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2 Aarhus University, Åbogade 34, 8200 Aarhus, Denmark
sophia.yakoubov@cs.au.dk

Abstract. In a public-key threshold encryption scheme, the sender pro-
duces a single ciphertext, and any t+ 1 out of n intended recipients can
combine their partial decryptions to obtain the plaintext. Ad hoc thresh-
old encryption (ATE) schemes require no correlated setup, enabling each
party to simply generate its own key pair. In this paper, we initiate a
systematic study of the possibilities and limitations of ad-hoc threshold
encryption, and introduce a key application to scalable multiparty com-
putation (MPC).

Assuming indistinguishability obfuscation (iO), we construct the first
ATE that is sender-compact—that is, with ciphertext length indepen-
dent of n. This allows for succinct communication once public keys have
been shared. We also show a basic lower bound on the extent of key shar-
ing: every sender-compact scheme requires that recipients of a message
know the public keys of other recipients in order to decrypt.

We then demonstrate that threshold encryption that is ad hoc and
homomorphic can be used to build efficient large-scale fault-tolerant mul-
tiparty computation (MPC) on a minimal (star) communication graph.
We explore several homomorphic schemes, in particular obtaining one
iO-based ATE scheme that is both sender-compact and homomorphic:
each recipient can derive what they need for evaluation from a single
short ciphertext. In the resulting MPC protocol, once the public keys
have been distributed, all parties in the graph except for the central
server send and receive only short messages, whose size is independent
of the number of participants.

Taken together, our results chart new possibilities for threshold
encryption and raise intriguing open questions.
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1 Introduction

A public key threshold encryption (TE) scheme gives one the ability to generate
a ciphertext that is decryptable by any t+ 1 out of n intended recipients, while
remaining semantically secure against any smaller group. Among other things,
it enables tasks such as electronic voting [16,17] and round-efficient multiparty
computation (MPC) [2,19], where only t+ 1 colluding parties should be able to
learn information about others’ inputs.

One simple way to construct threshold encryption is to use any encryp-
tion scheme, with each of n recipients having independently generated keys. To
encrypt, the sender applies (t+1, n)-secret sharing to the message, and encrypts
each share with the key of the respective recipient; we call this share-and-encrypt.

Share-and-encrypt has the advantage of requiring no master secret and no
correlated setup among the recipients. A basic public-key infrastructure is all
that is required. We will call TE schemes with this property ad hoc threshold
encryption (ATE). An additional advantage of this simple approach is that the
length of information sent to each recipient is independent of the number of
recipients (since each recipient needs to see only the part of the ciphertext rele-
vant to them). We will call TE with this property recipient-compact. It is, how-
ever, not sender-compact, because the length of information sent by the sender
is dependent on the number of recipients. This missing feature is particularly
desirable when the sender, rather than unicasting information to each recipient,
broadcasts it—for example, by using an intermediate server. Prior to this paper,
whether sender-compactness is achievable for ad hoc TE was an open problem.

1.1 Our Contributions

In this paper, we initiate a systematic study of the possibilities and limitations of
ad hoc threshold encryption, and introduce a key application to scalable MPC.
We start with a definitional framework that systematizes the various options for
functionality and security in Sect. 2.

As our main feasibility result (Sect. 3), we show that sender-compactness is,
in principle, achievable.

Contribution 1 (Theorem 1). We describe the first sender-compact ad hoc
threshold encryption scheme.

The price we pay for sender-compactness is that we use indistinguishability
obfuscation (iO), and that every sender needs a public key. This key needs to
be known for decryption, and has a component whose size grows polynomially
with n. However, public keys are published once, whereas ciphertexts are created
and transmitted multiple times, so having the burden of size in the public keys
instead of the ciphertexts can be a big advantage when the sender is already
known to the recipient. Moreover, in some uses of TE, decryption is delayed,
and the linear component of the public key is not needed by every recipient
(for example, if TE is used for backup storage that is usually not accessed; see
Sect. 1.2 for another example).



Compact Ad Hoc Threshold Encryption 363

We also show a fundamental limitation of sender-compact schemes: recipi-
ents need to know the public keys of other recipients. Specifically, we define (in
Sect. 2) a TE property we call recipient-set-obliviousness, which demands that
the recipient algorithms be run without the public keys of other recipients.

Contribution 2 We show that recipient-set-obliviousness and sender-compact-
ness cannot be simultaneously satisfied.

We formally state and prove this result in the full version of this paper.
Threshold encryption is well suited for applications to multi-party computa-

tion (MPC), because it allows multiple parties to learn shares of a value. Building
MPC protocols is much easier when encryption also allows for some homomor-
phic computation, so that operations on unopened ciphertexts can be used to
operate on the underlying plaintexts.

We demonstrate, in Sect. 4, how to build recipient-compact ad hoc threshold
encryption schemes that support limited homomorphism. We use the acronym
“HATE” to describe ATE schemes that support homomorphism.

Contribution 3 (Theorems 3, 4 and 5). We describe three recipient-compact
HATE schemes that support additive homomorphism.

The first two of these schemes are based on standard assumptions. They
follow the share-and-encrypt paradigm, and allow homomorphism because of a
careful combination of specific encryption and secret sharing schemes. One of
these schemes keeps messages in the exponent, and thus supports only limited
message spaces. Choosing a secret sharing scheme with the right properties is
crucial to enable the scheme to be ad hoc, recipient-compact, and homomorphic.
We use Shamir and CRT secret sharing, both of which are additively homomor-
phic over multiple inputs, do not require pre-distributed correlated randomness,
and have compact shares.

These schemes are recipient-set-oblivious and therefore cannot be sender-
compact. However, they have an additional property on top of recipient com-
pactness, which we call recipient-local evaluation: namely, not only does a cipher-
text consists of compact recipient-wise components, but also each recipient can
perform homomorphic evaluation locally on its own components.

The third recipient-compact additively homomorphic ATE has the advantage
that a fresh ciphertext (before homomorphic evaluation) is sender-compact, but
at the price of relying on iO. We obtain this scheme by modifying our iO-based
scheme from Sect. 3. Prior to homomorphic evaluation, a different ciphertext
(of size independent of n) for each recipient must be extracted from the sender-
compact ciphertext. As in the first two schemes, homomorphic evaluation can be
performed locally on these per-recipient ciphertexts, giving the scheme recipient-
local evaluation. This scheme supports only small message spaces.
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Open Questions About Ad hoc Threshold Encryption. Our systematic study and
results raise several intriguing open problems about ad hoc threshold encryp-
tion. First, are there sender-compact ad hoc threshold encryption schemes with
constant-size public keys (independent of n)? Are there such schemes which do
not require a sender public key? Can such schemes be based on more stan-
dard assumptions than iO? Are there ad hoc threshold encryption schemes with
ciphertexts that remain compact even after homomorphic evaluation? Is it possi-
ble to achieve full homomorphism? (We note that share-and-encrypt is not known
to solve this problem: in principle, a multi-input fully homomorphic threshold
secret sharing scheme can be combined with fully homomorphic encryption to
give fully homomorphic ad hoc threshold encryption; however, to the best of our
knowledge, all known constructions of multi-input fully homomorphic threshold
secret sharing require pre-distributed correlated randomness.)

The importance of our results and these questions is reinforced by their
usefulness for scalable MPC, which we discuss next.

1.2 Application: One-Server, Fault-Tolerant MPC

Consider a service that has an app with a large smartphone user base. Suppose
the service wants to collect aggregate usage statistics, but (for regulatory com-
pliance, or for good publicity, or for fear of becoming a target for attackers and
investigators) does not wish to learn the data of any individual user.

A traditional MPC solution is not suitable for this setting, because the phones
do not communicate directly with one another, and because we cannot expect
every phone to remain engaged for the duration of the protocol, as phones may
go out of signal range or run out of charge. We call MPC protocols in this setting
Large-scale One-server Vanishing-participants Efficient MPC (LOVE MPC).

As we already mentioned, threshold encryption can be used for MPC. Ad hoc
threshold encryption is particularly well-suited for this setting: by not having a
setup phase, it eliminates an important bottleneck, because running a multi-user
setup protocol with vanishing participants may present problems. In particular,
HATE schemes can be used to build LOVE MPC for the honest-but-curious
setting as follows: each phone sends an encryption of its input to the server,
who homomorphically combines them, sends the result out for decryption by all
users, and successfully uses the partial decryptions to get the correct result as
long as more than t phones respond.

Using our HATE constructions, we derive a 3-round LOVE MPC for addition
(described in the full version of this paper). This improves on the round com-
plexity of prior work by Bonawitz et al. [5], who proposed a 5-round protocol.
(We also prove, in the full version of this paper, that three rounds and some
setup—e.g. a PKI—is necessary for LOVE MPC.)

The resulting LOVE MPC is based on standard assumptions when using
the HATE constructions of Sect. 4.1, and the linear per-user communication we
obtain asymptotically matches the per-user communication of Bonawitz et al.
[5]. (Per-user communication was improved to constant by subsequent work of
Bell et al. [4], but still at the cost of 5 rounds as opposed to our 3.) Additionally,
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at the price of using our iO-based HATE construction (Section Sect. 4.2), we
obtain constant per-user communication, which is asymptotically better than
the protocol of Bonawitz et al. [5] and asymptotically matches the protocol of
Bell et al. [4] (but, of course, at very high concrete costs due to the use of iO).

1.3 Related Work

Threshold Encryption. Known sender-compact threshold encryption schemes are
not ad hoc: they require some correlated setup. For instance, a sender-compact
threshold variant of ElGamal, due to Desmedt and Frankel [13] (and described
in the full version of this paper) requires a setup phase for every new set of n
recipients. Delerablée and Pointcheval [12] designed a sender-compact scheme
based on bilinear maps with a reduced setup requirement. In their scheme, the
sender can pick the set of n recipients dynamically; however, each recipient’s
secret key must be derived from a common master secret key, so this scheme is
not ad hoc.

On the other hand, known ad hoc threshold encryption schemes are not
sender-compact. The simple share-and-encrypt construction discussed above
requires the sender to send an amount of information that is linear in n. Daza
et al. [11] use an interpolation-based trick to reduce the ciphertext size to O(n−t)
(and subsequently use bilinear maps to give a matching CCA2-secure construc-
tion [10]); however, they leave open the problem of further lowering the cipher-
text size.

Ad hoc fully homomorphic threshold encryption was explored by Boneh
et al. [6] and Badrinarayanan et al. [2], as well as by Dodis et al. [14] as “spooky”
encryption; however, their schemes are not even recipient-compact, let alone
sender-compact.

Ad Hoc Broadcast Encryption. Ad hoc sender-compact encryption has been
achieved in the context of broadcast encryption, which is a special case of thresh-
old encryption with the threshold t = 0, giving any one recipient the ability to
decrypt. Specifically, Boneh and Zhandry [7] construct what they call distributed
broadcast encryption form indistinguishability obfuscation (iO). Their construc-
tion has the downside of long (polynomial in the number n of recipients) public
keys. Later, Ananth et al. [1] shrink the public keys at the cost of changing
the assumption to differing-inputs obfuscation (diO). Zhandry [21] improves on
these results, shrinking the public keys and replacing the iO assumption with
witness PRFs, but still requiring t = 0.

2 Threshold Encryption (TE) Definitions

A threshold encryption scheme [13] is an encryption scheme where a message
is encrypted to a group R of recipients, and decryption must be done collab-
oratively by at least t + 1 members of that group. (This can be defined more
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broadly for general access structures, but we limit ourselves to the threshold
access structure in this paper.)

Classically, threshold cryptography involves a secret-shared secret key, which
fixes the set of all key-holders. That is, a single Setup operation suffices only
to establish a single set of recipients, and the sender is not allowed to specify a
recipient set R at encryption time.

Dynamic threshold encryption [12] allows a sender to choose the set of recip-
ients dynamically at encryption time, as described in the Enc algorithm of
Sect. 2.1. In a dynamic threshold encryption scheme, a single Setup operation
suffices for the establishment of arbitrarily many groups of recipients.

However, dynamic threshold encryption schemes still require trusted setup,
where a central authority distributes correlated randomness to all parties. In
an ad hoc threshold encryption (ATE) scheme, there is no need for any trusted
central authority or master secret keymsk. We call a threshold encryption scheme
ad hoc if a public-private key pair can be generated without knowledge of a
master secret key; that is, if each party is able to generate its keys independently.

In this paper, we additionally consider keyed-sender threshold encryption
schemes. In a keyed-sender threshold encryption scheme, in order to encrypt a
message, the sender must use its own secret key in addition to the recipients’
public keys (unlike in typical public-key encryption, where encryption does not
require the knowledge of any secrets). Similarly, in order to decrypt the cipher-
text, recipients need to use the sender’s public key in addition to their secret
keys.

2.1 Threshold Encryption Syntax

A threshold encryption scheme consists of five algorithms, described in this
section. This description is loosely based on the work of Daza et al. [10], but
we modify the input and output parameters to focus on those we require in our
constructions, with some additional parameters discussed in the text. Parame-
ters in purple (namely, msk) are absent from ad hoc schemes; parameters in blue
(namely, skSndr and pkSndr) are present only in keyed-sender schemes (for readers
seeing this text in monochrome, we give text explanations in addition to colors).
Keyed-sender schemes additionally require a sixth algorithm, KeyGenSndr.

Setup(1λ, t) → (params,msk) is a randomized algorithm that takes in a security
parameter λ as well as a threshold t and sets up the global public parameters
params for the system.
If the scheme is not ad hoc, Setup also sets up the master secret key msk for
key generation.
For simplicity, we provide Setup with the threshold t, and assume that t is
encoded in params. However, in t-flexible schemes, t may be decided by each
sender at encryption time, and should then be an input to Enc (and encoded
in the resulting ciphertext). In keyed-sender schemes (where the sender must
use their secret key to encrypt and recipients must use the sender’s public
key to decrypt), t may also be specified in the sender’s public key.
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KeyGen(params,msk) → (pk, sk) is a randomized key generation algorithm that
takes in the global public parameters params (and, if the scheme is not ad
hoc, the master secret key msk) and returns a recipient’s public-private key
pair.

KeyGenSndr(params,msk) → (pkSndr, skSndr) is a randomized algorithm present in
keyed-sender schemes only; it takes in the global public parameters params
(and, if the scheme is not ad hoc, the master secret key msk) and returns
a sender’s public-private key pair where the private key is used to facilitate
encryption by the sender, the public key is used to facilitate decryption of
messages from the sender.

Enc(params, skSndr, {pki}i∈R,|R|>t,m) → c is a randomized encryption algo-
rithm that encrypts a message m to a set of public keys belonging to the
parties in the intended recipient set R in such a way that any size-(t + 1)
subset of the recipient set should jointly be able to decrypt. We assume t is
specified within params, but (if the scheme is keyed-sender) it may also be
specified within the sender’s public key, or (if the scheme is t-flexible) it may
be specified on the fly as an input to Enc itself.

PartDec(params, pkSndr, {pki}i∈R, skj , c) → dj is an algorithm that uses a secret
key skj belonging to one of the intended recipients (that is, for j ∈ R) to get
a partial decryption dj of the ciphertext c. This partial decryption can then
be combined with t other partial decryptions to recover the message.

FinalDec(params, pkSndr, {pki}i∈R, c, {di}i∈R′⊆R,|R′|>t) → m is an algorithm
that combines t+ 1 or more partial decryptions to recover the message m.

In a sender-compact scheme, the size of the ciphertext c is independent of
the number of recipients n. In a recipient-compact scheme, PartDec requires only
a portion ci of the ciphertext c, where the size of ci is independent of n.

2.2 Threshold Encryption Flexibility

Not all threshold encryption schemes allow/require all of the algorithm inputs
described in Sect. 2.1. Sometimes disallowing an input can make the scheme less
flexible, but, on the other hand, sometimes schemes that do not rely on certain
inputs have an advantage.

More Flexibility: Unneeded Inputs. Ad hocness is an example of gaining an
advantage by eliminating dependence on an input. Ad hoc schemes do not use
the master secret key msk, and thus do not require a trusted central authority
(which in many scenarios might not exist).

Another example of gaining an advantage by eliminating an input is recipient-
set-obliviousness. Requiring both decryption algorithms (PartDec and FinalDec)
to be aware of the set of public keys belonging to individuals in the set R of
recipients can be limiting.

Definition 1 (Threshold Encryption: Recipient-Set-Obliviousness).
We call a threshold encryption scheme recipient-set-oblivious if neither partial
decryption nor final decryption use {pki}i∈R.
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It may seem that a recipient-set-oblivious scheme should require less commu-
nication, since the sender would never need to communicate R to the recipients.
However, in the full version of this paper we show that a recipient-set-oblivious
ATE scheme cannot be sender-compact.

More Flexibility: Additional Inputs. In describing the threshold encryption algo-
rithms, for the most part we assumed that the threshold t was fixed within the
global public parameters params (or, in a keyed-sender scheme, in the sender’s
public key). However, some schemes (such as share-and-encrypt) allow the sender
to choose t at encryption time; we call such schemes t-flexible.

2.3 Threshold Encryption Security

The threshold encryption security definition is two-fold. We require semantic
security, informally meaning that encryptions of two messages of the same size
should be indistinguishable. We use the semantic security definition of Boneh
et al. [6] for threshold encryption schemes, modified to support the keyed-sender
property. We also require simulatability, informally meaning that given a cipher-
text corresponding to one of two messages, partial decryptions can be simulated
in such a way as to cause the ciphertext to decrypt to either of the two messages.
The latter requirement is useful for MPC applications.

Both for semantic security and simulatability, there are three notions of secu-
rity we consider, which differ according to the point in the security game at
which the adversary must commit to the set of corrupt parties C, and the set of
challenge ciphertext recipients R. From weakest to strongest, these are super-
static, static and adaptive security. In super-static security, which is what our
obfuscation-based construction achieves, the adversary specifies both C and R
before seeing the public keys. In static security, which is what our other con-
structions achieve, the adversary specifies C before seeing the public keys, but
can specify R later, at the same time as the two challenge messages, mR and
mL. In adaptive security, the adversary specifies C having seen the public keys,
and can specify R at the same time as the two challenge messages, as in static
security.

The formal definitions of threshold encryption security are straightofrward
given the above discussion, but are too lengthy given the space constraints. We
therefore give them in the full version of this paper.

2.4 Threshold Encryption with Homomorphism

Homomorphic ad hoc threshold encryption (HATE) can be particularly useful
in applications to multi-party computation.

Definition 2 (Threshold Encryption: Homomorphism). Let F be a class
of functions, each taking a sequence of valid messages and returning a valid
message. An F-homomorphic threshold encryption scheme additionally has the
following algorithm:
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Eval(params, {pki}i∈R, [c1, . . . , c"], f) → c∗ is an algorithm that, given " cipher-
texts and a function f ∈ F , computes a new ciphertext c∗ which decrypts to
f(m1, . . . ,m") where each cq, q ∈ [1, . . . , "] decrypts to mq.

Informally, Eval should be correct, meaning that decryption should lead to
the correct plaintext message f(m1, . . . ,m").

2.5 Threshold Encryption Compactness

Compactness Without Homomorphism. As described in the introduction, we say
that a threshold encryption scheme is sender-compact (or, in other words, that
it has sender-compact encryption) if the size of a ciphertext is independent of
the number of recipients. We say that it is recipient-compact (or, in other words,
that it has recipient-compact encryption) if the portion of the ciphertext required
by each recipient to produce their partial decryption is independent of the num-
ber of recipients. Of course, if a threshold encryption scheme is sender-compact,
then it is also recipient-compact, since each receiver can use the entire (com-
pact) ciphertext to partially decrypt. However, the converse is not necessarily
true. Even if a scheme is not sender-compact, it can be recipient-compact if the
ciphertext c can be split into compact components c = {ci}i∈R such that every
recipient can run PartDec given just one component ci.

Compactness With Homomorphism. When we consider homomorphic threshold
encryption, a fresh ciphertext c may look different than a ciphertext c∗ which
Eval outputs. Of course, the size of c∗ should not grow linearly with the number
" of inputs to f ; otherwise, homomorphism becomes unnecessary, and c∗ could
simply consist of a concatenation of the input ciphertexts.

Notice that this does not preclude ciphertext growth. Even if a fresh cipher-
text has size independent of n, the output of Eval may grow with n. We intro-
duce some new terminology to handle this: we say that a homomorphic threshold
encryption scheme has compact evaluation if the output of Eval has size inde-
pendent of n, and that it has recipient-compact evaluation if the output of Eval
can be split into recipient-wise compact components. Additionally, we say that a
homomorphic threshold encryption scheme has recipient-local evaluation if it has
recipient-compact encryption and evaluation is performed component-wise, with
Eval taking one recipient’s component of each input ciphertext and producing
that recipient’s compact component of the output ciphertext.

All of our schemes in Sect. 4 have recipient-compact encryption and recipient-
local evaluation; the scheme in Sect. 4.2 additionally has sender-compact encryp-
tion.

In a setting where multiple senders send ciphertexts to a single server, who
homomorphically computes on the ciphertexts and sends (the relevant parts of)
the output of Eval to receivers, it is enough to have a sender-compact encryption
and recipient-compact evaluation, even if the overall output of Eval is long. These
properties suffice for reducing bandwidth, because the size of every message
transmitted between two parties is independent of the number of recipients.
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If, instead, we have a setting where senders send ciphertexts directly to
receivers who then compute on those ciphertexts themselves, sender-compact
encryption is less important, and recipient-local evaluation becomes key. Each
sender must send something to each receiver anyway (instead of sending only
one thing to the server), and in a setting with direct peer-to-peer channels,
it becomes unimportant whether those things are all the same sender-compact
ciphertext, or receiver-wise components of a recipient-compact ciphertext.

3 Sender-Compact Ad Hoc Threshold Encryption

In this section, we describe a sender-compact ATE. In the share-and-encrypt
construction, the total ciphertext size is Θ(n), because each recipient gets an
encryption of a different share. A natural approach is to compress the ciphertext
using obfuscation: namely, instead of using the encrypted shares as the cipher-
text, we can try to use an obfuscated program that outputs one encrypted share
at a time given an appropriate input (such as a short symmetric encryption of
the message, a recipient secret key, and proof of the recipient membership in the
recipient set R).

However, this strategy fails to achieve sender-compact ciphertexts, because
the obfuscated program remains linear in the size of the threshold t. The reason
is that, within the security proof, in one of the hybrids we are forced to hardcode
t secret shares in the program, and the obfuscated program must be of the same
size in all hybrid games.

Therefore, instead of putting an obfuscated program in the ciphertext, each
sender obfuscates a program as part of key generation. This program becomes the
sender’s public key. While it is long (polynomial in the in the number of recipients
n), it needs to be created and disseminated only once, as opposed to a ciphertext,
which depends on the message. Notice that having this obfuscated program as
the sender’s public key makes our ATE scheme keyed-sender, meaning that in
order to encrypt a message the sender must use its secret key, and in order to
decrypt a message, recipients must use the sender’s public key.

One can think of the obfuscated program in the sender’s public key as a
“horcrux”.1 The sender stores some of its secrets in this obfuscated program,
and when encrypting a message, the sender includes just enough information in
the ciphertext that the obfuscated program can do the rest of the work.

Once we put the obfuscated program in the sender’s public key, we run into
the issue that the outputs of the program on the challenge ciphertext cannot be
dependent on the challenge message. This is because in the proof of security, the
challenge message is chosen dynamically by the adversary, whereas the program
is obfuscated by the challenger at the beginning of the game. In some hybrids,
the outputs corresponding to the challenge message must be hardcoded in the
program; so, they cannot depend on the actual message, which can be picked
after the program is fixed. Therefore, instead of returning secret shares of the
1 A “horcrux” is a piece of one’s soul stored in an external object, according to the
fantasy series Harry Potter [20].
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challenge message, the program returns shares of a random mask which is used
to encrypt the message.

Specifically, the program that each sender obfuscates takes as input a random
nonce—together with the sender’s signature on that nonce—and a recipient’s
secret key. The program checks the signature, and that the recipient’s secret key
matches one of the public keys to which the sender addressed this ciphertext
(this “addressing” is performed implicitly, via the same signature). Note that
checking membership in the set of recipients is important: otherwise any party
could extract a secret share of the message. If the checks pass, the program
outputs a secret share of a PRF output on the random nonce. The actual message
is symmetrically encrypted with that PRF output.

The obfuscated program that makes up the sender public key is formally
described in Algorithm 1, and the obfuscation-based ATE is described in
Construction 1. It uses an indistinguishability obfuscator iO, puncturable pseu-
dorandom function PPRF, a secret sharing scheme SS, a constrained signature
SIG, and a length-doubling pseudorandom generator PRG with domain {0, 1}λ

and range in {0, 1}2λ. We define all of these primitives in the full version of this
paper.

Algorithm 1. fkw,kShare,SIG.pk(
−→pv = {pvi}i∈R, idx, sv, nonce,σ)

The following values are hardcoded:
params = (λ, n, t), where

λ is the security parameter,
n is the number of recipients, and
t is the threshold.

kw, a secret PPRF key used to recover the mask w from nonce nonce
kShare, a secret PPRF key used to secret share the mask w
SIG.pk, a signature verification key

The following values are expected as input:
−→pv = {pvi ∈ {0, 1}2λ}i∈R, lexicographically ordered public values
idx, an index
sv ∈ {0, 1}λ, a secret value
nonce
σ, a signature

if (−→pv[idx] = PRG(sv)) and (SIG.Verify(SIG.pk, (−→pv, nonce),σ)) then
w ← PPRFkw (nonce)
r ← PPRFkShare(nonce)
[w]idx ← SS.Share(w, n, t; r)[idx] {This gives the idxth secret share of w}
return [w]idx

Informally, in order to prove security, we will have to show that given an
obfuscation of this program, an adversary who has only t or fewer secret keys
from the recipient set will not be able to tell the difference between an encryption
of a message mR and an encryption of a different message mL. Our proof will
need to puncture kw and kShare on the challenge nonce in order to remove any
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Let the public parameters params = (λ, n, t) consist of the security parameter λ,
the number of recipients n, and the threshold t.

KeyGen(params):

{The following generates the “receiver” keys.}
sv ← {0, 1}λ

pv ← PRG(sv) ∈ {0, 1}2λ

return (pv, sv)

KeyGenSndr(params):

{The following generates the “sender” keys.}
(SIG.pk, SIG.sk) ← SIG.KeyGen(1λ)
kw ← PPRF.KeyGen(1λ)
{This PPRF key will be used to produces the mask w for the message. Its output is
assumed to be in the message space group.}
kShare ← PPRF.KeyGen(1λ)
{This PPRF key will be used to produce the randomness for secret sharing w. We slightly
abuse PPRF notation above; the size of w and the size of the randomness needed to
secret share w might be very different. We simply assume that either the keys used
are of different sizes (that is, kShare might actually consist of multiple keys), or that
the PPRF is chained in the appropriate way to produce a sufficiently large amount of
randomness. We assume that the output of PPRF with kw is in some group G which
contains the message space, and that the output of PPRF with kShare is of whatever form
the randomness for SS.Share should take.}
ObfFunc ← iO(fkw,kShare,SIG.pk

)
return (pkSndr = ObfFunc, skSndr = (SIG.sk, kw))

Enc(params, skSndr = (SIG.sk, kw),−→pv = {pvi}i∈R,|R|≥t,m):

nonce ← PPRF.domain
e = (PPRFkw (nonce) + m)
σ ← SIG.Sign(SIG.sk, (−→pv, nonce))
return c = (nonce, e,σ)

PartDec(params, pkSndr = ObfFunc,−→pv = {pvi}i∈R, svi, c = (nonce, e,σ)):

Let idx be the index of the public value corresponding to the secret value svi in a
lexicographic ordering of {pvi}i∈R
di ← ObfFunc(−→pv, idx, svi, nonce,σ)
return di

FinalDec(params, c = (nonce, e,σ), {di}i∈R′⊂R):

w ← SS.Reconstruct({di}i∈R′⊂R)
m ← e − w
return m

Construction 1: Obfuscation-Based ATE

information about the challenge plaintext from the program. For the proof to go
through given the guarantees of iO, it is crucial that, as we change the plaintext,
the output does not change for any input—in particular, even if the adversary
is able to forge a signature that ties the ciphertext to a wrong set of public
keys. We ensure this property by using a constrained signature scheme SIG, so
that we can guarantee (in an appropriate hybrid) that a signature tying the
ciphertext to a wrong set of public keys does not exist. This means that the
public verification key (which is incorporated into the obfuscated program) is of
size polynomial in n.

Theorem 1. The obfuscation-based ATE (Construction 1) is (n, t)-super-
statically secure for any polynomial n, t, as long as iO is a secure indistinguisha-
bility obfuscator, PPRF is a secure puncturable PRF, SS is a secure (n, t)-secret
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sharing scheme, SIG is a constrained signature scheme, and PRG is a secure
pseudorandom generator.

We prove Theorem 1 in the full version of this paper. Note that all the
tools this construction uses can be obtained from indistinguishability obfuscation
(with complexity leveraging), and one-way functions.

3.1 t-Flexibility

For simplicity, we describe obfuscation-based ATE in a way that is not by default
t-flexible, since the threshold t is fixed within the sender’s public key. However,
it can be made t-flexible in a very straightforward way, simply by including t as
part of the (signed) input to the obfuscated program.

3.2 Reducing the Public Key Size

In the construction described above, the sender’s public key size is polynomial
in the number n of recipients. We can decrease the size of the public key by
relying on differing-inputs obfuscation (diO) [1,3] instead of indistinguishability
obfuscation (iO). If we do, then we can modify the obfuscated program to take
a Merkle hash commitment to the set of recipients’ public keys, instead of the
entire list; additionally, we will be able to replace constrained signatures with
any signature scheme. This will enable us to go from poly(n)-size public keys
to poly(t)-size public keys. (We still need poly(t) because that is the number of
secret shares we must hard-code in the program in one of the hybrids in our
security proof.)

4 Recipient-Compact Homomorphic Ad Hoc Threshold
Encryption

In this section, we describe three recipient-compact HATE constructions. In
addition to recipient-compactness, all three of these schemes have recipient-local
evaluation, meaning that each recipient can perform evaluation locally given just
their compact component of the ciphertext.

Two of them (Sect. 4.1) are based on the share-and-encrypt paradigm.
These are recipient-set-oblivious, but are not sender-compact. The last
(Sect. 4.2) achieves sender-compactness by combining share-and-encrypt with
the obfuscation-based sender-compact ATE from Sect. 3. However, like the ATE
in Sect. 3, it is not recipient-set-oblivious.

4.1 Building HATE from Homomorphic Encryption and Secret
Sharing

In this section, we describe our share-and-encrypt homomorphic ad hoc threshold
encryption scheme which, despite its Θ(n)-size ciphertexts, is efficient enough to
be used in practice in some scenarios, because it is recipient-compact.
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As we mentioned in the introduction, one natural way to build ATE is to
use a threshold secret sharing scheme SS together with a public-key encryption
scheme PKE. The idea is to secret share the message, and to encrypt each share
to a different recipient using their public key; therefore, we call this the share-
and-encrypt paradigm. We elaborate on it in the full version of this paper.

Notice that we are able to omit all but the relevant part of the ciphertext as
input to PartDec for each party (where the relevant part is the one encrypted
under their key), making the scheme both recipient-set-oblivious and recipient-
compact. This further saves on communication in some contexts.

Theorem 2. Share-and-encrypt (described formally in the full version of this
paper) is a (n, t)-statically secure, recipient-set-oblivious, recipient-compact
ATE, as long as SS is a secure share simulatable t-out-of-n secret sharing scheme,
and PKE is a CPA-secure public key encryption scheme.

We prove Theorem 2 in the full version of this paper.
If the secret sharing and encryption schemes are homomorphic in compatible

ways, the share-and-encrypt construction is a Homomorphic ATE. The trick
is finding the right homomorphic secret sharing and encryption schemes. In
particular, if the secret sharing scheme is F-homomorphic, the encryption scheme
must be F ′-homomorphic, where F ′ includes the homomorphic evaluation of F
over secret shares.

Of course, if the secret sharing and encryption schemes are both fully homo-
morphic, they give fully homomorphic ATE. However, no homomorphic thresh-
old secret sharing schemes (with homomorphism over multiple inputs, without
pre-distributed correlated randomness) is known, to the best of our knowledge.2

We show two efficient combinations of secret sharing and encryption which
result in additively homomorphic ATE: Shamir-and-ElGamal and CRT-and-
Paillier(both described in detail in the full version of this paper).

Shamir-and-ElGamal. We build share-and-encrypt HATE out of ElGamal enc-
ryption [15] and a variant of Shamir secret sharing. We need to use a variant of
Shamir secret sharing (which we call exponential Shamir secret sharing), and not
Shamir secret sharing itself, because Shamir secret sharing is additively homo-
morphic (and the homomorphism is applied via addition of individual shares), so
we would need the encryption scheme to support addition; however, ElGamal is
only multiplicatively homomorphic, so if we attempt to apply a homomorphism
on encrypted shares, it will not work. What we need in order to get an additively
homomorphic ATE scheme is to use ElGamal encryption with a secret sharing
scheme which is additively homomorphic, but whose homomorphism is applied
via multiplication. Therefore, we need to alter our Shamir secret sharing scheme
by moving the shares to the exponent; then, taking a product of two shares will
result in a share of the sum of the two shared values. We refer to the full version of
2 Boyle et al. [9] give a nice introduction to homomorphic secret sharing. Jain et al.
[18] and Dodis et al. [14] both build (threshold) function secret sharing, which gives
homomorphic secret sharing, but the homomorphism is only over a single input.
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this paper for a description of the ElGamal encryption scheme and the exponential
Shamir secret sharing scheme which we use.

Theorem 3. Shamir-and-ElGamal (described in the full version of this paper) is
an additively homomorphic ad hoc threshold encryption scheme for a polynomial-
size message space.

Shamir-and-ElGamal is an ad hoc threshold encryption scheme by
Theorem 2; the homomorphism follows from the homomorphisms of the under-
lying encryption and secret sharing schemes.

In Shamir-and-ElGamal we are limited to polynomial-size message spaces
since final decryption uses brute-force search to find a discrete log. Jumping
ahead to LOVE MPC, polynomial-size message spaces are still useful in many
applications, as explained in the introduction. Moreover, the server already does
work that is polynomial in the number of users, so asking it to perform another
polynomial computation is not unreasonable.

CRT-and-Paillier. We also build share-and-encrypt HATE out of Camenisch-
Shoup encryption and Chinese Remainder Theorem based secret sharing. The
Camenisch-Shoup encryption scheme is a variant of Paillier encryption that
supports additive homomorphism. However, we cannot combine it with Shamir
secret sharing, since Shamir shares all live in the same group, while each instance
of a Camenisch-Shoup encryption scheme uses a different modulus. Therefore,
we combine Camenisch-Shoup encryption with CRT secret sharing, which has
exactly the property that different shares can live in different groups. Unlike
Shamir-and-ElGamal, this HATE allows us to use large message spaces. We
refer to the full version of this paper for a description of the Camenisch-Shoup
encryption scheme and the CRT secret sharing scheme which we use.

Theorem 4. CRT-and-Paillier (described in the full version of this paper) is
an additively homomorphic ad hoc threshold encryption scheme.

CRT-and-Paillier is an ad hoc threshold encryption scheme by Theorem 2; the
homomorphism follows from the homomorphisms of the underlying encryption
and secret sharing schemes.

4.2 Building HATE from Obfuscation

As described in Sect. 3, the obfuscation-based ATE is not homomorphic. Infor-
mally, in order to make the obfuscation-based ATE F-homomorphic, we can
modify the obfuscated program to:

1. Use a F-homomorphic secret sharing scheme [8]. (As an example, Shamir
secret sharing is additively-homomorphic.) Note that F should always include
subtraction from a constant (in the appropriate group); the obfuscated pro-
gram returns shares of the mask w, which we want to use, together with the
masked message e, to obtain shares of m = e − w.
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However, this alone is not enough; even if the secret shares returned by the
obfuscated programs are homomorphic, in order to extract them from the
ciphertext, one must know a recipient secret value sv, while evaluation should
require no secrets.

2. Use F ′-homomorphic public key encryption and decryption keys pki, ski
instead of public and private values pvi = PRG(svi), svi. The obfuscated pro-
gram would then not require ski as input; instead, it would return a ciphertext
that requires ski for decryption.
F ′ must include the functions necessary to evaluate F on the homomorphic
secret shares.

This modification makes the construction F-homomorphic while preserving
sender-compactness. Thus, anyone (e.g., a server) can evaluate the obfuscated
program to extract encryptions of all recipients’ shares of the mask, homomorphi-
cally convert these into encrypted shares of the message, and homomorphically
compute on those encrypted shares (since our public key encryption scheme is
homomorphic, as are secret shares). The server would then send all parties their
encrypted share of the computation output. Additionally, this construction is
recipient-compact (as long as homomorphic shares are small), since each party
only needs one compact part of the ciphertext for partial decryption.

More concretely, we can use ElGamal encryption [15]. Once the obfuscated
program is evaluated, we are essentially using the Shamir-and-ElGamal HATE
(Sect. 4.1). In particular, this implies that we are limited to polynomial-size
message spaces, since final decryption uses brute-force search to find a discrete
logarithm.

In the full version of this paper we give more details about our homomorphic
recipient-compact HATE construction.

Theorem 5. The modified obfuscation-based ATE is (n, t)-super-statically
secure for any polynomial n, t, as long as iO is a secure indistinguishability obfus-
cator, PPRF is a secure puncturable PRF, SS is a secure secret sharing scheme,
SIG is a constrained signature scheme, and PKE is a secure public-key encryp-
tion scheme. Moreover, it is F-homomorphic if SS is F homomorphic (where F
includes subtraction from a constant), and if PKE is F ′-homomorphic (where F ′

includes the evaluation of F on SS secret shares).
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10. Daza, V., Herranz, J., Morillo, P., Ràfols, C.: CCA2-secure threshold broadcast
encryption with shorter ciphertexts. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec
2007. LNCS, vol. 4784, pp. 35–50. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-75670-5 3
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