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Mechanochemical induction of wrinkling
morphogenesis on elastic shells

Andrei Zakharov * and Kinjal Dasbiswas *

Morphogenetic dynamics of tissue sheets require coordinated cell shape changes regulated by global

patterning of mechanical forces. Inspired by such biological phenomena, we propose a minimal

mechanochemical model based on the notion that cell shape changes are induced by diffusible

biomolecules that influence tissue contractility in a concentration-dependent manner – and whose

concentration is in turn affected by the macroscopic tissue shape. We perform computational

simulations of thin shell elastic dynamics to reveal propagating chemical and three-dimensional

deformation patterns arising due to a sequence of buckling instabilities. Depending on the concentration

threshold that actuates cell shape change, we find qualitatively different patterns. The mechanochemically

coupled patterning dynamics are distinct from those driven by purely mechanical or purely chemical

factors, and emerge even without diffusion. Using numerical simulations and theoretical arguments, we

analyze the elastic instabilities that result from our model and provide simple scaling laws to identify

wrinkling morphologies.

1 Introduction

Morphogenetic events during embryo development involve
tissue shape changes that are driven by mechanical forces.1,2

A prototypical example is the folding of sheets of epithelial cells
through the constriction and shape change of individual cells
by actively contractile forces generated by myosin molecular
motors in the cytoskeletal network on the cell surface.3,4 The
myosin motor activity is in turn triggered by complex chemical
signaling cascades secreted by the cells themselves which
create a spatiotemporal pattern of active mechanical forces in
the tissue sheets.5 The chemical signaling itself can be affected
by mechanical cues such as forces6 and deformations.7,8

Inspired by the natural spatiotemporal control of shape change
in biological tissue sheets, we are motivated to ask how such
bio-inspired feedback can be used to realize self-actuated
patterning of soft materials.

Thin elastic plates and shells constitute a fundamental class of
soft matter that exhibit sensitive response to stimulii changes
because of the geometric nonlinearity of their mechanical
properties.9 Tissue morphogenesis can inspire the design of such
slender structures that change shape in a programmable way.
Desired shapes can be attained by pre-patterning the internal
structure, for example via metric change,10–12 controlled intrinsic
curvature,13,14 pre-stress,15 or be self-organized, for example,
through a propagating chemical reaction coupled with mechanical

deformations.16–21 The latter approach provides reconfigurable
conformations in contrast with frozen-in patterns, and resembles
the shape changes during morphogenesis with anisotropic
deformations including different types of mechanical instabilities,
such as creases, wrinkles, folds, and ridges.22

Instabilities in spherical shells are of special interest
because of their diverse applications and non-trivial behavior
from a mathematical perspective. Examples of thin shells that
exhibit wrinkling morphology abound in nature and range
from pollen grains and viral capsids to organoids and organs
such as brain and developing embryo at the ‘‘blastula’’ stage2

(monolayer of cells arranged in a shell surrounding a fluid-filled
lumen). Several studies have examined buckling behaviour of
spherical shells due to external pressure,23,24 confinement,25 dif-
ferential growth,26,27 and demonstrated that patterns arising on
curved surfaces are quite different from those on planar surfaces.
Curvature-controlled structure formation encompasses a broad
class of phenomena in physical,28,29 biological30 and chemical
systems.31

In comparison to synthetic materials, living matter can show
more complex cycles of feedback and control where chemical
and mechanical signalling are tightly coupled. Inspired by this
inherently mechanochemical basis of pattern formation in
biological tissue,32 we consider the dynamics and steady state
of shapes induced by chemical gradients in thin elastic shells,
where the chemical is itself affected by the sheet curvature. In
analogy with tissue patterning by gradients of morphogens,
diffusible biomolecules that induce cell fate changes slowly in
a concentration-dependent manner during embryogenesis,33
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we have posited ‘‘mechanogens’’ as biochemical agents that affect
the cell mechanical state.34,35 They can do so by enhancing or
relaxing the cell cytoskeletal contractility, which is a more physical
change in comparison to the usual genetic changes wrought by
morphogen gradients. Candidate mechanogens could be chemical
factors, such as Ca2+ ions, proteins, ATP or drugs, that regulate
actomyosin contractility and cytoskeletal remodeling. While disen-
tangling the various chemical signals and their interactions with
mechanics is challenging in vivo, recent experiments in vitro with
reconstituted cytoskeletal gels that exhibit molecular motor activity-
driven buckling and wrinkling36–38 realize such active elastic pro-
cesses in a controlled setting. These biological materials, along with
synthetic materials such as liquid crystal elastomers39 and gels,40 in
principle, allow for the spatial control of mechanical deforma-
tion and shape actuation through external chemical, electrical
or optical stimuli.41,88

In this work, we explore how in-plane stresses induced in a
thin elastic sheet by gradients of chemical signals (‘‘mechanogens’’)
can be relaxed by energetically less costly out-of-plane deformations.
We thus seek to demonstrate how a short range chemical activation
leads to long range elastic response and subsequent pattern
formation. Unlike models for tissue folding that are based on
differential apical-basal constrictions that lead to wedge-shape of
the constituent cells,42,43 our model is based on a spontaneous
curvature arising due to in-plane incompatibility between domains
of different tension – an effect that is similar to differential growth
and also occurs in principle in contractile biological tissue.We show
that depending on key parameters, such as a threshold of activation
of cell mechanical response by the chemical gradient and the
thickness of the elastic sheet, we can access qualitatively different
patterns such as ridges and spots. Further, themechanical feedback
on the chemical gradient results in pattern propagation from an
initial local region of activation. While inspired by tissue
morphogenesis, these results may also be applicable to synthetic
gels provided such a feedback can be set up.

The structure of the paper is organized as follows. We first
define governing equations for amodel involvingmechanochemical
interactions and give an estimation of the time scales that allow
simplifying assumptions. In Section 3, we demonstrate patterns
arising due to feedback between chemical production and elastic
instabilities, and explore the parameter space identifying qualita-
tively different stationary shapes. In Section 4, we discuss the
buckling and wrinkling instabilities, and provide simple scaling
laws for the observed patterning. In the Appendix, we describe
the discretized elastic energy, the numerical methods applied
to perform simulations of model dynamics, and provide sup-
plementary simulation results obtained for parameter values
different from those in main text.

2 Mechanochemical model for tissue
shape change

Inspired by the biochemical patterning of mechanical forces in
thin layers of tissue, we introduce a model of chemical-induced
pattern formation in thin elastic sheets. We consider the

situation of a thin monolayer of cells tightly adhered to each
other and surrounded by extracellular fluid, as shown in the
schematic in Fig. 1a. The cells change their shape in response
to diffusible chemical signals (which we term mechanogens) in
the extracellular fluid, that are secreted by the cells themselves,
and that bind to receptors on the cells apical (top) surfaces and
trigger changes in the contractile tension of their actomyosin
cytoskeleton. For concreteness, we consider mechanogens that
relax contractility and increase cell apicobasal surface area
while reducing their lateral surface area to conserve volume.
The resulting spatially inhomogeneous in-plane expansion of
the tissue sheet causes the region exposed to higher chemical
signal to buckle out of plane. We then explore the role of
mechanochemical feedback (Fig. 1b), that is, the chemical
concentration is in turn affected by the tissue mechanical state,
specifically its curvature.

The cell monolayer, that could be freely suspended or
adhered to a thin basal substrate, is modeled as a continuum
elastic shell with uniform properties throughout its thickness. We
assume that over the short timescales of interest, the mechanical
response of the sheet to induced stresses is elastic and ignore the
viscous dissipation and fluid flows that could result from cell
rearrangements and motility. Then the mid-surface of the thin
shell can be represented as a two-dimensional surface embedded in
3D space that allows a convenient description for large, out-of-plane
deformations and calculation of the deformed 3D shape. The
mechanical free energy of deformed elastic shells is determined

Fig. 1 (a) Schematic of buckling of a tissue sheet in response to chemical
signals (mechanogens) that bind to receptors on the apical (upper) surface
of cells and trigger change in cell contractility, and therefore cell shape
(in this case, the aspect ratios as a result of force balance42). Outward
tissue curvature in turn stimulates the release of mechanogens into the
extracellular fluid, where they can diffuse and influence cell contractility. In
simulations, the tissue layer is represented by the mid-surface (black
dashed line) that reproduces macroscopic deformations. (b) Schematic
of the mechanochemical feedback considered in our model. (c) Thresholded
dependence of cell contractility on mechanogen concentration, L(c),
assumed in eqn (2) at b = 100, which gives rise to domains of differential
tension and buckling of the tissue sheet.
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by contributions from the stretching energy Us, which is propor-
tional to the shell thickness, h (here, determined by cell size), and
arises due to in-plane compression or extension of the shell, and the
bending energyUb, which is a result of curvature and scales as h.344

Since thickness is usually small compared to shell size (h{ R), the
stretching energy cost dominates that of bending, meaning that it is
more favorable to bending than to stretching. For an isotropic and
linear elastic material, the stretching and bending elastic energy of a
deformed elastic shell is given in terms of the strain tensor eij and
curvature kij respectively, as,

44

U ¼ Us þUb ¼ 1

2

ð
dA le2ii þ 2me2ik
� �

þ 1

2

ð
dAB k2ii � 2ð1� nÞdet kij

� �� �
;

(1)

where l, m are the two-dimensional Lamé coefficients related with a

two-dimensional Young’s modulus Y ¼ 4mðmþ lÞ
2mþ l

, which in turn

depends on the 3D elastic modulus of thematerial, E, and thickness
of the shell as Y = Eh. The in-plane strain eik depends on the local
contraction or expansion, which in living tissues is caused by
actomyosin contractility with an effective contractile tension, L.
For simplicity, we assume an inverse dependence of in-plane
expansion on contractility, so that, the shell expands in-plane when
contractility decreases. The second term in eqn (1) corresponds to
the bending energy of the shell where B = Eh3/[12(1 � n2)] is the
bending stiffness with n as the Poisson ratio of thematerial. kij is the
curvature strain including deviation from any spontaneous curva-
ture. This accounts for out-of-plane displacements which arise as a
result of the tendency to reduce stretching. Summation over
repeating indices is assumed and det() is the determinant. We
describe eqn(1) with a discretized model based on an irregular
triangular mesh suited to our numeric simulations. This is
described in detail in the Appendix A. The discretization of the
bending energy corresponds to the general form given in the second
term in eqn (1). The in-plane stretching is modeled by associated
energy costs of deforming the triangles and their edges in the
mesh, which effectively captures both the in-plane shear and
area deformations contained in the first term in eqn (1). Although
this type of discretization corresponds to an unspecified choice of
the relative values of the two 2D Lamé coefficients in the corres-
ponding continuum medium, it adequately captures the com-
petition of bending and stretching and the resulting pattern
is expected to be robust to the choice of relative weights of
in-plane shear and area deformation modulii. We note that both
the stretching and bending stiffness, Y and B, can be spatially
inhomogeneous if the tissue shell does not maintain uniform
thickness. We treat both possibilities in our model: where h is
uniform, and where h depends on local in-plane area changes to
keep the tissue volume constant.

To relate the elastic shell model to chemical signals, we note
that several recent studies have identified that a change in the
concentration of signaling agents (‘‘mechanogens’’) induces change
in tissue contractility.45 Thus, it is natural to consider a dependence
on concentration c of the tissue surface contractility L(c), that

develops in the actomyosin belt and tends to constrict the cell
apical surface, and plays the role of a physical ‘‘line tension’’ in
determining cell shape. The contractility change in response
to the chemical signal could be either positive or negative
depending on the specific chemical.

Additionally, developing tissue is usually subdivided into
discrete regions of different cells according to thresholds in
concentration of morphogen gradients,46 which lead to the
classic ‘‘French flag’’ pattern of gene expression induced by
morphogens.47 Although such compartmentalization is not
general in physical systems, it is natural and common in living
organisms. Inspired by patterns in biological tissues, we
assume non-linear coupling between chemical pattern and
mechanical stress, and impose the response in contractility
strength using a sigmoid function,

L(c) = (Lmaxe
c*b + Lmine

bc)/(ec*b + ebc) (2)

where c* defines the concentration threshold at which contractility
changes from its maximal to minimal value, Lmax and Lmin,
respectively, and b is the steepness that prescribes the width of
transitional zone. This gives non-linear dependence of contractility
on concentration leading to sharp interfaces between regions of
different contractility (Fig. 1c). The mathematical form of this
sigmoid dependence of L(c) is a specific choice we make to
demonstrate our model predictions. A different choice that leads
to a similar sharp transition in contractility is expected to lead to
qualitatively similar patterns, because mechanical buckling
phenomena are generic and do not rely on specific biomolecules.
What is ultimately important for the mechanical deformations in
our model, which follow from the general theory of thin elastic
shells, is the existence of domains of unequal contraction, which
can arise in practice through different biophysical mechanisms
including cell surface area changes as well as cell division-
induced expansion. Further, differential expansion can arise
even if L changes linearly with concentration, c, (as opposed to
the assumed sigmoid dependence) because cell shape was
shown to be a bistable function of L in ref. 42.

Cell shape in living tissue is determined by a balance of
mechanical forces arising from actomyosin contractility at both
cell apical and lateral surfaces as well as cell–cell and cell–
substrate adhesion,42 all of which can in principle be affected by
mechanogens. Following previous works that assume incompressi-
bility, that is the conservation of cell volume, the local area expan-
sion caused by the chemical is accompanied by a reduction of the
thickness. The case of coupling between concentration and lateral,
instead of apical tension, has similar but reverse effect, causing
thickness increase and surface area contraction with c, due to
volume conservation. Dependencies of cell shape on chemical
concentration alternative to eqn (2) can therefore occur. However,
even in scenarios where the cell volume can change or if the
tissue retains its thickness and expands in-plane through cell
division, the surface contractility,L, remains a convenient effective
parameter that allows in-plane area changes required for tissue
buckling. Henceforth, we omit microscopic details of individual
cell shapes and their interactions, but, rather, consider the tissue
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sheet as a continuum and model the consequences of differential
contractility along its plane.

On the other hand, it was shown experimentally that production
rate of the signaling regulating developmental gene expression is
coupled to mechanical stress.48–50 Similar observations indicate the
higher expression ofmorphogens at regions of high curvature.51 We
close the mechano-chemical feedback loop by assuming that
production of chemicals is coupled to the local curvature. Though
such a dependency is written on general grounds, we provide as an
example a plausiblemechanism for the curvature-dependent release
of chemicals shown in Fig. 1a. Within this assumed picture, gaps
can open between cells as the tissue bends and a curved shape (non-
zero deviation of mean curvature from its intrinsic value) allowing
the release of mechanogens into the extracellular fluid.52 It was
shown that even the interstitial flow is small, it still biases the local
gradients around cells.53 Since epithelial cells have apicobasal
polarity,54 meaning that the upper and lower sides of the tissue
sheet are not chemically the same, we consider that only upward
bending (positive curvature) is effective in mechanogen production.
For example, if receptors are localized on the apical (upper) surface,
then concentration only on this surface needs to be considered.
Recent experiments55 have demonstrated a similar scenario for
morphogen gradients arising in regions of high curvature and
spreading only on one side of the epithelial layer due to the
difference in morphogen–receptor interactions on different
sides. We also assume the usual uptake of mechanogens which
leads to their removal from the extracellular space leading to a
linear degradation rate. The mechanogens can be transmitted
along the surface of tissue by diffusion in the extracellular fluid,
forming concentration gradients. The time evolution of the
chemical concentration on the upper side of the shell is then
governed by the equation

@tc ¼ Dr2cþ Yð ~HÞw ~H

1þ ~H=Hs

� bc; (3)

where D is the diffusivity, H̃ = H � H0 is the effective mean
curvature accounting for deviations of geometric curvature, H,
from the intrinsic curvature of the undeformed shell, H0, and
Y(H̃) is the Heaviside function such that production takes place
only when the deviations are outward (H̃ 4 0). This assumption
is aimed to guarantee a stable pattern17,43 and consistent with
experiments.48 Thus, Hs is a characteristic curvature at which
the chemical production saturates to a rate given by wHs, and
b is the rate of degradation. The maximum local steady state
concentration at a region of high curvature, H̃ c Hs, is then
given by cmax = wHs/b.

The chemical kinetics given by the diffusion, production and
degradation rates defined in eqn (3) are typically slower than
elastic stress propagation. For constant production rate, the
timescale to reach a steady state in concentration is given by
b�1, which for morphogens in developing tissue has been
measured to be of the order of hours.56 This is at least one order
of magnitude slower than the time scale for contractility and
tissue length remodeling in epithelial cell sheets, which is of the
order of minutes.57–59 The strain relaxation by out-of-plane

deformations is assumed to be the fastest process in the
mechano-chemical loop we consider. We assume that the elastic
energy relaxes through the overdamped dynamics given by,
gqu/qt = �dU/du, where u is the material displacement. We
consider viscous damping by the surrounding fluid and neglect
any possible viscous remodeling of the tissue material.60 For a
sheet of characteristic size, R, immersed in a fluid of viscosity, Z,
the frictional drag on the sheet goes as g B ZR. A small out-of-
plane deformation dx leads to a bending elastic restoring force
that can be estimated from eqn (1) to be E�hR2�h2(dx/R2)2�dx�1 B
Eh3dx/R2. By balancing this against a viscous drag force of ZRdx/
tel, we can estimate a characteristic timescale for the relaxation
of the elastic deformation energy, tel B (Z/E)�(R/h)3. For the
typical material properties of a suspended epithelial monolayer61

(E B 10 kPa, Z B 1 Pa s, R/h B 102), we get tel B 101–102 s.
Finally, the feedback loop has a coupling between tissue

deformations and the chemical production rate. Since the
production rate is associated with opening interstitial gaps,
we assume a very small delay in this process, but the following
chemical rearrangements are slowed down due to limited
diffusion discussed above. Thus, slow modes of chemical rear-
rangements evolve on a longer time scale, while fast modes of
mechanical conformations follow them quasi-statically, accordingly
to Haken’s slaving principle: ‘‘fast modes are slaved by slow
modes’’.62 This separation of timescales allows us to reproduce
the tissue morphing dynamics in simulation by implementing an
iterative procedure. Starting from the reference equilibrium configu-
ration, a small perturbation in concentration is introduced, which
leads to a local contractility change. The stress is updated according
to the altered contractility, and since the mechanical response is
fast, we find actual three-dimensional shapes by minimizing the
elastic energy eqn (1). As the system reaches a mechanical
equilibrium, the concentration profile is updated by a small
time step taking into account the new shape that prescribes a
new production rate. The iterative process continues till the
change in concentration profile, which is coupled with reshaping,
vanishes. Since the pattern develops on a domain of finite size, the
dynamics slows down and eventually becomes stationary.

We also tested the emergent dynamics and patterns assuming
comparable timescales for mechanical remodeling and chemical
rearrangements. In this case we performed a steady-state
dynamics by sequential computations of mechanical and chemical
equilibrium states. Iteratively repeating the update, the system
dynamics eventually converged. This approach is more com-
putationally time-consuming and does not allow to reproduce
dynamics with a time scale related to a measurable parameter.
However, it still captures the same resulting configurations
as in computations when we assume the separation of time
scales described earlier. This demonstrates that even if our
assumption of separation of time scales is not true in a given
experimental system, the approach we use captures the final
steady states in the system we consider. However in general, the
mechanical response might be slowed, for example due to a
delay between signal and contractility change or as a result of
viscous drag in elastic relaxation, in which cases it requires
simultaneous updates.
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3 Results

Although eqn (1)–(3) are in principle valid for elastic shells of
any shape, we now proceed with a shell of spherical geometry
for the sake of concreteness. Consider a spherical shell of
uniform radius R and small thickness h{ R in the undeformed
state, representing a developing tissue sheet. Assume the tissue
remains at a spontaneous curvature, H0 = 1/R, without any
residual, in-plane stress. Thus, without any further perturbation,
the total elastic energy of the spherical shell is vanishing and it
remains in a stationary, mechanical equilibrium state. Then we
introduce an initial small point perturbation of the chemical
profile defined by a Gaussian function with the spot size
comparable to the shell thickness, d = h, and magnitude of
the order of the upper concentration limit c = cmax (Fig. 3 at
t = 0), causing a local point-like inhomogeneity in contractility.
The shell now has two domains: an outer one with a higher
initial contractility (Lmax), and a smaller, inner one with higher
chemical concentration and reduced contractility (Lmin) that is
associated with in-plane expansion and tendency to develop
larger surface area. Thus, being constrained by the outer
domain, the inner region is under compressive stress. With
the shell experiencing in-plane incompatibility, it deforms to
reduce stretching and is prone to bending. The macroscopic
manifestation of this incompatibility is out-of-plane deformations of
the shell due to buckling instability. The dynamics of deformations
depends on mechanical properties of the sheet, coupling between
concentration and contractility, and the diffusivity of signaling
species. A full list of the parameters we use in our simulations is
recapitulated in Table 1. We find that the resulting pattern is
sensitive to varying thickness, h, and the concentration threshold,
c*, at which contractility transitions to its lower value. The threshold
c* determines the nonlinear mechanical response that links
chemical inputs to shape change actuation. Varying this parameter
leads to qualitatively different shapes.

We first aim to explore the feedback between curvature and
local chemical production as a cue for spatial patterning. To see
this, we assume vanishing diffusion D = 0, such that production
is balanced by linear degradation locally. The simulated
spheres at R = 30 reveal that, even in the absence of diffusion,
coupled mechanical deformations and chemical production
result in propagating patterns, as shown in Fig. 2. We find that
when thickness h Z 1 and threshold c* r 0.3, the initial

excitation makes the state unstable and the shape becomes
distorted via buckling instability. At small h, the shell can
develop larger amplitude and smaller wavelength out-of-plane
deflections for the same bending energy cost,63 since curvature
goes as k B A/l2. In this case (lower row in Fig. 2), only a single
localized bulge develops in the inner domain of lower contractility,
while the outer region with the larger contractility retains its shape.
Increasing thickness, h, leads to smaller out-of-plane deflections at a
given compressive load leading to a smaller curvature and longer
length scale deformations that extend out of the initial perturbation
spot.63 In this case, the positive mechanochemical feedback allows
the pattern to propagate because the deflected region has higher
curvature which leads to chemical production, which in turn
drives the incompatibility responsible for out-of-plane deflection.

For lower concentration threshold, c* = 0.05, there is more
mechanical stress and incompatibility since the inner region
over which the shell relaxes its contractility is larger. In this
case, the shell adopts a pattern of almost uniformly distributed
spots of high concentration, where each spot locally deforms
the shell to a bulged shape. The spot size and separation
between spots is seen to increase with h. The scaling law and
underlying mechanism is discussed in Section 4. At intermediate
c* and thickness lower than h = 4, the emergent bulges form
ridge-like lines that propagate in random directions if the initial
perturbation is symmetric, but demonstrate a preferred direction
when the initial spot is elongated due to non-axisymmetric pertur-
bation. The transition between spotted and ridge structures is
continuous, for example at 0.1 o c* o 0.2, mixed regimes occur
with more than one ridge or consisting both types of patterning. In
case of a high c* and h, the shell is stable to the initial perturbation
because the buckling-induced curvature developed at a given
thickness is small and does not cause enough chemical
production required for contractility change. In this case, the
chemical concentration level eventually decreases at steady
state due to linear degradation in eqn (3), making contractility
uniform over the shell.

The time series for patterns of two representative cases are
depicted in Fig. 3. A typical evolution in both cases starts with a

Table 1 Parameters used in simulations

Parameter Description

E = 106 Young’s modulus
n = 0.5 Poisson ratio
Lmax = 1 Maximal contractility
Lmin = 0.65 Minimal contractility
b = 100 Width of transitional zone between

domains with Lmax and Lmin

Hs = 0.05 Characteristic curvature at which the
chemical production saturates

w = 15 Production rate
b = 1 Degradation rate
g = 100 Friction coefficient

Fig. 2 Steady states of a spherical shell colored according to the local
concentration at different threshold c* and the initial thickness h. Patterns
emerge as a consequence of a small initial chemical perturbation at a pole
of the sphere (the central point in the top views). Higher concentration
regions are associated with greater positive (outward) curvature. Simula-
tions performed at D = 0 and the initial radius R = 30, other parameters are
listed in Table 1.
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small perturbation in the concentration that leads to a local
decrease in contractility followed by area expansion and buckling.
As curvature increases with buckling, it causes production
enhancement, and as a result the size of the initial bulge grows.
Then a ring of higher concentration is formed at a short distance
from the initial spot (t = 35 and t = 2500 in Fig. 3a and b,
respectively), which at low threshold c* = 0.05 breaks into multiple
bulges along the ring (t = 70 in Fig. 3a). Each high concentration
spot becomes wider following the same dynamics as the initial
bulge, and creates another row of bulges (t = 100 in Fig. 3a). The
process eventually slows down and terminates when the pattern
occupies the entire spherical shell, with uniformly distributed
spots (t = 100000 in Fig. 3a), except at the site of the initial
imperfection.

In the case, c* = 0.15, the ring formed around the initial
perturbation does not generate a contractility change in that
region. For a given thickness, the concentration at the secondary
ring is constant at different c*, but spots emerge only at a low
threshold. Thus, when the ring does not break into multiple
spots, an initial bulge continues instead to split into two separate
bulges (t = 2500 in Fig. 3b) and this division propagates along the
shell creating ridge-like deformations. The lines of bulges retain
their position and strongly distort the spherical shell shape when
compared with the uniformly distributed spots at a lower c*.

Although the bulges can be organized into very different
patterns, the common feature of both types of patterns is the
formation of separate bulges. The reason for bulge formation is
the high mean curvature when the shell develops cap-like
shapes with positive curvature in two orthogonal directions
coupled to higher local production of chemical at these bulges.
Wrinkles or folds with curvature only in one direction, provide
a weaker feedback and do not cause contractility change, thus
bulges become eventually round-shaped even if they were
elongated at earlier stages of evolution (t = 1000 in Fig. 3a).

The assumption of cell volume conservation causes the shell
to become thinner in regions where in-plane contractility

is lower. We now show that even if cell volume is not conserved
and the shell remains at uniform thickness, similar spotted
patterns can occur. In Fig. 4a, we display stationary shapes for

Fig. 3 Evolution of propagating chemical patterns and equilibrium shapes of a spherical shell at diffusion D = 0, the initial thickness h = 2.0, radius
R = 30, and different thresholds (a) c* = 0.05, and (b) c* = 0.15. Concentration fields are shown in top view while the right-most panel shows the shape of
the deformed shell in side view as a color map indicating the local radius (the distance to the center of mass). Simulation snapshots demonstrate
occurring elastic instabilities: buckling to a bulge at the initial perturbation resulting in increased concentration and widening the spot ((a) t = 35), bulge
splitting ((a) t = 75 and (b) t = 2500), buckling at secondary ring ((a) t = 70) and wrinkling along the ring ((a) t = 100). The ridge-like propagating pattern
(b) arises at higher c* when curvature at the secondary ring does not cause enough production to exceed the threshold of contractility change, whereas it
becomes spotted (a) at lower c* by means of wrinkling at the secondary ring.

Fig. 4 (a) Chemical patterns arising on a spherical shell of fixed uniform
thickness h at D = 0, c* = 0.1, R = 30. Shells obeying the volume
conservation condition at increased diffusion (b) lead to larger spot size
D = 1.5, h = 2, c* = 0.05, R = 30, than seen in Fig. 3a. (c) Concentration and
curvature at nodes of mesh on sphere depending on polar angle with the
initial perturbation at the pole. The state corresponds to t = 35 in Fig. 3a.
The secondary peak at a nonzero polar angle represents the secondary
ring that forms as a result of the buckling instability around the initial
perturbation at the pole.
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spheres with c* = 0.1 and of uniform thickness (shown for two
different shells with varying thickness, h). We notice that the
pattern can now be propagated at smaller thickness for the
same contractility change. This is because the inner region with
Lmin remains at the initial thickness and is therefore thicker
now than the corresponding volume-conserved case. This leads
to smaller out-of-plane deflection and curvature and the critical
initial shell thickness at which propagating patterns result is
lower than for the volume-conserved shells presented before.

So far in this paper, we have considered pattern formation at
vanishing diffusion rate valid for slow chemical spreading. Now
we allow the spreading of chemicals in a thin fluid layer
surrounding the shell and with thickness comparable to that
of the shell to examine the effect of diffusion. For a single-cell
layer of epithelium tissue, the typical thickness is h B 10 mm,
which corresponds to a unit of length in our simulations. The
typical degradation rate for morphogens B0.01 s�156 that gives
a characteristic time in our simulations 1/b. Thus, a unit
modelling diffusion (D = 1 in simulation units) corresponds
to 1 mm2 s�1, which is close to the experimentally measured
diffusion of morphogens in extracellular fluid.56 By performing
simulations at a different D and keeping other parameters
constant, we found that the patterns, which appear at D 4 0,
show only quantitative change compared to D = 0. In Fig. 4b we
demonstrate the concentration field and 3D shape at large
diffusion D = 1.5, which significantly exceeds the diffusion rate
in real biological systems. One can see that spot size is enlarged
even though the maximum concentration decreases due to
spreading. However, an increased diffusion D 4 0.4 leads to
a propagating pattern with multiple spots at h = 1, c* = 0.15,
while it remains in the single bulge equilibrium state at D = 0
(bottom line in Fig. 2), thus, providing a qualitatively different
shape. As expected, diffusion helps to scale up spot size and
propagate the pattern by spreading the chemical more uni-
formly over the surface.

Note that without coupling between deformations and
chemical production, the initial perturbation does not lead to
a propagating pattern. The feedback is clearly seen in Fig. 4c,
where higher curvature, H̃, (red data points) is followed by
increased concentration (green data points). Eqn (3) at D = 0 in
a steady state (production is the same as degradation) defines the
relation between curvature and concentration c = wH̃/b(1 + H̃/Hs).
It allows to find concentration at given b, w, Hs (Table 1) and
curvature, and see if it is higher than the threshold c*. If H̃ is
small, or c* is high, not enough chemical is produced to change
contractility and pattern does not develop spots at the second-
ary ring and propagate as a ridge. In Fig. 4c one can see that
concentration significantly exceeds the threshold c* = 0.05 in
the vicinity of the initial perturbation at small polar angle and
then decreases as curvature H̃ becomes negative. A small
increase in H̃ at a larger angle leads to the secondary peak
in c and the formation of bulges at small c* (the inset to Fig. 4c).
However, this secondary peak does not cause a contractility
change at higher threshold, e.g. c* = 0.15, for which c { c*, as
seen in Fig. 3b. If the production term in eqn (3) is independent
of the shape change, the concentration will decrease with time

due to a linear degradation, followed by decreasing domain
of low contractility, and eventually the initial buckling will
disappear. Also, in the case of a constant source of chemicals
without feedback, the system will approach a steady state
resting at a balance between production and degradation. This
last scenario will also give rise to a pattern with wrinkles in the
expanded domain. The wrinkles will decay and will have
increasing wavelength away from the interface, leading to a
qualitatively different type of pattern.64

4 Analysis of elastic instabilities

We now seek insight into the mechanism of formation of the
patterns shown in Fig. 2 and its dependence on concentration
threshold and shell thickness. In particular, we would like to
understand why the spotted pattern arises at small c* whereas
the initial bulge subdivides into two separate bulges forming
the linear ridge pattern at intermediate c*.

We distinguish three different elastic instabilities that occur
successively in the shell. First, the initial perturbation in
chemical field associated with the contractility change leads
to buckling and formation of the initial bulge that attains
different shapes depending on c* (t = 35 in Fig. 3a and
t = 2500 in Fig. 3b). At the same time, a ring of larger curvature
and concentration appears at a short distance from the initial
bulge. Finally, for the spotted patterns occurring at low c*, this
secondary ring breaks into multiple equally separated bulges
(t = 70 in Fig. 3a).

Let us examine the instability that occurs first, which causes
the initial bulge on the shell. This is also similar to the third
instability in the sequence described above, where the secondary
ring develops wrinkles. For simplicity and in order to focus on the
mechanical deformations alone, we numerically test the elastic
instabilities on a piece of the spherical shell assumed to be nearly
flat, which can be considered as a disk of radius R1 and initial
thickness h. While the disk in an undeformed, reference state has
initial uniform contractility Lmax, we consider the deformations
induced by an inner, circular domain of radius R2 o R1 whose
contractility is lowered to Lmin, as depicted in Fig. 5a, mimicking
the effect of a higher chemical concentration in the initial spot.
Similar to simulations on a sphere with natural curvature 1/R, we
assume that the sheet is flat in the initial state H0 = 0, the
boundary is constrained against deflections to avoid boundary
effects on the pattern but it is allowed for in-plane displacements,
elastic properties are isotropic, and, finally, the contractility is
constant in time. By prescribing values of Lmax andLmin we avoid
solving the chemical concentration updates in eqn (3), and
perform minimization of the elastic energy eqn (1) to investigate
the buckling processes involved in the formation of the initial
pattern. The inner circle expands laterally in both radial and
circumferential direction due to the lower contractility Lmin, as it
tries to reach an optimal radius %R2 = R2(Lmax/Lmin), and decreases
its thickness to a value %h due to the volume conservation. It is also
confined by the outer region that does not change its area and
remains at the initial thickness. The biaxial compression caused
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by this constraint can be fully or partly removed by buckling. The
buckled shape depends on the elastic and geometric properties of
the shell and in an equilibrium state satisfies the minimum of
elastic energy eqn (1).

Deformations caused by confinement in the radial direction
alone can be described as the classical Euler buckling of a plate
in response to an in-plane stress in one direction. In this case a
plate buckles to a spherical shell, when compressive stress
exceeds the critical value63 scr = K2B/( %R2

2 %h), where K = 2.3 is a
geometric constant for the first buckling mode when ends of
the plate are not allowed to rotate. Using R2 = 1, h = 2 and the
relation between biaxial stress and strain, we obtain a critical
strain ecr E 0.1, which is much smaller than the strain e = Lmax/
Lmin � 1 = 0.5 exerted due to the contractility change in an
unconstrained shell, and thus, the inner circle exhibits buck-
ling. However, it was demonstrated that the buckling of a
circular plate under biaxial compressive load leads to more
complicated morphologies due to compression in circumferential
direction.65,66 Several wrinkles arise along the interface between
two domains, demonstrating non-axisymmetric buckling modes
as scr increases, while it remains spherical at the lowest eigenmode
with smooth deflections and nearly circular boundaries at low
scr value.

The characteristic wrinkling wavelength, l, of an axially
compressed, suspended, thin sheet is given by the scaling

relation, l �
ffiffiffi
h

p �
e1=4, that arises from the constrained mini-

mization of elastic energy of plates under tension.67 To examine
how the wrinkling within the expanded inner region in our
setup scales with its size and the thickness of the disk, we study
the equilibrium shape of disks with varying R2 and h. Simulated
disks of initial thickness h = 2 with an inner circle of reduced
contractility which leads to biaxial expansion by e = 0.5, and a
smaller thickness h/(e + 1)2 to satisfy the volume conservation
condition, develop the first wrinkling instability in the azi-
muthal direction at R2 = 1.95 with l B 6.12. By varying R2, we
find that the subsequent transitions to three and four wrinkles
occur at R2 = 2.9 and R2 = 3.9, respectively, corresponding to the
same characteristic wrinkling wavelength, l. This is consistent
with the theory expression from ref. 67 and with our simulations
on a spherical shell, reproducing the same bulge shape (t = 750
in Fig. 3a). Two typical examples of buckling instability resulting
in different number of wrinkles with increasing R2 are depicted in
Fig. 5b and c. Decreasing h at constant R2 = 3.0 leads to increased
number of wrinkles with wavelength scaling as l B h1/2 in
agreement with ref. 67. To illustrate this, we show the disk shape
at a smaller h = 0.25 in Fig. 5d, where eight wrinkles of a larger
curvature appear near the boundary of the inner circle that relax
toward the center. At the parameters we use to obtain the results
reported on a spherical shell in Fig. 3, two wrinkles tend to form
within the initial central bulge. Since the initial perturbation in
simulations on a sphere is chosen to be small with width of order
h, this first leads to buckling with no azimuthal wrinkles, and
than two wrinkles appear when the bulge increases in radius.
Each wrinkle generates increasing concentration due to higher
curvature along it, which in turn causes bulge division by
developing positive Gaussian curvature in two spots at the
wrinkle tips instead of the single initial one.

Buckling and transition to the bulge shape causes propagating
deformations in the outer region generating curvature of both
signs (Fig. 5e). Near the interface, the shell has inward deflections
to accommodate the gentle slope in the transition region between
the thin bulge region and thick planar domain, and it also has a
small positive jump in curvature exhibiting oscillatory behavior
along the radial direction on a disk or along the polar direction
on a sphere (Fig. 4c). Unlike the simple Euler buckling of a
slender column, the out-of-plane deflections must be small
because they are associated with stretching or compression of
the shell in the azimuthal direction, and are thus constrained
and oscillate about the initial state leading to the secondary ring.
The position of the secondary ring, Rr does not define the final
spot separation but slightly disturbs the spot distribution around
the initial perturbation, as seen in Fig. 2 at c* = 0.1.

The region of positive curvature forming a ring in the outer
domain leads to a higher production of chemical and sub-
sequent contractility change if c4 c*, which can be satisfied only
at small c*. The resulting local expansion of the sheet causes, in
turn, another shape instability due to a local biaxial expansion at
the secondary ring. Thus, multiple wrinkles appear along the ring
to satisfy the incompatibility and forming the next ring at a larger
polar angle. These wrinkles arising within the expanded ring
break into bulges that are seen as spots in the final pattern.

Fig. 5 (a) Scheme of buckling instabilities for the initial bulge and the
secondary ring. (b) Wrinkling instability in a disk of contractility L = 15 with
the inner circle of lower contractility L = 10 and decreased thickness
demonstrating different number of wrinkles depending on the initial
thickness and size of the inner circle at (b) h = 2, R2 = 2, (c) h = 2,
R2 = 3, and (d) h = 0.25, R2 = 3. (e) The profile of the shell middle line in
the vicinity of inner circle (only one half is shown due to symmetry) along
the radial direction depicted by the white dashed line in (b) where the
difference between deflections in two domains is comparatively small.
Dotted line is the initial planar shape, while it develops a spherical cup
shape in region with low contractility (red line) and small out-of-plane
displacements in the outer region (purple line), which bring about the
appearance of the secondary ring of radius Rr.
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For this spotted pattern (that occurs, for example, at c* = 0.05),
we estimate both the spot size and separation, and show how the
pattern arising from the buckling instability scales with changing
thickness. Assuming the shape of spots is close to circular,

we calculate the average spot radius as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Al

�
pNsp

q
, where Al ¼P

Aj ;LðAjÞoLmax is the total surface area of regions of the shell
with low contractility, and Nsp is the total number of spots. The
results for simulated spheres of different thicknesses are depicted
in Fig. 6a along with linear and square root dependencies. The
dependence of average spot radius on the initial shell thickness
demonstrates the same l B h1/2 scaling, both in the case of shells
that maintain uniform thickness as well as those which con-
serve volume. The data is offset by a constant for the volume
conservation cases, because the actual shell thickness is
reduced at the spots. The pattern does not propagate when
h o 0.125 and h o 1.3 for the uniform and nonuniform
thickness, respectively, but the shells do exhibit the buckling
instability at the location of initial perturbation. On the other
hand, the shell is stable to small perturbations at large h and
returns to the initial spherical shape of uniform radius.

To obtain a characteristic wavelength of the pattern, we
estimate the distance between spots (in Fig. 6), which is

computed as 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Atot

�
pNsp

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Al

�
pNsp

q� 	
, where Atot is the total

shell area in deformed state. One can see that the spot separation in
both cases is in a good agreement with67 scaling as l B h1/2. Since
the domain of high contractility remains at the initial thickness in
both the cases considered, they show the same dependence on h.

The simulated spheres reveal that spot separation and spot size
also depend on the sphere radius R. Fig. 6c depicts the numerical
results of spot separation together with different power law depen-
dencies. It shows a satisfactory agreement with prediction of char-

acteristic deformation length on shells scaling44 as �
ffiffiffiffi
R

p
, unlike

deformations in plates that do not depend on the system size.
So far, the contractility change Lmax/Lmin associated with

biaxial expansion ewas kept constant. However, e also determines
the characteristic wavelength of wrinkles. Simulations at various e
show that a decreased ratio leads to a much larger spot size and
separation, obeying the scaling l B e�1/4 (Fig. 6d), and thus,
demonstrating the robustness of patterns to varying model
parameters. This dependence is different from wrinkling of a
plate attached to a soft substrate, where wavelength depends only
on thickness and the ratio between layer stiffness.68 We provide
additional computational results for patterning with large bulges
in the Appendix C.

Since the ridge pattern does not occur over an extensive
range of parameter space, it is difficult to establish a reliable
scaling unlike the spotted patterning. Comparison of results at
constant c* = 0.2 and 2 r h r 3 shows a non-linear increase in
the total area with lower contractility.

We also note that the global structure of the spotted pattern
is constrained by topology in analogy with the packing and
crystallization of particles on curved surfaces.69–71 The wrinkling
pattern can be considered as a triangular lattice tessellation of a
spherical surface with bulges at the vertices, which allows only
finite number of configurations with equi-spaced vertices as
defined by the Euler characteristic.72 Any defect in this tessellation,
for example a bulge with a different number of neighbors that
makes the lattice irregular, causes an increase of elastic energy.
Such a bulge changes its shape (the initial bulge in Fig. 3a), or
eventually merges with another bulge (small bulges at the second-
ary ring in Fig. 3a), to reduce the elastic stress and accommodate
the characteristic wavelength of spot separation. On the other
hand, we note that the ridge-like structures (Fig. 3b) resemble scars
on spherical crystals,73 but arise from a completely different
physical mechanism. The scars are high-angle grain boundaries
which develop as a row of alternating disclinations associated with
positive and negative Gaussian curvature, whereas our linear rows
of bulges do not require any crystalline order.

We have thus shown that the pattern formation can be under-
stood from the mechanics of elastic instabilities. Although, these
are driven by local expansile stresses that are in turn induced by a
propagating chemical concentration, considerable insight into the
kinetic pathway and final patterns can be obtained by analyzing
the buckling and wrinkling transitions in terms of thin shell elastic
theory for a prescribed differential tension created by a fixed
chemical gradient.

5 Discussion

Morphogenetic folding in biology encompass a wide variety of
buckling mechanisms ranging from those driven by individual
cell shape changes in local regions to those stemming from

Fig. 6 Dependence of (a) spot size and (b) spot separation on the shell
thickness, h, for the volume conserved (h decreases with in-plane expansion)
case and for uniform h all over the shell. The plots are with respect to the
initial undeformed value of h in the volume conserved cases. (c and d) Spot
separation as a function of the system size R and strain e for the volume
conserved case. (a–d) Parameters are set to D = 0, c* = 0.05, R = 30, e = 0.5,
h = 2, otherwise correspond to the horizontal axis.
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differential growth rates in neighboring tissue regions.74 While
the details differ, all these processes require a spatial patterning
of the tension or the growth rate in the tissue, which is typically
accomplished by biochemical gradients and resulting gene
expression in biology.

It is conceivable that there are multiple biophysical path-
ways through which mechanics can affect the chemical profile
that imprints mechanical gradients (and which we therefore
term ‘‘mechanogens’’), such as through in-plane stresses that
affect cell shape and membrane tension and therefore, the
uptake and production ofmechanogens.34 Furthermore, amechano-
gen can also in principle stimulate or suppress cell contractility, and
thus lead to local contractions and expansions. In the absence of
direct experimental evidence of such a candidate mechanogen and
its effect on cell mechanics in a specific biological setting, we
explore, here one such plausible mechanism in a specific, simplified
setting as proof-of-concept.

In our model system, wrinkling results from differential
changes in the in-plane area of the cells in response to mechano-
gens whose production is stimulated by tissue curvature. This
positive mechanochemical feedback drives a propagating pattern
of wrinkles on the surface of a thin elastic shell that are associated
with both high curvature and highmechanogen concentration.We
note that while this realizes a new pathway for obtaining a spotted
pattern morphology on a spherical surface compared to those
realized through purely mechanical means, such as by buckling of
pressurized shells,24,75 or by purely chemical means, such as
through phase separating chemical factors on the surface of shells
modeling pollen grains,76 the linear ridge-like morphology is very
different. Unlike ridges appearing in an elastic material that is
attached to a compliant substrate and subjected to a large
compression,77–79 we have shown that similar but high-aspect-
ratio patterns can be developed in a single-layer unconstrained
system due to dynamic localized expansion. Such patterns are
of particular interest due to potential applications in tissue
engineering and fabrication of functional surfaces, for instance
hydrophobic coatings.80 This study also provides a possible
pathway for diverse surface patterning in naturally occurring
shells, for example the spikes, pores and ridges on pollen grains
and viral capsids,70,76,81 and may also have implications for
deformations of cell membranes which are fluid in-plane but
are endowed with curvature elasticity.82

Our mechanochemical model realizes an excitable medium,
where a local initial stimulus is propagated through the medium
because a localized chemical fluctuation results in a global
mechanical response. This is therefore a complementary proposal
to that of Turing patterns which arise from the chemical inter-
actions of a fast and a slow diffusing chemical species. We have
shown that the mechanochemical feedback between one chemical
species which acts as a local activator, and the global mechanical
response of elastic shell, can result in propagating and tunable
pattern formation that does not require interactions between
multiple chemical species with very different diffusivity. Moreover,
we show that buckling deformations provide long-ranging inter-
actions that cause spontaneous propagation of chemical signalling
patterns without requiring any diffusion.

Given the complexity of biological tissue, we propose that a
first experimental exploration of these ideas should be in an
in vitro context, such as in organoids (collections of cultured
cells in vitro that mimic organs), where recent progress has been
made in studying mechanical wrinkling83 or in cell cytoskeletal
extracts such as actin gels embedded with contractile myosin
motors,36 which can be combined with chemical gradients that
induce differential mechanical stresses. The details of the
mechanochemical feedback are likely to be different from that
assumed here, but our modeling approach is general and could
be easily modified to capture these scenarios.
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Appendix A: details of the discretized
model

The elastic energy defined by eqn (1) is discretized on a
triangular mesh with each node denoted by i and triangles
denoted by a. The length of a bond connecting the ith and jth
nodes is written as lij. Each bond is spring-like and resists any
change in its length, whereas each triangle has area elasticity.
Both changes in bond length and area are penalized by an
elastic energy cost given by the local 2D stiffness which in turn
depends on the local thickness. The total stretching energy in a
discrete form is then written as,

Ud
s ¼ 1

2

X
hjki

Ah ijkE hh ijk
ljk

ljk
� 1

 !2

þ 1

2

X
a

AaEha
Aa

Aa
� 1


 �2

;

(4)

where stretching energy reconstitutes the continuum limit up to
particular choice of the Lamé coefficients assuming Y B Eh. The
first term in eqn (4) gives the elastic energy cost of stretching of the
bonds where h jki denotes a sum over all bonds. The actual
thickness and area at bonds are calculated as an approximate
average over the two triangles that share the bond: hhijk =
(ha + hb)/2, and hAijk = (Aa + Ab)/3, where Aa and Ab are the areas of
the two triangles that share the bond, and 1/3 appears because each
triangle contributes to three sides. The second term represents the
area elasticity of the triangles, where Aa and ha are the actual area
and the actual thickness associated with the ath triangle.

In our simulations, the preferred bond lengths, %ljk and, as a
consequence, the preferred triangle areas Āa are modified by
the nonuniform in-plane contractility L(c), which is prescribed
by eqn (2). For simplicity, we assume an inverse proportionality
between contractility and length change, and define this by
%ljk = l0jk(L

0/L(c)), where l0jk is the length at the initial contractility
L0 (that is chosen to be Lmax in the simulations). The preferred
area changes as Āa = A

0
a(L

0/L(c))2 relatively to the initial value A0a.
In the case of nearly incompressible materials, a change in the
optimal area is expected to induce a corresponding change in
the optimal thickness in accordance with the Poisson’s ratio, n,
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of the material. For very thin shells, such changes are negligible
and we can work with the uniform thickness approximation. In
our computations, we keep triangle thickness ha at the initial
thickness h0 to model the case of uniform thickness, or we
assume volume conservation at n = 1/2 that implies an inverse
dependence of thickness change on the in-plane area change.
In this latter case, we calculate the actual triangle thickness as
ha = h0A0a/Aa, where h0, A0a are the initial undeformed thickness
and triangle areas, respectively. Not all triangles are equal in
area in a non-uniform mesh, but the thickness is assumed
uniform in the undeformed state.

The bending energy corresponds exactly to the second term
in eqn (1) and reads as

Ud
b ¼ 1

2

X
nodes;i

Ah iiBi 4 Hi �H0ð Þ2�2ð1� nÞ Ki � 2HiH0 þH0
2

� �� 	
;

(5)

where the local bending stiffness, Bi depends on the local
thickness, hi, which is computed by averaging over the triangles
sharing the node. The energy vanishes in planar configuration
if there is no spontaneous curvature of the sheet, H0 = 0, and at
H0 = 1/R if the undeformed shape is a spherical shell of radius
R. The local curvature at each node is computed representing
curvature strain via the mean and Gaussian curvatures.

The discrete Gaussian curvature Ki ¼ 2p�
P
a
rai


 ��
Ah ii is

expressed through the sum of all angles, rai , subtended at the
node i by all triangles that share this node, Ah ii¼

P
Aa=3 is the

approximated area associated with the node. The mean curvature
Hi is calculated taking half of the mean curvature normal

operator H i ¼
P

xi � xj
� �

cot y1ij þ cot y2ij
� 	� 	.

2 Ah ii
� �

defined

over adjacent nodes, where ykij(k = 1, 2) are the two angles opposite
to the bond lij in the two triangles sharing the bond84 (Fig. 7). The
sign of the mean curvature coincides with the sign of Hi�xi, being
positive when Hi oriented outward of the spherical shell.

We assume overdamped dynamics and the positions of
nodes xi in the discretized shell are found by minimizing the
elastic energy, U, defined in the main text, by following the
pseudo-time evolution equations: gqxi/qt = �dUd/dxi. Here, g is
the friction coefficient associated with energy dissipation during

elastic deformation, which can be caused by the surrounding
fluid as well as viscous remodeling of the tissue material.

Appendix B: numerical methods

We numerically investigate out-of-equilibrium dynamics of a
deformed tissue sheet by solving eqn (2)–(5) using spatially
unstructured finite-volume discretizations. The medium of uni-
form thickness in initial state is triangulated on an irregular
mesh consisting of 25000 nodes satisfying the Delaunay condi-
tion using the mesh generator Distmesh.85 The number of nodes
remains constant and no remeshing takes place. The discretiza-
tion allows to treat three-dimensional deformations following
the physical displacement of the nodes constituting the vertices
of triangles. The elastic energy (4,5) is minimized over the
positions of all nodes using the conjugate gradient algorithm
with tolerance chosen as 10�4% of energy gain by executing a
minimization step. The elastic energy gradients are calculated by
sequential virtual displacement of nodes along each coordinate
and then we perform iterative simultaneous update of all node
positions. Once the system approaches its mechanical equilibrium,
a small time step (dt = 0.01) using an explicit Euler forward scheme
is performed in the dynamic eqn (3) leading to new concentrations.
Then using eqn (2) contractility at each node is computed that
allows to find new optimal triangle side lengths respectively to given
contractility.

The spatial derivatives in diffusion eqn (3) are calculated
based on local approximation using the divergence theorem
(Green-Gauss) gradient scheme.86 We apply the node based
method to find concentration at nodes. The concentration at
node i is calculated as an average over concentration in adjacent

triangles ci ¼
P

ca=dP
1=d

which is weighted according to the distance

d between node and the center of the triangle a (Fig. 7). The
concentration values ca at triangles are governed by eqn (3). To
find the gradients at the center of a triangle, the Green-Gauss
theorem is used, which states

Ð
cndS ¼

Ð
rcdV, where c is the

concentration scalar field. Then the integrals over the volume V
and surface S enclosing the volume can be replaced by an
approximation of gradients at triangle accounting for fluxes

trough the sides of triangle87 given by ðrcÞa ¼
1

Va

P
cfnfsf , where

cf is the concentration in the center of each triangle’s side that is
an average over two node values, nf is the normal to the triangle
side, sf = lijhij is the side area, and summation is assumed over the
three triangle’s sides. For chemicals diffusing along the sheet’s
surface in a layer of unit thickness, hij can be chosen of unit
length and thus Va = Aa for 2D diffusion.

Appendix C: patterning with large spots

In addition to the patterning on a spherical shell considered in
the main part of this Communication, we explored the parameter
space to demonstrate how the system can be tuned to produce
target patterns and to study robustness of the mechanochemical

Fig. 7 Geometry of discretized shell that is constituted as a collection of
nodes with positions xi connected by links lij, where each node spans an
area Ai around it.
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feedback. Since the wavelength of wrinkling instability depends
on both thickness and contractility change, the spot size and
separation increase by reducing Lmax/Lmin and increasing h.
However, larger wavelength is associated with smaller amplitude
of deformations, and so to make the pattern propagating, the
threshold c* has to be low to compensate for the decreased
curvature in eqn (3). Starting with a single small point-like perturba-
tion in concentration, the resulting patterns demonstrate only a few
uniformly distributed large spots of circular shape (Fig. 6). Unlike
patterning with smaller structures, here the time evolution is much
slower, but demonstrate similar coarsening that results in only
several large, equi-spaced bulges on the shell surface. The global
structure is constrained by topology and defined by the Euler
characteristic.72 Thus, the sphere with large characteristic spot
separation accommodates a finite number of spots at given sphere
radius. AtLmax/Lmin = 1.1, h = 3 and R = 30, the spot separation is of
the order of the sphere radius and the shell develops a regular
dodecahedral shape with 20 bulges at vertices. Simulations at
various Lmax/Lmin demonstrate spot separation and radius that

follow l �
ffiffiffiffiffiffi
Rh

p
=e1=4 scaling. For instance, at Lmax/Lmin = 1.15 and

Lmax/Lmin = 1.2 the sphere demonstrates average spot separation
B0.9R andB0.85R, respectively. Note that concentration saturation
level is lower than in Fig. 2–4 because the developed curvature is
smaller and as a result production decreased (Fig. 8).
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38 T. Strübing, A. Khosravanizadeh, A. Vilfan, E. Bodenschatz,
R. Golestanian and I. Guido, Nano Lett., 2020, 20(9), 6281–6288.

39 T. J. White and D. J. Broer, Nat. Mater., 2015, 14, 1087–1098.
40 L. Ionov, Mater. Today, 2014, 17, 494–503.
41 T. Bruegmann, D. Malan, M. Hesse, T. Beiert, C. J. Fuegemann,

B. K. Fleischmann and P. Sasse, Nat. Methods, 2010, 7, 897–900.
42 E. Hannezo, J. Prost and J.-F. Joanny, Proc. Natl. Acad. Sci.

U. S. A., 2014, 111, 27–32.
43 F. Brinkmann, M. Mercker, T. Richter and A. Marciniak-

Czochra, PLoS Comput. Biol., 2018, 14, e1006259.
44 L. D. Landau and E. M. Lifshits, Theory of Elasticity, Perga-

mon Press, New York, 1986.
45 D. Gilmour, M. Rembold and M. Leptin, Nature, 2017, 541,

311–320.
46 B. Goodwin, How the leopard changed its spots: The evolution

of complexity, Princeton University Press, 2020, vol. 113.
47 L. Wolpert, J. Theor. Biol., 1969, 25, 1–47.
48 N. Desprat, W. Supatto, P.-A. Pouille, E. Beaurepaire and

E. Farge, Dev. Cell, 2008, 15, 470–477.
49 E. Brouzés and E. Farge, Curr. Opin. Genet. Dev., 2004, 14,

367–374.
50 T. J. Kirby and J. Lammerding, Nat. Mater., 2016, 15, 1227–1229.
51 B. Hobmayer, F. Rentzsch, K. Kuhn, C. M. Happel, C. C. von
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