GEOMORPHOLOGY OF LAGRANGIAN RIDGES
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ABSTRACT. We prove an “h-principle without pre-conditions” for the elimination of tangencies of
a Lagrangian submanifold with respect to a Lagrangian distribution. The main result states that
such tangencies can always be completely removed at the cost of allowing the Lagrangian to develop
certain non-smooth points, called Lagrangian ridges, modeled on the corner {p = |q|} C R? together
with its products and stabilizations. This result plays an essential role in the arborealization program.
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1. INTRODUCTION

1.1. Overview. Let L be a smooth compact Lagrangian submanifold of a symplectic manifold (M, w).
The object of interest in this article consists of the tangencies of L with respect to a field of Lagrangian
planes v C T'M. When 7 is tangent to the fibres of a Lagrangian fibration M — B these tangencies
are the same as singular points of the smooth map L. — B. If w = dX and L is exact, then these
tangencies are also the same as the singular points of the Legendrian front L - Bx R, where L is the
Legendrian lift of L in the contactization M x R. The image ¥ C B X R of the singular locus is known
as the caustic in the literature [A90].

In this article we present a method which allows for the complete elimination of tangencies of L
with respect to v via a geometric deformation of L. The precise statement is given in our main
result Theorem 1.5, which does not require any hypothesis on « and hence may be thought of as an
“h-principle without pre-conditions”.

Our viewpoint is local on L. As the deformation will always be done in a neighborhood of the given
Lagrangian L we can assume that the symplectic manifold M is the cotangent bundle T* L endowed
with the standard symplectic form w = d(pdq). All considered Lagrangians Y C T*L will be exact,
i.e. pdqly = dh, and hence could be lifted to Legendrian submanifolds A = {(z, h(z)), © € Y} C
T*L x R = J'L, where J'L is endowed with the standard contact structure ¢ = {dz — pdq = 0}.
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Even if v is integrable, i.e. tangent to a Lagrangian foliation, it is well-known that C'°°-generic
Lagrangian tangency singularities are in general non-classifiable, see [AGV85]. However, if certain
homotopical conditions given in terms of the homotopy class of the Lagrangian plane field v|;, are
met, then by work of the first author [AG18b] the tangencies can be reduced to the simplest ones of
the so-called fold type via a C°-small Hamiltonian isotopy, see Section 1.4 below. In the presence of
homotopical obstructions the higher Lagrangian tangency singularities cannot be removed by means of
a Hamiltonian isotopy, so any attempt at removing them must allow for deformations of the Lagrangian
submanifold more dramatic than a Hamiltonian isotopy.

As a first step towards removing Lagrangian tangencies, note that one can trade Lagrangian fold
tangencies with respect to v for corner singularities of the Lagrangian itself, which are transverse
to v in the sense that every Lagrangian tangent plane is transverse to . Namely, consider the 1-
dimensional Lagrangian submanifold {¢ = p?} C R?, which has a fold tangency with respect to the
vertical distribution v = {dq = 0}. We can replace this smooth Lagrangian submanifold with the
piecewise smooth Lagrangian submanifold {¢ = |p|}, which we call the order 1 ridge, and which is
transverse to . See Figure 5 for an illustration, where it is also shown how one may interpolate
between the two models while preserving exactness.

It follows from this discussion that if the homotopical conditions for removing higher tangencies
are satisfied by +|r, then we may completely eliminate the tangencies by replacing the fold tangencies
produced by the h-principle [AG18b] with order 1 ridges.

Our main result Theorem 1.5 shows more generally that by creating certain standard combinatorial
singularities called ridges one can always make a Lagrangian L transverse to a Lagrangian distribution
7, even without any homotopical pre-conditions on 7|z. The deformation consists of two steps: first the
necessary ridges are introduced via a local model and then the resulting piecewise smooth Lagrangian
is further deformed by a Hamiltonian isotopy. Note that a posteriori all the results can be reformulated

back in the smooth category by smoothing the ridges.

1.2. Lagrangian ridges and ridgy isotopies. We now define ridgy Lagrangians and ridgy isotopies.
In the standard symplectic R? = T*R consider the subset R = {pq = 0; ¢ > 0,p > 0}, which we call

the model ridge of order 1, see Figure 1.

Definition 1.1. The model ridge of order k in the standard symplectic R?” = T*R"™ is defined to be
the product Ry, = R* x R"F C (T*R)k x T*R"* 0 < k < n, i.e the (n — k)-fold stabilization of
RF =R x .- x R (k times).

Ezample 1.2. The order n ridge R, ,, C T*R" is the union to all the inner conormals of the faces of a
quadrant in R”, hence is the union of the 2" linear Lagrangians {p; = qx =0, ¢;,px >0, j €I, k ¢ I},
where I C {1,...,n}, see Figure 2.

Definition 1.3. An n-dimensional ridgy Lagrangian in a symplectic manifold M is a closed subset
L C M which is covered by open subsets U C M such that (U,U N L) is symplectomorphic to some
(B,BN Ry.), for B C R?"™ a ball centered at the origin.
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FIGURE 1. The model ridge R C T*R. Note that R is the union of the half-line
{p =0, g > 0} together with the inner conormal {g = 0, p > 0} of its boundary point
q = 0. The model R is symplectomorphic to {p = |¢|} C T*R.
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FIGURE 2. The order 2 ridge Rzo C T*R? is the union of the inner conormals to
the faces of the quadrant {¢1 > 0, g2 > 0}. In grey {p1 = p2 = 0, ¢1,q2 > 0},
in blue {p1 = ¢2 = 0, ¢1,p2 > 0}, in green {ps = ¢1 = 0, g2,p1 > 0} and in red

{g1 = g2 =0, p1,p2 > 0}. The model Ry 2 is symplectomorphic to {p = |¢|} x {p =
lgl} € T*R x T*R = T*R2.

A ridgy Lagrangian has a natural stratification L = Ry D Ry D -+ D R,, where Ry is the locus
of ridges of order > k, see Figure 3. Note that the stratum Ry \ Ri41 is a smooth (open) isotropic

submanifold of dimension n — k.

Definition 1.4. Let L be a smooth Lagrangian submanifold in a symplectic manifold M.

(1) Let Nq,..., N, C L be co-oriented separating hypersurfaces defined by equations ¢; = 0 for
some C*°-functions ¢; : L — R without critical points on N;. We assume that the N; are
co-oriented by the outward transversals to the domains {¢; < 0}. We assume that the N; are
mutually transverse, i.e. each IN; is transverse to all possible intersections of the other IV;.
Denote gi)j = max(¢,,0) and choose a cut-off function #; which is equal to 1 on N; and to 0
outside a neighborhood of N;. Define a function ® : L — R (which is C! and piecewise C°)
by the formula

m

® =0, (6F)".

Jj=1
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FIGURE 3. A 2-dimensional ridgy Lagrangian has order 1 ridges along a union of
immersed curves, which intersect each other (or themselves) at a discrete set of points
where we have order 2 ridges.

An earthquake isotopy with faults IV; is defined as a family of Lagrangians L; given by the
homotopy of generating functions t®, i.e. Ly = {p = td®}, t > 0, see Figure 4.
(2) A ridgy isotopy is an earthquake isotopy followed by an ambient Hamiltonian isotopy.

Of course, the earthquake isotopy can be realized by an ambient Hamiltonian isotopy beginning

from any ¢ > 0, i.e. for all € > 0 there exists a Hamiltonian isotopy ¢; such that Ly, = ¢:(Le), t > 0.

1.3. Main results. We can now state our main result, which we call the Ridgification Theorem.

Recall that L is a smooth, compact Lagrangian submanifold of a symplectic manifold M.
Theorem 1.5. For any Lagrangian distribution v there exists a ridgy isotopy Ly of L such that Ly M ~.

To be clear: the condition L M« means that for any 2 € L, and for any Lagrangian plane P C T,, M

tangent to L; we have P h,. If z € L; is a ridge of order k, there are 2* such Lagrangian planes.

Remark 1.6. Theorem 1.5 also holds in the following variants:

(1) C%close form: we can arrange it so that the ridgy isotopy L; is C°-small. This means that
given a fixed but arbitrary Riemannian metric on M, for any ¢ > 0 we can demand that
dist(z, fi(x)) < € for f; : L — L, the parametrization of the ridgy isotopy L; which is graphical
during the earthquake isotopy and then is given by the ambient Hamiltonian isotopy. In
particular L; stays within a Weinstein neighborhood of L in M.

(2) Relative form: if L v on Op(A) for A C L a closed subset then we can demand that L; = L
on Op(A). Here and below we use Gromov’s notation Op(A) for an arbitrarily small but

non-specified open neighborhood of A.

We will also prove in Section 5 an adapted version of Theorem 1.5 relative to a collar structure
in the case where L has boundary and corners, assuming that ~y is itself adapted to that structure.
This adapted version is essential for our applications. Indeed, together with the Stability Theorem for

arboreal singularities proved by the authors in [AGEN20a], the collared version of Theorem 1.5 is one
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FIGURE 4. An earthquake isotopy. Note that in general the hypersurfaces IN; may
intersect each other. A ridgy isotopy further deforms the result of an earthquake
isotopy by a Hamiltonian isotopy.

of the essential ingredients in our paper [AGEN20Db] on the arborealization program [N15, N17, St18],
as well as in the forthcoming work [AGEN21].

Remark 1.7. By definition, the local geometry of a ridgy Lagrangian L is given by the linear models
Ry, . The space of linear Lagrangian fields v transverse to Ry, , has interesting moduli without evident

canonical representatives.

1.4. h-principle for removing higher Lagrangian tangency singularities. The problem of sim-
plifying the tangency locus of a smooth Lagrangian submanifold L C M with respect to a Lagrangian
plane field v € TM was first studied by Entov [En97], who used the method of surgery of singu-
larities to establish an h-principle for the class of Y¥2-nonsingular plane fields, i.e. those ~ for which
dim(TL N+~) < 2. In [AG18a] and [AG18b] the methods of holonomic approximation and wrinkling
were used by the first author to extend this h-principle to arbitrary Lagrangian plane fields. The

simplest version of the h-principle can be formulated as follows.

Theorem 1.8. Suppose that v is homotopic through Lagrangian plane fields to a Lagrangian plane
field 5 which is transverse to L. Then L is Hamiltonian isotopic to a smooth Lagrangian submanifold

L whose tangency singularities with respect to vy consist only of folds.
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Remark 1.9. More generally, it is enough to assume that v is homotopic to a 7 with respect to which

L only has fold tangencies.

The fold is the simplest type of singularity. In the case where v is integrable, the germ is given
by (a stabilization of) the local model {¢ = p?} C T*R, where the Lagrangian field is the vertical
distribution v = {dg = 0}. If the tangency locus of L with respect to v consist only of folds, then
dim(TL N~) <1 and the tangency locus ¥ = {dim(T'L N~) = 1} is a transversely cut out smooth
hypersurface in L. Moreover, the line field £ = T'L Ny is transverse to X inside T'L. These properties

completely characterize the fold (also in the non-integrable case).

Remark 1.10. Even in the smooth (as opposed to symplectic) category, the elimination of folds is not
usually possible. Moreover, while in the smooth category the only non-trivial constraints are on the
topology of the image of the fold, see [G09, G10], where the only thing which matters is that the fold
locus is non-empty, see [E70], in the symplectic case there are also constraints on the topology of folds
(e.g. the number of its components) in the source Lagrangian, see [En98]. See also [FP98, FP06] for

further constraints on the caustic locus.

The fold is closely related to the order 1 ridge. More precisely, observe that the 1-dimensional
Lagrangian model {g = p?} has a fold type tangency to the vertical Lagrangian distribution v =
{dq = 0}, while the ridgy Lagrangian {¢ = |p|} is transverse to 7. Let us take a cut-off function
o :[0,00) — [0, 1] which is equal to 1 on [0, %], equal to 0 outside [0, 1]. Define for ¢ > 0 the generating

=2 (o ()5 0o (D))

which generates a Lagrangian L. C T*R. Note that for any ¢ > 0, L. is a ridgy Lagrangian

function

transverse to vy, while Ly = {q = p2} is a smooth Lagrangian with a fold tangency singularity to 7 at
the origin.

Note also that because we define the deformation at the level of generating functions, exactness is
automatic, see Figure 5.

This deformation can be achieved by a ridgy isotopy: it is essentially an earthquake isotopy along
the fold locus (strictly speaking, it needs to be corrected by a subsequent Hamiltonian isotopy to get
the symmetry about the fold locus, but this is not important).

If the deformation is performed close enough to the fold point (so that « is almost constant as in our
local model), then the resulting ridgy Lagrangian is transverse to the Lagrangian plane field v with
respect to which the smooth Lagrangian had a fold. Hence Theorem 1.5 is an immediate consequence
of Theorem 1.8 when « is homotopic to a Lagrangian plane field transverse to L.

Note that the above relation between folds and ridges only holds for order 1 ridges, i.e. stabiliza-
tions of the standard 1-dimensional ridge R C T*R. Higher order ridges carry subtler homotopical
information corresponding to the higher corank singularities 3* and are necessary to overcome the
homotopy theoretic obstruction to the simplification of singularities. Thus Theorem 1.5 shows the

best one can do if nothing is known about the homotopy class of ~.

1.5. Structure of the article. We begin our proof of Theorem 1.5 by showing existence of a formal

solution, which is established in Section 2 by working one rank 1 form at a time. The resulting formal
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FIGURE 5. A fold (blue) becomes a ridge (red). Exactness means that the area of the
region bounded by the blue and the red curves is zero when counted with sign.

solution is then deformed to an integrable solution in two steps. First, in Section 3 we align the ridge
directions to the homotopy class necessary for integrability. Then in Section 4 we integrate our formal
solution and finish the proof of our main theorem. Finally, in Section 5 we explain a version adapted

to a collar structure in the case where the Lagrangian has boundary and corners.
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initial stages of this project. The first author is grateful for the great working environment he enjoyed
at the Institute for Advanced study and at Princeton University, as well as for the hospitality of CRM
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third author thanks MSRI for its hospitality. We are very grateful for the support of the American
Institute of Mathematics, which hosted a workshop on the arborealization program in 2018 from
which this project has greatly benefited. We are grateful to the referee for numerous useful comments,

suggestions and corrections.

2. FORMAL SOLUTION

2.1. Tectonic fields. We begin by introducing the notion of a tectonic field, which is the formal
analogue of a ridgy Lagrangian. Recall that a polarization of a symplectic vector space V consists
of a pair of transverse linear Lagrangian subspaces 7, C V. For a fixed polarization (r,v) there is
a bijective correspondence between graphical linear Lagrangian subspaces of V' (i.e. transverse to v)
and quadratic forms on 7. Indeed, both can be thought of as symmetric linear maps 7 — 7%, where
by symmetric we mean equal to its own transpose under the canonical isomorphism 7% ~ 7.

We will repeatedly go back and forth between the two viewpoints. Note that given two graphical
linear Lagrangian subspaces A1, Ao C V we have dim(A; N A2) = dim ker(A; —A2). In particular, A; and
A2 are transverse if and only if A\; — Ay is a nonsingular quadratic form on 7. Given a smooth manifold
L, for any x € L there is a canonical polarization of T,.(T*L) given by 7 = T,,L and v = T, L. Hence
we can identify graphical linear Lagrangian subspaces of T, (T™*L) with quadratic forms on T, L. Via
this identification, graphical Lagrangian plane fields on T*L defined along the zero section L form a

module over C*°(L).
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Remark 2.1. By a Lagrangian plane field on L we mean a field of Lagrangian planes in 7L defined
along the zero section. Similarly, by a field of quadratic forms on L we will always mean a smooth

family A\, of quadratic forms on T, L, x € L. This is the same as a graphical Lagrangian plane field.

Definition 2.2. Suppose we are given dividing, co-oriented embedded hypersurfaces Ny,..., N, C L.
We assume that the N; are mutually transverse, i.e. each N; is transverse to all possible intersections
of the other N;, 7 # j. A tectonic field A over L with faults along INV; is a collection of fields of quadratic
forms Ag over the closures @ of the components Q C L\ |J ; N; such that there exist non-vanishing
1-forms ¢; on T'L|y;, j = 1,..., k, with the following property:
- for any point point x € N; \ Uj N; we have
Ao, — Ao =103,

where we denote by C+ the components of L\ J ; N; adjacent to x and where the co-orientation

of N; points into Q.

The hypersurfaces N; are called faults, the connected components @ of L\ |J I Nj; are called plates
and the hyperplane fields 7; are called ridge directions. We will moreover demand that the following

transversality condition is satisfied:

Along each intersection Nj;, N--- N Nj, = the ridge directions 7;,, s = 1,...,m, are transverse

to all possible intersections of the other ridge directions 7;,, r # s.

See Figure 6.

)\+=/\_+,Jc'}

FIGURE 6. A tectonic field. The discontinuity of A along the green arrow is the rank
1 form p; = €? corresponding to the hypersurface N;. Note that the hyperplane fields
7; = ker(¢;) need not be tangent to the N;.

Remark 2.3. The closure Q C L of each plate @ of a tectonic field is a codimension zero submanifold

of L with boundary and corners (of any order).
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Remark 2.4. The hyperplane fields 7; = ker(¢;) are co-oriented by the choice of the defining 1-forms
Z;, but note that this co-orientation is not determined by the tectonic field A and co-orientation of N;

as we could replace ¢; with —¢;.

Remark 2.5. Tectonic fields do not form a module over C°°(L), but they can be multiplied by functions
which are positive on | z N; and can be added when the union of the corresponding collections of faults
and ridge directions satisfies the transversality conditions. For example this is vacuously satisfied when

one of the tectonic fields is actually a smooth graphical Lagrangian field.

2.2. Formal transversalization. The main goal of Section 2 is to prove the following transversal-

ization result, which is the formal version of our main Theorem 1.5.

Theorem 2.6. For any Lagrangian field v on L there exists a tectonic field ¢ on L such that ¢ th,
i.€e. C|§ My on Q for each plate Q of C.

In fact we will prove the following more general extension result with C°-control.

Theorem 2.7. Let v be a Lagrangian field on L and let ¢ be a tectonic field on L. For any two disjoint
closed subsets K1, Ko C L there exists a tectonic field E such that the following properties hold.

. Ez’s C%-close to (.

- ¢y on Op(Ky).

- = on Op(K>).

Remark 2.8. The C?-closeness statement means the following. Given a fixed but arbitrary Riemannian
metric on L, for any € > 0 we can demand that the maximal angle between ¢ and Z is smaller than €.

Moreover, if L is not compact, then the same holds for any function ¢ : L — (0, 1].

Note that Theorem 2.7 implies Theorem 2.6 in its stronger relative form: if ¢ h v on Op(A) for
A C L a closed subset, then we can demand that E = (¢ on Op(A). To see this take Ky = A and
K; = L\ Op(A) and use the C%-closeness provided by Theorem 2.7.

In Section 5 we will prove a version of Theorem 2.7 for the case where L is a manifold with boundary

and corners and v is adapted to the corner structure.

2.3. Inductive step. The key ingredient in the proof of the formal transversalization theorem is the

following inductive procedure, in which we only deal with a rank 1 form at a time.

Lemma 2.9. Let \,n be smooth fields of quadratic forms on L, with n = of? for a field of non-zero
linear forms £ and a real valued function a: L — R. Let ¢ be a tectonic field which is transverse to .
Then there exists a C°-small tectonic field ¢’ such that ( + (' is a tectonic field transverse to A +n. If
n =0 on Op(A) for some closed subset A C L, we may moreover demand that ' =0 on Op(A).

Proof. Denote by Ni,..., Nj the faults, by 7q,...,7; the ridge directions and by Q1,...,Q,, the
plates of the tectonic field . Note that n has rank 1 and hence A + n — ¢ has rank > n — 1. Let
> C L denote the locus where the rank of A + n — ( is exactly n — 1, see Figure 7. In other words.
Y = {det(A +n —¢) = 0}, where here and below we fix an arbitrary Riemannian metric on L to
compute the determinant. Set 3; = @; N 3. Our first goal is to reduce Lemma 2.9 to the case where

the following properties hold.
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(A) The closure fj of ¥; is a properly embedded smooth codimension 1 submanifold with boundary
and corners of @ such that ¥; is transverse to all intersections of the faults N;, i # j and X,
is transverse to all intersections of the other ¥; along their boundary.

(B) 7 = ker(n) is transverse to all possible intersections of the ridge directions 7;,,...,7;
the intersection of N;, N---N N;  with each ;.

along

m

FiGUurE 7. The singular locus ¥ C L.

Suppose first that we know Lemma 2.9 to be true when (A) holds. Let A\,7 and ( as in the statement
of the lemma. By genericity of transversality we can find a C°-small smooth field of quadratic forms
© such that the hypersurfaces det(A + ¢ +n — ) = 0 are transversely cut out on each plate of ¢, are
transverse to all intersections of the faults, and are transverse to each other along their boundaries.
Then by assumption we can apply Lemma 2.9 with A + ¢ instead of A (which is still transverse to ¢
since ¢ is C%-small), obtaining a C%-small tectonic field ¢’ such that ¢ + ¢’ is transverse to A + ¢ + 7.
Hence (" = ¢’ — ¢ is a C’-small tectonic field such that ¢ + ¢” is transverse to A + 7. It therefore
suffices to prove Lemma 2.9 under the assumption that (A) holds.

Next, suppose that we know Lemma 2.9 to be true when (A) and (B) hold. Let A\,n and ¢ be as
in the statement of the lemma and assume that (A) holds. Note that the non-transversality condition
in (B) has codimension > n — m and the intersection has codimension m + 1. Therefore by genericity
we can find a smooth field of rank < 1 forms 77 = @¢? which is C°-close to 1 and such that condition
(B) holds if we replace n by 77. We may assume the condition (A) still holds by openness. Then by
assumption we can apply Lemma 2.9 with 7 instead of . The output is a C°-small tectonic field ¢’
such that ¢ + (¢’ is a tectonic field transverse to A 4+ 7). Hence (" = ¢’/ + n — 7 is a CY-small tectonic
field such that ¢ + ¢” is a tectonic field transverse to A + 7. It therefore suffices to prove Lemma 2.9
under the assumption that (A) and (B) hold.

We now proceed to prove Lemma 2.9 under the assumption that (A) and (B) hold.

Extend ¥; to a closed hypersurface ij C L, so that the collection Ny,.. .,Nk,il, .. .,f)k forms
a transverse system of hypersurfaces, as in condition (A). This is possible because X; is defined by
the equation det(X + 71 — ()|g, = 0, so it suffices to extend the function A; = det(\ +7n — C)|§j to

L. A generic extension provides the desired transversality. Note that X; is canonically co-oriented by
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the direction in which A; is increasing and hence we can extend this co-orientation to f]j using the
extension of A;.

We will construct the tectonic field ¢’ inductively, working plate by plate. We begin with the first
plate Q.

Fix a tubular neighborhood U; = 31 x (—1,1) of £ with coordinates (z,u;) so that 8, agrees
with the specified co-orientation of 3. Write n = af? as in the statement of the lemma. Fix a cutoff
function 4 : [0,1] — [0, 1] such that ¢» = 1 near 0 and ¢ = 0 near 1. Since A — ¢ is nonsingular, the
restriction of A +7 — ¢ to 7 = ker(¥) is nonsingular, where we recall = af? for ¢ a non-vanishing
1-form. Let 6 € {£1} be the sign of the determinant of (A +n — ()|, on @Q;. Pick £; > 0 arbitrarily

small and consider the tectonic field (' given by

= b, (ug)l?, Ve, (u1) = ersign(u )Y (|uil|/e1).
Remark 2.10. Note that (7' is a tectonic field with fault il and C%norm proportional to ;.
Claim 2.11. If ey is chosen small enough, then ¢ + (' is transverse to A +n on Q1.

Proof of Claim 2.11. Fix an arbitrary point in ;. Choose a local frame k1,...,k,_1 of 7% with the
corresponding n(n + 1)/2 quadratic forms 62,55, (kj + 02, (kj + ki) 4, = 1,...,n— 1,14 < j.
By considering the symmetric matrix which corresponds to the frame (k1,...,kn—1,¢) of TXL we
can compute the determinant det(A + n — ¢) to be of the form A(x,u1)f1(z,u1) + B(z,u1), € X1,
uy € (—1,1), where A is a non-vanishing function, namely the complementary minor corresponding to
the forms (k; + ;)%

That ¥ is cut out transversely means 9,,, det(A+n—¢) > 0 at u; = 0, so by taking £; small enough
we may assume that this holds for all u; € (—e1,¢1) and hence det(A +n — () is a strictly increasing

function of u; in the tubular neighborhood U; := S x (—e1,€1) where (7' is supported, see Figure 8.

\’4

FIGURE 8. We may assume 0, det(A +n —¢) > 0 for u; € (—1,1).

Moreover, with respect to that same frame we can write det(A + n — ¢ — (7*) in the form
Az, ur)(f1(z,u1) £ e, (u1)) + B(z,u1), where + is the sign ¢ of A. Hence we have
det(A+n — ¢ — (1Y) = det(A + 7 — Q) + [A(z, ur) ¢, (ur),

which is bounded away from zero, see Figures 9 and 10. O
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~
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v

FIGURE 9. The function |A(x,u1)[¢e, (u1), which has a discontinuity at u; = 0.

v

FIGURE 10. The function det(A + 7 — ¢ — (7*), which is the sum of the functions
det(A+n —¢) and |A(x, u1)|te, (u1) illustrated in Figures 8 and 9.

Before proceeding with the inductive process on the next plate we examine the new singular locus
E;l =det(A+n—(—¢')=0o0nQ; for j > 1. If ¥; N fll = @, then for €1 small enough this singular
locus is just ¥; and nothing changes. Suppose however that P; = ¥; N ¥; # &. After the addition of
¢1' to ¢ the hypersurface 31 becomes a fault, which causes ¥; to disconnect along P;, see Figure 11.

The crucial observation is the following.

Claim 2.12. The new singular locus Z;l 1s displaced in opposite directions on each side of the fault

f)l and hence intersects f)l in two disjoint parallel copies of P; in f)l,

Proof of Claim 2.12. To verify the claim, choose a tubular neighborhood U; = %; x (—1,1) of &; in
Qj with coordinates (z,u;) such that d,, agrees with the specified co-orientation of ¥;. We moreover
assume compatibility along the boundary, i.e. that 0%; x (—=1,1) C 90Q;.

Together with the coordinate u; of the tubular neighborhood U;j of f)l this gives us coordinates
(z,u1,u;) of a tubular neighborhood of P; in ();. We again assume compatibility with the boundary
and corner structure of @j.

Near P; we can write det(A+n—(— (") as before in the form A(y, u1,u;)(f1(y, u1,u;) £Ye, (u1))+
B(y,u1,u;), y € Pj, u1,u; € (—1,1), where A is a nonvanishing function and =+ is the sign § of A. In

terms of our previous notation z = (y,u;). The hypersurface Z;l is cut out by the equation

det(A+n—¢—¢)=0
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which is equivalent to

det(A 41— ¢) = —[A(y, ur, uj) [e, (u1).
That X; is cut out transversely means that 9, det(A +n — ¢) > 0 along ¥;, so we may assume that
this condition holds in the tubular neighborhood. Solving for u;, the implicit function theorem implies
that on each side of il the above equation cuts out a smooth hypersurface which is graphical over X;.

Moreover, the intersection of these hypersurfaces with f]l = {u; = 0} is given by the equations
det(A+71—¢) = [A(y,0,u)ler,  det(A+n—¢) =—[A(y,0,u;)len,

coming from u; < 0 and u; > 0 respectively. Since det(A 4+ n — () is a strictly increasing function of
u; on Uy NU; which vanishes at u; = 0, these solutions have strictly positive and strictly negative u;
coordinates respectively. Let u;r(y) > 0 and u; (y) < 0 be these coordinates, as functions of y € P;.
Then {J,y x 0 xiu; (y), uj(y)] is a tubular neighborhood of P; = J; ¥ x 0 x 0 in ¥y = {u; = 0} with
boundary Z;l N X1, which was to be proved. O

=

FIGURE 11. The singular locus changes after the first step of the inductive process.

N

We now reconnect E;l back together along P; in the (ui,u;) plane by parametrically closing up
the family of broken curves cut out by det(A + 7 — ¢ — (;') = 0. For each fixed y € P; we know that
the interval I, = 0 x [u;(y),u;r(y)] is disjoint from 7}, = 35" N (y x (=1, 1)4, x (=1,1)4;) C (=1, 1)2
except at its endpoints { (O,uiE (y))} = 90T,. Moreover, at these boundary points T, is transverse to
the vertical axis u; = 0, see Figure 12.

Consider a parametric family of smoothings S, of T, U I, fixed on T}, see Figure 13. This exists
because the space of smoothings of any fixed T, U I, C (—1,1)2, fixed outside of a compact subset,

is contractible. We obtain a smooth extension of E;‘Tl in @; to a smooth hypersurface which for
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AN U

/] R

FIGURE 12. The discontinuity of 37' along S = {u; = 0}.

generic Sy satisfies the required transversality conditions with respect to the faults. Since our tubular
neighborhoods were chosen compatibly with the boundary structure of @j this stitching up extends to
the closure, with the transversality conditions along the boundary also achieved by a generic choice of
smoothing Sy,.

Abusing notation, we denote the new, extended, hypersurface E?l C @; by the same symbol. Now,
Z;l does not agree with 3; along 0Q);, hence the old extension 3; of ¥; to the rest of L must be
modified in order to obtain an extension E;l of Z;l. To construct this modification, one applies once
again the contractibility of the space of smoothings of T}, U I,, and the genericity of the transversality

condition.

AN
/
&

FIGURE 13. There is a homotopically canonical way of smoothing out T, U I, to .S,.

We now continue on to plate Q3. Choose a tubular neighborhood U, = f];l x (—=1,1). Again we

have coordinates (z,us). Pick €9 < €1 and define
52 = iw@ (u2)€27

where the sign is determined as above. If €5 is chosen small enough, then ¢+ (7' + (52 is still transverse
to A+n on @1, since transversality is an open condition. Along 35" itself we also achieve transversality
by the computation carried out in the first step. Hence ¢ + (' + (°2 is transverse to A + 7 on Q3. We

have thus achieved transversality on Q1 U Qa.
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Observe that on Q;, j > 2, the new singular locus ¥5"°* = det(A + 1 — ( — (7" — (5*) = 0 will split
along the intersection of the old singular locus X5 = det(A +n — ¢ — (7*) = 0 with X5'. We proceed
just like before, reconnecting and extending this new singular locus in a homotopically canonical way
to a closed hypersurface i;l’” which contains 35"'%*. We can then keep on going with the inductive
process until we get to the last stage, which results in a C%-small tectonic field ¢ = (7' + -+ + 5

satisfying the required properties. This completes the proof. O

Remark 2.13. The proof of Lemma 2.9 automatically gives the relative form: if n = 0 on Op(A) for
A C L a closed subset, then we can demand that ¢’ =0 on Op(A).

2.4. Extension step. In this section we use the inductive lemma 2.9 to prove the formal transver-
salization theorem 2.7. The main point is that any quadratic form is a sum of rank 1 forms. First we

prove a local version of the result, which we will then globalize.

Lemma 2.14. Let v be a smooth field of quadratic forms on the open unit ball B C R"™, let £ be a
tectonic field on B and let B C B be a smaller ball whose closure is contained in B. There exists a
CO-small tectonic field ¢ such that €+ is a tectonic field transverse to v on the closure ofé and such
that ¢ = 0 near 0B.

Proof. Fix a smooth field of quadratic forms ¢ on B which is transverse to £. This is always possible,
for instance we can take o to be almost vertical. Write the difference v —o as a sum a3 +- - -—&—aNE?V,
where the ¢; are smooth fields of linear forms. For example we can use the linear forms X; + X, where
1<i<j<n Then N =n(n+1)/2 and the identity X;X; = $((X; + X;)? — X? — X7) ensures
that such a decomposition exists. Let &; be a function which is equal to «; on the closure of B and
is equal to zero near 9B.

We begin by applying Lemma 2.9 to A = o, n = &1/? and ¢ = £&. We obtain a C°-small tectonic field
¢1 such that o+ a1 £2 — € —(; is nonsingular. Next we apply Lemma 2.9 to A = o+ a1/, n = aof3, and
¢ = £+ (1. We obtain a C%-small tectonic field (3 such that o+ &1£% + azf3 — € — (1 — (3 is nonsingular.
We repeat this process inductively. When at the last step we apply Lemma 2.9, we obtain a C°-small
tectonic field { = (3 + - - -+ (n such that o + Zj\lzl &ﬂ? — & — ( is nonsingular. In particular v — & — ¢
is nonsingular on B. Moreover, since each time we apply Lemma 2.9 we have nn = 0 near 0B, we may
apply the relative version of the lemma and hence assume that ¢; = 0 near 0B for each j =1,..., N.
Therefore { = 0 near B also. 0

Proof of Theorem 2.7. For C > 0 we set Qo ={zx € L: vMTsL and |det(y;)| < C} C L. Choose C
sufficiently large so that ¢ th v outside of Q¢. Let By, ..., By, be a cover of 2c N K; by open balls B;
such that B; C Q¢ \ K2. In particular v is graphical on each Bj, hence can be thought of as a field
of quadratic forms. Take slightly smaller balls Ej whose closure is contained in Bj; and such that the
collection él, ceey Bm still covers Q¢ N K. We will construct the desired ¢ inductively, one B; at a
time.

First apply Lemma 2.14 on B; to v and & = (, producing a C%-small tectonic field ¢; such that
¢1 = 0 near 0B; and such that ¢ + (3 is transverse to v on El. Suppose that we have constructed
C%-small tectonic fields (i, ..., (, supported on Ule B; such that ¢ + Z?zl (j is transverse to «y on

U§:1 éj. Apply Lemma 2.14 on By4q to v and £ = ¢ + Zf:l (i to obtain a CY-small tectonic field
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Ckt1 such that (x11 = 0 near 0Bgy; and such that ¢ + Z?:ll (j is transverse to v on §k+1. Since
transversality is an open condition, by taking (.1 to be sufficiently C%-small we can ensure that
¢+ Zf:ll (; is also transverse to v on U§:1 Ej. Hence ¢ + Zf:ll (; is transverse to y on U;tll éj and
the inductive procedure can continue.

At the last stage of the inductive procedure we obtain a tectonic field ¢’ = ¢ + Z;nzl ¢; which is
C%-close to ¢, such that ¢’ h v on Q¢ N K; and such that ¢’ = ¢ outside of Qyc \ Ko. If ¢ is sufficiently
CP-close to ¢ then ¢’ rh v also on Q¢ \ Q¢, because we chose C' > 0 so that ¢ rh v in that region.
Hence ¢/ hy on K and ¢’ = ¢ on Op(K3). This completes the proof. O

3. ALIGNMENT OF RIDGES

3.1. Aligned transversalization. Let L be a smooth manifold and let A C T*L be a ridgy La-
grangian. Denote by R C A the ridge locus and let A\ R = P, U---U P} be the decomposition into
connected components (each of which is a smooth manifold with corners). Suppose that A is graphical
over L and denote by @; the image of P; under the projection 7L — L. Then A is given over Q; as
the graph of a closed 1-form ;. Assume for simplicity that A is exact, so that we can write 8; = dh;
for h; : Q; — R a smooth function. Set \; = Hess(h;) on Q;, where we use an auxiliary Riemannian

metric on L to write down the Hessian. Note that the A; assemble to a tectonic field A with plates Q.
Definition 3.1. When a tectonic field A arises in this way we say that it is integrable.

A tectonic field provides the infinitesimal data to integrate a graphical ridgy Lagrangian. However,
for the integration to be possible in a neighborhood of the fault locus we need the additional condition

that the ridges are aligned with the faults.

Definition 3.2. We say that a tectonic field A is aligned if 7; = T'IN; for every fault N; and corre-

sponding ridge direction 7;, see Figure 14.

FIGURE 14. An aligned tectonic field.

For a Lagrangian plane field v in T* L, the problem under consideration is to deform the zero section
L by a ridgy isotopy so that it becomes transverse to . In the previous section we found a formal

solution to this transversalization problem, i.e. a tectonic field A such that A 5. In this section
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we take a step towards integrability by upgrading our formal solution to an aligned solution. More

precisely, we have the following aligned version of Theorem 2.6.

Theorem 3.3. For any Lagrangian field ~ there exists an aligned tectonic field ¢ such that { h7 for
~ a Lagrangian field homotopic to 7.

Note that we gain alignment of the tectonic field Eat the cost of deforming the Lagrangian field
~ to a homotopic field 4. Nevertheless, in the next section we show that it is possible to integrate
the aligned solution Zproduced by Theorem 3.3 to obtain a ridgy Lagrangian which after an ambient
Hamiltonian isotopy is transverse to ~y itself, thus proving our main result Theorem 1.5.

The rest of the present section is devoted to the proof of Theorem 3.3. In fact, we prove below the

following more general extension result, which is the aligned analogue of Theorem 2.7.

Theorem 3.4. Let v be a Lagrangian field and let { be an aligned tectonic field. For any two disjoint
closed subsets K1, Ko C L, there exists an aligned tectonic field E and a Lagrangian field 5 homotopic
to v such that the following properties hold.

. Eis C°-close to C.

- Ch7 on Op(Ky).

- ¢ =¢ on Op(IKy).

Moreover, we can assume that the homotopy between v and 7 is fized on Op(Ks).

3.2. Homotopically aligned transversalization. It will be useful to also consider the homotopical

version of definition 3.2.

Definition 3.5. We say that a tectonic field is homotopically aligned if there exists a homotopy of
linear isomorphisms ¥, : T,L — T, L, x € L, such that ¥y = idy, 1 and ¥,(7;) = T'N;.

We call ¥; the homotopical alignment and consider it part of the defining data of a homotopi-
cally aligned tectonic field. Note that Theorem 3.4 follows immediately from the following analogous

homotopically aligned statement.

Theorem 3.6. Let v be a Lagrangian field and let  be a homotopically aligned tectonic field. For
any two disjoint closed subsets K1, Ko C L, there exists a homotopically aligned tectonic field E and a
Lagrangian field 7 homotopic to v such that the following properties hold.

. Zis CO-close to C.

- ChF on Op(K).

. E:C on Op(Ks).
Moreover, we can assume that the homotopy between v and 7 is fized on Op(Ks) and that the homo-

topical alignment (I\lt for E agrees with the homotopical alignment Uy of ¢ on Op(Ks3).

Proof of Theorem 3.4 assuming Theorem 3.6. We apply Theorem 3.6 in the case where ¥, = idr, 1.
The output is 4 and Z , with homotopical alignment \flt. Let ®; be the unique homotopy of linear
symplectic isomorphisms of T, (T*L), = € L, lifting the linear isomorphism U, of T, L and fixing the

cotangent fibre T L. Then taking the aligned tectonic field ®;(¢) and concatenating the homotopy
between v and 7 with the homotopy ®;(5) we obtain the conclusion of Theorem 3.4. O
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Therefore we have reduced the aligned formal transversalization theorem 3.4 to the homotopically
aligned formal transversalization theorem 3.6. To prove the homotopically aligned formal transver-
salization theorem 3.6 we will take the tectonic field Z produced by the formal transversalization
theorem 2.7, which may not be homotopically aligned, and perform a local modification to adjust the

homotopical condition obstructing alignment.
3.3. Formal ridges. We begin by introducing the notion of a formal ridge.

Definition 3.7. A formal k-ridge over an n-dimensional vector space V is the data of a quadratic
form Ag on V and an unordered collection of k rank 1 forms pq,...,ur on V such that each of the

hyperplanes H; = ker(u;) is transverse to all finite intersections of the other H;, i # j.

Let A be a tectonic field on a smooth n-dimensional manifold L. A point at which exactly k of
the faults of X\ meet determines a formal k-ridge. Indeed, the 2* Lagrangian planes corresponding
to the tectonic field A at the point = are given by Ay + Zje g Mj, where J ranges over subsets of
{1,2,...,k} and X is the plane corresponding to the quadrant which is initial with respect to the
fault co-orientations. We get a formal k-ridge by considering A\g together with the u;. Note that with
this choice of Ay we have that each p; is the square of a linear form 65. However, we could also take a
different plane in A as our A\g and replace each of the corresponding p; with —u;. Then we get another
formal k-ridge which has the same collection of 2¥ Lagrangian planes associated to it. Note that there
is no canonical ordering on the forms p;.

Denote [A] = span()), which is a field of coisotropic subspaces of T'(T*L)|;,. The dimension of [}]
varies and is equal to n + k along the formal k-ridge locus. Given a Lagrangian field n along L we
denote by nlM the symplectic reduction of N [A] in [A]/[A]*~. Note that the transversality of 1 to A
is equivalent to transversality of 7 to [A] and transversality of nN to AN, Here AN consists of the

collection of symplectic reductions of the Lagrangian planes of A.

Lemma 3.8. The projection n — n* defined on the space of Lagrangian fields transverse to [A] has

contractible fibers.

Proof. Consider the fibre over a formal k-ridge point. We factor the projection 7 — 7 as the map
7+ nN [\ and nN[\] = n*. The second map is defined on the space of (n — k)-dimensional isotropic
subspaces of [A]. Let 7 C [A] be an (n — k)-dimensional isotropic subspace. Then the fibre of the
second map over the reduction of 7 can be identified with the space of linear maps 7 — [A]*«, hence
is contractible. For the first map, take an (n — k)-dimensional isotropic subspace 7 C [A] and let n
be a Lagrangian plane whose intersection with [A] is 7. Then the fibre of the first map over 7 can be

identified with the space of quadratic forms on /7, hence is also contractible. O

For an inductive argument below it will be convenient to consider formal k-ridges with a fixed

ordering of the rank 1 forms ;. We call this an ordered formal k-ridge.

Lemma 3.9. Let \!' and \? be two ordered formal k-ridges on V. There exists a linear symplectic
isomorphism ® of V. x V* which sends A' to \2. Moreover ® is determined up to contractible choice

by its restriction to [\'], where X is the ordered formal (k —1)-ridge obtained from \' by forgetting uy,.

Remark 3.10. That ® sends A to \*> means that the image of the Lagrangian plane A\j + 3. ; 1j by
® is A3+ZjEM§ for every J C {1,...,k}.
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Proof. We argue by induction on k& = 0,1,...,n. For k& = 0 the existence part follows from the
fact that the symplectic group acts transitively on the Lagrangian Grasmannian. The uniqueness
follows from the fact that a linear symplectic isomorphism is determined by its restriction to a pair of
transverse Lagrangian planes, together with the fact that the space of Lagrangian planes transverse to
a fixed Lagrangian plane is contractible. We spell out the details of an explicit argument which will
be easily adaptable to the case k > 0. First we reduce to the case V =R", \} = A3 = R" C C" and
®|gn = idgn. Write the symplectic matrix M € Sp(2n) representing ® in the block form corresponding
to C" =R" x iR"

A B

C D

Then ®|g» = idgn is equivalent to A = I,, and C' = 0. That M is symplectic means MTQM = ) for

M =

where I,, is the n by n identity matrix. It follows that D = I,, and B” = B. Hence ® is uniquely
determined up to the contractible choice of the symmetric matrix B. This completes the base case.

For the inductive step, observe that as before it suffices to consider the case A} = R" C C™.
Furthermore, up a linear change of coordinates in R™ we may assume that the kernel of both u; and
u? is the coordinate hyperplane {g; = 0} C R". Let ® be the linear symplectic isomorphism obtained
by applying the inductive hypothesis to the ordered formal (k — 1)-ridges corresponding to A} and \?
after forgetting u}c and u% respectively. Then by pulling A? back by ® we reduce to the case A\j = A3
and pu} = p? for i < k.

In this case have [\'] = {p; =0, j > k—1} and [\'] = [\?] = {p; =0, j > k}. Note that the product
of a horizontal shear of the symplectic subspace (g, px) and the identity on the complementary R?"~2
fixes [A\]. Since the group of horizontal shears (z,y) — (z,y + ax), a € R, acts transitively on the
space of lines in R? transverse to the horizontal axis {y = 0} C R?, we can find a linear symplectic
isomorphism which is the identity on [\'] and takes A! to A2. This proves the existence part.

For the uniqueness part it suffices to show that a linear symplectic isomorphism ® of R2" which
restricts to the identity on [A\'] = {p; = 0, j > k} is unique up to contractible choice. With the same
notation as above, write the symmetric matrix B in block form

X Y
B=
Yo w
Here X is a k by k matrix and W is an (n — k) by (n — k) matrix, which are both symmetric. The
conditions on ® are equivalent to X = 0 and Y = 0 Hence ® is uniquely determined up to the

contractible choice of the symmetric matrix W. g

3.4. The model. Consider a tectonic field A on L. Let N C L be one of its faults, which bounds a
domain U such that outside of U the field A differs by adding a rank one 1 quadratic form p along N.
Let Q C U be a domain with boundary and corners, where we decompose 0,2 = Fy U Fy for F; and
F5 smooth so that F}, = 02N N, 0F; = F; NN and the corner is precisely 0,2 = F; N Fy. Let v be a
field of rank 1 quadratic forms on €2 such that v = pu near Fy. Consider the field X which is defined to
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be A outside of  and A+ v on €. After smoothing, A becomes a tectonic field with N = (N\F1)UF,

as one of its faults, see Figure 15.

Q Ay

Ap Ay

FIGURE 15. The modification A — .

We now apply this construction in a specific model. Consider a tectonic field A over R™ C T*R" with
faults along the first k coordinate hyperplanes Q7 := {g; =0}, j = 1,...,k < n. We use the notation
@ for the fault intersections: Q7 = ;c,;@Q’, J C K for K = {1,...,k}. We also enumerate the
quadrants on R™ by multi-indices I C K, namely C; = {¢; > 0,7 € I; q; <0, j € K\ I}. We assume
that A is constant in the sense that the discontinuities of A across a fault @7 are given by constant
rank 1 quadratic forms p;. So we may write A = Ao + ZjeJ p; on Cj for Ag a fixed Lagrangian plane.

Take a sphere ¥ C R"™ of radius 1 centered at a point @ with coordinates g, = 2, ¢; = 0,j # k.
Denote A = {0 < gx < 1;¢; = 0,5 # k}, and denote by Q a neighborhood of AU X in {gx > 0}.
Thus 0Q = (F} U Fy) U F3, where Fy = 9Q N QF, Fy is a (n — 1)-disk transverse to Q¥ and Fj is a
(n —1)-sphere disjoint from Q. Let v be a field of rank 1 quadratic forms over {2 which agrees with
over F. We will additionally assume that near Q” the field v is independent of coordinates ¢;, j € J.
Performing the above construction to A for the specific choices of 2 and v yields a tectonic field which

we denote X, see Figure 16.

Proposition 3.11. Let v be a constant Lagrangian distribution transverse to X\. Then X is transverse

to a distribution 7 which is homotopic to v by a deformation fized outside of a compact set.

Proof. Write C{ = C; N Q7. Note that on C{ the tectonic field \ is a fixed formal r-ridge A/, where
r < k is the cardinality of J. We construct 7 inductively over the dimension n — |J| of the strata
C{ intersecting ¥. The smallest dimensional stratum is C' = C’ll,f ~. For every point z € C N}
consider a linear symplectic isomorphism @, of R?" which sends XO = ) to Xm and is the identity
on [X]. Here 0 denotes the origin in R™, A, is the formal k-ridge of A at z and X is the formal
(k —1)-ridge obtained from Ag by forgetting py. According to Lemma 3.9 there exists a homotopically
unique continuous family of such isomorphisms. We can assume that ®g , is the identity if /):L = XO.
Let us define 4, = ®¢ ,(70), which is transverse to by Using Lemma 3.8 we can extend 7 to C' keeping

fixed its reduction ﬁ[)‘/] = 'y[’\/] and making it equal v outside a neighborhood of 2. Again applying
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FiGURE 16. The standard model in the case n = 3, k = 2. Note that the vertical
fault does not change in the process, only the horizontal fault changes.

Lemma 3.8 we conclude that the constructed field 7 is homotopic to v via a homotopy ~; with a fixed
reduction yt[’\/].

Next, we extend 7 to a neighborhood of C' = C’H:; Y g0 that it is independent of the coordinates
qj,j < k—1. For any stratum C{ of codimension k — 2 adjacent to C' we choose a point y € C{ N in
a neighborhood U of C where 7 is already defined. We note that in this neighborhood there exists a
family of linear isomorphisms ®, , fixing [A}] which maps :\\y to A, and 3y to Yz, x € C{NOANU. We
extend the family to all z € C{ NQ and define 7, := @, +(7y). Next we extend it to C{ keeping fixed
its reduction ﬁp‘g], and making it equal v outside a neighborhood of 2. The same lemma implies that
the constructed field 7 is homotopic to v via a homotopy v; with a fixed reduction fyt[’\‘]’]. Continuing

this process we construct the required distribution 7. O

3.5. Changing the homotopy class of the ridge directions. Finally we show how the local model

constructed above can be used to prove Theorem 3.6.

Proposition 3.12. Let A be a tectonic field over a manifold L which is transverse to a Lagrangian dis-
tribution v. Then there exists a homopically aligned tectonic field X which is transverse to a Lagrangian

distribution 5 homotopic to .

Proof. Let N; denote the faults of \. We will align the ridge directions inductively over the strata of
the fault locus |J ; Nj- In fact, we will align the outwards normal to N; = 0§2;, where we recall Q0; C L
is a domain, and where an arbitrary Riemannian metric on L is understood.

We begin by refining the stratification to a triangulation Uj Aj, so that Uj Nj; is contained in the
(n — 1)-skeleton and moreover such the interior of each k-simplex is entirely contained in the locus
where exactly 7 of the faults N; intersect for some < n — k (which depends on the k-simplex).

Choose an order of the faults Lq,..., L,,. We recall that N; = 0€); for some domain §; C L. Let
J C{1,...,m} and consider a point @ € ();c; N;j \ U ¢, Nj. Set r = [J]|. We have two r-frames at
T,L. One is given by the r-tuple of outward normals to the domains €2;, j € J, with the induced
order from {1,...,m}. The other is given by the ridge directions of the tectonic field A, with the same

order. The co-orientation of the ridge directions (which are hyperplane fields) is specified by a choice
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of non-vanishing 1-forms ¢; on T'L|y, which square to the rank 1 quadratic form giving the jump of A
over ;. There are two choices for each IV;, but either will do.

We begin our homotopical alignment along the O-skeleton of the triangulation. At a point where
r < n of the faults meet we have two elements of V;.,,, the Stiefel manifold of r-frames in R™, which
is connected for r < n. So for points where r < n we may define the homotopical alignment ¥, in
an arbitrary way, but for points where r = n we may only align n — 1 of the normals: there is a
7o Va,n = Z/2 obstruction to aligning the last one, namely the orientation of the frame.

We need to modify A near the points of the 0-skeleton where the obstruction is nontrivial. To do
this, let z € L be such a point and choose v = c£? in Proposition 3.11 in such a way that the hyperplane
7 = {¢ = 0} is tangent to ¥ with the center of the sphere on an (n — 1)-multiple fault point adjacent
to x. This removes the point x from the 0-skeleton and creates three new n-multiple fault points, two
of them on the new spherical fault. These last two n-multiple fault points can be arranged to have
trivial Z/2 obstruction if we agree that the new spherical fault is the boundary of the domain Q¢ C L
formed by the m-ball it bounds and we agree to place this new fault first in our ordering of faults.
The other new n-multiple point has trivial Z/2 obstruction by construction, since the relevant ridge
direction has been modified by a half-turn, see Figure 17. Note that according Proposition 3.11, the
new tectonic field is transverse to a Lagrangian distribution homotopic to ~.

Tva
P
g AP )
“ 3

)

\LV:L \71

No.

FIGURE 17. The local modification for the obstruction moV}, ,, = Z/2 in the case n = 2.
In this example (n1, ng) is the frame corresponding to the ordered pair of faults Ny, Ny
and (v1,v9) is the frame corresponding to the ridge directions. We assume that no
and vo have been lined up but n; and vy differ by —1, so the orientations determined
by the frames don’t agree. The model changes the sign of v; at the order 2 ridge
where N> intersects the new Ni, as well as creating two new order 2 ridges along the
intersection of Ny with the new spherical fault for which the Z/2 obstruction is trivial.

We have achieved alignment of the frames on the 0-skeleton, the base case of our inductive argument.
The inductive step is similar. Indeed, suppose that the homotopical alignment is defined on the (k—1)-
skeleton of L and let C' be a k-simplex in Ay, where exactly 7 < n — k of the faults intersect. We must
extend the homotopical alignment from 0C ~ S*~1 to C ~ D*. Since 7y, Vin =0 for K <n—r we can
always homotopically align the ridge directions if r < n — k, and if » = n — k we can align all but one.

The obstruction to aligning that last ridge direction lies in 7V, , which is Z if n — k is even or
k=1and Z/2 if n — k is odd and k > 1. We claim that one can change this obstruction by +1 by
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applying Proposition 3.11. To see this consider the fibration
S* = Vobm = Vakoim
and the following portion of its long exact sequence in homotopy
7 ~ m,S* — T Va—kn = TpVa—k—1,n = 0.

We deduce that one can realize the generator of 7V, _j  as the map Sk — Vih—k,n which fixes
n —k — 1 elements of the frame and lets the last element trace out a k-sphere in the complementary
k + 1 dimensional space.

Returning to the proof, choose v = ¢f? in Proposition 3.11 in such a way that the hyperplane
7 = {{ = 0} is tangent to X with the center of the sphere on a (k — 1)-multiple fault component C’
adjacent to C'. Then we create a new spherical fault. From the above description of a generator for
the cyclic group 7V, it follows that performing this operation changes the homotopy class of the

ridge field on the component C by +1 depending on the choice of the component C’, see Figure 18.

e &

o
<

Fi1GURE 18. The local modification in the case n = 2, kK = 1. Note that the homotopy
class of the line field changes by £1 relative to the endpoints.

Hence, we can inductively adjust the homotopy classes of ridges along fault components of decreas-
ing multiplicity until we get a homotopically aligned field X which according to Proposition 3.11 is

transverse to a Lagrangian distribution homotopic to ~. g

Remark 3.13. From the proof we see that Proposition 3.12 holds in relative form. This means that if
there exists a homotopy of linear isomorphisms ¥, : T,,L — T, L such that Uy = idy, 1, and ¥q(7;) =
TN; on Op(A) for A C L closed, then we can demand that A=2Xon Op(A) and that the homotopical
alignment of P\ agrees with U; on Op(A). Moreover, we can demand that the homotopy of + is constant

on Op(A).

Proof of Theorem 5.6. Consider the tectonic field Z which is produced by the formal transversalization
Theorem 2.7. Then by applying the relative form of Proposition 3.12 to Zand v with A = Ky we
obtain the desired homotopically aligned tectonic field. O
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4. INTEGRABLE SOLUTION

4.1. Holonomic approximation of ridges. We now turn to the proof of our main theorem 1.5. Our
first task will be to solve the transversalization problem near the ridge locus, where the homotopical
information is concentrated. Since the ridge locus is a stratified subset of codimension 1, we can apply

the method of holonomic approximation as illustrated in Figure 19.

Proposition 4.1. Let v be a Lagrangian field on T* L. There exists a C°-small ridgy isotopy Ly C T*L
of Ly = L such that Ly th v in a neighborhood Op(R) of the ridge locus R C Ly and such that there
exists a Lagrangian field ¥ homotopic to vy by a homotopy fized on Op(R) satisfying L1 7 everywhere.

Remark 4.2. The relative version is as follows: if L th v on Op(A) for A C L a closed subset, then we
can demand that L; = L on Op(A), that ¥ = v on Op(A) and furthermore that the homotopy is fixed
on Op(A).

FicURE 19. Using holonomic approximation to wiggle the ridges.

As a first step towards Proposition 4.1 we have the following lemma.

Lemma 4.3. There exists a C°-small integrable tectonic field 6 on L which is transverse to a La-

grangian field 5 homotopic to .

Proof. We begin by invoking Theorem 3.3, which produces an aligned tectonic field ¢ on L such that
¢ th 7 for 4 a Lagrangian distribution homotopic to 7. The tectonic field ¢ jumps discontinuously along
a fault Nj by a family of rank 1 forms p;. Since ker(u;) = T'Nj, we can write yj(z) = fj(x)du? where
(x,uj) € Nj x (—e¢,¢) are tubular neighborhood coordinates for N; = N; x 0in L and f; : N; = R
is a nowhere vanishing smooth function. By reversing the orientation of (—¢,¢) if necessary we may
assume that ¢ = ¢ + j, where ¢;7 and (; are the extensions of Cil{u; <0y and Cifgu, >0y to N
respectively. Consider the function

1
hj(x,uj) = §¢(Uj)fj($)’u?,
where ¢ : (—e,e) — [0,1] is a cutoff function such that ¢» = 1 near 0 and ¢p = 0 near +e. Hence
along N; we have Hess(h;) = p;. Note that h; is compactly supported in the tubular neighborhood

N; x (—¢,¢e). Consider next the function

Tj($>uj) =

o= NI

hj(I,’U,j) Uj 2 0,
hj(x,uj) Uj S 0,

which also has compact support in the tubular neighborhood N; x (—¢,¢). Set r =3 ;7;: L - R, a
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piecewise C? function which (after choosing an auxiliarty Riemannian metric) generates an integrable
tectonic field Z . Note that if ¢ was C%-small then E is also C%-small. Moreover, we claim that Z h 5
for 7 a Lagrangian distribution homotopic to .

Consider the tectonic field A = ¢ — Z . Mote that it is a continuous Lagrangian field, because the
discontinuities of { are exactly canceled by those of E . Observe that Z is graphical, hence det(g) is
bounded. Let Q¢ = {|det(7)| < C}. It follows that for C > 0 large enough, we have ¢ h A outside
of Q¢. Moreover for C' > 0 large enough 7 is homotopic to a Lagrangian plane field 7 which is equal
to ¥ — A on Q¢ and transverse to Z outside of Q. Note that the expression ¥ — A makes sense on
Q¢ because 7 is graphical on Q¢. The claim, and therefore also the Lemma, now follow. Indeed, the
condition ¢ M ¥ on Q¢ is equivalent to the nonsingularity of the form 5 — ¢ = F=N-=-(=-N=79-¢,

which is in turn equivalent to ¢ th 7, which is true. O

Remark 4.4. In the relative version where L M v and ¢ = 0 on Op(A) for A C L a closed set, we
demand that the homotopy between v and 7 is constant on Op(A).

We also need the following elementary fact.

Lemma 4.5. Let f; : A — M be a Lagrangian isotopy, i.e. an exact regular homotopy of Lagrangian
embeddings of a compact manifold A into a symplectic manifold M and for i = 0,1, let v; C TM be a
Lagrangian plane field along f; which is transverse to df;(TA). Then there exists a compactly supported
Hamiltonian isotopy @i : M — M such that @i o fo = fi and de1(y0) = 1.

Proof. By taking a family of Weinstein neighborhoods for f; we reduce to the case M = T*A, f; = idy
and o = v (the vertical distribution). Since 7, is transverse to the zero section, we can think of v, as
family of quadratic forms on the fibres A, : TyA — R. Then the required Hamiltonian isotopy ¢; is
given by the quadratic Hamiltonian H (g, p) = Aq(p), cut off at infinity. O

Remark 4.6. From the proof we also deduce the relative version: if f; = fo and 9 =1 on Op(A) for

A C A a closed subset, then we can demand that ¢; = idpys on Op(A).
Proposition 4.1 follows immediately from the following lemma.

Lemma 4.7. Let A C T*L be a ridgy Lagrangian, R its ridge locus, and v a Lagrangian field. Suppose
that v is homotopic to a Lagrangian field 5 which is transverse to A. Then there exists a Hamiltonian
isotopy A of A and a Lagrangian field 5 which agrees with v on Op(R) such that:

- Ay vy on Op(R).

- Ay 75 everywhere.

- 7 is homotopic to v by a homotopy fixred on Op(R).

Moreover, if A C A is a closed subset and the homotopy between v and 7 is fized on Op(A), then the
Hamiltonian isotopy and the homotopy between ¥ and v can both be chosen to be fized on Op(A).

Proof of Proposition j.1. Indeed, let A C T* L be the graphical ridgy Lagrangian corresponding to an
integrable tectonic field Z , as in Lemma 4.3 and apply Lemma 4.7. O

It therefore remains to prove Lemma 4.7.
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Proof of Lemma /.7. Denote by R C A the ridge locus and denote A\ R = Q1 UQ2U---UQ,,, where
each @j is a smooth Lagrangian submanifold with corners.
We will prove by induction that for each k = 0,1, ..., m there exists a ridgy Lagrangian A*¥ ¢ T*L

satisfying the following properties.

(a) A* is Hamiltonian isotopic to A

(b) A¥ th v in a neighborhood of Q% U - U AQ¥, where @f C A¥ corresponds to Q; C A under
the Hamiltonian isotopy.

(c) There exists a homotopy 7F of 7§ = v, fixed in a neighborhood of Q¥ U --- U 8@2, such that

AF th4F everywhere.

Base case (k = 0). In this case we take A = A so condition (a) is vacuous. Since k = 0, so is (b).
Finally, condition (c) is the hypothesis of Lemma 4.7.

Inductive step (k = k + 1). We apply the holonomic approximation theorem for 1-holonomic
sections to the Lagrangian submanifold @: 41 and the stratified subset 8@2 41- Technically one should
slightly enlarge Q) 41 50 that 0Qp 1 sits in its interior but this will not affect the proof. The precise
result we need is the h-principle for Lagrangian embeddings which are D-directed along a stratified
subset, which is Theorem 1.20 in [AG18a]. For our application we take D to consist of all Lagrangian
planes transverse to . Condition (c¢) of the inductive hypothesis implies that the Gauss map of @Z 4118
homotopic to a map with image in D, moreover this homotopy can be taken relative to a neighborhood
of AQF U --- U IQk.

The output of the h-principle is a Hamiltonian isotopy ¢y : T*L — T* L such that gpl(@: 41) My in
a neighborhood of ¢ (9Q¥ +1)- Moreover, by the parametric version of the h-principle we may assume
that ¢ (@:H) is transverse to v¥_, for all t € [0, 1] in that same neighborhood. By Lemma 4.5 we may
assume that dg1(yF) = v along 0QF . Hence we have ¢1(A) v in a neighborhood of ¢1(0QF, ), i.e.
also on the other side of the ridges outside of @2 1 1. Moreover, by the relative version of the holonomic
approximation theorem we can demand that ¢; = idp-z in a neighborhood of dQ¥ U --- U 8Q’,§. It
follows that if we set A*T1 = ¢ (A¥), then conditions (a) and (b) are satisfied for k + 1 instead of k.

It remains to verify condition (¢). Consider the homotopy 'ny of v which is given by the con-
catenation of first vF and then dy;(y¥). The result is transverse to A**1 = ¢ (A¥) because 7F is
transverse to AF. Although this homotopy is constant in a neighborhood of C'?Qlfﬂ U---u 8@?“, it
is not constant near 8@21}. To fix this we recall that dgi(yf) = 7 along 0QF,, and that ¢;(A¥)
is transverse to v¥_, along acgﬁ“. Since the space of linear Lagrangian planes transverse to a fixed
linear Lagrangian plane is contractible, by parametrically interpolating between dy;(vF) and 7F_, we
can cancel out the concatenations using a cutoff function and thus deform the homotopy so that it is
constant in a neighborhood of OQQE. This completes the proof of the inductive step.

Finally, the relative form of the statement follows by applying the relative form of the holonomic

approximation lemma at each stage of the induction. O

Remark 4.8. Since the holonomic approximation lemma holds in C%-close form, at each step of the
proof we can ensure C-closeness to the previous step and thus obtain that the resulting isotopy is

C9-small.
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Remark 4.9. Suppose that Ky, Ko C A are two disjoint compact subsets. Then given the hypotheses of
Lemma 4.7 we may produce a Hamiltonian isotopy A; and a Lagrangian field 4 such that the conclusion
of the Lemma is satisfied on Op(K;) and both the isotopy A; and the homotopy between ¥ and 7 is
constant on Op(K3). This follows simply by reparametrizing the time co-ordinate of the isotopy and

homotopy using a function ¢ : A — [0, 1] which is 1 on K; and 0 on Kj.

4.2. Ridgification of wrinkles. To conclude the proof of Theorem 1.5, we need to take the ridgy
Lagrangian produced by Proposition 4.1 and further deform it in the complement of the ridge lo-
cus so that it becomes transverse to . To achieve this we use a wrinkling technique, namely the

transversalization theorem for wrinkled Lagrangian embeddings.

Theorem 4.10 (Theorem 5.1 of [AGI8b]). Let A C M be a Lagrangian submanifold, v C TM a
Lagrangian distribution, and v, C TM a homotopy of Lagrangian distributions such that \g = A and
A th ;. Then there exists a C°-small exact homotopy of wrinkled Lagrangian embeddings Ay of A such
that A1 M . The result holds in relative form with respect to a closed subset A C M, i.e. if v is
constant on Op(A) then the homotopy of wrinkled Lagrangian embeddings can be taken to be constant
on Op(A).

A wrinkled Lagrangian embedding is a smooth Lagrangian embedding outside of a disjoint union of
codimension 1 contractible spheres S C A. Here and below, by a contractible sphere S C A we mean
a sphere that bounds an embedded disk.

Along each such sphere S the embedding has cuspidal singularities of the form {p? = ¢3} x R*~! C
T*R x T*R"" !, see Figure 20, with a codimension 1 equatorial sphere ¥ C S where the cuspidal
singularities experience birth/death. The precise model near the equator is not important since, in
the spirit of Entov [En97], we can surger away the birth/death singularities. More precisely, one can
open up each sphere S along its equator into two parallel spheres so that A; becomes a Lagrangian
submanifold which is smooth away from the disjoint union of finitely many pairs of contractible parallel
spheres S7 U Sy where the Lagrangian has cuspidal singularities. Moreover, this can be achieved while
maintaining exactness and transversality to . The proof is simply to implant an explicit local model
given by a generating function graphical over v, just as in Section 6.1 of [AG18b], hence exactness and
transversality are automatic.

We note that this cuspidal Lagrangian can be smoothed so that the resulting smooth Lagrangian has
fold tangencies on S; U Se with opposite Maslov co-orientations, known as double folds. By performing
this smoothing one deduces the h-principle for the simplification of caustics, which is Theorem 1.11
in [AG18b]. However, it will be easier for us to work with cuspidal Lagrangians directly, implanting a

local model for the ridgification of cusps.

Remark 4.11. Even though this will not be important, we note that the pairs of spheres S; U So C A
could be nested, in the sense that we could have A; C Ap for A; ~ S"~1 x [0,1], i = 1,2, the

codimension 0 annuli in A corresponding to two pairs of parallel spheres.
We deduce the following consequence of Theorem 4.10.

Corollary 4.12. Let A C M be a Lagrangian submanifold, v C TM a Lagrangian distribution and
v a homotopy of Lagrangian distributions such that vo = v and A 1. Then there exists a C°-small
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FIGURE 20. A cuspidal Lagrangian singularity is a stabilization of the standard semi-
cubical cusp {p? = ¢*} C T*R.

ridgy isotopy A¢ of A such that Ay . The result holds in relative form with respect to a closed subset
AC M, i.e if v is constant on Op(A) then the ridgy isotopy can be taken to be constant on Op(A).

Proof. We need to modify the wrinkled Lagrangian embedding A; produced by Theorem 4.10 to
make it ridgy. We first resolve the equators of the wrinkles into cuspidal singularities as above while
maintaining exactness and transversality to . Next, by a local interpolation at the level of generating
functions we can replace these cuspidal singularities with stabilizations of order 1 ridges {q¢ = |p|}
while still maintaining exactness and transversality to v, see Figure 21.

Explicitly, take a cut-off function o : [0,00) — [0, 1] which is equal to 1 on [0, %], equal to 0 outside
[0,1]. Consider the generating function with variable ¢ > 0 given by

2= g (e sa-a ()

The function +z generates a ridgy Lagrangian A. C T*R for € > 0. Note that

i i (s (o 2o (Y00 (90"

87q_ 2 € 5e €
1 2

— P2y (70/(Q) @ +eo <g)q——o’ (g) q5/2_0(g) q3/2) = &2+ 0(e)
2 € € 5e € €

since we have the obvious bound
o™ (1) g <llolc .
Hence as ¢ — 0, the ridgy Lagrangian A. gets CC-close to the cuspidal Lagrangian generated by

z = +2¢°/2. Furthermore, we have

9%z 3
87(]2 = 5(]1/2 + O(Ve)

since 8%z/0q? — %ql/Z is equal to

L, q) 2 ,(q> ,(q> (q) 2 ,,<q) 52 1 (q) 32 1 ,<q) 32 3 (q) 1/2
250 (Equg 5q+0 Eq+505 5520 Eq 50 Eq EU Eq 205(]

and we can bound each term as before. Hence in fact as ¢ — 0 the ridgy Lagrangian A, gets C' close
to the cuspidal Lagrangian generated by z = j:%zf’/ 2,

Therefore by parametrically implanting a 1-dimensional model we can replace the exact homotopy
of wrinkled Lagrangian embeddings A; with a ridgy isotopy which at time 1 is transverse to . This

ridgy isotopy consists of an earthquake isotopy on the preimage of the cuspidal locus of A; in A followed
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by an ambient Hamiltonian isotopy, the existence of which is guaranteed because we ensured exactness

at every stage by working at the level of generating functions. O

Remark 4.13. The ridge locus of the ridgy Lagrangian A; produced by Corollary 4.12 therefore consists

of a disjoint union of parallel contractible spheres, which may be nested.

Proof of the main theorem 1.5. We apply Proposition 4.1 to L and v|;, inside a Weinstein neighbor-
hood U of L in M. Indeed, U is symplectomorphic to T2;L = {||p|| < 0}, where § > 0 and we use an
auxiliary Riemannian metric on L. If the resulting ridgy _Lagrangian is sufficiently C°-close to the zero
section then it will remain in this Weinstein neighborhood, hence can be viewed as a ridgy Lagrangian
in M. We then apply the relative (with respect to the ridge locus) version of Corollary 4.12 to the
output of Proposition 4.1. O

FicURE 21. Replacing a cuspidal singularity with an order 1 ridge.

Remark 4.14. The ridge locus of the ridgy Lagrangian solving the transversalization problem consists

of the fault locus of the formal solution together with a union of parallel contractible spheres.

5. ADAPTED VERSION

5.1. Adapted transversalization. Let L be an n-dimensional compact manifold with boundary
and corners. Recall that L has a corner of order £k < n at = € L if there is a neighborhood of = in L
diffeomorphic to a neighborhood of the origin in [0, 1)¥ x R"~*. We denote the locus of order k corners
by Ok Lk. The closure P of a connected component of Oy L is called a boundary k-face. For k = 1 we
will more simply call P a boundary face.

If Q is a k-face, then there is an embedded collar neighborhood @ x [0,1)* C L. We consider the
germs of these collars as part of the structure. In particular, near each point « € 9y L we have canonical
collar coordinates x = (y,t), where y € Oy L and t = (¢1,...,t;) € [0,1)*. Note that in a neighborhood
of  we have 9L cut out by t; = --- = t;, = 0. More generally, for j < k the components of 9;L whose

closure contains x are given by setting exactly j of the coordinates t; equal to zero.

Definition 5.1. A Lagrangian field A on L (possibly tectonic) is said to be:

- horizontally adapted if X\ = A\, x 7F C T* (0 L) x (T*I)* near each x € 9L, k=1,2,...,n.
- wertically adapted if X = N\, x v¥ C T*(0x L) x (T*I)"* near each x € 9L, k =1,2,...,n.
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Definition 5.2. A Lagrangian submanifold (possibly ridgy) A C T*L is said to be adapted if A =
A x IF C T*(0xL) x (T*I)* near each x € OxL, k = 1,2,...,n. A (possibly ridgy) isotopy of
Lagrangian submanifolds Ay C T*L is said to be adapted if each A, is adapted.

FIGURE 22. An adapted ridgy Lagrangian near the collar.

Remark 5.3. If A C T*L is adapted, then T'A is horizontally adapted.

See Figure 22 for an illustration of the notion of adapted. We now state the adapted version of our

main theorem 1.5.

Theorem 5.4. For any vertically adapted Lagrangian field v C T*L there exists an adapted ridgy
isotopy Ly of the zero section Lo = L such that Ly th~.

Theorem 5.4 also holds in C%-close and relative forms. The proof of Theorem 5.4 proceeds just like
in the unadapted case: first we construct a formal solution, then we align it and finally we integrate
it. We must argue that the same proof works while ensuring that all the objects are adapted to the

collar structure at each step.

5.2. Adapted formal transversalization. The adapted version of the formal transversalization

theorem 2.6 reads as follows.

Theorem 5.5. For any vertically adapted Lagrangian field vy there exists a horizontally adapted tectonic
field X such that X M ~.

The extension form 2.7 of the result also has its adapted version.

Theorem 5.6. Let v be a vertically adapted Lagrangian field and ( a horizontally adapted tectonic
field. For any two disjoint compact subsets Ky, Ko C L there exists a horizontally adapted tectonic
field Z such that the following properties hold.

. Zis CO-close to ¢,

- ¢y on Op(Ky).

- ¢ = on Op(Ky).
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To prove Theorem 5.6 one inductively applies Lemma 2.14, just as in the proof of Theorem 2.7. The
only difference is that before constructing Z in the interior of L one constructs Ein a neighborhood
of 0L, inductively over the strata 0iyL. Start with the deepest stratum 0, L where there is nothing
to prove. At each step of the induction one has a horizontally adapted tectonic field Z defined over a
neighborhood of J >k 0; L which satisfies the required properties. To continue with the induction one
chooses a cover of 0y_1L by balls and applies Lemma 2.14 in the manifold 0y_1 L, one ball at a time.
Multiplying the resulting tectonic field by the horizontal distribution in the collar direction provides
the extension and so the induction can continue. Once the horizontally adapted tectonic field Z has

been built in a neighborhood of 0L it can be extended to the rest of L as in the unadapted case.

5.3. Adapted aligned formal transversalization. The adapted version of the aligned analogue

Theorem 3.3 of Theorem 2.6 reads as follows.

Theorem 5.7. For any vertically adapted Lagrangian field v there exists a horizontally adapted aligned
tectonic field \ such that A th .

More generally, we have the adapted version of the aligned extension result Theorem 3.4.

Theorem 5.8. Let v be a vertically adapted Lagrangian field and { a horizontally adapted aligned
tectonic field. For any two disjoint compact subsets Ky, Ko C L there exists a horizontally adapted
aligned tectonic field Z and a vertically adapted Lagrangian field 5 homotopic to v such that the following
properties hold.

. Eis C°-close to ¢,

- {7 on Op(Ky).

~

- (=¢ on Op(Ks).
Moreover, we can assume that the homotopy between v and 7 is through vertically adapted fields and

is constant on Op(Ka).

Theorem 5.8 follows from the same local model for changing the homotopy class of the ridge direc-
tions which we used to align the ridge directions in the unadapted case. Indeed, as in Section 3.5 we
first reduce to the homotopically aligned version of Theorem 5.8. To prove the homotopically aligned
version we can start making the necessary local modifications to the Z produced by Theorem 5.6 along
the boundary OL first, then once we have a horizontally adapted solution near 0L we can extend to
the interior as in the unadapted case. To construct the horizontally adapted solution Z near 0L we
work inductively over the strata Oy L, starting with the deepest one 0, L in which there is nothing to
prove. Whenever we need to adjust the homotopy class of the ridge directions for the tectonic field A\
in Oy L, we choose a domain 2 C L and a form v as in the model 3.4 which are adapted to the collar
structure, i.e. given as a product in the collar co-ordinates. Then not only is the modified tectonic

field still adapted, but the homotopy of v is by construction through vertically adapted fields.

5.4. Adapted integration. Finally we show how to integrate the A produced by Theorem 5.7 so that
the resulting ridgy Lagrangian remains adapted. In fact this follows easily from the parametric versions
of the holonomic approximation and wrinkling results which are used in the unadapted case. First

observe that since the aligned tectonic field X is horizontally adapted, the introduction of integrable
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ridges in Lemma 4.3 can be achieved with respect to coordinates that are compatible with the collar
structure. Hence the resulting integrable tectonic field is horizontally adapted.

Next we turn to the adapted analogue of Proposition 4.1. We recall that the holonomic approxima-
tion lemma for 1-holonomic sections [AG18a] holds in parametric form, and moreover holds relative
to a closed subset of the parameter space. Hence we can apply this result inductively over the strata
Or L so that at each stage of the induction the conclusion of the proposition holds in a neighborhood
of >k 0;L and moreover such that the resulting ridgy Lagrangian and homotopy of +y are adapted in
this neighborhood. At the last stage of this inductive process we obtain the desired adapted ridgy La-
grangian in a neighborhood of JL, which can then be extended to the interior of L as in the unadapted
case.

To conclude we turn to the application of Theorem 4.10 in the adapted setting and finish the
proof of Theorem 5.4. The C°-approximation result for wrinkled Lagrangian embeddings also holds
in parametric form, but only relative to a subset where the embedding is smooth. Therefore, when
applying the result in a component of the stratum 0y L one will need to let the cuspidal singularities
die out as you move away from this component, but there is a homotopically canonical way of doing so
since by construction the cuspidal singularities always come in parallel spheres which can be cancelled

against each other, see Figure 23

FIGURE 23. Starting with product cuspidal singularities on parallel spheres, we let
them die out and then replace the cusps with ridges.

Note that in the insertion of this birth/death local model for the cuspidal singularities we may
lose transversality. Therefore, after replacing these cuspidal singularities with ridges, but before we
proceed to the next stage of the induction, we must achieve transversality in a neighborhood of these
new ridges. This can be achieved using holonomic approximation just as in Section 4.1. We can
then use wrinkling as before in the complement and replace the cuspidal singularities with ridges to

complete the proof.
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