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Abstract. This paper considers the interplay between semidefinite pro-
gramming, matrix rank, and graph coloring. Karger, Motwani, and
Sudan [10] give a vector program for which a coloring of the graph can be
encoded as a semidefinite matrix of low rank. By complementary slack-
ness conditions of semidefinite programming, if an optimal dual solution
has sufficiently high rank, any optimal primal solution must have low
rank. We attempt to characterize graphs for which we can show that the
corresponding dual optimal solution must have sufficiently high rank. In
the case of the original Karger, Motwani, and Sudan vector program, we
show that any graph which is a k-tree has sufficiently high dual rank,
and we can extract the coloring from the corresponding low-rank primal
solution. We can also show that if the graph is not uniquely colorable,
then no sufficiently high rank dual optimal solution can exist. This allows
us to completely characterize the planar graphs for which dual optimal
solutions have sufficiently high dual rank, since it is known that the
uniquely colorable planar graphs are precisely the planar 3-trees.

We then modify the semidefinite program to have an objective func-
tion with costs, and explore when we can create a cost function whose
optimal dual solution has sufficiently high rank. We show that it is always
possible to construct such a cost function given the graph coloring. The
construction of the cost function gives rise to a heuristic for graph color-
ing which we show works well in the case of planar graphs; we enumerated
all maximal planar graphs with a K4 of up to 14 vertices, and the heuris-
tics successfully colored 99.75% of them.

Our research was motivated by the Colin de Verdiere graph invari-
ant [5] (and a corresponding conjecture of Colin de Verdiére), in which
matrices that have some similarities to the dual feasible matrices must
have high rank in the case that graphs are of a certain type; for instance,
planar graphs have rank that would imply the 4-colorability of the pri-
mal solution. We explore the connection between the conjecture and the
rank of the dual solutions.

Introduction

®

Check for
updates

Given an undirected graph G = (V, E), a coloring of G is an assignment of
colors to the vertices V' such that for each edge (i,7) € E, ¢ and j receive
different colors. The chromatic number of G, denoted x(G), is the minimum
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number of colors used such that a coloring of G exists. The clique number of
a graph G, denoted w(G), is the size of the largest clique in the graph; a set
S C V of vertices is a clique if for every distinct pair 4,5 € S, (i,5) € E. It is
easy to see that w(G) < x(G). Graph colorings have been intensively studied
for over a century. One of the most well-known theorems of graph theory, the
four-color theorem, states that four colors suffice to color any planar graph G;
the problem of four-coloring a planar graph can be traced back to the 1850s, and
the computer-assisted proof of the four-color theorem by Appel and Haken [2,3]
is considered a landmark in graph theory. See Jensen and Toft [9] and Molloy
and Reed [13] for book-length treatments of graph coloring in general. Fritsch
and Fritsch [7], Ore [14], and Wilson [17] provide book-length treatments of the
four-color theorem in particular, and Robertson, Sanders, Seymour, and Thomas
[15] give a simplified computer-assisted proof of the four-color theorem.

This paper considers the use of semidefinite programming in graph coloring.
The connection between semidefinite programming and graph coloring was ini-
tiated by Lovéasz [12], who introduced the Lovész theta function, #(G), which
is computable via semidefinite programming; G is the complement of graph G,
in which all edges of G are replaced by nonedges and vice versa. Lovéasz showed
that w(G) < 0(G) < x(G); Knuth [11] gives a helpful overview of this result.

Another use of semidefinite programming for graph coloring was introduced
by Karger, Motwani, and Sudan [10] (KMS), who showed how to color k-colorable
graphs with O(n!'=3/(k+1) logl/ 2 n) colors in polynomial time using semidefinite
programming, where n is the number of vertices in the graph. A starting point
of the algorithm of KMS is the following vector program, which KMS called the
strict vector chromatic number; the vector program can be solved via semidefinite
programming:

minimize «
subject to ;- v; = o, V(i,4) € E,
(SVCN-P) v;-v; =1, VieV,

v; ER™,  VieV.

KMS observe that any k-colorable graph has a feasible solution to the vector
program with o = —1/(k — 1): let v; = (1,0,...,0) € R*~! and inductively find
v; € RF "1 for 1 < i < k — 1 by setting v;(j) = 0 for j > i and otherwise solving
the system of equations given by v;-v; = —1/(k—1) for 1 <1 <i—1and v;-v; = 1.
Finally, let vy, = — 25;11 v;, then assign one color to each of the vectors v;. This
guarantees that each vector v; has unit length (so v; - v; = 1) and that for any
edge (i,j) € E, v;-v; = —1/(k—1). It is important for the following discussion to
observe that this solution lies in a (k — 1)-dimensional space. KMS also observe
that there is a natural connection between the strict vector chromatic number
and the Lovasz theta function. In particular, for the solution a to the vector
program above, it is possible to show that o = 1/(1 — 6(G)) (see [10, Theorem
8.2]). If the graph G has a k-clique K} and is k-colorable, then by Lovdsz’s

theorem, (G) = k, and so the feasible solution with & = —1/(k — 1) is an
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optimal solution. It is also possible to argue directly that a graph with a Kj
must have « > —1/(k — 1), again proving that the feasible solution given above
is an optimal one. We will call the feasible solution above (in which the vectors
are recursively constructed) the reference solution.

The goal of this paper is to explore situations in which the reference solution
is the unique optimal solution of a semidefinite program (SDP), either the SDP
corresponding to the strict vector chromatic number given above, or another that
we will give shortly. To do this, we will use complementary slackness conditions
for semidefinite programs. Consider the primal and dual SDPs shown in standard
form below, where the constraint that X is a positive semidefinite matrix is
represented by X > 0, and we take the outer product of matrices, so that C'e X,
for instance, denotes Y0_, Zﬁ:l CijTij-

minimize C e X maximize b7y
subject to A; @ X =b; fori=1,...,m, subjecttoS=0C—>", y A,
(P) X =0, (D) S >0,

X € RExL, S e XL,

Duality theory for semidefinite programs (e.g. Alizadeh [1]) shows that for any
feasible primal solution X and any feasible dual solution y, C e X > bTy. Fur-
thermore if C' ® X = bTy, so that the solutions are optimal, then it must be
the case that rank(X) + rank(S) < ¢, and XS = 0, where we refer to rank(X)
and rank(S) as the primal rank and dual rank, respectively. Thus if we want to
show that any optimal primal solution has rank at most r, it suffices to show the
existence of an optimal dual solution of rank at least £ — r. Turning back to the
strict vector chromatic number vector program, the corresponding dual vector
program is

maximize — >, u;-u;

subject to Z#j wi - u; > 1,

(SVCN-D) u; - u; =0, V(i,j) ¢ E,i#j
u; € R™, Vie V.

Thus, given a k-colorable graph G with a Ky, if we can show a dual feasible
solution of value —1/(k — 1) and rank n — k + 1, then we know that the primal
solution must have rank at most & — 1; in the cases we can show this, we can
also show that the reference solution is the unique primal optimal solution. We
will for shorthand say that there is an optimal dual solution of sufficiently high
rank.

Our first result is to partially characterize the set of graphs for which the
optimal solution to the strict vector chromatic number vector program is the
reference solution. In particular, we can show that if the graph is a (k — 1)-tree,
then the reference solution is the unique optimal solution to the SDP. In the
opposite direction, if the graph is not uniquely colorable, then the dual does not
have sufficiently high rank, and there exist optimal primal solutions that are not
the reference solution and are at least k-dimensional. A (k — 1)-tree is a graph
constructed by starting with a complete graph on k vertices. We then iteratively
add vertices v; for each new vertex v, we add k — 1 edges from v to previously



390 R. Mirka et al.

added vertices such that v together with these k — 1 neighbors form a clique.
A E-colorable graph is uniquely colorable if it has only one possible coloring
up to a permutation of the colors. The k-tree graphs are easily shown to be
uniquely colorable. In the case of planar graphs with a K, these results imply
a complete characterization of the graphs for which the optimal solution is the
reference solution, since it is known that the uniquely 4-colorable planar graphs
are exactly the planar 3-trees, also known as the Apollonian networks [6]. We
argue that it is not surprising that graphs are not uniquely k-colorable do not
have the reference solution as the sole optimal solution; we show that one can
find a convex combination of the two different reference solutions corresponding
to the two different colorings that gives an optimal SDP solution of rank higher
than k& — 1, and clearly the convex combination is also feasible for the SDP.

To get around the issue of unique colorability, we instead look for minimum-
cost feasible solutions to the SDP above. That is, given a cost matrix C, we look
to find optimal solutions to the primal SDP

minimize C o X
subject to X;; = —1/(k—1),Y(i,j) € E,
(cpP) Xii=1, VievV,

X >0.

The corresponding dual SDP is

maximize Y. Y — 127 Doeep Ze
subject to S =C — " YiEii — Y cp Ze Fe,
(CD) S =0,

where E;; is the matrix with a 1 at position i and 0 elsewhere and for e = (3, j),
E. is the matrix with 1 at positions ij and ji and 0 elsewhere. Once again, the
reference solution is a feasible solution to the primal SDP. The goal now is to
find a cost function C' such that there is an optimal dual solution of sufficiently
high rank (here rank n — k + 1), so that the reference solution is the unique
optimal solution to the primal SDP. We show that it is always possible to find a
cost function C such that the dual has sufficiently high rank. Our construction
of C' depends on the coloring of the graph; however, we do show that such a C'
exists.

Furthermore, the construction of C' suggests a heuristic for finding a coloring
of the graph, and we show that the heuristic works well. We enumerated all
maximal planar graphs of up to 14 vertices containing a K4. The heuristics suc-
cessfully colored all graphs of up to 11 vertices, and at least 99.75% of all graphs
on 12, 13, and 14 vertices. The heuristics involve repeatedly solving semidefinite
programs, and thus are not practical for large graphs (although they still run in
polynomial time). However, we view them as a proof of concept that it might be
possible to use our framework to reliably 4-color planar graphs.

Our interest in this direction of research was prompted by the Colin de
Verdiere invariant [5] (see also [16] for a useful survey of the invariant). A gen-
eralized Laplacian L = (¢;;) of graph G is a matrix such that the entries ¢;; < 0
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when (4,j) € E, and ¢;; = 0 when (¢,7) ¢ E. The Colin de Verdiére invariant,
1(@), is defined as follows.

Definition 1. The Colin de Verdiére invariant u(G) is the largest corank of a
generalized Laplacian L of G such that:

1. L has exactly one negative eigenvalue of multiplicity one;
2. there is no nonzero matriz X = (x;5) such that LX = 0 and such that x;; =0
whenever i = j or £;; # 0.

Colin de Verdiére shows that u(G) < 3 if and only if G is planar; in other
words, if G is planar any generalized Laplacian of G with exactly one negative
eigenvalue of multiplicity 1 will have rank at least n — 3 (modulo the second
condition on the invariant, which we will ignore for the moment). Other results
show that G is outerplanar if and only if u(G) < 2, and G is a collection of paths
if and only if u(G) < 1. Colin de Verdiere [5] conjectures that x(G) < u(G) + 1;
this result is known to hold for u(G) < 4. We note that the part of the dual
matrix — > ., i B —> eck Zele is indeed a generalized Laplacian L of a planar
graph when the z, > 0 for all e € E, and that if G is connected, then the y; can
be adjusted so that this matrix has a single negative eigenvalue of multiplicity
one. Thus this part of the matrix, under these conditions, must have sufficiently
high rank, as desired to verify that the optimal primal solution is the reference
solution. This would show that if the graph G has a clique on u(G) + 1 vertices,
then indeed x(G) = u(G) + 1. So, for example, this would prove that any planar
graph with a K4 can be four-colored, leading to a non-computer assisted proof of
the four-color theorem. However, we do not know how to find the corresponding
cost matrix C' or show that the dual S we find is optimal. Still, we view our
heuristics as a step towards finding a way to construct the cost matrix C' without
knowledge of the coloring, and without using the proofs of the four-color theorem
that have been developed thus far.

The rest of this paper is structured as follows. In Sect. 2, we give some pre-
liminary results on semidefinite programming. In Sect. 3, we show our results for
the strict vector chromatic number SDP, and show that (k — 1)-trees imply dual
solutions of sufficiently high rank, while graphs that are not uniquely colorable
imply that such dual solutions cannot exist. In Sect. 4, we turn to the SDP with
cost matrix C, and show that for any k-colorable graph with a k-clique, a cost
matrix C' exists that gives rise to a dual of sufficiently high rank. In Sect. 5, we
give two heuristics for coloring planar graphs based on our construction of the
cost matrix C, and show a case where the heuristic fails to find a 4-coloring of a
planar graph. We give some open questions in Sect. 6. For space reasons, many
proofs are omitted.

2 Preliminaries

In this section, we recall some basic facts about semidefinite matrices and
semidefinite programs that we will use in subsequent sections.
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Recall the primal and dual semidefinite programs (P) and (D) from the
introduction. We always have weak duality for semidefinite programs, so that
the following holds.

Fact 1. Given any feasible X for (P) and y for (D), C ¢ X > bTy.

Thus if we can produce a feasible X for (P) and a feasible y for (D) such that
C e X =Ty, then X must be optimal for (P) and y optimal for (D).

The following is also known, and is the semidefinite programming version of
complementary slackness conditions for linear programming.

Fact 2. [1, Theorem 2.10, Corollary 2.11] For optimal X for (P) and y for
(D), XS =0 and rank(X) 4+ rank(S) < £.

Semidefinite programs and vector programs (such as the strict vector chro-
matic vector program) are equivalent because a symmetric X € %" is positive
semidefinite if and only if X = QDQT for a real matrix Q € R"*™ and diagonal
matrix D in which the entries of D are the eigenvalues of X, and the eigen-
values are all nonnegative. We can then consider D'/2, the diagonal matrix in
which each diagonal entry is the square root of the corresponding entry of D.
Then X = (QDY2)(QDY*)T. If we let v; € R™ be the ith row of QD'/2, then
Z;; = v; - v;, and similarly, given the vectors v;, we can construct a semidefinite
matrix X with z;; = v; - v;. We also make the following observation based on
this decomposition.

Observation 1. Given a semidefinite matriz X = QDQT € R"*", rank(X) =
d if and only if the vectors v; € R™ with v; the ith row of QD2 are supported
on just d coordinates.

3 The Strict Vector Chromatic Number SDP

Recall the strict vector chromatic SDP given in the introduction, labeled (SVCN-
P). In what follows we will let the matrix X = (X;;) be the SDP matrix such
that X;; = v; -v; and S = (S;;) be the SDP matrix related to the dual solution
(SVCN-D) such that S;; = u; - u;.

Lemma 1. Given an optimal primal solution X to (SVCN-P) and optimal dual
solution S to (SVCN-D), we have that rank(X) + rank(S) < n.

Our main result for this section is about graphs that are (k — 1)-trees.

Definition 2. A (k — 1)-tree with n vertices is an undirected graph constructed
by beginning with the complete graph on k vertices and repeatedly adding vertices
i such a way that each new vertex, v, has k — 1 neighbors that, together with v,
form a k-clique.
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An easy inductive argument shows that these graphs are k-colorable. Also,
(k — 1)-trees are known to be uniquely k-colorable, where uniquely colorable
means every coloring produces that same vertex partitioning. Once k colors are
assigned to the initial complete graph with k vertices, the color of each new
vertex is uniquely determined by its & — 1 neighbors. This partitioning into
color classes is unique up to permuting the colors. Note that by construction, a
(k — 1)-tree contains a Kj. By discussion in the introduction, the optimal value
of (SVCN-P) for a (k — 1)-tree will be exactly —1/(k — 1).

Our goal is to show there is a feasible solution to the dual (SVCN-D) with
high rank. In particular, given a (k—1)-tree with n vertices, we show the existence
of a dual solution with rank at least n — k + 1. This ensures that any primal
solution has rank at most k—1; we show that the reference solution is the unique
optimal primal solution. This is formalized in the following theorem.

Theorem 1. Given a (k — 1)-tree G with n vertices, there is an optimal dual
solution S to (SVCN-D) with rank at least n—k+1, and thus any optimal primal
solution X to (SVCN-P) has rank at most k — 1.

We subsequently prove that the reference solution is indeed the unique opti-
mal solution in this case.

Theorem 2. The reference solution is the unique optimal primal solution (up

to rotation) for a (k — 1)-tree G = (V, E).

To prove Theorem 1, we need a number of supporting lemmas. We begin
with the following.

Lemma 2. Let tri(G) denote the number of triangles in a (k—1)-tree, G. Then,
for a (k —1)-tree G with n vertices,

B@)] = (@n -k 1)
“ﬂG%:@n—%XZ—D®—2X o)

Consider a (k — 1)-tree G with n vertices. For v € V' we denote the neigh-
borhood of v by N(v) = {u : (u,v) € E}. We define the following matrix S(G)
which may be referred to as S if G is clear from context.

IN(@)| — (k—2)
k(k—1)(n—Fk+1)

1=7

S(G)y; = INONONG)| - (k=3) .
@ Rk—Dn—kt1)  GDEE

0 (i,4) ¢ E,i # 3.

We will show that S(G) is an optimal dual solution with rank n — k + 1. First,
we show S(G) is a feasible solution with help from the following lemma.
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Lemma 3. For a (k — 1)-tree G with n vertices, S(G) is positive semidefinite.

Proof. Observe that it suffices to show S'(G) = k(k — 1)(n — k + 1)S(G) is
positive semidefinite (PSD) since k(k—1)(n—k-+1) > 0 for n > k. We proceed by
induction. First consider (k—1)-trees with k vertices. There is only one, G = K.
Furthermore, S’(K}) is equal to the all-ones matrix which has eigenvalues k and
0 with multiplicity £ — 1 and thus is PSD.

Now assume there is some integer n such that for every (k — 1)-tree, G, with
at most n vertices, S’'(G) is PSD. Consider a (k — 1)-tree G with n + 1 vertices.
Since it is a (k — 1)-tree, it can be constructed from some smaller (k — 1)-tree G’
with n vertices by adding a vertex v and (k — 1) edges that form a k clique with
the k& — 1 neighbors. By assumption, S’(G’) is PSD. Let I be the set of indices
of the k — 1 neighbors of v. Then we observe that S’(G) = T + v,41v]l | where

and
‘ 1 ielu{n+1}
VUpt1() = .
#1(0) {0 otherwise

Then 275"(G)z = 2T Tx + 2T v, 10l 2 > 2T v, 0l 2 = (vl 12)? > 0 where
the first inequality is due to T being PSD since S’(G’) is PSD. O

Lemma 4. For a (k — 1)-tree G with n vertices, S(G) is a feasible dual slack
matrix.

Proof. Lemma 3 shows that S(G) is PSD. To complete this claim, we must show
that the dual constraints are satisfied. That S(G);; = 0 for (4,j) ¢ E is clear
by construction. The other constraint requires },,; si; > 1. Using (1) and (2)
from Lemma 2 we can prove that the inequality holds; the algebra is omitted for
space reasons. O

We can now show that S(G) is an optimal dual solution.

Theorem 3. For a (k — 1)-tree G with n vertices, S(G) is an optimal dual
solution.

Proof. We remarked earlier that the optimal primal value for a (k — 1)-tree is
—1/(k — 1). Thus for S(G) to be an optimal dual solution, it suffices to show
that — >, S;; = —1/(k — 1). Again using (1) from Lemma 2, we have
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S N NG| - (k-2)
_ZS“’__Zk(k—n(n—kﬂ)

i=1 i=1

1 nooo
T T kk—Dn—k+1) _(k_Q)”Jf;IN(Z)I
—(k —2)n + 2|E|

kE(k—1)(n—k+1)

—(k=2n+(2n —k)(k—-1))
k(k—1)(n—k+1)

—nk +2n+2nk —2n — k> + k
k(k—Dn—k+1) =1/ =)

O

Finally, we want to show that for a (k — 1)-tree G with n vertices, S(G) has
rank at least n — k + 1. This guarantees that any primal solution has rank at
most k£ — 1.

Theorem 4. For a (k—1)-tree G with n vertices, S(G) has rank at least n—k+1.

Proof. Tt again suffices to show the claim is true for S'(G) = k(k — 1)(n —
k 4+ 1)S(G). Proceeding by induction, for n = k we have rank(S’(G)) =
rank(S"(Ky)) = 1 = k — (k — 1) with S’(K}) equal to the all-ones matrix.
Assuming the claim is true for all (k — 1)-trees with at most n vertices, we
consider a (k — 1)-tree G with n + 1 vertices. We again use the decomposition
S'(G) =T + vpq1vi | where

)

T S/(G/) ,Un+1(i) _ 1 el U.{TL—F 1}
0 otherwise

and G’ is a (k — 1)-tree with n vertices acquired by removing vertex n + 1 with
exactly k — 1 neighbors, i € I, from G. Note dim(ker(T)) = dim(ker(S'(G")) +
1 < k by assumption. Now assume z € ker(S’(G)). Then

0=2"8"(G)z =2"Tz + z v, 10l 2.

Since T and vnﬂvgﬂ are both PSD, this implies 27 Tz = 0 and schnHv,THx =
0. Therefore ker(S'(G)) = ker(T) N ker(vn41vl ;). However, note that z =
(0,--,0,1) € ker(T), but ¢ ker(vn41vl,1). Then

ker(S'(G)) = ker(T) N ker(vni1vy ) & ker(T).

This implies dim(ker(S'(G)) < dim(ker(T)) < k, so rank(S"(G)) > (n+1) —
kE+1. O
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Theorem 1. Given a (k — 1)-tree G with n vertices, there is an optimal dual
solution S to (SVCN-D) with rank at least n—k+1, and thus any optimal primal
solution Xto (SVCN-P) has rank at most k — 1.

Proof. Theorem 1 follows as an immediate consequence of Lemma 4, Theorem
3, and Theorem 4.

We now turn to showing that the reference solution is indeed the optimal
solution in the case of (k — 1)-trees.

Theorem 2. The reference solution is the unique optimal primal solution (up
to rotation) for a (k —1)-tree G = (V, E).

Theorem 2 shows that we can partition the vertices of a (k — 1)-tree into k
sets with each set associated to a different vector assigned in the low rank primal
solution. Since vertices u, v are only in the same set in the partition if they were
assigned the same vector in the primal solution, it is not possible for neighbors
to be in the same set. We can then produce a valid coloring of the vertices by
associating one color to each set in the partition.

We now turn to characterizing cases in which we cannot find dual solutions
of sufficiently high rank by looking at potential solutions of vector colorings
for graphs without unique colorings. In particular, we restrict our attention to
graphs that have multiple distinct k-colorings and contain a k-clique. These
assumptions provide information about the optimal objective function values.

Theorem 5. Let G be a graph with n vertices, multiple distinct k-colorings, and
a k-clique. There exists a primal solution to the strict vector chromatic number
program for G with rank greater than k — 1, and thus by Fact 2 the rank of any
optimal dual solution must be less than n — k + 1.

While we have shown that (k—1)-trees have sufficiently high dual rank for the
standard vector chromatic number SDP, it would be nice if we could completely
characterize which graphs have high dual rank. A reasonable guess would be
that a k-colorable graph G containing a k-clique has high dual rank if and only
if it is uniquely colorable. This assertion is true for the important special case
of planar graphs.

Corollary 1. A planar graph with n vertices has dual rank at least n — 3 if and
only if it is uniquely colorable.

Proof. Fowler [6] shows that uniquely-colorable planar graphs are exactly the set
of planar 3-trees. By Theorem 1 we know such graphs have dual rank at least
n — 3. Furthermore, Theorem 5 shows that graphs with multiple colorings have
primal solutions with rank more than 3 and therefore do not have dual solutions
with rank n — 3. O

Unfortunately, the following example shows unique colorability is not suffi-
cient in general for a sufficiently high dual rank. Modifying a uniquely 3-colorable
example of Hillar and Windfeldt [8] and computing the primal and dual SDPs
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of this graph returns solutions with objective value —0.5, primal rank of 24, and
dual rank of 1. If the claim were true, we would expect all dual solutions to have
rank at least 23.

Thus it remains an interesting open question to characterize in general cases
in which graphs have sufficiently high dual rank and have the reference solution
as the optimal primal solution.

4 A Semidefinite Program with Costs

Unfortunately, Theorem 5 seems to indicate that this method of looking for
graphs that have high dual rank with the standard vector chromatic number
SDP cannot be generalized to graphs with multiple colorings. To extend this
method, we consider a modified SDP described next. The new program utilizes
a new objective function. Here, we introduce the notion of a cost matrix C(G).
The goal is to identify a C'(G) such that minimizing C(G) ¢ X forces X to
have our desired rank. In particular, we consider the SDP given by (CP) in the
introduction, along with its dual (CD).

To demonstrate how this cost matrix influences the behavior of rank(X),
assume that G = (V| E) is a k-colorable graph containing a k-clique, but is not
a (k — 1)-tree. We still know there is a solution to the strict vector chromatic
number program with « = —1/(k — 1), and thus it is possible to find an X
feasible for (CP). Now fix ¢ : V' — [k] to be a valid k-coloring of G. With this
coloring, we can define an associated matrix C(G) in the following way:

-1 i<g,e(t) =c(j),Vl such that i < ¢ < 7, c(i) # c(f)
C(G)ij =<4 -1 i>j,c(i) =c(j), VL such that i > £ > j,c(i) # c(£)

0 otherwise.

Intuitively, the reference solution corresponding to the coloring given by c is
the solution that will minimize total cost since we’ll look for a solution X with
Xi; = 1 exactly when C(G),; = —1; for such entries, we’ll have the same vectors
corresponding to vertices ¢ and j. But we can show additionally that there is a
dual optimal solution for cost function C'(G) that has sufficiently high rank.

Theorem 6. For G and C(G) as described, there is an optimal dual solution
with rank at least n —k+1, so that any optimal primal solution has rank at most
k—1.

Let K be a k-clique in our k-colorable graph G. Let s; denote the sum of
entries in column ¢ of C'(G). Consider the assignment of dual variables given by
yi=s;fori ¢ K,y; =s;,—1fori € K, z. = —1 for e = (4,5),4,j € K,i # j,
and z. = 0 otherwise. We denote this assignment by (y, 2).

Lemma 5. The dual matriz S constructed with (y, z) is positive semidefinite.
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Table 1. This table depicts the number of times the heuristic algorithms failed on
maximally planar graphs with between 5 and 14 vertices.

# nodes | # maximally planar | # heuristic 1 | # heuristic 2
graphs with K4 failures failures

5 1 0 0

6 1 0 0

7 4 0 0

8 12 0 0

9 45 0 0

10 222 0 0

11 1219 0 0

12 7485 18 (~ .24%) |18 (~ .24%)
13 49149 108 (~ .22%) |116 (~ .24%)
14 337849 619 (~ .18%) |811 (~ .24%)

Theorem 7. The assignment (y, z) is an optimal dual solution, and the refer-
ence solution is an optimal primal solution.

Theorem 8. For G and C(G) as described, the reference solution is the unique
optimal primal solution.

5 Experimental Results

Two heuristics have been implemented and experimentally demonstrated suc-
cess returning low-rank primal solutions for planar graphs. Neither algorithm
assumes knowledge of a graph coloring. We tested these heuristics on all max-
imal planar graphs of up to 14 vertices that contain a K4. These graphs were
generated via the planar graph generator plantri due to Brinkmann and McKay
[4] found at https://users.cecs.anu.edu.au/~bdm/plantri/. The ‘-a’ switch was
used to produce graphs written in ascii format. The code was implemented in
Python using the MOSEK Optimizer as the SDP solver. Both the graph data
files and algorithm implementation can be found at https://github.com/rmirka/
four-coloring.git. Our results are shown in Table 1. The heuristics successfully
colored all graphs with up to 11 vertices, and successfully colored 99.75% of the
graphs of 12-14 vertices. We do not record the running time of the heuristics;
because the heuristics involve repeatedly solving semidefinite programs, they are
not competitive with other greedy or local search style heuristics. Our primary
reason for studying these heuristics was to find whether we could reliably find a
cost matrix C' giving rise to a four-coloring for planar graphs.

For space reasons, we only describe the first heuristic. It is based on the
coloring-dependent cost matrix discussed in Sect. 4. The algorithm first identifies
a Ky = {ki,ko, ks, ks} and finds an initial solution with C' = 0. If the primal


https://users.cecs.anu.edu.au/~bdm/plantri/
https://github.com/rmirka/four-coloring.git
https://github.com/rmirka/four-coloring.git
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solution does not have low enough rank, the returned solution is used to update
the cost matrix. Let S; = {v € V : Xy, = 1} for i = 1,2, 3,4. Let v be a vertex
in V'\ (U, S;). Then there must exist i* € {1,2,3,4} such that X,,. # 1 and
Xok;. # —1/3; we update this S;« by adding v to it. Now, C' is constructed
based on the Sj;,j = 1,2,3,4. In particular, for ¢ = 1,2,3,4, if n; denotes the
number of vertices in S;, then for j = 1,. —1, we set Cry = Cy = —1
where r and s are the jth and j + 1st vertlces in S This new cost matrix
C' is used to compute an updated solution X. If X is of the desired rank, the
algorithm terminates. If not, we first check to see if Xvki* =1, i.e. if our selected
vertex from the previous iteration was successfully colored. If yes, we repeat
the process beginning with our solution X and selecting a currently uncolored
vertex. If v was not successfully colored, we remove the entry in the cost matrix
corresponding to this assignment from the previous iteration and resolve the
SDP while adding k;+ to a list of ‘bad’ colors for v. We now repeat the process
by selecting a new feasible color class for v (following the same rules as previously
in addition to requiring it not be in the list of ‘bad’ colors for v) and constructing
Si,i=1,2,3,4 and C accordingly.

In both heuristics, the termination condition is that the primal rank is equal
to 3, but this doesn’t necessarily guarantee that the dual rank is n — 3. If instead
one wanted to guarantee high dual rank, one could run the algorithm one more
time, i.e. once the low-rank primal solution is achieved, extract the coloring and
construct the corresponding C' matrix as previously described in Theorem 6.

The example in Fig.1 causes both heuristics to fail without coloring the
graph. First we note the Ky = {2,5,6,7}. In the first iteration of the heuristic,
these are the only four vertices that are assigned colors. In the second iteration,
both heuristics successfully color vertex 1 to match vertex 6. However, afterwards
each heuristic is unable to color any more vertices (it tries and fails on all other
possible colors for the remaining vertices).

6 Open Questions

We close with several open questions. We were unable to give a complete char-
acterization of the k-colorable graphs with a K} for which the strict vector chro-
matic number (SVCN-P) has a unique primal solution of the reference solution.
Such graphs must be uniquely colorable, but clearly some further restriction is
needed.

When we know the coloring, we can produce a cost matrix C' for the semidefi-
nite program (CP) such that the reference solution is the unique optimal solution
and it must have rank k—1. We wondered whether one could use (CP) in a greedy
coloring scheme, by incrementally constructing the matrix C'; the graph in Fig. 1
shows that our desired scheme does not work in a straightforward manner. Pos-
sibly one could consider an algorithm with a limited amount of backtracking, as
long as one could show that the algorithm continued to make progress against
some metric.
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Fig. 1. Algorithm Obstacle: K4 = {2,5,6,7}

Another open question is whether one can somehow directly produce a cost
matrix C' leading to a dual solution of sufficiently high rank that does not need
knowledge of the coloring. And we conclude with the open question that first
motivated this work: is it possible to use the Colin de Verdiére parameter to
produce this matrix C?
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