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Abstract. We prove an “h-principle without pre-conditions” for the elimination of tangencies of
a Lagrangian submanifold with respect to a Lagrangian distribution. The main result states that

such tangencies can always be completely removed at the cost of allowing the Lagrangian to develop

certain non-smooth points, called Lagrangian ridges, modeled on the corner {p = |q|} ⊂ R2 together
with its products and stabilizations. This result plays an essential role in the arborealization program.
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1. Introduction

1.1. Overview. Let L be a smooth compact Lagrangian submanifold of a symplectic manifold (M,ω).

The object of interest in this article consists of the tangencies of L with respect to a field of Lagrangian

planes γ ⊂ TM . When γ is tangent to the fibres of a Lagrangian fibration M → B these tangencies

are the same as singular points of the smooth map L → B. If ω = dλ and L is exact, then these

tangencies are also the same as the singular points of the Legendrian front L̂→ B×R, where L̂ is the

Legendrian lift of L in the contactization M ×R. The image Σ ⊂ B×R of the singular locus is known

as the caustic in the literature [A90].

In this article we present a method which allows for the complete elimination of tangencies of L

with respect to γ via a geometric deformation of L. The precise statement is given in our main

result Theorem 1.5, which does not require any hypothesis on γ and hence may be thought of as an

“h-principle without pre-conditions”.

Our viewpoint is local on L. As the deformation will always be done in a neighborhood of the given

Lagrangian L we can assume that the symplectic manifold M is the cotangent bundle T ∗L endowed

with the standard symplectic form ω = d(pdq). All considered Lagrangians Y ⊂ T ∗L will be exact,

i.e. pdq|Y = dh, and hence could be lifted to Legendrian submanifolds Λ = {(x, h(x)), x ∈ Y } ⊂
T ∗L× R = J1L, where J1L is endowed with the standard contact structure ξ = {dz − pdq = 0}.
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2 DANIEL ÁLVAREZ-GAVELA, YAKOV ELIASHBERG, AND DAVID NADLER

Even if γ is integrable, i.e. tangent to a Lagrangian foliation, it is well-known that C∞-generic

Lagrangian tangency singularities are in general non-classifiable, see [AGV85]. However, if certain

homotopical conditions given in terms of the homotopy class of the Lagrangian plane field γ|L are

met, then by work of the first author [AG18b] the tangencies can be reduced to the simplest ones of

the so-called fold type via a C0-small Hamiltonian isotopy, see Section 1.4 below. In the presence of

homotopical obstructions the higher Lagrangian tangency singularities cannot be removed by means of

a Hamiltonian isotopy, so any attempt at removing them must allow for deformations of the Lagrangian

submanifold more dramatic than a Hamiltonian isotopy.

As a first step towards removing Lagrangian tangencies, note that one can trade Lagrangian fold

tangencies with respect to γ for corner singularities of the Lagrangian itself, which are transverse

to γ in the sense that every Lagrangian tangent plane is transverse to γ. Namely, consider the 1-

dimensional Lagrangian submanifold {q = p2} ⊂ R2, which has a fold tangency with respect to the

vertical distribution γ = {dq = 0}. We can replace this smooth Lagrangian submanifold with the

piecewise smooth Lagrangian submanifold {q = |p|}, which we call the order 1 ridge, and which is

transverse to γ. See Figure 5 for an illustration, where it is also shown how one may interpolate

between the two models while preserving exactness.

It follows from this discussion that if the homotopical conditions for removing higher tangencies

are satisfied by γ|L, then we may completely eliminate the tangencies by replacing the fold tangencies

produced by the h-principle [AG18b] with order 1 ridges.

Our main result Theorem 1.5 shows more generally that by creating certain standard combinatorial

singularities called ridges one can always make a Lagrangian L transverse to a Lagrangian distribution

γ, even without any homotopical pre-conditions on γ|L. The deformation consists of two steps: first the

necessary ridges are introduced via a local model and then the resulting piecewise smooth Lagrangian

is further deformed by a Hamiltonian isotopy. Note that a posteriori all the results can be reformulated

back in the smooth category by smoothing the ridges.

1.2. Lagrangian ridges and ridgy isotopies. We now define ridgy Lagrangians and ridgy isotopies.

In the standard symplectic R2 = T ∗R consider the subset R = {pq = 0; q ≥ 0, p ≥ 0}, which we call

the model ridge of order 1, see Figure 1.

Definition 1.1. The model ridge of order k in the standard symplectic R2n = T ∗Rn is defined to be

the product Rk,n = Rk × Rn−k ⊂ (T ∗R)k × T ∗Rn−k, 0 ≤ k ≤ n, i.e the (n − k)-fold stabilization of

Rk = R× · · · ×R (k times).

Example 1.2. The order n ridge Rn,n ⊂ T ∗Rn is the union to all the inner conormals of the faces of a

quadrant in Rn, hence is the union of the 2n linear Lagrangians {pj = qk = 0, qj , pk ≥ 0, j ∈ I, k 6∈ I},
where I ⊂ {1, . . . , n}, see Figure 2.

Definition 1.3. An n-dimensional ridgy Lagrangian in a symplectic manifold M is a closed subset

L ⊂ M which is covered by open subsets U ⊂ M such that (U,U ∩ L) is symplectomorphic to some

(B,B ∩Rk,n), for B ⊂ R2n a ball centered at the origin.
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Figure 1. The model ridge R ⊂ T ∗R. Note that R is the union of the half-line
{p = 0, q ≥ 0} together with the inner conormal {q = 0, p ≥ 0} of its boundary point
q = 0. The model R is symplectomorphic to {p = |q|} ⊂ T ∗R.

 

Figure 2. The order 2 ridge R2,2 ⊂ T ∗R2 is the union of the inner conormals to
the faces of the quadrant {q1 ≥ 0, q2 ≥ 0}. In grey {p1 = p2 = 0, q1, q2 ≥ 0},
in blue {p1 = q2 = 0, q1, p2 ≥ 0}, in green {p2 = q1 = 0, q2, p1 ≥ 0} and in red
{q1 = q2 = 0, p1, p2 ≥ 0}. The model R2,2 is symplectomorphic to {p = |q|} × {p =
|q|} ⊂ T ∗R× T ∗R = T ∗R2.

A ridgy Lagrangian has a natural stratification L = R0 ⊃ R1 ⊃ · · · ⊃ Rn, where Rk is the locus

of ridges of order ≥ k, see Figure 3. Note that the stratum Rk \ Rk+1 is a smooth (open) isotropic

submanifold of dimension n− k.

Definition 1.4. Let L be a smooth Lagrangian submanifold in a symplectic manifold M .

(1) Let N1, . . . , Nm ⊂ L be co-oriented separating hypersurfaces defined by equations φj = 0 for

some C∞-functions φj : L → R without critical points on Nj . We assume that the Nj are

co-oriented by the outward transversals to the domains {φj ≤ 0}. We assume that the Nj are

mutually transverse, i.e. each Nj is transverse to all possible intersections of the other Ni.

Denote φ+
j = max(φj , 0) and choose a cut-off function θj which is equal to 1 on Nj and to 0

outside a neighborhood of Nj . Define a function Φ : L → R (which is C1 and piecewise C∞)

by the formula

Φ :=

m∑
j=1

θj
(
φ+
j

)2
.
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Figure 3. A 2-dimensional ridgy Lagrangian has order 1 ridges along a union of
immersed curves, which intersect each other (or themselves) at a discrete set of points
where we have order 2 ridges.

An earthquake isotopy with faults Nj is defined as a family of Lagrangians Lt given by the

homotopy of generating functions tΦ, i.e. Lt = {p = tdΦ}, t ≥ 0, see Figure 4.

(2) A ridgy isotopy is an earthquake isotopy followed by an ambient Hamiltonian isotopy.

Of course, the earthquake isotopy can be realized by an ambient Hamiltonian isotopy beginning

from any t > 0, i.e. for all ε > 0 there exists a Hamiltonian isotopy ϕt such that Lt+ε = ϕt(Lε), t ≥ 0.

1.3. Main results. We can now state our main result, which we call the Ridgification Theorem.

Recall that L is a smooth, compact Lagrangian submanifold of a symplectic manifold M .

Theorem 1.5. For any Lagrangian distribution γ there exists a ridgy isotopy Lt of L such that L1 t γ.

To be clear: the condition L1 t γ means that for any x ∈ L1 and for any Lagrangian plane P ⊂ TxM
tangent to L1 we have P t γx. If x ∈ L1 is a ridge of order k, there are 2k such Lagrangian planes.

Remark 1.6. Theorem 1.5 also holds in the following variants:

(1) C0-close form: we can arrange it so that the ridgy isotopy Lt is C0-small. This means that

given a fixed but arbitrary Riemannian metric on M , for any ε > 0 we can demand that

dist(x, ft(x)) < ε for ft : L→ Lt the parametrization of the ridgy isotopy Lt which is graphical

during the earthquake isotopy and then is given by the ambient Hamiltonian isotopy. In

particular Lt stays within a Weinstein neighborhood of L in M .

(2) Relative form: if L t γ on Op(A) for A ⊂ L a closed subset then we can demand that Lt = L

on Op(A). Here and below we use Gromov’s notation Op(A) for an arbitrarily small but

non-specified open neighborhood of A.

We will also prove in Section 5 an adapted version of Theorem 1.5 relative to a collar structure

in the case where L has boundary and corners, assuming that γ is itself adapted to that structure.

This adapted version is essential for our applications. Indeed, together with the Stability Theorem for

arboreal singularities proved by the authors in [AGEN20a], the collared version of Theorem 1.5 is one
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Figure 4. An earthquake isotopy. Note that in general the hypersurfaces Nj may
intersect each other. A ridgy isotopy further deforms the result of an earthquake
isotopy by a Hamiltonian isotopy.

of the essential ingredients in our paper [AGEN20b] on the arborealization program [N15, N17, St18],

as well as in the forthcoming work [AGEN21].

Remark 1.7. By definition, the local geometry of a ridgy Lagrangian L is given by the linear models

Rk,n. The space of linear Lagrangian fields γ transverse to Rk,n has interesting moduli without evident

canonical representatives.

1.4. h-principle for removing higher Lagrangian tangency singularities. The problem of sim-

plifying the tangency locus of a smooth Lagrangian submanifold L ⊂M with respect to a Lagrangian

plane field γ ⊂ TM was first studied by Entov [En97], who used the method of surgery of singu-

larities to establish an h-principle for the class of Σ2-nonsingular plane fields, i.e. those γ for which

dim(TL ∩ γ) < 2. In [AG18a] and [AG18b] the methods of holonomic approximation and wrinkling

were used by the first author to extend this h-principle to arbitrary Lagrangian plane fields. The

simplest version of the h-principle can be formulated as follows.

Theorem 1.8. Suppose that γ is homotopic through Lagrangian plane fields to a Lagrangian plane

field γ̂ which is transverse to L. Then L is Hamiltonian isotopic to a smooth Lagrangian submanifold

L̂ whose tangency singularities with respect to γ consist only of folds.
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Remark 1.9. More generally, it is enough to assume that γ is homotopic to a γ̂ with respect to which

L only has fold tangencies.

The fold is the simplest type of singularity. In the case where γ is integrable, the germ is given

by (a stabilization of) the local model {q = p2} ⊂ T ∗R, where the Lagrangian field is the vertical

distribution γ = {dq = 0}. If the tangency locus of L with respect to γ consist only of folds, then

dim(TL ∩ γ) ≤ 1 and the tangency locus Σ = {dim(TL ∩ γ) = 1} is a transversely cut out smooth

hypersurface in L. Moreover, the line field ` = TL ∩ γ is transverse to Σ inside TL. These properties

completely characterize the fold (also in the non-integrable case).

Remark 1.10. Even in the smooth (as opposed to symplectic) category, the elimination of folds is not

usually possible. Moreover, while in the smooth category the only non-trivial constraints are on the

topology of the image of the fold, see [G09, G10], where the only thing which matters is that the fold

locus is non-empty, see [E70], in the symplectic case there are also constraints on the topology of folds

(e.g. the number of its components) in the source Lagrangian, see [En98]. See also [FP98, FP06] for

further constraints on the caustic locus.

The fold is closely related to the order 1 ridge. More precisely, observe that the 1-dimensional

Lagrangian model {q = p2} has a fold type tangency to the vertical Lagrangian distribution γ =

{dq = 0}, while the ridgy Lagrangian {q = |p|} is transverse to γ. Let us take a cut-off function

σ : [0,∞)→ [0, 1] which is equal to 1 on [0, 1
2 ], equal to 0 outside [0, 1]. Define for q ≥ 0 the generating

function

z = ±
(
σ
(q
ε

) q2

2ε
+
(
1− σ

(q
ε

) )2q3/2

3

)
which generates a Lagrangian Lε ⊂ T ∗R. Note that for any ε > 0, Lε is a ridgy Lagrangian

transverse to γ, while L0 =
{
q = p2

}
is a smooth Lagrangian with a fold tangency singularity to γ at

the origin.

Note also that because we define the deformation at the level of generating functions, exactness is

automatic, see Figure 5.

This deformation can be achieved by a ridgy isotopy: it is essentially an earthquake isotopy along

the fold locus (strictly speaking, it needs to be corrected by a subsequent Hamiltonian isotopy to get

the symmetry about the fold locus, but this is not important).

If the deformation is performed close enough to the fold point (so that γ is almost constant as in our

local model), then the resulting ridgy Lagrangian is transverse to the Lagrangian plane field γ with

respect to which the smooth Lagrangian had a fold. Hence Theorem 1.5 is an immediate consequence

of Theorem 1.8 when γ is homotopic to a Lagrangian plane field transverse to L.

Note that the above relation between folds and ridges only holds for order 1 ridges, i.e. stabiliza-

tions of the standard 1-dimensional ridge R ⊂ T ∗R. Higher order ridges carry subtler homotopical

information corresponding to the higher corank singularities Σk and are necessary to overcome the

homotopy theoretic obstruction to the simplification of singularities. Thus Theorem 1.5 shows the

best one can do if nothing is known about the homotopy class of γ.

1.5. Structure of the article. We begin our proof of Theorem 1.5 by showing existence of a formal

solution, which is established in Section 2 by working one rank 1 form at a time. The resulting formal
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Figure 5. A fold (blue) becomes a ridge (red). Exactness means that the area of the
region bounded by the blue and the red curves is zero when counted with sign.

solution is then deformed to an integrable solution in two steps. First, in Section 3 we align the ridge

directions to the homotopy class necessary for integrability. Then in Section 4 we integrate our formal

solution and finish the proof of our main theorem. Finally, in Section 5 we explain a version adapted

to a collar structure in the case where the Lagrangian has boundary and corners.

1.6. Acknowledgements. We are very grateful to Laura Starkston who collaborated with us on the

initial stages of this project. The first author is grateful for the great working environment he enjoyed

at the Institute for Advanced study and at Princeton University, as well as for the hospitality of CRM

Montreal. The second author thanks RIMS Kyoto and ITS ETH Zurich for their hospitality. The

third author thanks MSRI for its hospitality. We are very grateful for the support of the American

Institute of Mathematics, which hosted a workshop on the arborealization program in 2018 from

which this project has greatly benefited. We are grateful to the referee for numerous useful comments,

suggestions and corrections.

2. Formal solution

2.1. Tectonic fields. We begin by introducing the notion of a tectonic field, which is the formal

analogue of a ridgy Lagrangian. Recall that a polarization of a symplectic vector space V consists

of a pair of transverse linear Lagrangian subspaces τ, ν ⊂ V . For a fixed polarization (τ, ν) there is

a bijective correspondence between graphical linear Lagrangian subspaces of V (i.e. transverse to ν)

and quadratic forms on τ . Indeed, both can be thought of as symmetric linear maps τ → τ∗, where

by symmetric we mean equal to its own transpose under the canonical isomorphism τ∗∗ ' τ .

We will repeatedly go back and forth between the two viewpoints. Note that given two graphical

linear Lagrangian subspaces λ1, λ2 ⊂ V we have dim(λ1∩λ2) = dim ker(λ1−λ2). In particular, λ1 and

λ2 are transverse if and only if λ1−λ2 is a nonsingular quadratic form on τ . Given a smooth manifold

L, for any x ∈ L there is a canonical polarization of Tx(T ∗L) given by τ = TxL and ν = T ∗xL. Hence

we can identify graphical linear Lagrangian subspaces of Tx(T ∗L) with quadratic forms on TxL. Via

this identification, graphical Lagrangian plane fields on T ∗L defined along the zero section L form a

module over C∞(L).
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Remark 2.1. By a Lagrangian plane field on L we mean a field of Lagrangian planes in T ∗L defined

along the zero section. Similarly, by a field of quadratic forms on L we will always mean a smooth

family λx of quadratic forms on TxL, x ∈ L. This is the same as a graphical Lagrangian plane field.

Definition 2.2. Suppose we are given dividing, co-oriented embedded hypersurfaces N1, . . . , Nk ⊂ L.

We assume that the Nj are mutually transverse, i.e. each Nj is transverse to all possible intersections

of the other Ni, i 6= j. A tectonic field λ over L with faults along Nj is a collection of fields of quadratic

forms λQ over the closures Q of the components Q ⊂ L \
⋃
j Nj such that there exist non-vanishing

1-forms `j on TL|Nj
, j = 1, . . . , k, with the following property:

· for any point point x ∈ Nj \
⋃
j Ni we have

λQ+ − λQ− = `2j ,

where we denote by C± the components of L\
⋃
j Nj adjacent to x and where the co-orientation

of Nj points into Q+.

The hypersurfaces Nj are called faults, the connected components Q of L \
⋃
j Nj are called plates

and the hyperplane fields τj are called ridge directions. We will moreover demand that the following

transversality condition is satisfied:

Along each intersection Nj1 ∩ · · · ∩ Njm the ridge directions τjs , s = 1, . . . ,m, are transverse

to all possible intersections of the other ridge directions τjr , r 6= s.

See Figure 6.

 

Figure 6. A tectonic field. The discontinuity of λ along the green arrow is the rank
1 form µj = `2j corresponding to the hypersurface Nj . Note that the hyperplane fields
τj = ker(`j) need not be tangent to the Nj .

Remark 2.3. The closure Q ⊂ L of each plate Q of a tectonic field is a codimension zero submanifold

of L with boundary and corners (of any order).
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Remark 2.4. The hyperplane fields τj = ker(`j) are co-oriented by the choice of the defining 1-forms

`j , but note that this co-orientation is not determined by the tectonic field λ and co-orientation of Nj

as we could replace `j with −`j .

Remark 2.5. Tectonic fields do not form a module over C∞(L), but they can be multiplied by functions

which are positive on
⋃
j Nj and can be added when the union of the corresponding collections of faults

and ridge directions satisfies the transversality conditions. For example this is vacuously satisfied when

one of the tectonic fields is actually a smooth graphical Lagrangian field.

2.2. Formal transversalization. The main goal of Section 2 is to prove the following transversal-

ization result, which is the formal version of our main Theorem 1.5.

Theorem 2.6. For any Lagrangian field γ on L there exists a tectonic field ζ on L such that ζ t γ,

i.e. ζ|Q t γ on Q for each plate Q of ζ.

In fact we will prove the following more general extension result with C0-control.

Theorem 2.7. Let γ be a Lagrangian field on L and let ζ be a tectonic field on L. For any two disjoint

closed subsets K1,K2 ⊂ L there exists a tectonic field ζ̂ such that the following properties hold.

· ζ̂ is C0-close to ζ.

· ζ̂ t γ on Op(K1).

· ζ̂ = ζ on Op(K2).

Remark 2.8. The C0-closeness statement means the following. Given a fixed but arbitrary Riemannian

metric on L, for any ε > 0 we can demand that the maximal angle between ζ and ζ̂ is smaller than ε.

Moreover, if L is not compact, then the same holds for any function ε : L→ (0, 1].

Note that Theorem 2.7 implies Theorem 2.6 in its stronger relative form: if ζ t γ on Op(A) for

A ⊂ L a closed subset, then we can demand that ζ̂ = ζ on Op(A). To see this take K2 = A and

K1 = L \Op(A) and use the C0-closeness provided by Theorem 2.7.

In Section 5 we will prove a version of Theorem 2.7 for the case where L is a manifold with boundary

and corners and γ is adapted to the corner structure.

2.3. Inductive step. The key ingredient in the proof of the formal transversalization theorem is the

following inductive procedure, in which we only deal with a rank 1 form at a time.

Lemma 2.9. Let λ, η be smooth fields of quadratic forms on L, with η = α`2 for a field of non-zero

linear forms ` and a real valued function α : L→ R. Let ζ be a tectonic field which is transverse to λ.

Then there exists a C0-small tectonic field ζ ′ such that ζ + ζ ′ is a tectonic field transverse to λ+ η. If

η = 0 on Op(A) for some closed subset A ⊂ L, we may moreover demand that ζ ′ = 0 on Op(A).

Proof. Denote by N1, . . . , Nk the faults, by τ1, . . . , τk the ridge directions and by Q1, . . . , Qm the

plates of the tectonic field ζ. Note that η has rank 1 and hence λ + η − ζ has rank ≥ n − 1. Let

Σ ⊂ L denote the locus where the rank of λ + η − ζ is exactly n − 1, see Figure 7. In other words.

Σ = {det(λ + η − ζ) = 0}, where here and below we fix an arbitrary Riemannian metric on L to

compute the determinant. Set Σj = Qj ∩ Σ. Our first goal is to reduce Lemma 2.9 to the case where

the following properties hold.
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(A) The closure Σj of Σj is a properly embedded smooth codimension 1 submanifold with boundary

and corners of Qj such that Σj is transverse to all intersections of the faults Ni, i 6= j and Σj

is transverse to all intersections of the other Σi along their boundary.

(B) τ = ker(η) is transverse to all possible intersections of the ridge directions τj1 , . . . , τjm along

the intersection of Nj1 ∩ · · · ∩Njm with each Σi.

 

Figure 7. The singular locus Σ ⊂ L.

Suppose first that we know Lemma 2.9 to be true when (A) holds. Let λ, η and ζ as in the statement

of the lemma. By genericity of transversality we can find a C0-small smooth field of quadratic forms

ϕ such that the hypersurfaces det(λ+ ϕ+ η − ζ) = 0 are transversely cut out on each plate of ζ, are

transverse to all intersections of the faults, and are transverse to each other along their boundaries.

Then by assumption we can apply Lemma 2.9 with λ + ϕ instead of λ (which is still transverse to ζ

since ϕ is C0-small), obtaining a C0-small tectonic field ζ ′ such that ζ + ζ ′ is transverse to λ+ ϕ+ η.

Hence ζ ′′ = ζ ′ − ϕ is a C0-small tectonic field such that ζ + ζ ′′ is transverse to λ + η. It therefore

suffices to prove Lemma 2.9 under the assumption that (A) holds.

Next, suppose that we know Lemma 2.9 to be true when (A) and (B) hold. Let λ, η and ζ be as

in the statement of the lemma and assume that (A) holds. Note that the non-transversality condition

in (B) has codimension ≥ n−m and the intersection has codimension m+ 1. Therefore by genericity

we can find a smooth field of rank ≤ 1 forms η̃ = α̃˜̀2 which is C0-close to η and such that condition

(B) holds if we replace η by η̃. We may assume the condition (A) still holds by openness. Then by

assumption we can apply Lemma 2.9 with η̃ instead of η. The output is a C0-small tectonic field ζ ′

such that ζ + ζ ′ is a tectonic field transverse to λ + η̃. Hence ζ ′′ = ζ ′ + η − η̃ is a C0-small tectonic

field such that ζ + ζ ′′ is a tectonic field transverse to λ + η. It therefore suffices to prove Lemma 2.9

under the assumption that (A) and (B) hold.

We now proceed to prove Lemma 2.9 under the assumption that (A) and (B) hold.

Extend Σj to a closed hypersurface Σ̂j ⊂ L, so that the collection N1, . . . , Nk, Σ̂1, . . . , Σ̂k forms

a transverse system of hypersurfaces, as in condition (A). This is possible because Σj is defined by

the equation det(λ + η − ζ)|Qj
= 0, so it suffices to extend the function ∆j = det(λ + η − ζ)|Qj

to

L. A generic extension provides the desired transversality. Note that Σj is canonically co-oriented by
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the direction in which ∆j is increasing and hence we can extend this co-orientation to Σ̂j using the

extension of ∆j .

We will construct the tectonic field ζ ′ inductively, working plate by plate. We begin with the first

plate Q1.

Fix a tubular neighborhood U1 = Σ̂1 × (−1, 1) of Σ̂1 with coordinates (x, u1) so that ∂u1
agrees

with the specified co-orientation of Σ1. Write η = α`2 as in the statement of the lemma. Fix a cutoff

function ψ : [0, 1] → [0, 1] such that ψ = 1 near 0 and ψ = 0 near 1. Since λ − ζ is nonsingular, the

restriction of λ + η − ζ to τ = ker(`) is nonsingular, where we recall η = α`2 for ` a non-vanishing

1-form. Let δ ∈ {±1} be the sign of the determinant of (λ + η − ζ)|τ on Q1. Pick ε1 > 0 arbitrarily

small and consider the tectonic field ζε11 given by

ζε11 = −δψε1(u1)`2, ψε1(u1) = ε1sign(u1)ψ(|u1|/ε1).

Remark 2.10. Note that ζε11 is a tectonic field with fault Σ̂1 and C0-norm proportional to ε1.

Claim 2.11. If ε1 is chosen small enough, then ζ + ζε11 is transverse to λ+ η on Q1.

Proof of Claim 2.11. Fix an arbitrary point in Σ1. Choose a local frame κ1, . . . , κn−1 of τ∗ with the

corresponding n(n + 1)/2 quadratic forms `2, κ2
j , (κj + `)2, (κj + κi)

2, i, j = 1, . . . , n − 1, i < j.

By considering the symmetric matrix which corresponds to the frame (κ1, . . . , κn−1, `) of T ∗xL we

can compute the determinant det(λ + η − ζ) to be of the form A(x, u1)f1(x, u1) + B(x, u1), x ∈ Σ1,

u1 ∈ (−1, 1), where A is a non-vanishing function, namely the complementary minor corresponding to

the forms (κj + κi)
2.

That Σ1 is cut out transversely means ∂u1 det(λ+η−ζ) > 0 at u1 = 0, so by taking ε1 small enough

we may assume that this holds for all u1 ∈ (−ε1, ε1) and hence det(λ+ η − ζ) is a strictly increasing

function of u1 in the tubular neighborhood εU1 := Σ̂× (−ε1, ε1) where ζε11 is supported, see Figure 8.
 

Figure 8. We may assume ∂u1 det(λ+ η − ζ) > 0 for u1 ∈ (−1, 1).

Moreover, with respect to that same frame we can write det(λ + η − ζ − ζε11 ) in the form

A(x, u1)(f1(x, u1)± ψε1(u1)) +B(x, u1), where ± is the sign δ of A. Hence we have

det(λ+ η − ζ − ζε11 ) = det(λ+ η − ζ) + |A(x, u1)|ψε1(u1),

which is bounded away from zero, see Figures 9 and 10. �
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Figure 9. The function |A(x, u1)|ψε1(u1), which has a discontinuity at u1 = 0. 

Figure 10. The function det(λ + η − ζ − ζε11 ), which is the sum of the functions
det(λ+ η − ζ) and |A(x, u1)|ψε1(u1) illustrated in Figures 8 and 9.

Before proceeding with the inductive process on the next plate we examine the new singular locus

Σε1j = det(λ+ η− ζ − ζε11 ) = 0 on Qj for j > 1. If Σj ∩ Σ̂1 = ∅, then for ε1 small enough this singular

locus is just Σj and nothing changes. Suppose however that Pj = Σj ∩ Σ̂1 6= ∅. After the addition of

ζε11 to ζ the hypersurface Σ̂1 becomes a fault, which causes Σj to disconnect along Pj , see Figure 11.

The crucial observation is the following.

Claim 2.12. The new singular locus Σε1j is displaced in opposite directions on each side of the fault

Σ̂1 and hence intersects Σ̂1 in two disjoint parallel copies of Pj in Σ̂1.

Proof of Claim 2.12. To verify the claim, choose a tubular neighborhood Uj = Σj × (−1, 1) of Σj in

Qj with coordinates (x, uj) such that ∂uj
agrees with the specified co-orientation of Σj . We moreover

assume compatibility along the boundary, i.e. that ∂Σj × (−1, 1) ⊂ ∂Qj .
Together with the coordinate u1 of the tubular neighborhood U1 of Σ̂1 this gives us coordinates

(x, u1, uj) of a tubular neighborhood of Pj in Qj . We again assume compatibility with the boundary

and corner structure of Qj .

Near Pj we can write det(λ+η−ζ−ζε11 ) as before in the form A(y, u1, uj)(f1(y, u1, uj)±ψε1(u1))+

B(y, u1, uj), y ∈ Pj , u1, uj ∈ (−1, 1), where A is a nonvanishing function and ± is the sign δ of A. In

terms of our previous notation x = (y, uj). The hypersurface Σε1j is cut out by the equation

det(λ+ η − ζ − ζε11 ) = 0



GEOMORPHOLOGY OF LAGRANGIAN RIDGES 13

which is equivalent to

det(λ+ η − ζ) = −|A(y, u1, uj)|ψε1(u1).

That Σj is cut out transversely means that ∂uj
det(λ + η − ζ) > 0 along Σj , so we may assume that

this condition holds in the tubular neighborhood. Solving for uj , the implicit function theorem implies

that on each side of Σ̂1 the above equation cuts out a smooth hypersurface which is graphical over Σj .

Moreover, the intersection of these hypersurfaces with Σ̂1 = {u1 = 0} is given by the equations

det(λ+ η − ζ) = |A(y, 0, uj)|ε1, det(λ+ η − ζ) = −|A(y, 0, uj)|ε1,

coming from u1 < 0 and u1 > 0 respectively. Since det(λ + η − ζ) is a strictly increasing function of

uj on U1 ∩ Uj which vanishes at uj = 0, these solutions have strictly positive and strictly negative uj

coordinates respectively. Let u+
j (y) > 0 and u−j (y) < 0 be these coordinates, as functions of y ∈ Pj .

Then
⋃
y y× 0× [u−j (y), u+

j (y)] is a tubular neighborhood of Pj =
⋃
j y× 0× 0 in Σ̂1 = {u1 = 0} with

boundary Σε1j ∩ Σ̂1, which was to be proved. �

 

Figure 11. The singular locus changes after the first step of the inductive process.

We now reconnect Σε1j back together along Pj in the (u1, uj) plane by parametrically closing up

the family of broken curves cut out by det(λ+ η − ζ − ζε11 ) = 0. For each fixed y ∈ Pj we know that

the interval Iy = 0× [u−j (y), u+
j (y)] is disjoint from Ty = Σε1j ∩ (y × (−1, 1)u1

× (−1, 1)uj
) ⊂ (−1, 1)2

except at its endpoints {(0, u±j (y))} = ∂Ty. Moreover, at these boundary points Ty is transverse to

the vertical axis u1 = 0, see Figure 12.

Consider a parametric family of smoothings Sy of Ty ∪ Iy, fixed on Ty, see Figure 13. This exists

because the space of smoothings of any fixed Ty ∪ Iy ⊂ (−1, 1)2, fixed outside of a compact subset,

is contractible. We obtain a smooth extension of Σε1j in Qj to a smooth hypersurface which for
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Figure 12. The discontinuity of Σε1j along Σ̂1 = {u1 = 0}.

generic Sy satisfies the required transversality conditions with respect to the faults. Since our tubular

neighborhoods were chosen compatibly with the boundary structure of Qj this stitching up extends to

the closure, with the transversality conditions along the boundary also achieved by a generic choice of

smoothing Sy.

Abusing notation, we denote the new, extended, hypersurface Σε1j ⊂ Qj by the same symbol. Now,

Σε1j does not agree with Σj along ∂Qj , hence the old extension Σ̂j of Σj to the rest of L must be

modified in order to obtain an extension Σ̂ε1j of Σε1j . To construct this modification, one applies once

again the contractibility of the space of smoothings of Ty ∪ Iy and the genericity of the transversality

condition.
 

Figure 13. There is a homotopically canonical way of smoothing out Ty ∪ Iy to Sy.

We now continue on to plate Q2. Choose a tubular neighborhood U2 = Σ̂ε12 × (−1, 1). Again we

have coordinates (x, u2). Pick ε2 � ε1 and define

ζε22 = ±ψε2(u2)`2,

where the sign is determined as above. If ε2 is chosen small enough, then ζ+ζε11 +ζε22 is still transverse

to λ+η on Q1, since transversality is an open condition. Along Σε12 itself we also achieve transversality

by the computation carried out in the first step. Hence ζ + ζε1 + ζε2 is transverse to λ+ η on Q2. We

have thus achieved transversality on Q1 ∪Q2.
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Observe that on Qj , j > 2, the new singular locus Σε1,ε2j = det(λ+ η − ζ − ζε11 − ζ
ε2
2 ) = 0 will split

along the intersection of the old singular locus Σε1j = det(λ+ η − ζ − ζε11 ) = 0 with Σ̂ε12 . We proceed

just like before, reconnecting and extending this new singular locus in a homotopically canonical way

to a closed hypersurface Σ̂ε1,ε2j which contains Σε1,ε2j . We can then keep on going with the inductive

process until we get to the last stage, which results in a C0-small tectonic field ζ = ζε11 + · · · + ζεmm

satisfying the required properties. This completes the proof. �

Remark 2.13. The proof of Lemma 2.9 automatically gives the relative form: if η = 0 on Op(A) for

A ⊂ L a closed subset, then we can demand that ζ ′ = 0 on Op(A).

2.4. Extension step. In this section we use the inductive lemma 2.9 to prove the formal transver-

salization theorem 2.7. The main point is that any quadratic form is a sum of rank 1 forms. First we

prove a local version of the result, which we will then globalize.

Lemma 2.14. Let γ be a smooth field of quadratic forms on the open unit ball B ⊂ Rn, let ξ be a

tectonic field on B and let B̃ ⊂ B be a smaller ball whose closure is contained in B. There exists a

C0-small tectonic field ζ such that ξ+ ζ is a tectonic field transverse to γ on the closure of B̃ and such

that ζ = 0 near ∂B.

Proof. Fix a smooth field of quadratic forms σ on B which is transverse to ξ. This is always possible,

for instance we can take σ to be almost vertical. Write the difference γ−σ as a sum α1`
2
1 + · · ·+αN`

2
N ,

where the `j are smooth fields of linear forms. For example we can use the linear forms Xi+Xj , where

1 ≤ i ≤ j ≤ n. Then N = n(n + 1)/2 and the identity XiXj = 1
2

(
(Xi + Xj)

2 − X2
i − X2

j

)
ensures

that such a decomposition exists. Let α̃j be a function which is equal to αj on the closure of B̃ and

is equal to zero near ∂B.

We begin by applying Lemma 2.9 to λ = σ, η = α̃1`
2
1 and ζ = ξ. We obtain a C0-small tectonic field

ζ1 such that σ+ α̃1`
2
1−ξ−ζ1 is nonsingular. Next we apply Lemma 2.9 to λ = σ+ α̃1`

2
1, η = α̃2`

2
2, and

ζ = ξ+ζ1. We obtain a C0-small tectonic field ζ2 such that σ+ α̃1`
2
1 + α̃2`

2
2−ξ−ζ1−ζ2 is nonsingular.

We repeat this process inductively. When at the last step we apply Lemma 2.9, we obtain a C0-small

tectonic field ζ = ζ1 + · · ·+ ζN such that σ+
∑N
j=1 α̃j`

2
j − ξ− ζ is nonsingular. In particular γ − ξ− ζ

is nonsingular on B̃. Moreover, since each time we apply Lemma 2.9 we have η = 0 near ∂B, we may

apply the relative version of the lemma and hence assume that ζj = 0 near ∂B for each j = 1, . . . , N .

Therefore ζ = 0 near ∂B also. �

Proof of Theorem 2.7. For C > 0 we set ΩC = {x ∈ L : γ t T ∗xL and |det(γx)| < C} ⊂ L. Choose C

sufficiently large so that ζ t γ outside of ΩC . Let B1, . . . , Bm be a cover of ΩC ∩K1 by open balls Bj

such that Bj ⊂ Ω2C \K2. In particular γ is graphical on each Bj , hence can be thought of as a field

of quadratic forms. Take slightly smaller balls B̃j whose closure is contained in Bj and such that the

collection B̃1, . . . , B̃m still covers ΩC ∩K1. We will construct the desired ζ inductively, one Bj at a

time.

First apply Lemma 2.14 on B1 to γ and ξ = ζ, producing a C0-small tectonic field ζ1 such that

ζ1 = 0 near ∂B1 and such that ζ + ζ1 is transverse to γ on B̃1. Suppose that we have constructed

C0-small tectonic fields ζ1, . . . , ζk supported on
⋃k
j=1Bj such that ζ +

∑k
j=1 ζj is transverse to γ on⋃k

j=1 B̃j . Apply Lemma 2.14 on Bk+1 to γ and ξ = ζ +
∑k
j=1 ζk to obtain a C0-small tectonic field
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ζk+1 such that ζk+1 = 0 near ∂Bk+1 and such that ζ +
∑k+1
j=1 ζj is transverse to γ on B̃k+1. Since

transversality is an open condition, by taking ζk+1 to be sufficiently C0-small we can ensure that

ζ +
∑k+1
j=1 ζj is also transverse to γ on

⋃k
j=1 B̃j . Hence ζ +

∑k+1
j=1 ζj is transverse to γ on

⋃k+1
j=1 B̃j and

the inductive procedure can continue.

At the last stage of the inductive procedure we obtain a tectonic field ζ ′ = ζ +
∑m
j=1 ζj which is

C0-close to ζ, such that ζ ′ t γ on ΩC ∩K1 and such that ζ ′ = ζ outside of Ω2C \K2. If ζ ′ is sufficiently

C0-close to ζ then ζ ′ t γ also on Ω2C \ ΩC , because we chose C > 0 so that ζ t γ in that region.

Hence ζ ′ t γ on K1 and ζ ′ = ζ on Op(K2). This completes the proof. �

3. Alignment of ridges

3.1. Aligned transversalization. Let L be a smooth manifold and let Λ ⊂ T ∗L be a ridgy La-

grangian. Denote by R ⊂ Λ the ridge locus and let Λ \ R = P1 ∪ · · · ∪ Pk be the decomposition into

connected components (each of which is a smooth manifold with corners). Suppose that Λ is graphical

over L and denote by Qj the image of Pj under the projection T ∗L→ L. Then Λ is given over Qj as

the graph of a closed 1-form βj . Assume for simplicity that Λ is exact, so that we can write βj = dhj

for hj : Qj → R a smooth function. Set λj = Hess(hj) on Qj , where we use an auxiliary Riemannian

metric on L to write down the Hessian. Note that the λj assemble to a tectonic field λ with plates Qj .

Definition 3.1. When a tectonic field λ arises in this way we say that it is integrable.

A tectonic field provides the infinitesimal data to integrate a graphical ridgy Lagrangian. However,

for the integration to be possible in a neighborhood of the fault locus we need the additional condition

that the ridges are aligned with the faults.

Definition 3.2. We say that a tectonic field λ is aligned if τj = TNj for every fault Nj and corre-

sponding ridge direction τj , see Figure 14.
 

Figure 14. An aligned tectonic field.

For a Lagrangian plane field γ in T ∗L, the problem under consideration is to deform the zero section

L by a ridgy isotopy so that it becomes transverse to γ. In the previous section we found a formal

solution to this transversalization problem, i.e. a tectonic field λ such that λ t γ. In this section
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we take a step towards integrability by upgrading our formal solution to an aligned solution. More

precisely, we have the following aligned version of Theorem 2.6.

Theorem 3.3. For any Lagrangian field γ there exists an aligned tectonic field ζ such that ζ t γ̂ for

γ̂ a Lagrangian field homotopic to γ.

Note that we gain alignment of the tectonic field ζ̂ at the cost of deforming the Lagrangian field

γ to a homotopic field γ̂. Nevertheless, in the next section we show that it is possible to integrate

the aligned solution ζ̂ produced by Theorem 3.3 to obtain a ridgy Lagrangian which after an ambient

Hamiltonian isotopy is transverse to γ itself, thus proving our main result Theorem 1.5.

The rest of the present section is devoted to the proof of Theorem 3.3. In fact, we prove below the

following more general extension result, which is the aligned analogue of Theorem 2.7.

Theorem 3.4. Let γ be a Lagrangian field and let ζ be an aligned tectonic field. For any two disjoint

closed subsets K1,K2 ⊂ L, there exists an aligned tectonic field ζ̂ and a Lagrangian field γ̂ homotopic

to γ such that the following properties hold.

· ζ̂ is C0-close to ζ.

· ζ̂ t γ̂ on Op(K1).

· ζ̂ = ζ on Op(K2).

Moreover, we can assume that the homotopy between γ and γ̂ is fixed on Op(K2).

3.2. Homotopically aligned transversalization. It will be useful to also consider the homotopical

version of definition 3.2.

Definition 3.5. We say that a tectonic field is homotopically aligned if there exists a homotopy of

linear isomorphisms Ψt : TxL→ TxL, x ∈ L, such that Ψ0 = idTxL and Ψ1(τj) = TNj .

We call Ψt the homotopical alignment and consider it part of the defining data of a homotopi-

cally aligned tectonic field. Note that Theorem 3.4 follows immediately from the following analogous

homotopically aligned statement.

Theorem 3.6. Let γ be a Lagrangian field and let ζ be a homotopically aligned tectonic field. For

any two disjoint closed subsets K1,K2 ⊂ L, there exists a homotopically aligned tectonic field ζ̂ and a

Lagrangian field γ̂ homotopic to γ such that the following properties hold.

· ζ̂ is C0-close to ζ.

· ζ̂ t γ̂ on Op(K1).

· ζ̂ = ζ on Op(K2).

Moreover, we can assume that the homotopy between γ and γ̂ is fixed on Op(K2) and that the homo-

topical alignment Ψ̂t for ζ̂ agrees with the homotopical alignment Ψt of ζ on Op(K2).

Proof of Theorem 3.4 assuming Theorem 3.6. We apply Theorem 3.6 in the case where Ψt = idTxL.

The output is γ̂ and ζ̂, with homotopical alignment Ψ̂t. Let Φt be the unique homotopy of linear

symplectic isomorphisms of Tx(T ∗L), x ∈ L, lifting the linear isomorphism Ψ̂t of TxL and fixing the

cotangent fibre T ∗xL. Then taking the aligned tectonic field Φ1(ζ̂) and concatenating the homotopy

between γ and γ̂ with the homotopy Φt(γ̂) we obtain the conclusion of Theorem 3.4. �
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Therefore we have reduced the aligned formal transversalization theorem 3.4 to the homotopically

aligned formal transversalization theorem 3.6. To prove the homotopically aligned formal transver-

salization theorem 3.6 we will take the tectonic field ζ̂ produced by the formal transversalization

theorem 2.7, which may not be homotopically aligned, and perform a local modification to adjust the

homotopical condition obstructing alignment.

3.3. Formal ridges. We begin by introducing the notion of a formal ridge.

Definition 3.7. A formal k-ridge over an n-dimensional vector space V is the data of a quadratic

form λ0 on V and an unordered collection of k rank 1 forms µ1, . . . , µk on V such that each of the

hyperplanes Hj = ker(µj) is transverse to all finite intersections of the other Hi, i 6= j.

Let λ be a tectonic field on a smooth n-dimensional manifold L. A point at which exactly k of

the faults of λ meet determines a formal k-ridge. Indeed, the 2k Lagrangian planes corresponding

to the tectonic field λ at the point x are given by λ0 +
∑
j∈J µj , where J ranges over subsets of

{1, 2, . . . , k} and λ0 is the plane corresponding to the quadrant which is initial with respect to the

fault co-orientations. We get a formal k-ridge by considering λ0 together with the µi. Note that with

this choice of λ0 we have that each µi is the square of a linear form `2j . However, we could also take a

different plane in λ as our λ0 and replace each of the corresponding µi with −µi. Then we get another

formal k-ridge which has the same collection of 2k Lagrangian planes associated to it. Note that there

is no canonical ordering on the forms µi.

Denote [λ] = span(λ), which is a field of coisotropic subspaces of T (T ∗L)|L. The dimension of [λ]

varies and is equal to n + k along the formal k-ridge locus. Given a Lagrangian field η along L we

denote by η[λ] the symplectic reduction of η ∩ [λ] in [λ]/[λ]⊥ω . Note that the transversality of η to λ

is equivalent to transversality of η to [λ] and transversality of η[λ] to λ[λ]. Here λ[λ] consists of the

collection of symplectic reductions of the Lagrangian planes of λ.

Lemma 3.8. The projection η 7→ η[λ] defined on the space of Lagrangian fields transverse to [λ] has

contractible fibers.

Proof. Consider the fibre over a formal k-ridge point. We factor the projection η 7→ η[λ] as the map

η 7→ η∩ [λ] and η∩ [λ] 7→ η[λ]. The second map is defined on the space of (n−k)-dimensional isotropic

subspaces of [λ]. Let τ ⊂ [λ] be an (n − k)-dimensional isotropic subspace. Then the fibre of the

second map over the reduction of τ can be identified with the space of linear maps τ → [λ]⊥ω , hence

is contractible. For the first map, take an (n − k)-dimensional isotropic subspace τ ⊂ [λ] and let η

be a Lagrangian plane whose intersection with [λ] is τ . Then the fibre of the first map over τ can be

identified with the space of quadratic forms on η/τ , hence is also contractible. �

For an inductive argument below it will be convenient to consider formal k-ridges with a fixed

ordering of the rank 1 forms µj . We call this an ordered formal k-ridge.

Lemma 3.9. Let λ1 and λ2 be two ordered formal k-ridges on V . There exists a linear symplectic

isomorphism Φ of V × V ∗ which sends λ1 to λ2. Moreover Φ is determined up to contractible choice

by its restriction to [λ′], where λ′ is the ordered formal (k−1)-ridge obtained from λ1 by forgetting µk.

Remark 3.10. That Φ sends λ1 to λ2 means that the image of the Lagrangian plane λ1
0 +

∑
j∈J µ

1
j by

Φ is λ2
0 +

∑
j∈J µ

2
j for every J ⊂ {1, . . . , k}.
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Proof. We argue by induction on k = 0, 1, . . . , n. For k = 0 the existence part follows from the

fact that the symplectic group acts transitively on the Lagrangian Grasmannian. The uniqueness

follows from the fact that a linear symplectic isomorphism is determined by its restriction to a pair of

transverse Lagrangian planes, together with the fact that the space of Lagrangian planes transverse to

a fixed Lagrangian plane is contractible. We spell out the details of an explicit argument which will

be easily adaptable to the case k > 0. First we reduce to the case V = Rn, λ1
0 = λ2

0 = Rn ⊂ Cn and

Φ|Rn = idRn . Write the symplectic matrix M ∈ Sp(2n) representing Φ in the block form corresponding

to Cn = Rn × iRn

M =

A B

C D

 .
Then Φ|Rn = idRn is equivalent to A = In and C = 0. That M is symplectic means MTΩM = Ω for

Ω =

 0 In

−In 0

 ,
where In is the n by n identity matrix. It follows that D = In and BT = B. Hence Φ is uniquely

determined up to the contractible choice of the symmetric matrix B. This completes the base case.

For the inductive step, observe that as before it suffices to consider the case λ1
0 = Rn ⊂ Cn.

Furthermore, up a linear change of coordinates in Rn we may assume that the kernel of both µ1
j and

µ2
j is the coordinate hyperplane {qj = 0} ⊂ Rn. Let Φ be the linear symplectic isomorphism obtained

by applying the inductive hypothesis to the ordered formal (k − 1)-ridges corresponding to λ1 and λ2

after forgetting µ1
k and µ2

k respectively. Then by pulling λ2 back by Φ we reduce to the case λ1
0 = λ2

0

and µ1
i = µ2

i for i < k.

In this case have [λ′] = {pj = 0, j > k−1} and [λ1] = [λ2] = {pj = 0, j > k}. Note that the product

of a horizontal shear of the symplectic subspace (qk, pk) and the identity on the complementary R2n−2

fixes [λ′]. Since the group of horizontal shears (x, y) 7→ (x, y + ax), a ∈ R, acts transitively on the

space of lines in R2 transverse to the horizontal axis {y = 0} ⊂ R2, we can find a linear symplectic

isomorphism which is the identity on [λ′] and takes λ1 to λ2. This proves the existence part.

For the uniqueness part it suffices to show that a linear symplectic isomorphism Φ of R2n which

restricts to the identity on [λ1] = {pj = 0, j ≥ k} is unique up to contractible choice. With the same

notation as above, write the symmetric matrix B in block form

B =

 X Y

Y T W

 .
Here X is a k by k matrix and W is an (n − k) by (n − k) matrix, which are both symmetric. The

conditions on Φ are equivalent to X = 0 and Y = 0 Hence Φ is uniquely determined up to the

contractible choice of the symmetric matrix W . �

3.4. The model. Consider a tectonic field λ on L. Let N ⊂ L be one of its faults, which bounds a

domain U such that outside of U the field λ differs by adding a rank one 1 quadratic form µ along N .

Let Ω ⊂ U be a domain with boundary and corners, where we decompose ∂1Ω = F1 ∪ F2 for F1 and

F2 smooth so that F1 = ∂Ω ∩N , ∂F2 = F2 ∩N and the corner is precisely ∂2Ω = F1 ∩ F2. Let ν be a

field of rank 1 quadratic forms on Ω such that ν = µ near F1. Consider the field λ̂ which is defined to
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be λ outside of Ω and λ+ ν on Ω. After smoothing, λ̂ becomes a tectonic field with N̂ = (N \F1)∪F2

as one of its faults, see Figure 15.
 

Figure 15. The modification λ 7→ λ̂.

We now apply this construction in a specific model. Consider a tectonic field λ over Rn ⊂ T ∗Rn with

faults along the first k coordinate hyperplanes Qj := {qj = 0}, j = 1, . . . , k ≤ n. We use the notation

QJ for the fault intersections: QJ =
⋂
j∈J Q

j , J ⊂ K for K = {1, . . . , k}. We also enumerate the

quadrants on Rn by multi-indices I ⊂ K, namely CI = {qi ≥ 0, i ∈ I; qj ≤ 0, j ∈ K \ I}. We assume

that λ is constant in the sense that the discontinuities of λ across a fault Qj are given by constant

rank 1 quadratic forms µj . So we may write λ = λ0 +
∑
j∈J µj on CJ for λ0 a fixed Lagrangian plane.

Take a sphere Σ ⊂ Rn of radius 1 centered at a point a with coordinates qk = 2, qj = 0, j 6= k.

Denote A = {0 ≤ qk ≤ 1; qj = 0, j 6= k}, and denote by Ω a neighborhood of A ∪ Σ in {qk ≥ 0}.
Thus ∂Ω = (F1 ∪ F2) ∪ F3, where F1 = ∂Ω ∩ Qk, F2 is a (n − 1)-disk transverse to Qk and F3 is a

(n−1)-sphere disjoint from Qk. Let ν be a field of rank 1 quadratic forms over Ω which agrees with µk

over F . We will additionally assume that near QJ the field ν is independent of coordinates qj , j ∈ J .

Performing the above construction to λ for the specific choices of Ω and ν yields a tectonic field which

we denote λ̂, see Figure 16.

Proposition 3.11. Let γ be a constant Lagrangian distribution transverse to λ. Then λ̂ is transverse

to a distribution γ̂ which is homotopic to γ by a deformation fixed outside of a compact set.

Proof. Write CJI = CI ∩QJ . Note that on CJI the tectonic field λ is a fixed formal r-ridge λJI , where

r ≤ k is the cardinality of J . We construct γ̂ inductively over the dimension n − |J | of the strata

CJI intersecting Σ. The smallest dimensional stratum is C = C1,...,k−1
1,...,k . For every point x ∈ C ∩ Ω

consider a linear symplectic isomorphism Φ0,x of R2n which sends λ̂0 = λ0 to λ̂x and is the identity

on [λ′]. Here 0 denotes the origin in Rn, λx is the formal k-ridge of λ at x and λ′ is the formal

(k− 1)-ridge obtained from λ0 by forgetting µk. According to Lemma 3.9 there exists a homotopically

unique continuous family of such isomorphisms. We can assume that Φ0,x is the identity if λ̂x = λ̂0.

Let us define γ̂x = Φ0,x(γ0), which is transverse to λ̂. Using Lemma 3.8 we can extend γ̂ to C keeping

fixed its reduction γ̂[λ′] = γ[λ′] and making it equal γ outside a neighborhood of Ω. Again applying
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Figure 16. The standard model in the case n = 3, k = 2. Note that the vertical
fault does not change in the process, only the horizontal fault changes.

Lemma 3.8 we conclude that the constructed field γ̂ is homotopic to γ via a homotopy γt with a fixed

reduction γ
[λ′]
t .

Next, we extend γ̂ to a neighborhood of C = C
{1,...,k−1}
{1,...,k} so that it is independent of the coordinates

qj , j ≤ k− 1. For any stratum CJI of codimension k− 2 adjacent to C we choose a point y ∈ CJI ∩Ω in

a neighborhood U of C where γ̂ is already defined. We note that in this neighborhood there exists a

family of linear isomorphisms Φy,x fixing [λIJ ] which maps λ̂y to λ̂x and γ̂y to γ̂x, x ∈ CJI ∩Ω∩U . We

extend the family to all x ∈ CJI ∩Ω and define γ̂x := Φy,x(γ̂y). Next we extend it to CJI keeping fixed

its reduction γ̂[λI
J ], and making it equal γ outside a neighborhood of Ω. The same lemma implies that

the constructed field γ̂ is homotopic to γ via a homotopy γt with a fixed reduction γ
[λI

J ]
t . Continuing

this process we construct the required distribution γ̂. �

3.5. Changing the homotopy class of the ridge directions. Finally we show how the local model

constructed above can be used to prove Theorem 3.6.

Proposition 3.12. Let λ be a tectonic field over a manifold L which is transverse to a Lagrangian dis-

tribution γ. Then there exists a homopically aligned tectonic field λ̂ which is transverse to a Lagrangian

distribution γ̂ homotopic to γ.

Proof. Let Nj denote the faults of λ. We will align the ridge directions inductively over the strata of

the fault locus
⋃
j Nj . In fact, we will align the outwards normal to Nj = ∂Ωj , where we recall Ωj ⊂ L

is a domain, and where an arbitrary Riemannian metric on L is understood.

We begin by refining the stratification to a triangulation
⋃
j ∆j , so that

⋃
j Nj is contained in the

(n − 1)-skeleton and moreover such the interior of each k-simplex is entirely contained in the locus

where exactly r of the faults Nj intersect for some r ≤ n− k (which depends on the k-simplex).

Choose an order of the faults L1, . . . , Lm. We recall that Nj = ∂Ωj for some domain Ωj ⊂ L. Let

J ⊂ {1, . . . ,m} and consider a point x ∈
⋂
j∈J Nj \

⋃
j /∈J Nj . Set r = |J |. We have two r-frames at

TxL. One is given by the r-tuple of outward normals to the domains Ωj , j ∈ J , with the induced

order from {1, . . . ,m}. The other is given by the ridge directions of the tectonic field λ, with the same

order. The co-orientation of the ridge directions (which are hyperplane fields) is specified by a choice
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of non-vanishing 1-forms `j on TL|Nj
which square to the rank 1 quadratic form giving the jump of λ

over Nj . There are two choices for each Nj , but either will do.

We begin our homotopical alignment along the 0-skeleton of the triangulation. At a point where

r ≤ n of the faults meet we have two elements of Vr,n, the Stiefel manifold of r-frames in Rn, which

is connected for r < n. So for points where r < n we may define the homotopical alignment Ψt in

an arbitrary way, but for points where r = n we may only align n − 1 of the normals: there is a

π0Vn,n = Z/2 obstruction to aligning the last one, namely the orientation of the frame.

We need to modify λ near the points of the 0-skeleton where the obstruction is nontrivial. To do

this, let x ∈ L be such a point and choose ν = c`2 in Proposition 3.11 in such a way that the hyperplane

τ = {` = 0} is tangent to Σ with the center of the sphere on an (n− 1)-multiple fault point adjacent

to x. This removes the point x from the 0-skeleton and creates three new n-multiple fault points, two

of them on the new spherical fault. These last two n-multiple fault points can be arranged to have

trivial Z/2 obstruction if we agree that the new spherical fault is the boundary of the domain Ω0 ⊂ L
formed by the n-ball it bounds and we agree to place this new fault first in our ordering of faults.

The other new n-multiple point has trivial Z/2 obstruction by construction, since the relevant ridge

direction has been modified by a half-turn, see Figure 17. Note that according Proposition 3.11, the

new tectonic field is transverse to a Lagrangian distribution homotopic to γ. 

Figure 17. The local modification for the obstruction π0Vn,n = Z/2 in the case n = 2.
In this example (n1, n2) is the frame corresponding to the ordered pair of faults N1, N2

and (v1, v2) is the frame corresponding to the ridge directions. We assume that n2

and v2 have been lined up but n1 and v1 differ by −1, so the orientations determined
by the frames don’t agree. The model changes the sign of v1 at the order 2 ridge
where N2 intersects the new N1, as well as creating two new order 2 ridges along the
intersection of N2 with the new spherical fault for which the Z/2 obstruction is trivial.

We have achieved alignment of the frames on the 0-skeleton, the base case of our inductive argument.

The inductive step is similar. Indeed, suppose that the homotopical alignment is defined on the (k−1)-

skeleton of L and let C be a k-simplex in ∆k where exactly r ≤ n− k of the faults intersect. We must

extend the homotopical alignment from ∂C ' Sk−1 to C ' Dk. Since πkVr,n = 0 for k < n− r we can

always homotopically align the ridge directions if r < n− k, and if r = n− k we can align all but one.

The obstruction to aligning that last ridge direction lies in πkVn−k,n, which is Z if n− k is even or

k = 1 and Z/2 if n − k is odd and k > 1. We claim that one can change this obstruction by ±1 by
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applying Proposition 3.11. To see this consider the fibration

Sk → Vn−k,n → Vn−k−1,n

and the following portion of its long exact sequence in homotopy

Z ' πkSk → πkVn−k,n → πkVn−k−1,n ' 0.

We deduce that one can realize the generator of πkVn−k,n as the map Sk → Vn−k,n which fixes

n − k − 1 elements of the frame and lets the last element trace out a k-sphere in the complementary

k + 1 dimensional space.

Returning to the proof, choose ν = c`2 in Proposition 3.11 in such a way that the hyperplane

τ = {` = 0} is tangent to Σ with the center of the sphere on a (k − 1)-multiple fault component C ′

adjacent to C. Then we create a new spherical fault. From the above description of a generator for

the cyclic group πkVn−k,n it follows that performing this operation changes the homotopy class of the

ridge field on the component C by ±1 depending on the choice of the component C ′, see Figure 18.
 

Figure 18. The local modification in the case n = 2, k = 1. Note that the homotopy
class of the line field changes by ±1 relative to the endpoints.

Hence, we can inductively adjust the homotopy classes of ridges along fault components of decreas-

ing multiplicity until we get a homotopically aligned field λ̂ which according to Proposition 3.11 is

transverse to a Lagrangian distribution homotopic to γ. �

Remark 3.13. From the proof we see that Proposition 3.12 holds in relative form. This means that if

there exists a homotopy of linear isomorphisms Ψt : TxL → TxL such that Ψ0 = idTxL and Ψ1(τj) =

TNj on Op(A) for A ⊂ L closed, then we can demand that λ̂ = λ on Op(A) and that the homotopical

alignment of λ̂ agrees with Ψt on Op(A). Moreover, we can demand that the homotopy of γ is constant

on Op(A).

Proof of Theorem 3.6. Consider the tectonic field ζ̂ which is produced by the formal transversalization

Theorem 2.7. Then by applying the relative form of Proposition 3.12 to ζ̂ and γ with A = K2 we

obtain the desired homotopically aligned tectonic field. �



24 DANIEL ÁLVAREZ-GAVELA, YAKOV ELIASHBERG, AND DAVID NADLER

4. Integrable solution

4.1. Holonomic approximation of ridges. We now turn to the proof of our main theorem 1.5. Our

first task will be to solve the transversalization problem near the ridge locus, where the homotopical

information is concentrated. Since the ridge locus is a stratified subset of codimension 1, we can apply

the method of holonomic approximation as illustrated in Figure 19.

Proposition 4.1. Let γ be a Lagrangian field on T ∗L. There exists a C0-small ridgy isotopy Lt ⊂ T ∗L
of L0 = L such that L1 t γ in a neighborhood Op(R) of the ridge locus R ⊂ L1 and such that there

exists a Lagrangian field γ̃ homotopic to γ by a homotopy fixed on Op(R) satisfying L1 t γ̃ everywhere.

Remark 4.2. The relative version is as follows: if L t γ on Op(A) for A ⊂ L a closed subset, then we

can demand that Lt = L on Op(A), that γ̃ = γ on Op(A) and furthermore that the homotopy is fixed

on Op(A).  

Figure 19. Using holonomic approximation to wiggle the ridges.

As a first step towards Proposition 4.1 we have the following lemma.

Lemma 4.3. There exists a C0-small integrable tectonic field ζ̃ on L which is transverse to a La-

grangian field γ̃ homotopic to γ.

Proof. We begin by invoking Theorem 3.3, which produces an aligned tectonic field ζ on L such that

ζ t γ̂ for γ̂ a Lagrangian distribution homotopic to γ. The tectonic field ζ jumps discontinuously along

a fault Nj by a family of rank 1 forms µj . Since ker(µj) = TNj , we can write µj(x) = fj(x)du2
j where

(x, uj) ∈ Nj × (−ε, ε) are tubular neighborhood coordinates for Nj = Nj × 0 in L and fj : Nj → R
is a nowhere vanishing smooth function. By reversing the orientation of (−ε, ε) if necessary we may

assume that ζ+
1 = ζ−1 + µj , where ζ+

1 and ζ−1 are the extensions of ζ1|{uj<0} and ζ1|{uj>0} to Nj

respectively. Consider the function

hj(x, uj) =
1

2
ψ(uj)fj(x)u2

j ,

where ψ : (−ε, ε) → [0, 1] is a cutoff function such that ψ = 1 near 0 and ψ = 0 near ±ε. Hence

along Nj we have Hess(hj) = µj . Note that hj is compactly supported in the tubular neighborhood

Nj × (−ε, ε). Consider next the function

rj(x, uj) =

 1
2hj(x, uj) uj ≥ 0,

− 1
2hj(x, uj) uj ≤ 0,

which also has compact support in the tubular neighborhood Nj × (−ε, ε). Set r =
∑
j rj : L→ R, a
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piecewise C2 function which (after choosing an auxiliarty Riemannian metric) generates an integrable

tectonic field ζ̃. Note that if ζ was C0-small then ζ̃ is also C0-small. Moreover, we claim that ζ̃ t γ̃

for γ̃ a Lagrangian distribution homotopic to γ.

Consider the tectonic field λ = ζ − ζ̃. Mote that it is a continuous Lagrangian field, because the

discontinuities of ζ are exactly canceled by those of ζ̃. Observe that ζ̃ is graphical, hence det(ζ̃) is

bounded. Let ΩC = {|det(γ̂)| < C}. It follows that for C > 0 large enough, we have ζ̃ t γ̂ outside

of ΩC . Moreover for C > 0 large enough γ̂ is homotopic to a Lagrangian plane field γ̃ which is equal

to γ̂ − λ on ΩC and transverse to ζ̃ outside of ΩC . Note that the expression γ̂ − λ makes sense on

ΩC because γ̂ is graphical on ΩC . The claim, and therefore also the Lemma, now follow. Indeed, the

condition ζ̃ t γ̃ on ΩC is equivalent to the nonsingularity of the form γ̃− ζ̃ = (γ̂−λ)− (ζ−λ) = γ̂− ζ,

which is in turn equivalent to ζ t γ̂, which is true. �

Remark 4.4. In the relative version where L t γ and ζ = 0 on Op(A) for A ⊂ L a closed set, we

demand that the homotopy between γ and γ̃ is constant on Op(A).

We also need the following elementary fact.

Lemma 4.5. Let ft : Λ→M be a Lagrangian isotopy, i.e. an exact regular homotopy of Lagrangian

embeddings of a compact manifold Λ into a symplectic manifold M and for i = 0, 1, let γi ⊂ TM be a

Lagrangian plane field along fi which is transverse to dfi(TΛ). Then there exists a compactly supported

Hamiltonian isotopy ϕt : M →M such that ϕt ◦ f0 = ft and dϕ1(γ0) = γ1.

Proof. By taking a family of Weinstein neighborhoods for ft we reduce to the case M = T ∗Λ, ft = idΛ

and γ0 = ν (the vertical distribution). Since γ1 is transverse to the zero section, we can think of γ1 as

family of quadratic forms on the fibres λq : T ∗q Λ → R. Then the required Hamiltonian isotopy ϕt is

given by the quadratic Hamiltonian H(q, p) = λq(p), cut off at infinity. �

Remark 4.6. From the proof we also deduce the relative version: if ft = f0 and γ0 = γ1 on Op(A) for

A ⊂ Λ a closed subset, then we can demand that ϕt = idM on Op(A).

Proposition 4.1 follows immediately from the following lemma.

Lemma 4.7. Let Λ ⊂ T ∗L be a ridgy Lagrangian, R its ridge locus, and γ a Lagrangian field. Suppose

that γ is homotopic to a Lagrangian field γ̂ which is transverse to Λ. Then there exists a Hamiltonian

isotopy Λt of Λ and a Lagrangian field γ̃ which agrees with γ on Op(R) such that:

· Λ1 t γ on Op(R).

· Λ1 t γ̃ everywhere.

· γ̃ is homotopic to γ by a homotopy fixed on Op(R).

Moreover, if A ⊂ Λ is a closed subset and the homotopy between γ and γ̂ is fixed on Op(A), then the

Hamiltonian isotopy and the homotopy between γ̃ and γ can both be chosen to be fixed on Op(A).

Proof of Proposition 4.1. Indeed, let Λ ⊂ T ∗L be the graphical ridgy Lagrangian corresponding to an

integrable tectonic field ζ̃, as in Lemma 4.3 and apply Lemma 4.7. �

It therefore remains to prove Lemma 4.7.
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Proof of Lemma 4.7. Denote by R ⊂ Λ the ridge locus and denote Λ \R = Q1 ∪Q2 ∪ · · · ∪Qm, where

each Qj is a smooth Lagrangian submanifold with corners.

We will prove by induction that for each k = 0, 1, . . . ,m there exists a ridgy Lagrangian Λk ⊂ T ∗L
satisfying the following properties.

(a) Λk is Hamiltonian isotopic to Λ

(b) Λk t γ in a neighborhood of ∂Qk1 ∪ · · · ∪ ∂Qkk, where Q
k

j ⊂ Λk corresponds to Qj ⊂ Λ under

the Hamiltonian isotopy.

(c) There exists a homotopy γkt of γk0 = γ, fixed in a neighborhood of ∂Qk1 ∪ · · · ∪ ∂Qkk, such that

Λk t γk1 everywhere.

Base case (k = 0). In this case we take Λ0 = Λ so condition (a) is vacuous. Since k = 0, so is (b).

Finally, condition (c) is the hypothesis of Lemma 4.7.

Inductive step (k ⇒ k + 1). We apply the holonomic approximation theorem for 1-holonomic

sections to the Lagrangian submanifold Q
k

k+1 and the stratified subset ∂Qkk+1. Technically one should

slightly enlarge Qk+1 so that ∂Qk+1 sits in its interior but this will not affect the proof. The precise

result we need is the h-principle for Lagrangian embeddings which are D-directed along a stratified

subset, which is Theorem 1.20 in [AG18a]. For our application we take D to consist of all Lagrangian

planes transverse to γ. Condition (c) of the inductive hypothesis implies that the Gauss map of Q
k

k+1 is

homotopic to a map with image in D, moreover this homotopy can be taken relative to a neighborhood

of ∂Qk1 ∪ · · · ∪ ∂Qkk.

The output of the h-principle is a Hamiltonian isotopy ϕt : T ∗L→ T ∗L such that ϕ1(Q
k

k+1) t γ in

a neighborhood of ϕ1(∂Qkk+1). Moreover, by the parametric version of the h-principle we may assume

that ϕt(Q
k

k+1) is transverse to γk1−t for all t ∈ [0, 1] in that same neighborhood. By Lemma 4.5 we may

assume that dϕ1(γk1 ) = γ along ∂Qkk+1. Hence we have ϕ1(Λ) t γ in a neighborhood of ϕ1(∂Qkk+1), i.e.

also on the other side of the ridges outside of Q
k

k+1. Moreover, by the relative version of the holonomic

approximation theorem we can demand that ϕt = idT∗L in a neighborhood of ∂Qk1 ∪ · · · ∪ ∂Qkk. It

follows that if we set Λk+1 = ϕ1(Λk), then conditions (a) and (b) are satisfied for k + 1 instead of k.

It remains to verify condition (c). Consider the homotopy γk+1
t of γ which is given by the con-

catenation of first γkt and then dϕt(γ
k
1 ). The result is transverse to Λk+1 = ϕ1(Λk) because γk1 is

transverse to Λk. Although this homotopy is constant in a neighborhood of ∂Qk+1
1 ∪ · · · ∪ ∂Qk+1

k , it

is not constant near ∂Qk+1
k+1. To fix this we recall that dϕ1(γk1 ) = γ along ∂Qkk+1 and that ϕt(Λ

k)

is transverse to γk1−t along ∂Qk+1
k . Since the space of linear Lagrangian planes transverse to a fixed

linear Lagrangian plane is contractible, by parametrically interpolating between dϕt(γ
k
1 ) and γk1−t we

can cancel out the concatenations using a cutoff function and thus deform the homotopy so that it is

constant in a neighborhood of ∂Qk+1
k+1. This completes the proof of the inductive step.

Finally, the relative form of the statement follows by applying the relative form of the holonomic

approximation lemma at each stage of the induction. �

Remark 4.8. Since the holonomic approximation lemma holds in C0-close form, at each step of the

proof we can ensure C0-closeness to the previous step and thus obtain that the resulting isotopy is

C0-small.
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Remark 4.9. Suppose that K1,K2 ⊂ Λ are two disjoint compact subsets. Then given the hypotheses of

Lemma 4.7 we may produce a Hamiltonian isotopy Λt and a Lagrangian field γ̃ such that the conclusion

of the Lemma is satisfied on Op(K1) and both the isotopy Λt and the homotopy between γ̃ and γ is

constant on Op(K2). This follows simply by reparametrizing the time co-ordinate of the isotopy and

homotopy using a function ψ : Λ→ [0, 1] which is 1 on K1 and 0 on K2.

4.2. Ridgification of wrinkles. To conclude the proof of Theorem 1.5, we need to take the ridgy

Lagrangian produced by Proposition 4.1 and further deform it in the complement of the ridge lo-

cus so that it becomes transverse to γ. To achieve this we use a wrinkling technique, namely the

transversalization theorem for wrinkled Lagrangian embeddings.

Theorem 4.10 (Theorem 5.1 of [AG18b]). Let Λ ⊂ M be a Lagrangian submanifold, γ ⊂ TM a

Lagrangian distribution, and γt ⊂ TM a homotopy of Lagrangian distributions such that λ0 = λ and

Λ t γ1. Then there exists a C0-small exact homotopy of wrinkled Lagrangian embeddings Λt of Λ such

that Λ1 t γ. The result holds in relative form with respect to a closed subset A ⊂ M , i.e. if γt is

constant on Op(A) then the homotopy of wrinkled Lagrangian embeddings can be taken to be constant

on Op(A).

A wrinkled Lagrangian embedding is a smooth Lagrangian embedding outside of a disjoint union of

codimension 1 contractible spheres S ⊂ Λ. Here and below, by a contractible sphere S ⊂ Λ we mean

a sphere that bounds an embedded disk.

Along each such sphere S the embedding has cuspidal singularities of the form {p2 = q3}×Rn−1 ⊂
T ∗R × T ∗Rn−1, see Figure 20, with a codimension 1 equatorial sphere Σ ⊂ S where the cuspidal

singularities experience birth/death. The precise model near the equator is not important since, in

the spirit of Entov [En97], we can surger away the birth/death singularities. More precisely, one can

open up each sphere S along its equator into two parallel spheres so that Λ1 becomes a Lagrangian

submanifold which is smooth away from the disjoint union of finitely many pairs of contractible parallel

spheres S1 ∪S2 where the Lagrangian has cuspidal singularities. Moreover, this can be achieved while

maintaining exactness and transversality to γ. The proof is simply to implant an explicit local model

given by a generating function graphical over γ, just as in Section 6.1 of [AG18b], hence exactness and

transversality are automatic.

We note that this cuspidal Lagrangian can be smoothed so that the resulting smooth Lagrangian has

fold tangencies on S1∪S2 with opposite Maslov co-orientations, known as double folds. By performing

this smoothing one deduces the h-principle for the simplification of caustics, which is Theorem 1.11

in [AG18b]. However, it will be easier for us to work with cuspidal Lagrangians directly, implanting a

local model for the ridgification of cusps.

Remark 4.11. Even though this will not be important, we note that the pairs of spheres S1 ∪ S2 ⊂ Λ

could be nested, in the sense that we could have A1 ⊂ A2 for Ai ' Sn−1 × [0, 1], i = 1, 2, the

codimension 0 annuli in Λ corresponding to two pairs of parallel spheres.

We deduce the following consequence of Theorem 4.10.

Corollary 4.12. Let Λ ⊂ M be a Lagrangian submanifold, γ ⊂ TM a Lagrangian distribution and

γt a homotopy of Lagrangian distributions such that γ0 = γ and Λ t γ1. Then there exists a C0-small
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Figure 20. A cuspidal Lagrangian singularity is a stabilization of the standard semi-
cubical cusp {p2 = q3} ⊂ T ∗R.

ridgy isotopy Λt of Λ such that Λ1 t γ. The result holds in relative form with respect to a closed subset

A ⊂M , i.e. if γt is constant on Op(A) then the ridgy isotopy can be taken to be constant on Op(A).

Proof. We need to modify the wrinkled Lagrangian embedding Λ1 produced by Theorem 4.10 to

make it ridgy. We first resolve the equators of the wrinkles into cuspidal singularities as above while

maintaining exactness and transversality to γ. Next, by a local interpolation at the level of generating

functions we can replace these cuspidal singularities with stabilizations of order 1 ridges {q = |p|}
while still maintaining exactness and transversality to γ, see Figure 21.

Explicitly, take a cut-off function σ : [0,∞)→ [0, 1] which is equal to 1 on [0, 1
2 ], equal to 0 outside

[0, 1]. Consider the generating function with variable q ≥ 0 given by

z =
ε

2
σ
(q
ε

)
q2 +

2

5

(
1− σ

(q
ε

) )
q5/2.

The function ±z generates a ridgy Lagrangian Λε ⊂ T ∗R for ε > 0. Note that

∂z

∂q
=

1

2
σ′
(q
ε

)
q2 + εσ

(q
ε

)
q − 2

5ε
σ′
(q
ε

)
q5/2 +

(
1− σ

(q
ε

) )
q3/2

= q3/2 +
(1

2
σ′
(q
ε

)
q2 + εσ

(q
ε

)
q − 2

5ε
σ′
(q
ε

)
q5/2 − σ

(q
ε

)
q3/2

)
= q3/2 +O(ε)

since we have the obvious bound

σ(k)
(q
ε

)
qr ≤ ‖σ‖Ck εr.

Hence as ε → 0, the ridgy Lagrangian Λε gets C0-close to the cuspidal Lagrangian generated by

z = ± 2
5q

5/2. Furthermore, we have

∂2z

∂q2
=

3

2
q1/2 +O(

√
ε)

since ∂2z/∂q2 − 3
2q

1/2 is equal to

1

2ε
σ′′
(q
ε

)
q2+σ′

(q
ε

)
q+σ′

(q
ε

)
q+εσ

(q
ε

)
− 2

5ε2
σ′′
(q
ε

)
q5/2−1

ε
σ′
(q
ε

)
q3/2−1

ε
σ′
(q
ε

)
q3/2−3

2
σ
(q
ε

)
q1/2

and we can bound each term as before. Hence in fact as ε→ 0 the ridgy Lagrangian Λε gets C1 close

to the cuspidal Lagrangian generated by z = ± 2
5z

5/2.

Therefore by parametrically implanting a 1-dimensional model we can replace the exact homotopy

of wrinkled Lagrangian embeddings Λt with a ridgy isotopy which at time 1 is transverse to γ. This

ridgy isotopy consists of an earthquake isotopy on the preimage of the cuspidal locus of Λ1 in Λ followed
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by an ambient Hamiltonian isotopy, the existence of which is guaranteed because we ensured exactness

at every stage by working at the level of generating functions. �

Remark 4.13. The ridge locus of the ridgy Lagrangian Λ1 produced by Corollary 4.12 therefore consists

of a disjoint union of parallel contractible spheres, which may be nested.

Proof of the main theorem 1.5. We apply Proposition 4.1 to L and γ|L inside a Weinstein neighbor-

hood U of L in M . Indeed, U is symplectomorphic to T ∗≤δL = {||p|| < δ}, where δ > 0 and we use an

auxiliary Riemannian metric on L. If the resulting ridgy Lagrangian is sufficiently C0-close to the zero

section then it will remain in this Weinstein neighborhood, hence can be viewed as a ridgy Lagrangian

in M . We then apply the relative (with respect to the ridge locus) version of Corollary 4.12 to the

output of Proposition 4.1. �

 

Figure 21. Replacing a cuspidal singularity with an order 1 ridge.

Remark 4.14. The ridge locus of the ridgy Lagrangian solving the transversalization problem consists

of the fault locus of the formal solution together with a union of parallel contractible spheres.

5. Adapted version

5.1. Adapted transversalization. Let L be an n-dimensional compact manifold with boundary

and corners. Recall that L has a corner of order k ≤ n at x ∈ L if there is a neighborhood of x in L

diffeomorphic to a neighborhood of the origin in [0, 1)k×Rn−k. We denote the locus of order k corners

by ∂kLk. The closure P of a connected component of ∂kL is called a boundary k-face. For k = 1 we

will more simply call P a boundary face.

If Q is a k-face, then there is an embedded collar neighborhood Q × [0, 1)k ⊂ L. We consider the

germs of these collars as part of the structure. In particular, near each point x ∈ ∂kL we have canonical

collar coordinates x = (y, t), where y ∈ ∂kL and t = (t1, . . . , tk) ∈ [0, 1)k. Note that in a neighborhood

of x we have ∂kL cut out by t1 = · · · = tk = 0. More generally, for j ≤ k the components of ∂jL whose

closure contains x are given by setting exactly j of the coordinates ti equal to zero.

Definition 5.1. A Lagrangian field λ on L (possibly tectonic) is said to be:

· horizontally adapted if λ = λk × τk ⊂ T ∗(∂kL)× (T ∗I)k near each x ∈ ∂kL, k = 1, 2, . . . , n.

· vertically adapted if λ = λk × νk ⊂ T ∗(∂kL)× (T ∗I)k near each x ∈ ∂kL, k = 1, 2, . . . , n.
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Definition 5.2. A Lagrangian submanifold (possibly ridgy) Λ ⊂ T ∗L is said to be adapted if Λ =

Λk × Ik ⊂ T ∗(∂kL) × (T ∗I)k near each x ∈ ∂kL, k = 1, 2, . . . , n. A (possibly ridgy) isotopy of

Lagrangian submanifolds Λt ⊂ T ∗L is said to be adapted if each Λt is adapted.

 

Figure 22. An adapted ridgy Lagrangian near the collar.

Remark 5.3. If Λ ⊂ T ∗L is adapted, then TΛ is horizontally adapted.

See Figure 22 for an illustration of the notion of adapted. We now state the adapted version of our

main theorem 1.5.

Theorem 5.4. For any vertically adapted Lagrangian field γ ⊂ T ∗L there exists an adapted ridgy

isotopy Lt of the zero section L0 = L such that L1 t γ.

Theorem 5.4 also holds in C0-close and relative forms. The proof of Theorem 5.4 proceeds just like

in the unadapted case: first we construct a formal solution, then we align it and finally we integrate

it. We must argue that the same proof works while ensuring that all the objects are adapted to the

collar structure at each step.

5.2. Adapted formal transversalization. The adapted version of the formal transversalization

theorem 2.6 reads as follows.

Theorem 5.5. For any vertically adapted Lagrangian field γ there exists a horizontally adapted tectonic

field λ such that λ t γ.

The extension form 2.7 of the result also has its adapted version.

Theorem 5.6. Let γ be a vertically adapted Lagrangian field and ζ a horizontally adapted tectonic

field. For any two disjoint compact subsets K1,K2 ⊂ L there exists a horizontally adapted tectonic

field ζ̂ such that the following properties hold.

· ζ̂ is C0-close to ζ,

· ζ̂ t γ on Op(K1).

· ζ̂ = ζ on Op(K2).
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To prove Theorem 5.6 one inductively applies Lemma 2.14, just as in the proof of Theorem 2.7. The

only difference is that before constructing ζ̂ in the interior of L one constructs ζ̂ in a neighborhood

of ∂L, inductively over the strata ∂kL. Start with the deepest stratum ∂nL where there is nothing

to prove. At each step of the induction one has a horizontally adapted tectonic field ζ̂ defined over a

neighborhood of
⋃
j≥k ∂jL which satisfies the required properties. To continue with the induction one

chooses a cover of ∂k−1L by balls and applies Lemma 2.14 in the manifold ∂k−1L, one ball at a time.

Multiplying the resulting tectonic field by the horizontal distribution in the collar direction provides

the extension and so the induction can continue. Once the horizontally adapted tectonic field ζ̂ has

been built in a neighborhood of ∂L it can be extended to the rest of L as in the unadapted case.

5.3. Adapted aligned formal transversalization. The adapted version of the aligned analogue

Theorem 3.3 of Theorem 2.6 reads as follows.

Theorem 5.7. For any vertically adapted Lagrangian field γ there exists a horizontally adapted aligned

tectonic field λ such that λ t γ.

More generally, we have the adapted version of the aligned extension result Theorem 3.4.

Theorem 5.8. Let γ be a vertically adapted Lagrangian field and ζ a horizontally adapted aligned

tectonic field. For any two disjoint compact subsets K1,K2 ⊂ L there exists a horizontally adapted

aligned tectonic field ζ̂ and a vertically adapted Lagrangian field γ̂ homotopic to γ such that the following

properties hold.

· ζ̂ is C0-close to ζ,

· ζ̂ t γ̂ on Op(K1).

· ζ̂ = ζ on Op(K2).

Moreover, we can assume that the homotopy between γ and γ̂ is through vertically adapted fields and

is constant on Op(K2).

Theorem 5.8 follows from the same local model for changing the homotopy class of the ridge direc-

tions which we used to align the ridge directions in the unadapted case. Indeed, as in Section 3.5 we

first reduce to the homotopically aligned version of Theorem 5.8. To prove the homotopically aligned

version we can start making the necessary local modifications to the ζ̂ produced by Theorem 5.6 along

the boundary ∂L first, then once we have a horizontally adapted solution near ∂L we can extend to

the interior as in the unadapted case. To construct the horizontally adapted solution ζ̂ near ∂L we

work inductively over the strata ∂kL, starting with the deepest one ∂nL in which there is nothing to

prove. Whenever we need to adjust the homotopy class of the ridge directions for the tectonic field λk

in ∂kL, we choose a domain Ω ⊂ L and a form ν as in the model 3.4 which are adapted to the collar

structure, i.e. given as a product in the collar co-ordinates. Then not only is the modified tectonic

field still adapted, but the homotopy of γ is by construction through vertically adapted fields.

5.4. Adapted integration. Finally we show how to integrate the λ produced by Theorem 5.7 so that

the resulting ridgy Lagrangian remains adapted. In fact this follows easily from the parametric versions

of the holonomic approximation and wrinkling results which are used in the unadapted case. First

observe that since the aligned tectonic field λ is horizontally adapted, the introduction of integrable
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ridges in Lemma 4.3 can be achieved with respect to coordinates that are compatible with the collar

structure. Hence the resulting integrable tectonic field is horizontally adapted.

Next we turn to the adapted analogue of Proposition 4.1. We recall that the holonomic approxima-

tion lemma for 1-holonomic sections [AG18a] holds in parametric form, and moreover holds relative

to a closed subset of the parameter space. Hence we can apply this result inductively over the strata

∂kL so that at each stage of the induction the conclusion of the proposition holds in a neighborhood

of
⋃
j≥k ∂jL and moreover such that the resulting ridgy Lagrangian and homotopy of γ are adapted in

this neighborhood. At the last stage of this inductive process we obtain the desired adapted ridgy La-

grangian in a neighborhood of ∂L, which can then be extended to the interior of L as in the unadapted

case.

To conclude we turn to the application of Theorem 4.10 in the adapted setting and finish the

proof of Theorem 5.4. The C0-approximation result for wrinkled Lagrangian embeddings also holds

in parametric form, but only relative to a subset where the embedding is smooth. Therefore, when

applying the result in a component of the stratum ∂kL one will need to let the cuspidal singularities

die out as you move away from this component, but there is a homotopically canonical way of doing so

since by construction the cuspidal singularities always come in parallel spheres which can be cancelled

against each other, see Figure 23
 

Figure 23. Starting with product cuspidal singularities on parallel spheres, we let
them die out and then replace the cusps with ridges.

Note that in the insertion of this birth/death local model for the cuspidal singularities we may

lose transversality. Therefore, after replacing these cuspidal singularities with ridges, but before we

proceed to the next stage of the induction, we must achieve transversality in a neighborhood of these

new ridges. This can be achieved using holonomic approximation just as in Section 4.1. We can

then use wrinkling as before in the complement and replace the cuspidal singularities with ridges to

complete the proof.
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