 69]. The micro PIV technique was adjusted to match the requirements of the
experimental velocity measurement. The optical measurement was performed via an inverted
laser scanning confocal microscope (Olympus FV1000). A flow of 2 μl min−1 containing flu-
orescent particle tracers of density of 30 μl of fluorescent in 1 ml of saline enters the channel.
The tracers were Sky Blue nano-particles (excitation/emission 660/700 nm, 1%w/v, FH-2070-
2, Spherotech, Lake Forest IL) of size 500–800 nm. The flow was infused constantly using a
syringe pump. The position of the particles was recorded using the confocal microscope with
two different objectives, 40× and 20×, to image particles 500 and 800 nm in size, respectively
depending on the field on imaging. Images were acquired at 2 μs/pixel dwell time and 256 ×
256 pixel resolution. Imaging was carried out at different z-planes.

The velocity profile measurement along the subspace exhibited in figure 3 was used in the
numerical estimation of permeability of the porous scaffolds. The convergence of the perme-
ability estimates is depicted in figure 6 for three different pore sizes. This figure indicates the
convergence of the permeability to constant values. In figure 7, we plotted the permeability
estimate as a function of pores diameter in a log–log plot. The linear fitted curve to the esti-
mated point reveals that the estimated permeability follows the theoretical prediction defined
by (6.1).

7. Conclusion and discussion

In this work,we studied the problemof distributed permeability identification of a porous struc-
ture, which plays a critical role in drug delivery and cancer treatment.We proposed a numerical
and experimental tool to measure this property of a porous surrogate of tumor nodule on a
microfluidic chip. For this purpose, the flow velocity field around the surrogate, represented
by coupledNavier–Stokes–Darcy equations, was used as a tracer for the permeability. An opti-
mization problemwas solved to estimate the permeability such that the regularized L2-norm of
the difference between the system’s solution for the external velocity field and its measurement
is minimized.

It was shown both numerically and experimentally that the permeability of a porous scaf-
fold with homogeneous porosity can be estimated from velocity field measurement. Scaffolds
with three different pore sizes were tested experimentally, and the permeability up to order
10−14 m2 was shown to be identifiable from the optical velocity field measurement of order
0.5 μm s−1. Moreover, the experimental estimated permeability was shown to follow a semi-
empirical relation exhibiting that the permeability is correlated with the squared diameter of
the pore size, as proved in the literature for the chosen scaffold [15].

We have tested the permeability of a homogeneous porous media printed in a microflu-
idic chip via Nanoscribe micro-scale 3D printing technology. Estimation of permeability of an
inhomogeneous porous surrogate with less regularity properties will be considered in future. It
is worth to point out that the proposed theoretical approach supports inhomogeneous porosity
estimation. The experimental design can be adjusted to measure such inhomogeneous perme-
ability with a degree of regularity on a chip. We will also consider adding interstitial flow
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source to the surrogate which will increase the sensitivity of the measured velocity field and
the estimation precision, as well as the range of measurable permeability coefficient.

In our numerical and experimental design, the velocity field was measured over a predefined
subset. Specifically, the measurement subset was chosen such that the sensitivity to unknown
parameters is maximized based on numerical solution of the system and a sensitivity analysis.
However, prior knowledge on the optimal sensors locations will provide a better guidance to
increase the estimation efficiency, and this will be further investigated in our future work.

Finally, our proposed approach can be easily adjusted to different applications and more
general environment. It imposes minimal experimental restrictions on the surrogate micro-
environment and can be potentially extended for in vivo permeability estimation.
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Appendix A

A.1. Proof of lemma 3.1

Proof. It is straightforward to show that ā(·, ·) is continuous and coercive by using Poincaré
andKorn’s inequalities togetherwith trace theorem.We first show the continuity of this bilinear
form. Note that∣∣∣∣ 1

2μ

∫
Ωf

T(u) · T(w)dx
∣∣∣∣ � C

1
2μ

‖u‖H1(Ωf)
‖w‖H1(Ωf)

,

∣∣∣∣
∫
Ωs

κ

μ
∇φ · ∇ψdx

∣∣∣∣ � C
κ

μ
‖φ‖H1(Ωs)‖ψ‖H1(Ωs),

∣∣∣∣
∫
Σc

φ(w · nfs)dx
∣∣∣∣ � ‖φ‖L2(Σc)‖w‖L2(Σc) � C‖φ‖H1(Ωs)‖w‖H1(Ωf)

.

Similarly, ∣∣∣∣
∫
Σc

(u · nsf)ψdx
∣∣∣∣ � C‖u‖H1(Ωf)

‖ψ‖H1(Ωs)

and ∣∣∣∣
∫
Σc

βμ√
κ
(Pτu) · (Pτw)dx

∣∣∣∣ � C
βμ
√
κl
‖u‖H1(Ωf)

‖w‖H1(Ωf)
.
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Therefore,

|ā((u,φ); (w,ψ))| � Cā
(
‖u‖H1(Ωf)

+ ‖φ‖H1(Ωs)

) (
‖w‖H1(Ωf)

+ ‖ψ‖H1(Ωs)

)
,

(A.1)

for some Cā > 0.
To see the coercivity of ā(·, ·), by (3.5) we have

ā((u,φ); (u,φ)) =
1
2μ

∫
Ωf

T(u) · T(u)dx +
∫
Σc

βμ√
κ
(Pτu) · (Pτu)dx

+

∫
Ωs

κ

μ
∇φ · ∇φ dx

� C1

2μ
‖u‖2H1(Ωf)

+
C2κl
μ

‖φ‖H1(Ωs)

� α0(‖u‖2H1(Ωf)
+ ‖φ‖2H1(Ωs)

), (A.2)

where the constants C1,C2 > 0 only depend on the domain Ωf and α0 = min{C12μ ,
C2κl
μ } > 0,

and thus the coercivity follows. �

A.2. Proof of theorem 3.1

Proof. The proof of existence follows as in that of [63, theorem 1.5], [20, theorem 2.3,
chapter IV] and [13, theorem 2.1, chapter 2]. We first show that there exists some constant
C0 > 0 such that

ā((ū,φ); (ū,φ))+ b̄(ū, ũ, ū)+ b̄(ũ, ū, ū)+ b̄(ū, ū, ū) � C0(‖ū‖2H1(Ωf)
+ ‖φ‖2H1(Ωs)

),

or due to (3.9)

ā((ū,φ); (ū,φ))+ b̄(ū, ũ, ū) � C0(‖ū‖2H1(Ωf)
+ ‖φ‖2H1(Ωs)

). (A.3)

From lemma 3.2, we can conclude that

b̄(ū, ũ, ū) � α0

2
‖ū‖2H1(Ωf)

, (A.4)

for α0 given by (A.2). With the help of (3.8) and (A.2) it is easy to see that

ā((ū,φ); (ū,φ))+ b̄(ū, ũ, ū) � α0(‖ū‖2H1(Ωf)
+ ‖φ‖2H1(Ωs)

)− α0

2
‖ū‖2H1(Ωf)

� α0

2
(‖ū‖2H1(Ωf)

+ ‖φ‖2H1(Ωs)
).

Letting C0 =
α0
2 , then (A.3) follows. Further by the boundedness of L given by (3.10), we

conclude that there exists a unique solution to (3.16) using the Lax–Milgram theorem (e.g.
[72, chapter 2, section 2.3.4]).

To see the estimate (3.17), in light of (3.8), (3.10), (3.13) and (A.1), it is evident that
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ā((ũ, 0); (ũ, 0)) =
1
2μ

∫
Ωf

T(ũ) · T(ũ)+
∫
Σc

(
βμ√
κ
ũ · τsf

)
(ũ · τsf)dx

� C
2μ

‖ũ‖2H1(Ωf)
+

βμ
√
κl
‖ũ‖2H1(Ωf)

� c0

(
C
2μ

+
βμ
√
κl

)
‖u0‖2H1/2(Σi)

L(ū,φ) � C(‖p0‖2L2(Σo)
+ ‖q0‖2L2(Σr)

)+
α0

8
‖ū‖2H1(Ωf)

+
α0

4
‖φ‖2H1(Ωs)

,

and

b̄(ũ, ũ, ū) � Cb̄ρ‖ũ‖2H1(Ωf)
‖ū‖H1(Ωf)

� Cρ2‖u0‖4H1/2(Σi)
+

α0

8
‖ū‖2H1(Ωf)

.

Therefore,

α0

2
(‖ū‖2H1(Ωf)

+ ‖φ‖2H1(Ωs)
) � c0

(
C
2μ

+
βμ√
κl

)
‖u0‖2H1/2(Σi)

+ C
(
‖p0‖2L2(Σo)

+ ‖q0‖2L2(Σr)

)
+

α0

4
‖ū‖2H1(Ωf)

+
α0

4
‖φ‖2H1(Ωs)

+ Cρ2‖u0‖4H1/2(Σi)
,

and hence,

‖ū‖2H1(Ωf)
+ ‖φ‖2H1(Ωs)

� 4c0
α0

(
C
2μ

+
βμ
√
κl

)
‖u0‖2H1/2(Σi)

+ C
4
α0

(
‖p0‖2L2(Σo)

+ ‖q0‖2L2(Σr)

)
+ C

4
α0

ρ2‖u0‖4H1/2(Σi)
, (A.5)

which establishes the estimate (3.17). Finally, (3.18) follows from (3.13)–(3.15). This com-
pletes the proof. �

A.3. Derivation of the adjoint system

Proof of theorem 5.1. First, using Stokes formulawe know that there exits pressureQ such
that

∫
Ωf

∇Q · v dx =
∫
∂Ωf

(v · n)Q dx −
∫
Ωf

(∇ · v)Q dx =
∫
∂Ωf

(v · n)Q dx. (A.6)

Now taking the inner product of equation (5.2) with w gives
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0 = (ρ(v · ∇u+ u · ∇v),w)Ωf
+
(
∇p̃−∇ · (μ(∇v + (∇v)T),w)Ωf

= ρ(v, (∇u)Tw)Ωf +

∫
∂Ωf

ρ(u · n)(v · w)dx − ρ(v, u · ∇w)Ωf

+

∫
∂Ωf

(w · n) p̃dx −
∫
∂Ωf

T(v)n · w dx +
∫
∂Ωf

T(w)n · v dx

−
∫
∂Ωf

(v · n)Q dx +
(
v,∇Q−∇ · (μ(∇w + (∇w)T))

Ωf

= ρ(v, (∇u)Tw)Ωf +

∫
Σc

ρ(u · nfs)(v · w)dx − ρ(v, u · ∇w)Ωf

+

∫
Σc

z(w · nfs)dx −
∫
Σc

ρ((v)Tu)(w · nfs)dx

−
∫
Σc

Pτ (T(v)nfs) · (Pτw)dx +
∫
Σo∪Σc

T(w)n · ((v · n)n+ Pτ v) dx

−
∫
Σo∪Σc

(v · n)Q dx +
(
v,∇Q−∇ ·

(
μ(∇w + (∇w)T)

)
Ωf
. (A.7)

From (5.13) we get

∫
Σc

Pτ (T(v)nfs) · (Pτw)dx = −
∫
Σc

(
− βμ

2κ3/2
hPτu+

βμ√
κ
Pτ v

)
· (Pτw)dx.

(A.8)

Moreover, ∫
Σc

ρ(u · nfs)(v · w)dx

= ρ

∫
Σc

(u · nfs) [(v · nfs)(w · nfs)+ (Pτ v) · (Pτw)] dx

= ρ

∫
Σc

[(u · nfs)(v · nfs)(w · nfs)+ (u · nfs)(Pτ v) · (Pτw)

+ (Pτu) · (Pτ v)(w · nfs)− (Pτu) · (Pτ v)(w · nfs)] dx

= ρ

∫
Σc

[(u · v)(w · nfs)+ (u · nfs)(Pτ v) · (Pτw)− (Pτu) · (Pτ v)(w · nfs)]dx

= ρ

∫
Σc

{(u · v)(w · nfs)+ [(u · nfs)(Pτw)− (Pτu)(w · nfs)] · (Pτ v)} dx

= ρ

∫
Σc

[(u · v)(w · nfs)+ (u ∧ w) · (Pτ v)]dx, (A.9)

where the notation ∧ is defined by

u ∧ w = (u · nfs)(Pτw)− (Pτu)(w · nfs).

Substituting (A.8) and (A.9) into (A.7) leads to
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0 = ρ(v, (∇u)Tw)Ωf − ρ(v, u · ∇w)Ωf + ρ

∫
Σc

(u ∧ w) · (Pτ v)dx

+

∫
Σc

z(w · nfs)dx +
∫
Σc

(
− βμ

2κ3/2
hPτu+

βμ√
κ
Pτ v

)
· (Pτw)dx

+

∫
Σo

T(w)no · (v · no)no dx +

∫
Σc

T(w)nfs · (v · nfs)nfs dx

+

∫
Σc

T(w)nfs · Pτ v dx −
∫
Σo

(v · no)Q dx −
∫
Σc

(v · nfs)Q dx

+
(
v,∇Q−∇ ·

(
μ(∇w + (∇w)T)

)
Ωf
. (A.10)

To derive the adjoint state of the porous media, we take the inner produce of (5.4) with ψ
and this follows

0 = −
(
∇ ·

(
1
μ
h∇φ

)
,ψ

)
Ωs

−
(
∇ ·

(
κ

μ
∇z

)
,ψ

)
Ωs

= −
∫
Σc∪Σr

1
μ
h(∇φ · n)ψ dx +

(
1
μ
h∇φ,∇ψ

)
Ωs

−
∫
Σc∪Σr

κ

μ
(∇z · n)ψ dx

+

∫
Σc∪Σr

κ

μ
(∇ψ · n)z dx −

(
z,∇ ·

(
κ

μ
∇ψ

))
Ωs

,

which by (5.9)–(5.11) and (5.14) yields

0 = −
∫
Σc

(v · nfs)ψ dx +

(
1
μ
h∇φ,∇ψ

)
Ωs

+

∫
Σc∪Σr

κ

μ
(∇ψ · n)z dx −

(
z,∇ ·

(
κ

μ
∇ψ

))
Ωs

. (A.11)

In light of (A.10) and (A.11), we first impose

ρ((∇u)Tw − u · ∇w)+∇Q−∇ · (μ(∇w + (∇w)T)) = C∗(Cu−	yref), (A.12)

∇ · w = 0, (A.13)

−∇ ·
(
κ

μ
∇ψ

)
= 0. (A.14)

To derive the boundary conditions, it is clear that

w = 0 on Σi, and w = 0 on Σw. (A.15)

On boundaryΣr, impose
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−
∫
Σr

κ

μ
(∇ψ · n)z dx = 0, ∀ z ∈ H1(Ωs),

or − κ

μ
∇φ · n|Σr = 0. (A.16)

On boundaryΣo, impose

−
∫
Σo

T(w)no · (v · no)no dx +
∫
Σo

(v · no)Q dx = 0, ∀ v ∈ V1
0 (Ωf),

or Q− no · T(w)no = 0 on Σo, (A.17)

and

w × no = 0 on Σo. (A.18)

Moreover, on boundaryΣc we let

ρ

∫
Σc

(u ∧w) · (Pτ v)dx +
∫
Σc

z(w · nfs)dx +
∫
Σc

βμ√
κ
(Pτ v) · (Pτw)dx

+

∫
Σc

T(w)nfs · (v · nfs)nfs dx +
∫
Σc

T(w)nfs · Pτ v dx

−
∫
Σc

(v · nfs)Q dx +
∫
Σc

(v · nfs)ψ +

∫
Σc

κ

μ
(∇ψ · nfs)z dx = 0,

which follows ∫
Σc

z(w · nfs)dx +
∫
Σc

κ

μ
(∇ψ · nfs)z dx = 0, ∀ z ∈ H1(Ωs),

or w · nfs +
κ

μ
∇φ · nfs = 0 on Σc (A.19)

and ∫
Σc

(nfs · T(w)nfs − Q− ψ) · (v · nfs)dx = 0, ∀ v ∈ V1
0 (Ωf),

or Q− nfs · T(w)nfs = −ψ on Σc. (A.20)

Furthermore, let

ρ

∫
Σc

(u ∧w) · (Pτ v)dx +
∫
Σc

βμ√
κ
(Pτ v) · (Pτw)dx +

∫
Σc

(T(w)nfs) · (Pτ v)dx = 0,

for any v ∈ V1
0 (Ωf), where∫

Σc

(T(w)nfs) · (Pτ v)dx =
∫
Σc

(Pτ (T(w)nfs)) · (Pτ v)dx.

Then we have

−Pτ (T(w)nfs)−
βμ√
κ
Pτw = ρ(u ∧ w) on Σc. (A.21)
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In summary, equations (A.12)–(A.21) form the adjoint system (5.39)–(5.48). �
On the other hand, note that adding (A.10) with (A.11) and using the boundary conditions

(A.15)–(A.21) yield

0 = ρ(v, (∇u)Tw)Ωf − ρ(v, u · ∇w)Ωf +
(
v,∇Q−∇ ·

(
μ(∇w + (∇w)T)

)
Ωf

+

∫
Σc

(
− βμ

2κ3/2
h

)
(Pτu) · (Pτw)dx

+

(
1
μ
h∇φ,∇ψ

)
Ωs

−
(
z,∇ ·

(
κ

μ
∇ψ

))
Ωs

. (A.22)

Finally, with the help of (A.12) and (A.14) we obtain(
v, C∗(Cu−	yref)

)
Ωf

=
(
v, ρ((∇u)Tw − u · ∇w)

)
Ωf

+
(
v,∇Q−∇ ·

(
μ(∇w + (∇w)T)

)
Ωf

=

∫
Σc

βμ

2κ3/2
h(Pτu) · (Pτw)dx −

(
1
μ
h∇φ,∇ψ

)
Ωs

.

(A.23)
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