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ABSTRACT
Modern machine learning models are complex and frequently en-
code surprising amounts of information about individual inputs. In
extreme cases, complex models appear to memorize entire input ex-
amples, including seemingly irrelevant information (social security
numbers from text, for example). In this paper, we aim to under-
stand whether this sort of memorization is necessary for accurate
learning. We describe natural prediction problems in which every
su�ciently accurate training algorithm must encode, in the pre-
diction model, essentially all the information about a large subset
of its training examples. This remains true even when the exam-
ples are high-dimensional and have entropy much higher than the
sample size, and even when most of that information is ultimately
irrelevant to the task at hand. Further, our results do not depend
on the training algorithm or the class of models used for learning.

Our problems are simple and fairly natural variants of the next-
symbol prediction and the cluster labeling tasks. These tasks can
be seen as abstractions of text- and image-related prediction prob-
lems. To establish our results, we reduce from a family of one-way
communication problems for which we prove new information
complexity lower bounds.
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1 INTRODUCTION
Algorithms for supervised machine learning take in training data,
attempt to extract the relevant information, and produce a predic-
tion algorithm, also called a model or hypothesis. The model is used
to predict a particular feature on future examples, ideally drawn
from the same distribution as the training data. Such algorithms op-
erate on a huge range of prediction tasks, from image classi�cation
to language translation, often involving highly sensitive data. To
succeed, models must of course contain information about the data
they were trained on. In fact, many well-known machine learning
algorithms create models that explicitly encode their training data:
the “model” for the :-Nearest Neighbor classi�cation algorithm
is a description of the dataset, and Support Vector Machines in-
clude points from the dataset as the “support vectors.” Clearly, these
models can be said to memorize at least part of their training data.

Commonly, however, memorization is an implicit, unintended
side e�ect. In a striking recent work, Carlini et al. [13] demon-
strate that modern models for next word prediction memorize large
chunks of text from the training data verbatim, including personally
identi�able and sensitive information such as phone numbers and
addresses. Memorization of training data points by deep neural
networks has also been observed in synthetic problems [29, 36].
The causes of this behavior are of interest to the foundations of both
machine learning and privacy. For example, a model accidentally
memorizing Social Security numbers from a text data set presents
a glaring opportunity for identity theft.

In this paper, we aim to understand when this sort of memoriza-
tion is unavoidable. We give natural prediction problems in which
every reasonably accurate training algorithm must encode, in the
prediction model, nearly all the information about a large subset of
its training examples. Importantly, this holds even when most of
that information is ultimately irrelevant to the task at hand. We
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show this for two types of tasks: a next-symbol prediction task
(intended to abstract language modeling tasks) and a multiclass
classi�cation problem in which each class distribution is a simple
product distribution in {0, 1}3 (intended to abstract a range of tasks
like image labeling). Our results hold for any algorithm, regardless
of its structure. We prove our statements by deriving new lower
bounds on the information complexity of learning, building on the
formalism of Bassily, Moran, Nachum, Shafer, and Yehudayo� [5].

We note that the word “memorization” is commonly used in
the literature to refer to the phenomenon of label memorization, in
which a learning algorithm �ts arbitrarily chosen (or noisy) labels
of training data points. Such memorization is a well-documented
property of modern deep learning and is related to interpolation (or
perfect �tting of all the training labels) [3, 25, 35, 37]. Feldman [18]
recently showed that, for some problems, label memorization is
necessary for achieving near-optimal accuracy on test data. Further,
Feldman and Zhang [20] empirically demonstrate the importance
of label memorization for deep learning algorithms on standard
image classi�cation datasets. In contrast, we study settings in which
most of the information about entire high-dimensional (and high-
entropy) training examples must be encoded by near-optimal learn-
ing algorithms.

Problem setting. We de�ne a problem instance ? as a distribution
over labeled examples: ? 2 �(X), where X = Z ⇥ Y is a space
of examples (in Z) paired with labels (in Y). A dataset - 2 X

=

is generated by sampling i.i.d. from such a distribution. We use
3 to denote the dimension of the data, so - can be described in
⇥(=3) bits. In contrast to the well-known PAC model of learning,
we do not explicitly consider a concept class of functions. Rather,
the instance ? is itself drawn from a metadistribution @, dubbed
the learning task. The learning task @ is assumed to be known to
the learner, but the speci�c problem instance is a priori unknown.
We write % to denote a random instance (so % is a random variable,
distributed according to @), and ? to denote a particular realization.
See Figure 1.

The learning algorithm � receives a sample - ⇠ % ⌦= and pro-
duces a model " = �(- ) that can be interpreted as a (possibly
randomized) map" : Z ! Y. The model errs on a test data point
(I,~) if" (I) < ~ (for simplicity, we only consider misclassi�cation
error). The learner �’s overall error on task @ with sample size =,
denoted err@,= (�), is its expected error over % drawn from @, -
drawn from % ⌦= , and test point (/ ,. ) drawn from % . That is,

err@,= (�)
def= Pr

%⇠@,
-⇠%⌦=,(/ ,. )⇠%,

coins of �,"

(" (/ ) < . where" = �(- )) (1)

For probability calculations, we often use the shorthand “� errs”
to denote a misclassi�cation by �(- ) (the event above), so that
Pr(� errs) = err@,= (�).

Example 1.1. Consider the task of labeling the components in a
mixture of # product distributions on the hypercube. An interest-
ing special case is a uniform mixture of uniform distributions over
subcubes. Here each component 9 2 [# ] of the mixture is speci�ed
by a sparse set of �xed indices I9 ✓ [3] with values {1 9 (8)}82I9 .
Each labeled example is generated by picking at random a compo-
nent 9 2 [# ] (which also serves as the label), for each 8 2 I9 setting

I (8) = 1 9 (8), and picking the other entries uniformly at random
to obtain a feature vector I 2 {0, 1}3 . The labeled example is then
(I, 9). (See Figure 2.) A natural meta-distribution @ generates each
set I9 by adding indices 8 to I9 independently with some probability
d , and �xes the values 1 9 (8) at those indices uniformly at random.

Given a set of = labeled examples and a test point I0 (drawn from
the same distribution, but missing its label), the learner’s job is to
infer the label of the mixture component which generated I0. ⌅

Given @, a particular meta-distribution, and =, the number of
samples in the data set, there exists a learner �$%) (called Bayes-
optimal) that minimizes the overall error on the task @. For any
given task, this minimal error will be our reference; for n � 0, we
call a learner n-suboptimal (for @ and =) if its error is within n of that
of�$%) on samples of size =, that is, err@,= (�)  err@,= (�$%) ) + n .
In our problem of cluster labeling (Example 1.1), the optimal learner
works roughly as follows: for each component 9 of the mixture,
produce a set Î9 of features that are �xed in the samples from that
component (indices which take two values in di�erent samples
are irrelevant to classi�cation). We have I9 ✓ Î9 , but with few
samples from cluster 9 , Î9 will contain many irrelevant indices. The
optimal learnerwill balance theHamming distance on Î9 against the
probability of achieving a set of �xed indices of that size, accounting
for the fact that we expect half of the non-�xed indices to match. In
our analysis, it will su�ce to analyze the simpler, but still low-error,
learner that compares Hamming distances to a single sample from
each component.

1.1 Our Contributions
We present natural prediction problems@ where any algorithmwith
near-optimal accuracy on @ must memorize ⌦(=3) bits about the
sample. Furthermore, this memorized information is really about
the speci�c sample - and not about the data distribution % .

Theorem 1.1 (Informal). For all = and 3 , there exist natural tasks @
for which any algorithm � that satisifes, for small constant n ,

err@,= (�)  err@,= (�$%) ) + n

also satis�es
� (- ;" | %) = ⌦(=3) ,

where % ⇠ @ is the distribution on labeled examples, - ⇠ % ⌦= is a
sample of size = from % , " = �(- ) is the model, and examples lie
in {0, 1}3 (so � (- )  =3). The asymptotic expression holds for any
sequence of =,3 pairs; the constant depends only on n .

To interpret this result, recall that conditional mutual informa-
tion is de�ned via two conditional entropy terms: � (- ;" | %) =
� (- | %) � � (- | ", %) . Consider an informed observer who
knows the full data distribution % (but not - ). The term � (- ;" |%)
captures how the observer’s uncertainty about - is reduced after
observing the model " . Since % is a full description of the prob-
lem instance, the term � (- | %) captures the uncertainty about
what is “unique to the data set,” such as noise or irrelevant features.
So � (- ;" | %) = ⌦(=3) means that not only must the learning
algorithm encode a constant fraction of the information it receives,
but also that a constant fraction of what it encodes is irrelevant to
the task. For one of the problems we consider, we even get that
� (- ;" | %) = (1 � > (1))� (- 0

| %), where - 0 is a subset of - of
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Figure 1: Problem setting. We aim to understand the information about the data - that is encoded in the model description" .

expected size ⌦(=) and entropy � (- 0
| %) = ⌦(=3) (see Theo-

rem 1.2). That is, a subset of examples is encoded nearly completely
in the model.

The meta-distribution @ captures the learner’s initial uncertainty
about the problem, and is essential to the result: if the exact dis-
tribution % were known to the learner �, it could simply ignore -
and write down an optimal classi�er for % as its model" . In that
case, we would have � (- ;" | %) = 0. That said, since conditional
information is an expectation over realizations of % , our result also
means that for every learner, there is a particular worst-case ? (in
the support of @) such that � (" ;- ) is large. Such worst-case bounds
were considered in a series of related papers [5, 27, 28], with which
we compare below.

Our results lower bound mutual information. The statements
do not directly shed light on whether a computationally e�cient
attacker, given access to the classi�er, could recover some or all of
the training data. Our proofs do suggest limited forms of recovery
for some adversaries, but we leave the investigation of e�cient
recovery, and attacks against speci�c learning algorithms, as areas
for future research.

We study two classes of learning tasks. The �rst is a next-symbol
prediction problem (intended to abstract language modeling tasks).
The second is the cluster labeling problem, partially introduced
in Example 1.1, where individual classes are mixtures of product
distributions over the Boolean hypercube. The exact problems are
de�ned in Section 1.2.

In all the tasks we consider, data are drawn from a mixture of
subpopulations. We consider settings where there are likely to be
⌦(=) components of the mixture distribution from which the data
set contains exactly one example. Leveraging new communication
complexity bounds, we show that ⌦(3) bits about most of these
“singleton” examples must be encoded in " for the algorithm to
perform well on average.

Returning to the cluster labeling problem in Example 1.1, recall
that the learner receives an =3-bit data set, which has entropy
⇥(=3), even conditioned on % (when d , the probability of �xing
an index, is bounded away from 1). This “remaining uncertainty”
� (- | %) is, ignoring lower-order terms, exactly the uncertainty
about the values of the irrelevant features. Showing � (- ;" | %) =
⌦(=3), then, establishes not only that the model must contain a
large amount of information about- , but also that it must encode a
large amount of information about the un�xed features, information
completely irrelevant to the classi�cation task at hand.

On a technical level, our results are related to those of Bassily,
Moran, Nachum, Shafer, and Yehudayo� [5], [27] and Nachum and
Yehudayo� [28], who study lower bounds on the mutual informa-
tion � (- ;") achievable by a PAC learner for a given class of Boolean
functionsH . Speci�cally, for the classHC⌘A4B⌘ of threshold func-
tions on [23 ], they give a learning task1 for which every proper and
consistent learning algorithm (i.e., one that is limited to outputting a
function in HC⌘A4B⌘ that labels the training data perfectly) satis�es
� (- ;" | %) = ⌦ (log3) [5, 27]. Furthermore, Nachum et al. [27] ex-
tend this result to provide a hypothesis classH with VC dimension
= over the input space [=]⇥{0, 1}3 such that learners receiving⌦(=)
samples must leak at least � (- ;" | %) = ⌦ (= · log(3 � log=)) bits
about the input via their message. The direct sum construction in
[27] is similar to our construction: they build a learning problem
out of a product of simpler problems and relate the di�culty of the
overall problem to that of the components.

Even more closely related is concurrent work of Livni and Moran
[24, Theorem 2, setting< = 2], which gives settings in which the
PAC-Bayes framework cannot yield good generalization bounds.
Their result implies that su�ciently accurate algorithms for learn-
ing thresholds over [23 ] must leak ⌦(log log3) bits of information.
(This can be extended to a lower bound of ⌦(= log log3) for learn-
ing products of thresholds from samples of size =.) It is unclear if
those techniques can yield bounds that scale linearly with 3 .

As we show in the full version of the paper [9], our results on
next-symbol prediction can be cast in terms of learning threshold
functions. As such, our results provide an alternative to those of
[6], [27], and [24]. First, they are quantitatively stronger: we give a
lower bound of (1�> (1))=3 rather than ⌦(= log3) or ⌦(= log log3).
Second, our bounds and those of [24] apply to all su�ciently ac-
curate learners, whereas those of [6] and [27] require the learner
to be proper and consistent (an incomparable assumption, in the
regimes of interest).

Implications. While the problems we describe are intentionally
simpli�ed to allow for clean theoretical analysis, they rely on prop-
erties found in natural learning problems such as clustering of ex-
amples, noise, and a �ne-grained subpopulation structure [38]. Our
results thus suggest that memorization of irrelevant information,
often observed in practice, is a fundamental property of learning
and not an artifact of particular deep learning techniques.

1The results of Bassily et al. [5], Nachum et al. [27], Nachum and Yehudayo� [28] are
formulated in terms of worst-case information leakage over a class of problems. They
imply the existence of a single hard meta-distribution @ by a minimax argument.
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Our proofs rely on an assumption of independence between sub-
populations. While this is a natural assumption for mixture models
broadly, it is a signi�cant simpli�cation for a model of natural lan-
guage or images. We believe that one could prove weaker but still
meaningful statements about memorization under relaxed versions
of the independence assumption. The crucial ingredients are that
samples contain signi�cant information about their subpopulation
alongside irrelevant information and that the learning algorithm
is unable to discern which is which. Independent subpopulations
make for easier proofs and cleaner statements, but do not seem to
be a requirement for memorization.

Our results have implications for learning algorithms that (im-
plicitly) limit memorization. One class of such algorithms aims
to compress models (for example to reduce memory usage), since
description length upper bounds the mutual information. Di�eren-
tially private algorithms [16] form another such class. It is known
that di�erential privacy implies a bound on the mutual information
� (- ;" | %) [10, 15, 26, 31]. Our results imply that such algorithms
might not be able to achieve the same accuracy as unrestricted
algorithms. In itself, that is nothing new: there is a long line of
work on di�erentially private learning [for example 8, 23], includ-
ing a number of striking separations from nonprivate algorithms
[2, 6, 11]. There are also well established attacks on statistical and
learning algorithms for high-dimensional problems (starting with
[14]; see [17] for a survey of the theory, and a recent line of work on
membership inference attacks [32] for empirical results). However,
our results show a novel aspect of the limits of private learning: in
the settings we consider, successful learners must memorize exactly
those parts of the data that are most likely to be sensitive—unique
samples from small subpopulations, including their peculiar details
(modeled here as noisy or irrelevant features).

Variations on the main result. Di�erent learning tasks exhibit
variations and re�nements of this central result. The mutual infor-
mation lower bound implies that the model itself must be large,
occupying at least ⌦(=3) bits. But for some tasks we present, there
exist n-suboptimal models needing only $ (= log(=/n) log3) bits to
write down (in the parameter regime we consider, where the prob-
lem scales with =). That is, with = samples the learning algorithm
must output a model exponentially larger than what is required
with su�cient data (or exact knowledge of % ). In particular, for
a given target accuracy level, there is a gradual drop in the size
of the model, and the information speci�c to - , that is necessary
(starting at ⇥(=03) where =0 is the minimal sample size needed for
that accuracy, and tending to $ (=0 log=0 log3) as the sample size
= grows).

Another variation of our results gives a qualitatively stronger
lower bound. For some tasks, we are able to demonstrate that entire
samples must be memorized, in the following sense:

Theorem 1.2 (Informal). There exist natural tasks @ for which every
data set - has a subset of records -( such that

• E[|-( |] = ⌦(=) and � (-( | %) = ⌦(=3), and
• any algorithm � that satisifes err@,= (�)  err@,= (�$%) ) + n
also satis�es

� (-( ;" | %) = (1 � > (1))� (-( | %) .

This statement implies � (- ;" | %) = ⌦(=3), but is a qualita-
tively di�erent statement: as the learning algorithm’s accuracy
approaches optimal, it must reveal everything about these exam-
ples in -( , at least information-theoretically. For these tasks, there
is no costless compression the learning algorithm can apply: any
reduction will increase the achievable error.

Finally, in addition to the memorization of noise or irrelevant
features, in some settingswe showhownear-optimalmodelsmay be
forced to memorize examples that are themselves entirely “useless,”
i.e. could be ignored with only a negligible loss in accuracy. That is,
not only must irrelevant details of useful examples be memorized,
but one must also memorize examples that come from very low-
probability parts of the distribution. Unlike our main results, which
hold for uniform mixtures over the subpopulations, this behavior
relies on a particular type of mixture structure and the long-tailed
distribution setup of [18]. We explain the concept and the statement
more carefully in the full version [9].

1.2 Techniques: Subpopulations, Singletons,
and Information Complexity

The learning tasks @ we consider share a basic structure: each
distribution % consists of a mixture, with coe�cients ⇡ 2 �( [# ]),
over subpopulations 9 2 [# ], each with a di�erent “component
distribution” ⇠ 9 over labeled examples. The mixture coe�cients ⇡
may be deterministic (e.g. uniform) or random; for this extended
abstract, we focus on the uniform mixture setting, with # = = (so
the number of subpopulations is the same as the sample size). The
⇠ 9 ’s are themselves sampled i.i.d. from a meta-distribution @2 .

As in [18], we look at how the learning algorithm behaves on the
subset of examples that are singletons, that is, sole representatives
(in - ) of their subpopulation. For any data set - , let -( ✓ - denote
the subset of singletons. We consider mixture weights ⇡ where -(
has size ⌦(=) with high probability. We show that for our tasks, a
successful learner must roughly satisfy � (-( ;" | %) = ⌦(3 |-( |),
where3 is the dimension of the data. Our results rely on the learning
algorithm doing almost as well as possible with the size-= sample
they are given. That requires us to adapt the distribution to =. For
any �xed distribution we consider, if the sample is large enough, our
proofs will yieldweaker guarantees. For instance, if instead of= = #
samples from the uniform mixture over subpopulations, we draw
= = 2# , then we will get fewer singletons, although we still expect
|-( | = ⌦(=). If we increase the sample size to = = ⌦(# log# ),
with high probability the data set will contain no singletons.

One-Way Information Complexity of Singletons. We show that a
good learner implies a good strategy for a related one-way commu-
nication game, the “singletons-only” game. In this game, nature gen-
erates : distributions ⇠1, . . . ,⇠: , i.i.d. from the meta-distribution
on clusters @2 , along with a uniformly random index 9⇤ 2 [:]. One
player, Alice, receives a list (G1, . . . , G: ) of labeled examples, where
G 9 ⇠ ⇠ 9 . A second player Bob, receives only the feature vector I
from a fresh draw (I,~) ⇠ ⇠ 9⇤ . Alice sends a single message" to
Bob, who predicts a label ~̂. Alice and Bob win if ~̂ = ~.

Example 1.2 (Nearest neighbor, Figure 2). For the hypercube task
corresponding to Example 1.1, let @�⇠ be the distribution from
which the {⇠ 9 } are sampled. In the :-sample singletons-only game
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Random-length 
prefix

Fixed indices !"

#" = 001010010001001
1,2,… , ℓ

ℓ + 1

011000011 0

Reflip each 
bit w.p. ,

-

001010010001001
Randomly filled in

1 0 1
001010010001001

001010010 0⇒

⇒

Fixed reference string #"

010010000 1
⇒

Add noise-
Example

Label

-

Figure 2: In hypercube labeling, each subpopulation 9 is as-
sociated with a sparse set of �xed indices. The example is
generated by �lling in the other indices randomly. The la-
bel is 9 .

for @�⇠ , there are : sets of �xed indices {(I9 ,1 9 )} 9 2 [: ] . Alice gets
a list - 0 = (G1, . . . , G: ) 2 ({0, 1}3 ): , where for every example 9 ,
we have: 88 2 I9 , G 9 (8) = 1 9 (8) and 88 8 I9 , G 9 (8) = Bernoulli(1/2).
The label, 9 , is implicit in the ordered list. Bob receives I for a
random index 9⇤ and must predict 9⇤.

Equivalently, we may view the game as a version of the nearest
neighbor problem, treating Alice’s input list (G1, . . . , G: ) as uni-
formly random in ({0, 1}3 ): , and Bob’s input as a corrupted ver-
sion of the one of the G 9 ’s. If each I9 is built by adding every index
independently with probability d , one can quickly check that gen-
erating I from the same distribution as G 9 is equivalent to setting
I = ⌫(⇠ 1�d

2
(G 9⇤ ), where ⌫(⇠ 1�d

2
is the binary symmetric channel

that �ips each bit of G 9⇤ independently with probability 1�d
2 . If Bob

were to see Alice’s entire input, his best strategy would be to guess
index of the point in (G1, ..., G: ) that is nearest to I. One can show

that he succeeds with high probability as long as d � 2
q

ln:
3 for

2 >
p
2.

This straightforward strategy requires Alice to send =3 bits. We
ask: can Bob still succeed with high probability when Alice sends
> (=3) bits? ⌅

One novel technical result bounds the information complexity
of this nearest neighbor problem.

Lemma 1.3 (Informal; see Lemma 4.1). For all:,3 2 N, 2 >
p
2, d =

2
q

ln:
3 , and n: su�ciently small, the one-way information complexity

of n: -suboptimal protocols for the :-sample singletons-only hypercube
labeling task (Example 1.2) is � (- 0;") �

1�2⌘ (n: )
22 ln 2 · :3 , where ⌘ is

the binary entropy function.

We prove this using the strong data processing inequality, di-
rectly analogous to its recent use for bounding the one-way infor-
mation complexity of the Gap-Hamming problem [22].

The proof of this result is subtle, and does not proceed by sepa-
rately bounding the information complexity of solving each of the
: subproblems implicit in the singletons-only task. The parameter
d is large enough that one can reliably detect proximity to any one

Random-length 
prefix

Fixed indices !"

#" = 001010010001001
1,2,… , ℓ

ℓ + 1

011000011 0

Reflip each 
bit w.p. ,

-

001010010001001
Randomly filled in

1 0 1
001010010001001

001010010 0⇒

⇒

Fixed reference string #"

010010000 1
⇒

Add noise-
Example

Label

-

Figure 3: In next-symbol prediction, each subpopulation 9
is associated with a reference string. Examples contain 9
paired with a noisy pre�x of random length. The label is the
next bit, which may also be corrupted.

of Alice’s inputs with a message of size 3
log: = > (3). Our proof cru-

cially uses the fact that Bob must select from among : possibilities.
It shows that his optimal strategy is to detect proximity to each of
Alice’s inputs with failure probability ⇡ 1/: , with his total failure
probability controlled by a union bound.

Next-bit Prediction and One-Shot Learning. Inspired by the empir-
ical results of [12, 13], we demonstrate a sequence prediction task
which requires memorization. Each subpopulation 9 is associated
with a �xed “reference string,” and samples from the subpopulation
are noisy pre�xes of this string.

Example 1.3 (Next-Symbol Prediction, Figure 3). In the next-
symbol prediction task the component distribution @#(% draws a
reference string 2 9 2 {0, 1}3 uniformly at random. Samples from
9 are generated by randomly picking a length ✓ 2 {0, . . . ,3 � 1},
then generating I ⇠ ⌫(⇠X/2 (2 9 (1 : ✓)) for some noise parameter
X 2 [0, 1). We pair I with a subpopulation identi�er, so the ex-
ample is ( 9, I). The label is a noisy version of the next bit: ~ ⇠

⌫(⇠X/2 (2 9 (✓ + 1)). ⌅

Unlike cluster problems, where the label is the subpopulation,
each subpopulation can be treated independently by the learning
algorithm. The core of our lower bound for this task, then, is to
prove a “one-shot” lower bound on the setting where both Alice and
Bob each receive a single example from the same subpopulation.

Lemma 1.4 (Informal; see Lemma 3.1). For su�ciently small n , any
algorithm that is n-suboptimal on the (noiseless) one-shot next-symbol
prediction task satis�es

� (- ;") �
3 + 1
2

(1 � ⌘ (2n)) . (2)

Note that 3+12 is the average length of Alice’s input and that
the log3 term arises from uncertainty about that length, which
Alice need not convey. The proof proceeds by establishing that
Bob’s correctness is tied to his ability to output Alice’s relevant bit.
For any �xed length of Alice’s input, the problem is similar to a
communication complexity problem called Augmented Indexing.
We adapt the approach of a well-known elementary proof [4, 19].
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1.3 Related Concepts
Our results are closely related to a number of other lines of work in
machine learning. First, as discussed in the introduction, one can
view our results as a signi�cant strengthening of recent results on
label memorization [18] and information-theoretic lower bounds
for learning thresholds [5, 24, 27].

Representation Complexity. Another closely related concept is
probabilistic representation complexity [7, 19]. For given error pa-
rameter n , the representation complexity PRepn (⇠) of a class ⇠ of
concepts (functions from Z to Y) is roughly the smallest number
of bits needed to represent a hypothesis that approximates (up
to expected error n) a concept 2 2 ⇠ on an example distribution
%I 2 �(Z), in the worst case over pairs (2, %I).2 This complexity
measure characterizes the sample complexity of “pure” di�erentially
private learners for ⇠ [7].

Interpreted in our setting, representation complexity aims to
understand the length of the message " , when the task @ is a
distribution over pairs (2, %I) (that is, where the data distribution
% consists of examples drawn from %I and labeled with 2). By a
minimax argument, one can show that PRepn (⇠) lower bounds
not only"’s length, but also the information it contains about % :
one can �nd @ such that � (% ;") is at least PRepn (⇠). This does
imply that � (- ;") must be large, but it says nothing about the
information in" that is speci�c to a particular sample - : in fact,
the bound is saturated by learners that get enough data to construct
a hypothesis that is just a function of % , so that � (- ;" | %) is small.

The bounds we prove here are qualitatively stronger. We give
settings where the analogue of representation complexity is small
(namely, a learner that knows % can construct a model of size about
= log(=/n) log3), but where a learner which only gets a training
sample must write down a very large model (⌦(=3) bits) to do well.

Time-Space Tradeo�s for Learning. A recent line of work estab-
lishes time-space tradeo�s for learning: problems where any learn-
ing algorithm requires either a large memory or a large number of
samples (see [21] for a summary of results). The prime example is
parity learning over 3 bits, which is shown to require either ⌦(32)
bits of memory or exponentially many samples. The straightfor-
ward algorithm for parity learning requires $ (3) samples, so this
result shows that any feasible algorithm must store, up to constant
factors, as many bits as are required to store the dataset [30].

Our work sets a speci�c number of samples under which learning
is feasible and, for that number of samples, establishes an informa-
tion lower bound on the output of the algorithm. This implies not
only a communication lower bound but also one on memory usage:
the algorithm must store the model immediately prior to releasing
it. Some of our tasks exhibit the property that, with additional data,
an algorithm can output a substantially smaller model. These learn-
ing tasks might exhibit a time-space tradeo�, although not one as
dramatic as the requirement of exponentially many samples. Intu-
itively, the underlying concept in parity learning must be learned
“all at once.” Our problem instances can be learned “piece-by-piece,”
as the algorithm learns sections independently of the rest of the
sample.

2See [19] for an exact de�nition.

Information Bottlenecks. Our work �ts into the broad category
of information bottleneck results in information theory [33]. An
information bottleneck is a compression scheme for extracting from
a random variable + all the information relevant for the estima-
tion of another random variable, while discarding all irrelevant
information in + . In our setting, one may take + = - to be the
data set, and, to be the true distribution % (where the loss of
a model is its misclassi�cation error). This form of information
bottleneck was recently described in general terms [1]. Our results
lower bound the extent to which nontrivial compression is possible,
showing that the Markov chain % �- �" must in particular satisfy
� (- ;") � � (" ; %).

Information bottlenecks have been put forward as a theory of
how implicit feature representations evolve during training [34].
That line of work studies how the prediction process transforms
information from a test datum during prediction (i.e. as one moves
through layers of a neural network), and is thus distinct from our
study of how learning algorithms are able to extract information
from training data sets.

1.4 Organization of This Extended Abstract
In Section 2, we state and discuss the main reduction in the paper,
connecting the learning task to the associated communication game.
In Sections 3 and 4 we state and prove the information complexity
lower bounds for our two types of learning problems. Appendix A
contains additional details related to the reduction lemma.

The full version of the paper [9] describes the general setup
(beyond uniform mixtures) and presents detailed theorems and
the additional necessary analysis of the learning tasks. It presents
additional results, including lower bounds for threshold learning
and implications for di�erentially-private algorithms.

2 CENTRAL REDUCTION
To connect our information complexity lower bounds to the ma-
chine learning setting, where data are drawn i.i.d., we show that
any learning algorithm for the standard setting implies a sequence
of protocols for the task-speci�c communication games (one for
each possible number of singletons). If the learning algorithm is
near-optimal, then this sequence must also be near-optimal on av-
erage. For simplicity we focus on the setting of a uniform mixture
over subpopulations and set the number of samples equal to the
number of subpopulations, so = = # . In this setting, we expect
approximately =

4 singletons, and with high probability will receive
at least =3 of them. The proof of the reduction, and the more general
non-uniform statement, can be found in the full version of the paper
[9].

Before stating the result, let us give names to the standard learn-
ing task and the singletons-only communication game.

De�nition 2.1. We call our standard learning task Learn(=,@2 ). A
problem instance % is generated by independently drawing, for each
subpopulation 9 2 [# ], a component distribution ⇠ 9 ⇠ @2 . The
data set of = i.i.d. samples is generated by, for each sample, picking
a subpopulation 9 uniformly at random and sampling (I8 ,~8 ) ⇠

⇠ 9 . One test sample (I,~) is drawn independently from the same
process, and the model predicts a label based on I. ⌅
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De�nition 2.2. We denote by Singletons(:,@2 ) the singletons-
only communication game. In this task, : component distributions
⇠ 9 are sampled i.i.d. from @2 . Alice receives a tuple of : data points
((I1,~1), . . . , (I: ,~: )), where for each 9 we draw (I 9 ,~ 9 ) ⇠ ⇠ 9 .
One test sample is drawn by picking a 9⇤ uniformly at random and
sampling (I,~) ⇠ ⇠ 9⇤ , and Bob predicts a label based on I alone. ⌅

Now let us state the reduction. Recall that for each task there is
a Bayes-optimal learner that minimizes misclassi�cation error and
that we say an algorithm is n-suboptimal if its error is within n of
the optimal error.

Lemma 2.1 (Central Reduction, Uniform Setting). Suppose we have
the following lower bound for every : : any algorithm �: that is n: -
suboptimal for Singletons(:,@2 ) satis�es

� (- 0;�: (- 0
)) � : · 5 (n: ),

for some convex and non-increasing function 5 (·). Then for any algo-
rithm � that is n-suboptimal on Learn(=,@2 ),

� (-( ;" |  ) �
=

3
· 5

⇣
3n + q1 (@2 ,�) + q2 (@2 )

⌘
,

where -( is the subset of singletons and q1 (@2 ,�) and q2 (@2 ) are
task-speci�c error terms de�ned in Appendix A.

Informally, the error terms quantify by how much an algorithm
can beat the optimal error on a subset of the probability space
by focusing on that setting. For example, q1 characterizes this
quantity for the event that the test sample is not from a singleton
subpopulation. In the full version of the paper [9], we show that
q1 (@�⇠ ,�) and q2 (@�⇠ ), for the hypercube labeling task, are both
$ (=�U ) for some U > 0 and any algorithm �. Similarly we show
for next-symbol prediction that q1 (@#(% ,�),q2 (@#(% )  0 for all
algorithms �.

As we saw above, the functions 5 (·) that show up in our lower
bounds are simple, depending on n through a term like 1 � ⌘(n),
where ⌘(·) is the binary entropy function.

3 NEXT-SYMBOL PREDICTION
We now present the information complexity lower bound for Next-
Symbol Prediction. Recall from Example 1.3 that each data point
comes with a subpopulation identi�er. This fact allows us to focus
on the “one-shot” communication game, where Alice receives a
single example. The lower bound for Singletons(:,@#(% ) is then
exactly : times the lower bound for Singletons(1,@#(% ).

The core of this proof is based on an existing lower bound [4, 19]
for Augmented Index, a well-known communication complexity
task.

Lemma 3.1. Fix a noise level X 2 [0, 1). For any n1 < (1�X)2
4 , any

learning algorithm � that is n1-suboptimal on Singletons(1,@#(% )
satis�es

� (- ;") �
3 + 1
2

✓
1 � ⌘

✓
2n1

(1 � X)2

◆◆
.

P����. Let random variable !� be the length of Alice’s input.
Since we know � (- ) = � (- , !�) = � (!�) + � (- | !�) = log3 +

3+1
2 , to lower bound the mutual information we must provide an

upper bound on � (- | ").

De�ne ⌧ to be the “good event” that (i) Alice’s input is at least
as long as Bob’s and (ii) the relevant bits were not rerandomized.⌧
happens with probability 1

2 ·
3+1
3 (1 � X)2. Conditioned on ⌧ , the

optimal algorithm is correct and, conditioned on ⌧̄ , any algorithm
has accuracy 1

2 . The main idea of the proof is that, conditioned on
⌧ , “correctness” and “outputting Alice’s data” are the same event.

We change the additive error n1 into a multiplicative error W . Let
W

def= Pr[� errs | ⌧]. We can write

Pr[� errs] = Pr[� errs | ⌧] Pr[⌧] + Pr[� errs | ⌧̄] (1 � Pr[⌧])

=
1
2
�
Pr[⌧]
2

(1 � 2W) ,

and Pr[�$%) errs] = 1
2 �

Pr[⌧ ]

2 . By the de�nition of suboptimality
we have n1 = Pr[� errs]�Pr[�$%) errs] = Pr[⌧] ·W . Since Pr[⌧] �
1
2 · (1 � X)2, we have W 

2n1
(1�X)2 , which implies W 

1
2 .

Let random variables - and / denote Alice and Bob’s inputs,
respectively, and write !� and !⌫ for the lengths of their inputs.
Since !� is �xed given - , we can apply the chain rule for entropy
and bound

� (- | ") = � (- , !� | ") = � (- | ", !�) + � (!� | ")

 E
✓
[� (- | ", !� = ✓)] + log3 .

Wewill �x ✓ and bound� (- | ", !� = ✓). De�neW✓ to be Pr[� errs |
⌧, !� = ✓]. Assume W✓  1

2 without loss of generality; for any algo-
rithm with a W✓ > 1

2 there is one with the same information cost
that achieves lower error by reversing the decision.

Recall that ⌧ implies neither Alice nor Bob’s !⌫ + 1-th bits are
rerandomized, so Bob is correct if and only if he outputs Alice’s
!⌫ + 1-th bit. We now show that, if Bob can output Alice’s bits,
her message must contain a lot of information about her input.
Crucially, conditioned on !� = ✓ , the good event ⌧ is independent
of Alice’s input - , since !⌫ ? !� and Alice’s string is uniformly
random whether or not any bit is �ipped. So � (- | ", !� = ✓) =
� (- | ",⌧, !� = ✓). Below, in (3), we apply the chain rule for
entropy over Alice’s bits, including her label. In (4) we replace
- ✓⌫1 with / ✓⌫1 , which is a noisy version and thus can only increase
uncertainty about -✓⌫+1.

� (- | ",⌧, !� = ✓) =
✓’

✓⌫=0
� (-✓⌫+1 | - ✓⌫1 ,",⌧, !� = ✓) (3)



✓’
✓⌫=0

� (-✓⌫+1 | / ✓⌫1 ,",⌧, !� = ✓). (4)

Now we relate the index ✓⌫ to the random variable !⌫ , the length
of Bob’s input, and observe that Pr[!⌫ = ✓⌫ | ⌧, !� = ✓] = 1

✓+1 ,
since event ⌧ requires that !� � !⌫ . So we have

� (- | ", !� = ✓)  (✓ + 1)
✓�1’
✓⌫=0

�
Pr[!⌫ = ✓⌫ | ⌧, !� = ✓]

⇥ � (-✓⌫+1 | / ✓⌫1 ,",⌧, !� = ✓)
�

= (✓ + 1) · � (-!⌫+1 | / ,",⌧, !� = ✓)

 (✓ + 1) · ⌘(W✓ ),
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applying Fano’s inequality and using the assumption that W✓  1
2 ,

since this is exactly Bob’s task and, conditioned on ⌧ and !� = ✓ ,
he fails with probability at most W✓ .

By rewriting the expectation, we can apply Jensen’s inequality
and push the expectation inside the binary entropy function, getting

� (- | ", !�)  E[✓ + 1] · ⌘
✓
E[(✓ + 1)W✓ ]
E[✓ + 1]

◆

=
3 + 1
2

· ⌘

✓
2 · E[(✓ + 1)W✓ ]

3 + 1

◆

=
3 + 1
2

· ⌘(W).

The last equality follows with a few lines of algebra from the facts
that W · Pr[⌧] = E✓ [W✓ Pr[⌧ | !� = ✓]], Pr[⌧] = 3+1

23 · (1� X)2, and
Pr[⌧ | !� = ✓] = ✓+1

3 · (1 � X)2. Using W 
2n1

(1�X)2 gives us

� (- | ") 
3 + 1
2

· ⌘

✓
2n1

(1 � X)2

◆
+ log3

which, combined with � (- ) = 3+1
2 + log3 , �nishes the proof. ⇤

4 HYPERCUBE LEARNING
We turn to the lower bound for Singletons(:,@�⇠ ), the communica-
tion game associated with Hypercube Labeling. As discussed above
in Example 1.2, Singletons(:,@�⇠ ) is equivalent to the following
communication game, which removes the need to analyze the set
of �xed indices.

De�nition 4.1 (Nearest of : Neighbors). Alice receives : strings
G1, . . . , G: 2 {0, 1}3 , drawn i.i.d. from the uniform distribution. Bob
receives a string ~ ⇠ ⌫(⇠ 1�d

2
(G 9 ) for some index 9 2 [:], also

chosen uniformly at random. They succeed if Bob outputs 9 . ⌅

Lemma 4.1. Set d = 2
p
ln=
p
3

for any = > 1 and constant 2 >
p
2. For

every :  =, any one-way communication protocol for Nearest of :
Neighbors with error at most n: 

1
10 satis�es

� (- ;") �
:3

22 ln 2
·
log:
log=

· (1 � 2⌘(n: )) .

Note that, because of the log: factor, this does not exactly match
Lemma 2.1, which asks for a lower bound of the form : · 5 (n) for
convex and non-increasing 5 (·). In the full version of this paper
[9] we circumvent this issue by using the fact that the number of
singletons will concentrate about its mean, making log:

log= roughly
constant.

The proof of Lemma 4.1 is adapted from one by Hadar et al. [22]
and relies on the following strong data processing inequality for
binary symmetric channels.

Lemma 4.2 (SDPI). Suppose we have a Markov chain " � - � .
where - ⇠ Uniform({0, 1}3 ) and . ⇠ BSC 1�d

2
(- ). Then � (" ;. ) 

d2� (" ;- ).

P���� �� L���� 4.1. Since Bob, with access to" and test sam-
ple / , can guess the index � 2' [:] with error n: , we have via

Fano’s inequality that

� (� ;",/ ) = � (� ) � � (� | ",/ )

� log: � (n: log: + ⌘(n: ))
� (1 � 2⌘(n: )) log:, (5)

since for all n: 
1
2 , ⌘(n: ) � n: . For this lower bound to be non-

trivial, we require ⌘(n: ) < 1
2 , which is satis�ed by taking n: 

1
10 . We now upper bound � (� ;",/ ). Let % refer to the joint and
marginal distributions de�ned by the learning task. We apply the
“radius” property ofmutual information and take& to be the product
of marginals over" and / : &",/ = %" ⇥ %/ :

� (� ;",/ ) = inf
&",/ 2�( (",/ ))

E
9

h
⇡ !

⇣
%",/ | � =9 k&",/

⌘i

 E
9

h
⇡ !

⇣
%",/ | � =9 k%" ⇥ %/

⌘i
.

Next, note that" ? � and / ? � , so we have

E
9

h
⇡ !

�
%",/ | � =9 k%" ⇥ %/

� i

= E
9

h
⇡ !

⇣
%",/ | � =9 k%" | � =9 ⇥ %/ | � =9

⌘i
= E
9
[� (" ;/ | � = 9)] .

Now we apply the SDPI. For any �xed 9 ," depends on the test
sample / only through data point - 9 , since / is a noisy version of
- 9 . We can marginalize out {-8 }8<9 and apply Lemma 4.2:

E
9
[� (" ;/ | � = 9)]  E

9

⇥
d2� (" ;- 9 | � = 9)

⇤
.

But for any index 8 , the mutual information between" and -8 is
independent of � ; it depends only on Alice’s protocol. So

E
9

⇥
d2� (" ;- 9 | � = 9)

⇤
= E
8

⇥
d2� (" ;-8 )

⇤
and, combining these steps and writing out the expectation, we
have

� (� ;",/ )  E
8

⇥
d2� (" ;-8 )

⇤
=
d2

:

:’
8=1

� (" ;-8 ). (6)

Applying the chain rule for mutual information and the inde-
pendence of the {-8 }, we get’

8

� (" ;-8 ) =
’
8

� (-8 ) � � (-8 | ")

=
’
8

� (-8 | -
8�1
1 ) � � (-8 | ")



’
8

� (-8 | -
8�1
1 ) � � (-8 | ",- 8�11 )

= � (" ;- ) .

Therefore, combining Equations (5) and (6),

(1 � 2⌘(n: )) log:  � (� ;",/ ) 
d2

:
� (" ;- ).

Plugging in d = 2
p
ln=
p
3

and changing the natural log to base 2, we

see that d
2

: = 22 ln 2·log=
:3 . Rearranging, we get a lower bound on

� (- ;"). ⇤
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A TASK-SPECIFIC ERROR TERMS
Our Lemma 2.1 involves two error terms: q1 (@2 ,�) and q2 (@2 ). For
“natural” algorithms these termswill be negative, but in general they
may be positive. In the full version of the paper [9], we show that
these terms for @�⇠ are bounded above by =�U for some constant
U > 0 and are bounded above by 0 for @#(% .

Recall�$%) , the Bayes-optimal algorithm for Learn(=,@). Let ⇢1
be the event that the test sample comes from a “singleton subpopu-
lation,” that is, a subpopulation with exactly one representative in
the data set. q1 (@2 ,�) captures how well� performs above optimal
when the test sample comes from a non-singleton subpopulation:

q1 (@2 ,�)
def= 3 · Pr[⇢̄1]

�
Pr[�$%) errs on Learn(=,@2 ) | ⇢̄1]

� Pr[� errs on Learn(=,@2 ) | ⇢̄1]
�

The leading factor of 3 comes from the fact that we are working
with the uniform mixture, and we deal with it in a slightly di�erent
manner in the full version [9].

For the second term, let random variable  be the number of
singletons in the data set. De�ne the following di�erence term:

�:
def= Pr[�$%) errs on Learn(=,@2 ) | ⇢1, = :]

� inf
�0

Pr[�0 errs on Singletons(:,@2 )] .

Then q2 (@2 ) is de�ned as an average over : :

q2 (@2 )
def= 3

#’
:=1

Pr[ = : | ⇢1] · �: .
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