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Abstract. Analysis of data sets that may be changing often or in real-time,
consists of at least three important synchronized components: i) figuring out
what to infer (objectives), ii) analysis or computation of those objectives, and
iii) understanding of the results which may require drill-down and/or visual-
ization. There is considerable research on the first two of the above compo-
nents whereas understanding actionable inferences through visualization has
not been addressed properly. Visualization is an important step towards both
understanding (especially by non-experts) and inferring the actions that need
to be taken. As an example, for Covid-19, knowing regions (say, at the county
or state level) that have seen a spike or are prone to a spike in the near future
may warrant additional actions with respect to gatherings, business opening
hours, etc. This paper focuses on a modular and extensible architecture for
visualization of base as well as analyzed data.

This paper proposes a modular architecture of a dashboard for user inter-
action, visualization management, and support for complex analysis of base
data. The contributions of this paper are: i) extensibility of the architecture
providing flexibility to add additional analysis, visualizations, and user interac-
tions without changing the workflow, ii) decoupling of the functional modules
to ease and speed up development by different groups, and iii) supporting con-
current users and addressing efficiency issues for display response time. This
paper uses Multilayer Networks (or MLNs) for analysis.

To showcase the above, we present the architecture of a visualization dash-
board, termed CoWiz++ (for Covid Wizard), and elaborate on how web-based
user interaction and display components are interfaced seamlessly with the
back-end modules.

1 Motivation

Since early 2020, when the Covid-19 cases were first reported in the US, the virus
has spread to all 3141 US counties1 in all states at different rates. As the hunt for
a vaccine was launched, the number of cases has grown and leveled off based on the
actions taken by different counties and states. Lack of a national policy and lack
of synchronization between state and federal mandates have resulted in undesirable
situations as compared to other coordinated efforts in other parts of the world.

1We focus on the USA as we have more accurate data for that although the pandemic is
worldwide! Any country can be analyzed by swapping the data sets and with minor changes,
such as prefectures in Japan instead of states.



From a data collection viewpoint, a number of sources provide features associated
with a confirmed report, such as infected case, hospitalization, death, or recovery
making this data set complex with diverse entity (person, county), feature (case,
hospitalization, vaccination, ...), and relationship (similarity in cases, hospitalizations,
vaccinations, ...) types.

Currently, many visualizations are used to plot the peak, dip, and moving averages
or colored maps of Covid data, without much analysis on the base data or
inclusion of associated data [5,6,1,7,12,11]. In other words, most of these focus
on the visualization of base data using simple statistical computations. However,
for a comprehensive understanding of the spread of the pandemic (or any data for
that matter), there is a need to analyse and compare the effects of different events
(mask requirement, social distancing, etc.) and demographics, in multiple geographical
regions across different time periods.

Broadly, visualizations for a data set can be classified into:
I. Visualization of Base Data: There is very little analysis involved in this visualiza-
tion. Visualization includes primarily statistical information. Attributes and visual-
ization alternatives can be selected by the end-user. Temporal ranges, animation, and
other visualization parameters can also be chosen. Some examples of this Category I
objectives are:

(A1) Did the vaccination drive increase confidence among people to take more road
trips?

(A2) In states with low per capita income, how testing progressed? Was there a surge
in the number of cases?

(A3) Has the death rate reduced in countries where most of the population has received
all vaccine doses? What about countries where the vaccination drive is slow?

II. Visualization of analyzed data: Explicit analyses are performed on base and as-
sociated data prior to visualization. Various alternate visualizations may be produced
for the analysed results and drilled-down details of results.

Typically a model is used for analysis and objectives computed using that model.
Some examples of this Category II objectives are:

(A4) In which regions was vaccination most effective? That is, how have geographical
regions with maximum (and minimum) rise in cases shifted between the periods
pre and post the beginning of the vaccination drive?

(A5) Which regions got significantly affected due to long weekends/holidays (such as,
Thanksgiving, New Year Celebration, Spring Break, Labor Day, ...)? What pre-
cautions need to be taken for future events? The inverse can be computed which
may be very helpful as well.

Currently available online dashboards/visualizations primarily address parts of
category I discussed above. For example, JHU (Johns Hopkins University) dashboard
[5] shows a lot of base data and shows some of them also on a US map with circles
indicating the numbers to get a relative understanding. Similarly, the WHO (World
Health Organization) dashboard [11] shows base data for the world and a clickable
map to show some base data for that country. For Covid data, most dashboards focus
either on reporting and/or visualizing daily cases on maps ([12,1,11,2]) or generating
time series plots and statistical information ([5,7,6]).



However, for category II, there is a need to model the base data which is dependent
on the semantics of the data set. As an example, for Covid data, analysis is based on
counties/states. We need to model entities and relationships in order to analyze and
understand the data set from multiple perspectives. The result needs to be visualized
to maximize understanding. In this paper, we use the Covid-19 data set as well as
related information, such as population, average per capita income, education level
etc. The focus is on an interactive dashboard architecture that is modular, flexible,
provides good response time, and supports both categories I and II above.

For the analysis part, this dashboard uses the widely-popular Entity-Relationship
(ER) model and its conversion to Multilayer Networks2 or MLNs [20]. MLNs
can handle multiple entities, relationships and features. Informally, MLNs are layers
of networks where each layer is a simple graph and captures the semantics of a (or
a subset of) feature of an entity type. The layers can also be connected. Moreover,
an efficient decoupling-based approach proposed and used in [25,26,31] is used to
analyze specified objectives.

The contributions of this paper are:

– An interactive web-based dashboard 3 for visualizing base and analyzed data
using parameters.

– Amodular architecture to minimize interaction between the modules to facilitate
development and optimization of the system by multiple groups with different
skill sets.

– Extensibility of each module to add analysis, visualization, interaction/display
and/or optimization alternatives with minimal effort.

– Multiple visualizations of base and analyzed results.
– Use of multilayer network for modeling and performing analysis underneath.
– Guaranteeing consistency while providing good response time for a large num-

ber of concurrent users.

This paper is organized as follows. Section 2 discusses related work. Section 3
details the architecture of the dashboard in terms of its modules.

Section 4 presents base and objective-based analysis visualizations for the Covid-19
data set. Conclusions are in Section 5.

2 Related Work

Currently available online dashboards address category I and focus on reporting and
visualizing daily cases on maps ([12,1,11,2]) or time series plots and statistical mod-
eling ([5,7,6]). They are more focused on visualizing the base daily data. In contrast,
drill-down of analysis of results is critical especially for complex data which has both
structure and semantics. For example, it is not sufficient to know the identities of
objects in a community (e.g., similar counties), but also additional details of the ob-
jects (e.g., population, per capita income etc.) Similarly, for a centrality hub or a

2A Multilayer Network is a set of networks (each network termed a layer) where nodes
within a layer are connected by intra-layer edges and nodes between two layers can be
optionally connected using inter-layer edges.

3Dashboard [24]: https://itlab.uta.edu/cowiz/, Youtube Videos: https://youtu.be/
4vJ56FYBSCg,https://youtu.be/V_w0QeyIB5s. Readers are encouraged to play with
the dashboard and watch the videos.

https://itlab.uta.edu/cowiz/
https://youtu.be/4vJ56FYBSCg
https://youtu.be/4vJ56FYBSCg
 https://youtu.be/V_w0QeyIB5s


frequent substructure. As MLNs are being used as the data model, it is imperative
to know the objects across layers and their intra- and inter-connections [19]. From
a computation/efficiency perspective, minimal information is used for analysis and
the drill-down phase is used to expand upon to the desired extent. Existing MLN al-
gorithms, especially the decoupling-based ones, make it easier to perform drill-down
without any additional mappings back and forth for recreating the structure [31,25].
The schema generation also separates information needed for drill-down (Relations)
and information needed for analysis (MLNs) from the same Enhanced Entity Rela-
tionship (EER) diagram [20].

Visualization is not new and there exists a wide variety of tools for visualizing
both base data, results, and drilled-down information in multiple ways [1,5,7]. Our
focus, in this paper, is to make use of available tools in the best way possible and not
propose new ones. For example, we have experimented with a wide variety of tools
including, maps, individual graph and community visualization, animation of features
in different ways, hovering to highlight data, and real-time data fetching and display,
based on user input from a menu. The main contribution is our architecture with a
common back end to drive different user interaction and visualization front ends. We
have also paid attention to efficiency at the back end by caching pre-generated results
and use of an efficient data structure for lookup.

Community detection algorithms have been extended to MLNs for identifying
tightly knit groups of nodes based on different feature combinations ([17,32,22,18].)
Algorithms based on matrix factorization [16], cluster expansion [21], Bayesian prob-
abilistic models [33], regression [15] and spectral optimization of the modularity func-
tion based on the supra-adjacency representation [35] have been developed. Further,
methods have been developed to determine centrality measures to identify highly in-
fluential entities [29,34]. However, all these approaches analyze a MLN by reducing it
to a simple graph either by aggregating all (or a subset of) layers or by considering
the entire MLN as a whole, thus leading to loss of semantics as the entity and feature
type information is lost.

3 Modular Dashboard Architecture

As part of research on big data analytics (using graphs and multilayer networks), the
need for drill-down and visualization of results for understanding and ground truth
verification has been emphasized. The results of aggregate analysis as compared to
statistics, require more details (or drill-down). For example when a community of
counties are computed or centrality nodes (cities) are identified, it is important to
understand the related information such as population density, per capita income,
education level, etc. This was further exacerbated by the fact that the data sets we
deal with have multiple types of entities, features, and relationships. So, drill-down
and visualization of analyzed data along with additional details became pronounced.

To clearly understand Covid data analysis results, it was important not only to
drill-down, but also to visualize the data set and analysis results in multiple ways
combining different aspects of the data set. For example, it was useful to visualize
new cases in multiple states on a daily/weekly basis to see how they were chang-
ing. This could be done for multiple features, such as deaths, hospitalizations, etc.
We also wanted to visualize similar regions in the country that had same/similar in-
crease/decrease in new cases over the same time period. This would be very useful in



understanding the effects of certain measures taken (e.g., masking, lockdown, social
distancing) in different parts of the country. This essentially involved processing the
same data under the categories I and II indicated above. This is also true for other
data sets.

As we tried to develop a dashboard for Covid-19 visualization, we realized that
the skill sets needed for analysis was significantly different from those needed for
visualization/user-interaction. Analysis required a much deeper understanding of the
knowledge discovery process including modeling of the data, coming up with objec-
tives and computing them efficiently. On the other hand, visualization required a
deeper understanding of the packages that can be used based on what and how we
wanted to display. The client module needed yet another different set of skills in
terms of layout, menu design, Java Script, HTML and CSS. It seemed natural that
these could be developed by different individuals or groups with appropriate skills if
the dashboard can be modularized along these functional components. This
primarily motivated our architecture shown in Figure 1.

Fig. 1: Modular CoWiz++ Dashboard Architecture

The second thing we noticed was that most of the currently available visualiza-
tion dashboards seem to be application and analysis specific. That is, if the data set
description and application objectives change over a period of time, then the entire
system has to be re-built. Although there is likely to be a separation between the
client and back end module, having a single back end module seemed to defeat exten-
sibility in addition to modularity. This would create bottlenecks for progress making
the development process quite inefficient. So, the requirement of extensibility at
the module level was born out of this observation. This will also allow applying
different optimization strategies at the module level.

Finally, ability to visualize the same data in multiple ways is extremely
important from an understanding perspective. For example, one may want to visual-
ize Covid cases/deaths/hospitalizations as a temporally animated graph for different
states. One may also want to see the same data to make decisions by comparing
geographical regions using MLN analysis [27]. Multiple visualizations and analysis
capability in CoWiz++ follows directly from the extensibility aspect of the architec-
ture. Currently, we support two visualization (one from each category above) as part
of the visualization management module and multiple analysis (base and MLN) in
the analysis module. We plan on adding more to each category.



3.1 Components of the Modular Architecture

Our proposed architecture and its components shown in Figure 1 have been designed
to support the above observations: modularity with minimal interaction between the
modules and extensibility within each module. Data is transferred between modules
using file handles for efficiency as all modules are running on the same machine. These
two, when incorporated properly, facilitate re-use of code within each module and the
development of modules independently (by different groups) from one another for
different applications. This is one of the major contributions of this paper, where
we introduce 3 decoupled modules, each optimized for a specific functionality: i) a
web-based client, ii) visualization management, and iii) data analysis mod-
ules. This architecture permits the optimization of each component, independently
by separate groups with appropriate skill sets resulting in a flexible, extensible and
efficient dashboard. In this paper, we show how the different modules interact and
how a mix and match of analysis and visualization can be achieved. Also, note the
minimal interaction between the modules (mainly parameters, file handles, etc.) As
large number of files are used/generated by the two back end modules, a persistent
storage is needed to store them.

There is a need for a closer synchronization between the client module and the
back end visualization management module. For this to work correctly, the first step
was to identify a web framework that can support these two modules, synergistically.
The other considerations were: seamless communication, ease of use, availability of
detailed documentation and strong open-source community for future development
and extensions. Support for web deployment for increased portability was important.

Minimalistic Language
Plotly Com-
patibility

Documentation
Available

Flexibility
and Control

Flask [4] Yes Python Yes Extensive High

Django [3] No Python Limited Extensive Low

Vaadin [9] No Java No Limited Low

Table 1: Web Framework Alternative and Feature Comparison

Table 1 lists the features of the widely used web frameworks that we considered.
The python-based web framework Flask was chosen over Django and Vaadin,
mainly due to its minimalistic, interactive, flexible and extensible characteristics.
Flask satisfied all our requirements as shown in the table. Moreover, visualization
tools like Plotly are supported exhaustively by Flask, which is not supported by oth-
ers. Most importantly, as compared to others, it gives maximum flexibility and control
due to granular tuning for customisation and makes no assumptions about how data
is stored, thus becoming a viable choice for a wider spectrum of applications. Below,
we describe each module emphasizing the modularity and extensibility aspects.

This modular approach allows independent parallel collaboration in develop-
ment, debugging and optimization of every component. Any new user interaction
component, data source, data model/structure, analysis algorithm and visualization
technique can be added easily to a specific module, thus supporting efficient exten-
sibility. Every module has various capabilities (compartmentalized through packages
or sub-modules) which are flexibly utilised based on the requirements of the appli-
cation. And most importantly, this robust underlying system can be readily used
for different applications without major modifications. The following sections will talk
in detail about these modules, in specific to the interactive COVID-19 data analysis



and visualization. In Section 4, we show all these modules, together, seamlessly fulfill
the goal - from accepting user inputs to analysing to displaying the results visually.

3.2 Interaction and Display (Client Module)

Each analysis and visualization uses a specific set of inputs given by the user. The
client module is responsible for presenting an unambiguous, clear, and simple user
interface for collecting those parameters. Once the parameters and display types are
identified, this module can be implemented independently and the collected param-
eters are passed. The inputs can be in the form of ranges (dates, latitude-longitude,
times, ...), lists and sets (features, items, ...) or filtering options. The various elements
of this component are supported using HTML and CSS.

The other task of this module is to display the visualization generated by the
other two modules, for the input parameters, typically in the form of an html file that
is displayed using the iframe component which lets you load external URL elements
(including other web pages) in your project within an iframe. An inline frame (iframe)
is a HTML element that loads another HTML page within the document. In some
cases, interaction with the HTML canvas element may be required to generate and
display the visualization to enhance efficiency. In addition to displaying visualizations,
this component is also responsible for tickers and other relevant information (part of
display type.) For example, the visualization of top 10 Covid-19 news articles and
the latest cumulative number of cases and deaths is achieved through scrollable or
moving tickers, implemented using JavaScript and AJAX scripts and the marquee
component. Note, this is based on the input and is done in real-time.

3.3 Visualization Management Module (Dashboard Back End)

Functionally, this is an important module, detailed in Figure 2, that handles several
tasks: i) visualization generation – using either base data, or computed results –
from the analysis module, ii) reusing the generated visualization using an effi-
cient data structure4, and iii) looking up whether the visualization exists for a
given set of parameters and display type to avoid re-generation and speedup response-
time. As can be seen in Figure 2, there are two separate visualization generation
components, a hash and cache component for quick lookup and storage. Additional
visualization generation modules can be easily added. This module interacts with the
other two modules and the storage.

Since analysis and generation of the visualization accounts for most of the re-
sponse time, we have used two known techniques for improving response time: i)
materialization of previous analysis results – widely used in DBMSs to trade
off computation with space and ii) efficient hash-based lookup to identify whether
a materialized visualization exists. The first check in this module is to find the
presence of the display file generated earlier. As there are hundreds of thousands of

4Currently, an in-memory hash table is used for quick lookup. If this hash table size
exceeds available memory, this can be changed to a disk-based alternative (extendible hash
or B+ tree) without affecting any other module. In this case, disk-based, pre-fetching
and/or other buffer management strategies can be used to improve response time. Separate
hash tables are used for different visualizations for scalability. Also, hash tables are written
as binary objects and reloaded avoiding re-construction time.



possible user input combinations, avoiding collisions in hashing is important. If the
display is present, it is used. If not, the parameters are sent to the analysis module to
generate computed results so this module can generate the visualization after that.
This approach has shown significant improvement and has reduced the av-
erage response time from 15 seconds to 3 seconds (80% improvement) for
map visualizations (instrumented and averaged over several interactions.) This mod-
ule uses packages from Python, R and Tableau to provide diverse types of interactive
graphical visualizations. Two visualizations are currently supported by this module
and are discussed briefly below. Also, note that the display as well as the ticker infor-
mation is based on user input. Currently, after multiple user interactions from 20+
countries (as per Google analytics), 4000+ analysis result files and 1000+ map visu-
alization files are present. The dashboard has been operational and publicly available
for more than a year (getting more than 4500 hits from 20+ countries.) Due to the
extensible architecture, we have been able to add new data (e.g., on vaccinations)
with very little effort and with different developers.

Fig. 2: Visualization Management Module Details

Support for Multiple Concurrent Users: The flask app generates a separate
thread for each concurrent user. In order to maintain consistency in the back-end
in the presence of multiple concurrent users, concepts of multi-threading have been
used. Critical sections have been identified and write-write conflicting threads (that
is, multiple threads with same parameters for which visualization does not exist)
have been properly synchronized so that the consistency of generated visualization is
guaranteed.

Animated Temporal Visualizations: This is an example of visualization used
for category I objectives discussed earlier. Based on the temporal requirements of
(A1) - (A3), the change in 2 selected features for up to 5 US states are compared by
generating 2 side-by-side synchronized animated timeline plots with a scrollable bar
that the users can drag in either direction across the entire timeline. In the plots, the
per day (or per period) values are synchronously plotted for each feature corresponding
to the states (or countries) selected. In each plot the y-axis corresponds to one of the



feature’s values and x-axis to the timeline. The visualizations for these objectives are
shown in Figures 6, 7 and 8 in Section 4.

Two implementation alternatives help showcase the extensibility of the system.
Initially, the visualizations were generated using Python’s popular Plotly library and
R language, where two separate plots were displayed side-by-side by embedding in a
single plotly subplot, to implement the synchronised animated timeline with a slider.
This visualization was stored as an html file, and sent over the network to the client
module for display. However, this alternative had two drawbacks - (i) The embed-
ding of two feature-wise plots in the plotly subplot to enable the synchronization
requirement led to large processing time, and (ii) The generated and stored html vi-
sualization files were large (approx. 20+ MB for 5 states with just 3 months of data
points), thus taking a hit at the network I/O and page loading time. These issues led
to a high response time.

To address these issues, we applied an optimization technique where generation
of the temporal visualizations have been shifted to the client side. In this case, based
on the user inputs (states and features) received in Data Analysis Module (Section
3.4), the required data points to be plotted are fetched from the data set and stored
as an object. The visualization module sends over this generated object to the Client
module. On the client side, these data points are used by the customized JavaScript
classes, that have been written for interacting with the native HTML canvas element,
to generate the required side-by-side line graphs with a synchronized timeline. This
optimization strategy removed the overhead processing time to generate the plotly
plots and the network I/O and loading time for receiving and displaying the heavy
html files. Thus, improving the average response time by about two orders
of magnitude (from 5 minutes to less than 5 seconds for 5 states and 2 fea-
tures). This also showcases that due to the modular and extensibility feature of the
architecture, separate optimizations can be applied for different visualization needs.
Moreover, apart from US states, support has been extended to Indian States and
World Countries, as well. This support can be easily extended to additional coun-
tries, subject to data availability, due to the parameterized approach followed in
the module implementations.

Map-Based Visualizations: As part of the requirements of category II analy-
sis objectives (A4) and (A5), communities are generated, where the counties are
clustered based on similar change in a feature (in this case, similar change in new
cases). Each county in the community is displayed on a colored US map based on the
severity of changes in Covid cases reported in its assigned community which corre-
sponds to a range - from SPIKE (as red) to BIG DIP (as green). The FIPS (Federal
Processing Information Standards) codes of the US counties present in the commu-
nity allocation file generated by Data Analysis Module (Section 3.4) are used by the
choropleth mapbox() function of Python’s plotly library to generate colored counties
on the US map with pan and zoom capability enabled. Moreover, the census informa-
tion available as part of this file is used to generate the hover text for counties. The
generated US map for a community file is stored as an html file. This visualization for
objectives (A4) and (A5) is shown in Figures 9 and 10 in Section 4, respectively.

3.4 Data Analysis Module (Dashboard Back-End)

The analysis module is another key module of the architecture. This module contains
all aspects of a particular analysis using the same base data. We have chosen to show-



case the multilayer analysis for this dashboard. This can be any other analysis, such
as relational database analysis using SQL or multi-dimensional analysis supported by
data warehouses. In fact, multiple analysis modules can co-exist and feed the results
into the same visualization management module.

It supports several components that are important for different aspects of data
analysis: i) extraction of relevant data from external sources, ii) pre-processing of
extracted (or downloaded) data, and iii) generation of results for both base and
analysis alternatives. It is more or less agnostic to visualization except to generate
information needed for visualization, but does not even know how they are visualized.
All three components are extensible in their own right and only rely on the user
input passed from client module through the visualization management module. This
module interacts with the persistent storage for both input data and output generated.
This module generates output for visualization. Of course, base data preparation is
much simpler than the other one.

Extraction/Downloading and Pre-processing Component: Components of
this module are responsible for the real-time extraction of data from identified web
sources (e.g., New York Times, WHO, CDC), update of data that changes periodi-
cally – once a day/week/month (e.g., Covid data in our dashboard) using cron jobs.
For example, when date ranges are input by the user as part of the menu, that infor-
mation is used to extract information only for those periods, pre-processed (cleaned,
filtered, sorted/ranked), and prepared for visualization. All pre-processing of data
extracted from real-time sources as well as base data used for analysis are done in
this component. Examples from the current dashboard are - (i) Period Specific
Top 10 Covid-19 Articles: For category II, 2 periods are provided. From the set of
New York Times articles, a subset of top 10 most relevant Covid-19 news articles for
the latest period specified by the user are filtered using keywords, sorted in reverse
chronological order and the top-k are chosen for display, and (ii) Latest Cumula-
tive Case and Death Count for Selected US States and/or Countries: For
category I, the latest total number of cases and deaths for the user specified US states
(along with, US and World) are filtered out from the consistent clean WHO and CDC
extractions.

Complex Analysis Component(s): Any analysis for the two categories dis-
cussed earlier is supported by this module. It can be as simple as fetching only re-
quired base data points or generating moving averages to be plotted to as complex as
generating required models (graphs, MLNs, ...) and detecting network communities,
centralities, patterns, frequent structures and so on.

For (A1) - (A3) in category I, just the fetching and storing of data points for the
selected states and features is required. However, the category II involves modeling,
computation of objectives, and drill-down before visualization. For understanding
the effect of vaccination drives and holiday breaks and on Covid cases in the US, the
formulated objectives (A4) and (A5) (stated earlier) are to be analyzed on the Covid
data set using the Multilayer Network (MLN) model5.

For (A4) and (A5), geographical regions need to be analyzed across two periods
for similar Covid spread. MLN layers are created using US counties as nodes and

5Any analysis approach and associated model can be used. We are using the Multilayer
Network (MLN) model proposed in [25,28] for this dashboard. This also validates our asser-
tion of the applicability of MLN model for complex analysis of real-world applications.



connecting them if the change of feature (e.g., new cases (shown in Figure 3), deaths,
hospitalizations etc.) across the two periods is similar (using slabs of percentages.)

Fig. 3: MLN for Category II Obj.

Community detection algorithms (e.g., Louvain
[13], Infomap [14], etc.) on the generated individ-
ual MLN layers for detecting communities that
will correspond to geographical regions showing
similar change in the feature. Any user-selected
feature can be used for this purpose. The com-
munities generated are categorized based on the
severity of change in Covid cases - from spike
in cases (>100% increase) to big dip (100% de-
crease). This generated community allocation file
is enriched by adding the US census data like
population density per sq. mile, median household
and percentage of high school graduates for each
county. The results of (A4) and (A5) are shown
in Section 4.

The analysis module only needs to know the information used by the visualization
management module and not the actual visualization type. This information is known
to the client module for each type of user interaction and is passed on to other modules.

4 User-Interaction and Visualization of COVID-19 Data

Fig. 4: Input Panel for Category I Objectives (with inputs for Fig. 6 visualization)

Fig. 5: Input Panel for
Category II Objectives
(with inputs for Fig. 10
(b) visualization)

The CoWiZ++ dashboard is hosted on an Nginx Web Server
1.20.1 on Linux machine. It is supported on all major web
browsers. For the best user experience, screen sizes above
1200 pixels are recommended.

The homepage of the current dashboard supports the
two different types of analyses and visualizations. Figures
4 and 5 show sample user-interaction screens (with input),
for Categories I and II, respectively. Category I objectives
are currently supported for World Countries, the US States
and the India States. Category II objectives are supported
for US counties.

Here we discuss how the current dashboard has been
used to address the analysis objectives from (A1) to (A5)
based on different periods.
Vaccination vs. Road trips in US States (A1): For under-
standing correlation between vaccination and people taking
road trips outside their homes, the user-interaction compo-
nent shown in Figure 4 is used. Figure 6 shows the com-
pletely rendered snapshot of the animated timeline depict-
ing the correspondence between the number of new vaccina-
tions and number of new trips undertaken by people in two
of the largest US states by population density - California



and Texas, till April 2021. The plots reveal something interesting. In Texas, new
trips rose disproportionately to the vaccine whereas in California, that is
not the case. This conforms to our understanding of the way these two states have
handled Covid. Note the difference in scale between the two animations.

Fig. 6: (A1) Vaccinations vs. Road Travel Trend in 2 Populous US States California
and Texas

New Covid Cases vs. Testing in US States (A2): Testing for Covid is important ac-
cording to CDC and should be continued independently of the new cases. For under-
standing whether this is the case, we considered West Virginia as the input for the
paper, one of the low per capita income states. Figure 7 shows these animated plots
side-by-side till April 2021. For an unknown reason, testing seems to follow new cases
instead of staying constant. This seems to give the impression that the ones that are
being tested are mainly the ones coming with symptoms whereas general
population is not likely being tested. For a state-level decision maker, this can
be useful as an important piece of information discovered through the visualization
tool.

Fig. 7: (A2) New Cases vs. New Tests in Low Per Capita Income US State West
Virginia



Fully Vaccinated Population vs. New Deaths in World Countries (A3): Medical bod-
ies across the globe have advised getting a large percentage of the population fully
vaccinated at a faster rate in order to avoid serious Covid cases, and potentially achieve
herd immunity. In order to understand this correlation, the snapshot in Figure 8 till
June 2021 has been presented to illustrate the effect of getting a higher percentage of
the population fully vaccinated. Israel and the US are two of the countries, where
most of the people are fully vaccinated (59.35% and 40.86% , respectively, as of
June 3, 2021.) Over time, with the rising vaccinations, the new Covid deaths have
decreased in these countries. However, in India where just 3.19% of the popu-
lation was fully vaccinated until then, the number of new deaths had been
on a rise and was more than the other better vaccinated nations. Moreover,
it is observed from India’s vaccination slope that the rate of second vaccine dose had
also decreased since mid-May 2021. Similar animations can be re-produced for differ-
ent countries through the dashboard. Such disparity in vaccination rates among
countries is a cause of concern and a major roadblock in attaining global
herd immunity against Covid-19 [10].

Fig. 8: (A3) Percentage of People Fully Vaccinated vs. New Deaths in India, Israel,
and USA

Vaccination Drive Effect in the US (A4): Here we visualize how the geographical re-
gions with decline in daily confirmed cases shift in month-apart 3-day periods pre and
post the Vaccination Drive. The vaccination drive in the US began from December
14, 2020 [8]. For the pre vaccination drive layer, the 3-day intervals considered were
Sep 20 to Sep 22 vs. Oct 21 to Oct 23 in 2020. For the post vaccination drive layer, the
3-day intervals were Jan 20 to Jan 22 vs. Feb 21 to Feb 23 in 2021. The community
(groups of counties) results have been drilled-down from the individual layers and the
ones displaying a downward trend have been visualized in Figure 9. This visualization
clearly shows how the vaccination drive became one of the reasons that led to
controlling the spread of COVID across US. This fact is also verified from inde-
pendent sources that say how the administration of the vaccine has led to a decline in
severe cases, hospitalizations and deaths in the US (and many other countries) even
with newer variants around [30,23].



Fig. 9: (A4) BIG DIP due to Vaccination Drive in the US

2022 New Year Holiday Break Effect in the US (A5): For this category II visualiza-
tion, we use the dashboard front-end shown in Figure 5 to first find out the geographi-
cal regions where a rise in daily confirmed cases was observed between two consecutive
5-day intervals prior to the 2022 new year holiday break - Dec 13 to Dec 17 vs. Dec
18 to Dec 22. Similar consecutive 5-day periods were chosen post the 2022 new year
holiday break - Jan 5 to Jan 9 vs. Jan 10 to Jan 14. The drill-down results have
been visualized in Figure 10 that show how after the new year holiday break
there was a spike in the number of daily cases in counties across the US as
compared to pre winter holiday break. For example, the San Diego County in
California showed a surge of more than 300% in the number of new cases post the new
year break, as illustrated in the zoomed in display in Figure 10 (b). Various reports
attributed this massive surge to the widespread travel to popular tourist destinations
during the break leading to crowds and non-adherence to social distancing
norms at the time when the Omicron Covid variant was becoming dominant!

Fig. 10: (A5) SPIKE in cases due to the 2022 New Year Holiday Break



5 Conclusions

In this paper, we have presented a modular dashboard architecture to visualize base
data and complex analysis results meaningfully, based on input parameters interac-
tively. In addition, we have enhanced it with display of relevant (top news articles from
NYT for the period of interest) and real-time data (WHO statistics as they become
available) extracted from multiple sources. The architecture and modularity, based
on functionality, provide flexibility (of development and optimization), extensibility
(of visualizations, analysis, and data sets), consistency for multiple concurrent users,
and efficiency (for response time). Each component within a module is parameterized
making it easier to replace data sets for similar visualization or change visualization
for same data set.

Future work includes adding additional base data, other analysis options, and
hierarchical visualizations for country and further into states. Other extensions to
support multiple users efficiently and good throughput for large number of users are
underway.
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