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ABSTRACT

Brain networks have been extensively studied in neuro-
science, to better understand human behavior, and to identify
and characterize distributed brain abnormalities in neurolog-
ical and psychiatric conditions. Several deep graph learning
models have been proposed for brain network analysis, yet
most current models lack interpretability, which makes it
hard to gain any heuristic biological insights into the results.
In this paper, we propose a new explainable graph learn-
ing model, named hierarchical brain embedding (HBE), to
extract brain network representations based on the network
community structure, yielding interpretable hierarchical pat-
terns. We apply our new method to predict aggressivity,
rule-breaking, and other standardized behavioral scores from
functional brain networks derived using ICA from 1,000
young healthy subjects scanned by the Human Connectome
Project. Our results show that the proposed HBE outperforms
several state-of-the-art graph learning methods in predicting
behavioral measures, and demonstrates similar hierarchical
brain network patterns associated with clinical symptoms.

Index Terms— brain functional connectome, explainable
AI, graph learning, regression, HCP

1. INTRODUCTION

Brain networks, derived from various non-invasive imaging
techniques (such as diffusion MRI or resting state functional
MRI), have been widely studied in diverse areas of neuro-
science and clinical brain research [1, 2]. Although many
studies have been conducted to predict behavioral, clinical,
or psychiatric measures from brain networks, and identify
the most predictive network features, most existing studies
have focused on correlating clinical measures with a small
number of pre-defined network features (e.g., [3]). This may
be sub-optimal as the derived network features are often low-
dimensional and may contain much less information than the
original brain network. Using the entire brain network for this
prediction task has also been extensively studied. Although
some promising results (e.g., [4, 5]) have been achieved, how
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the information aggregates through the brain network and
eventually links to the predicted target is not clear.

Recent years have witnessed enormous successes in deep
learning. As a powerful tool to discover patterns in large-
scale datasets, deep learning methods have also been widely
applied to biomedical data to learn and find informative fea-
tures that can describe the regularities inherent in medical
data, as well as abnormalities in disease. For analysis of graph
data (such as brain networks), graph learning techniques [6–
8] have been gaining significant attention. An important is-
sue for current graph learning methods is that the models are
not typically easy to interpret. Many current graph learning
methods may well achieve good predictive performance for
some tasks (e.g., classification of disease or predictive model-
ing based on network data), but it might be difficult to provide
any biological explanation or insight into the results.

In this work, we propose a new explainable graph repre-
sentation learning model to predict behavioral and psychiatric
measures using the entire brain network. We hypothesize that
the whole brain network’s intrinsic representation can be de-
rived from graph communities within the brain network - in
a hierarchical manner - and we hypothesize that this hierar-
chical pattern guides the information flow in our predictive
models. Our proposed model explicitly uncovers the graph
community partitions underlying different tasks (e.g., predict-
ing different behavioral measures) and indicates the brain net-
work’s community partitions are quite similar for related pre-
dictive tasks.

2. METHODS
In this section, we first provide an overview of the proposed
hierarchical brain network embedding (HBE) framework
for a typical regression task. Then, we delve into the pro-
posed graph pooling block which down-scales the graph
and coarsens the graph representations based on the graph
communities. Finally, we briefly describe the loss functions
designed to train the proposed framework in an efficient,
end-to-end manner.

2.1. Hierarchical Brain Network Embedding Framework

Let G = (A,X) be any attributed brain network with N
nodes, where A ∈ RN×N is the graph adjacency matrix.
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Fig. 1. Diagram of the proposed hierarchical brain network learning framework, including a stacked graph convolution block
(Stacked GConv.), a Community-based Pooling block, and the Multilayer perceptron (MLP) block for the regression task. The
operations performed by these blocks are to: (a) Compute the centroid node probability (P) and select the nodes with top-M
P scores as centroid nodes. (b) Assign each node into the closest community. (c) Aggregate features of community member
nodes to the corresponding centroid node. (d) Down scale the graph based on the communities.

X ∈ RN×d is the node feature matrix, where the fea-
ture dimension is d. We use Z = [Z1, ..., ZN ] ∈ RN×c

to denote the latent features of N nodes embedded by the
graph convolution layers, where c is the dimension of the
node latent features. As shown in Figure 1, the proposed
hierarchical brain network learning framework consists of
three components: a node embedding block, a community-
based graph pooling block, and the task-specific prediction
block. In the node embedding block, we deploy stacked
graph convolution layers which can enable each graph node
to aggregate higher order information from several-hops
neighborhoods[9]. Following[10], each graph convolution
layer can be formulated as:

Z = σ(D̃−
1
2 ÃD̃−

1
2Xθ1) (1)

where Ã = A + I , D̃ii =
∑

:,j Ãi,j is the degree matrix,
θ1 is a trainable parameters and σ(·) is a nonlinear activation
function.

The goal for the graph pooling block is to down-scale
the graph from N nodes to the M(< N) nodes based on
the graph communities. After the graph pooling block, the
graph latent features Z ∈ RN×c will be down-scaled to
Z̄ = [Z̄1, ..., Z̄M ] ∈ RM×c. Details of the community-based
graph pooling block are presented in the next subsection.

Note that each graph pooling block is followed by a read-
out operation which is used to summarize the whole graph
representation at the current scale of graph. Given a graph
latent feature matrix Z̄ down-scaled by a graph pooling layer,
the readout function summarizes the whole graph representa-
tion (i.e., ZG) by summing Z̄i, where i ∈ {1, ...,M}.

After the last pooling block, we fuse (i.e., concatenate) all

the ZG obtained under different scales of graphs as the hierar-
chical graph representation for the final prediction task. In the
prediction block, we deploy Multilayers Perceptron (MLP) to
transform the fused ZG for the graph regression task.

2.2. Community-Based Graph Pooling Block

As mentioned already, the graph pooling block takes the node
latent features Z ∈ RN×c as the input and generates the
down-scaled node feature matrix Z̄ ∈ RM×c based on the
community structures. Therefore, the most important step in
this pooling step is to identify the community centroid nodes
and assign other nodes to the nearest community based on
node features. From the viewpoint of density-based clus-
tering methods [11], a community centroid node is densely
encircled by a group of nodes with a high probability. In-
spired by this, we use the feature distances as a metric to
approximate the probability that a given node feature indi-
cates that the corresponding node is the centroid node. In
other words, a node with smaller feature distances to all other
nodes will have a higher chance of being a community cen-
troid node. Therefore, we create a feature distance matrix S
where Si,j = ‖Zi − Zj‖L1

to measure the density among
node features. Based on the matrix S, we compute the prob-
ability vector (P ∈ RN×1) for each node as a community
centroid node, by:

P = softmax(~1− normalize[
N∑
j=1

Si,j ]) (2)

where the normalize function maps the feature distances into
[0, 1] as probabilities. Finally, we select the M nodes with



Top-M P values as M community centroid nodes.
After we determine M community centroid nodes, we as-

sign other graph nodes into the closest community to gener-
ate M community partitions (i.e., where Ω = {Ω1, ...,ΩM}
represents the set of all communities). Then the community
representation (e.g., Z̄i for community-i, i ∈ {1, ...,M}) can
be computed by:

Z̄i = Zci +
∑

vj∈Ωi

Zvj ·
1

Sj,i
(3)

where Zci is the latent feature of the centroid node of
community-i. vj are the community member nodes in the
community.

2.3. Loss Functions

First, we optimize `MSE to minimize the difference between
model output ŷ and the ground-truth y. Meanwhile, we en-
courage the feature of community members to be close to the
corresponding community centroid by minimizing:

`KL =
∑

Ωi∈Ω

∑
vj∈Ωi

KL(Z̃vj
‖Z̃ci) (4)

where Z̃vj and Z̃ci are normalized as probability distributions
and KL is the Kullback–Leibler loss. The total loss function
can be formulated as follows:

Lreg = `MSE(ŷ, y) + `KL (5)

3. RESULTS AND DISCUSSIONS

3.1. Data Description and Implementation Details

Our experimental data was downloaded from the publicly
available Human Connectome Project dataset [12] (HCP) and
contains neuroimaging data from 1,000 young healthy sub-
jects (mean age=28.84 ± 3.69, 544 women). Each subject
has a brain network representation of dimension of 50 × 50
, derived from resting-state functional MRI using the ICA
(independent components analysis) method. The details of
network reconstruction pipeline can be found in the HCP
official website1. The adjacent matrix of each subject is com-
puted by the absolute value of the resting-state functional
network. For each node, the nodal features include min, 25%,
median, 75%, max of BOLD signal at that node. We select
three standardized clinical measures (age and sex-adjusted
aggressivity score, intrusiveness score, and rule-breaking
score, from the Adult Self-Report scale, or ASR) as targets
for our prediction tasks. These scores are widely-used be-
havioral measures that we aim to predict from our network
representations. The details of these three ASR scores can be
found at the HCP official website.

1https://wiki.humanconnectome.org

Aggr. Rule Intr. Overall
PCA + LR 2.97(530) 3.49(12) 3.77(2.6) 6.26(27)

Spec. C + LR [15] 2.64(66) 2.53(2.4) 2.10(4.2) 5.08(33)
Global Pool 3.24(760) 2.86(130) 2.42(330) 5.97(10)

SAG Pool[13] 1.24(240) 1.66(270) 1.25(4.8) 4.07(8.2)
DIFFPOOL[16] 1.79(110) 1.58(4.8) 1.17(71) 3.72(47)

HGP-SL[17] 1.11(19) 1.24(26) 1.21(2.6) 3.16(110)
StructPool [18] 1.57(21) 1.11(720) 1.36(19) 2.94(6.2)
HBE w/o KL† 1.02(5.2) 0.87(113) 1.21(36) 2.17(12)

HBE 0.82(66) 0.71(125) 1.02(12) 1.98(24)

Table 1. Regression Mean Absolute Error (MAE) with cor-
responding standard deviations (×10−5) under 5-fold cross-
validation. The values in bold show the best and second best
results. † shows the results of our model without using KL
loss to optimize the community inner features. LR and Spec.
C are Linear Regression and Spectral Clustering respectively.
Overall denotes the task of jointly predicting all three scores.

We randomly split the entire dataset into 5 disjoint sets
for 5-fold cross-validations in the following experiments. All
the hyperparameters (e.g., initial learning rate, dimension of
the latent features, pooling ratios etc.) are same across each
validation experiment. We trained the model using the Adam
optimizer with a batch size of 128. The initial learning rate
was set to 0.001 and decayed by (1 − current epoch

max epoch )0.9. We
also regularized the training with anL2 weight decay of 1e−5.
We stopped the training if the validation loss did not improve
for 40 epochs in an epoch termination condition with a maxi-
mum of 500 epochs, as was done in [13, 14]. The experiments
were deployed on one NVIDIA TITAN RTX GPU.

3.2. Regression Performance

We compare the proposed Hierarchical Brain Embedding
(HBE) model with 7 baselines to show the superiority of our
model. The baselines include 2 dimension reduction methods
(i.e., PCA and Spectral Clustering with linear regression)
and 5 graph neural network models with different pooling
strategies. The 2 dimension reduction methods and Global
Pool maintain the number of graph nodes and we average all
50 node features for the final prediction. For the 4 hierar-
chical graph pooling baselines (i.e., SAG Pool, DIFFPOOL,
HGP-SL and StructPool) and our HBE model, we deploy
two Embedding and Pooling (E-P) blocks and the pooling
ratio is set to 0.4, which will scale down the number of brain
nodes from 50 to 20 and then to 8 in a hierarchical manner.
Table 1 shows that our methods outperform all the baselines
in predicting each ASR score (Aggressivity, Rule-breaking
and Intrusiveness) as well as jointly predicting all three ASR
scores. The best results were achieved by using KL loss
to make inner community features closer. In general, the
hierarchical pooling strategies performed better than other
methods, indicating that the hierarchical graph structures are
important for the whole graph representation.

https://wiki.humanconnectome.org
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Fig. 2. Community-based hierarchical pooling derived from the HBE model. The red numbers indicate community centroid
nodes. Each small patch in circles indicates a community. The graph is scaled down from the outer to the inner circle.

3.3. Statistical Analysis and Ablation Studies

(a). To evaluate the significance of the prediction perfor-
mance of our HBE model, we design a permutation test by
randomly selecting different sets of 20 nodes from 50 nodes
and randomly select different 8 nodes from 20 nodes in the
first and second pooling blocks respectively for the prediction.
This process was repeated 104 times on the aforementioned
four prediction tasks and we rank the original prediction ac-
curacy among these 104 permutation tests. Our results show
that the results from the proposed HBE model are significant
in these four tasks (P values are 7×10−4, 1×10−4, 3×10−4,
and 11× 10−4 respectively).
(b). To show that the hierarchical pooling operation in the
HBE model is necessary and beyond a dimension reduction
strategy, we directly select the 8 key nodes, identified by
the last pooling layer of HBE, and adopt a stacked graph
convolution block to generate these 8 key nodes’ embedded
features and use them to train the MLP block for regression
tasks. Table 2 shows that the prediction performances, when
using the 8 key nodes, are much worse than those of HBE for
all tasks, which may due to that the HBE model summarizes
not only the information of each community member but also
the local structures onto the corresponding community cen-
troid node, while this kind of semantic information is ignored
when only embedding 8 nodes.
(c). To show that our results are stable under different hyper-
parameters, we present the regression results with different
(1) numbers of E-P blocks, (2) pooling ratios and (3) dimen-
sions of initialized node features for jointly predicting three
ASR scores. First, we fix the pooling ratio and initialized
feature dimensions as 0.4 and 4 respectively, the performance
of HBE when the number of E-P blocks ranges in [1, 2, 3]
are [2.17(7.8 × 10−5, 2.01(1.3 × 10−3), 2.06(2.6 × 10−4)].
Second, we fix the number of E-P blocks and pooling ra-
tio as 2 and 0.4 respectively, the performance of HBE
when the initialized feature dimension ranges in [2, 4, 6]
are [2.09(3.0× 10−4), 2.01(1.3× 10−3), 2.17(9.8× 10−5)].
Finally, we fix the number of E-P blocks and initialized
feature dimension as 2 and 4 respectively, the performance
of HBE when the pooling ratio ranges in [0.3, 0.4, 0.5] are

Aggr. Rule Intr. All
8-nodes 2.25(27) 3.07(79) 3.91(102) 7.62(11)
HBE 0.82(66) 0.71(125) 1.02(12) 1.98(24)

Table 2. Regression Mean Absolute Error (MAE) with cor-
responding standard deviation (×10−5) under 5-fold cross-
validation. The values in bold show the best results.

[2.32(8.1× 10−5), 2.01(1.3× 10−3), 2.22(1.9× 10−4)]. All
these results are very similar to our result (1.98(2.4× 10−4))
reported in the last column of Table 1, which demonstrates
the stability of our HBE model. Note that the results in pa-
rameter ablation studies are different from the Table 1. The
reason is that the initialized features of graph nodes here are
randomly sampled from a Gaussian distribution, however, the
initialized graph node features in Table 1 and 2 are set as 25%,
median, 75%, max of BOLD signal, which is mentioned in
section 3.1.

3.4. Visualization of HBE patterns

Figure 2 illustrates how the information is hierarchically ag-
gregated from the entire brain network to nodes and eventu-
ally can be used in the regression model to predict the clin-
ical symptoms, which indicates similar cooperativity among
nodes in predicting similar behavioral scores. For example,
node 7, 8, 9 and 10 always serve as community centers and
cooperate together in the whole graph representation among
the three tasks. Future work will be conducted to explore the
biological basis for these hierarchical patterns.

4. CONCLUSION
Here we propose a new explainable hierarchical graph learn-
ing framework, HBE, to capture the graph representations
based on the community structures. We deploy the proposed
framework to learn the patterns of brain networks for predict-
ing three behavioral scores. Our experimental results demon-
strate the superiority of our HBE model, compared to various
baseline methods. Meanwhile, the proposed HBE model ex-
plicitly uncovers the informative graph hierarchical patterns’
similarities across three related tasks.
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hierarchical graph classifiers,” arXiv preprint
arXiv:1811.01287, 2018.

[9] Nima Dehmamy, Albert-László Barabási, and Rose Yu,
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