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Abstract. Adaptivity is an important feature of data analysis—the choice of questions to ask
about a dataset often depends on previous interactions with the same dataset. However, statistical
validity is typically studied in a nonadaptive model, where all questions are specified before the
dataset is drawn. Recent work by Dwork et al. [Proceedings of STOC, ACM, 2015, pp.117-126] and
Hardt and Ullman [Proceedings of FOCS, IEEE, 2014, pp. 454—463] initiated the formal study of this
problem and gave the first upper and lower bounds on the achievable generalization error for adaptive
data analysis. Specifically, suppose there is an unknown distribution P and a set of n independent
samples x is drawn from P. We seek an algorithm that, given x as input, accurately answers a
sequence of adaptively chosen “queries” about the unknown distribution P. How many samples n
must we draw from the distribution, as a function of the type of queries, the number of queries, and
the desired level of accuracy? In this work we make two new contributions toward resolving this
question: 1. We give upper bounds on the number of samples n that are needed to answer statistical
queries. The bounds improve and simplify the work of Dwork et al. and have been applied in
subsequent work by those authors [Science, 349 (2015), pp. 636—638; Proceedings of NIPS, 2015, pp.
2350-2358]. 2. We prove the first upper bounds on the number of samples required to answer more
general families of queries. These include arbitrary low-sensitivity queries and an important class of
optimization queries (alternatively, risk minimization queries). As in Dwork et al., our algorithms
are based on a connection with algorithmic stability in the form of differential privacy. We extend
their work by giving a quantitatively optimal, more general, and simpler proof of their main theorem
that stable algorithms of the kind guaranteed by differential privacy imply low generalization error.
We also show that weaker stability guarantees such as bounded Kullback—Leibler divergence and
total variation distance lead to correspondingly weaker generalization guarantees.
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1. Introduction. Multiple hypothesis testing is a ubiquitous task in empirical
research. A finite sample of data is drawn from some unknown population, and sev-
eral analyses are performed on that sample. The outcome of an analysis is deemed
significant if it is unlikely to have occurred by chance alone, and a “false discovery”
occurs if the analyst incorrectly declares an outcome to be significant. False dis-
covery has been identified as a substantial problem in the scientific community (see,
e.g., [Ioa05, GL14]). This problem persists despite decades of research by statisti-
cians on methods for preventing false discovery, such as the widely used Bonferroni
correction [Bon36, Dun61] and the Benjamini—-Hochberg procedure [BH95].

False discovery is often attributed to misuse of statistics. An alternative explana-
tion is that the prevalence of false discovery arises from the inherent adaptivity in the
data analysis process—the fact that the choice of analyses to perform depends on pre-
vious interactions with the data (see, e.g., [GL14]). Adaptivity is essentially unavoid-
able when a sequence of research groups publish research papers based on overlapping
datasets. Adaptivity also arises naturally in other settings, for example, in multistage
inference algorithms where data are preprocessed (say, to select features or restrict
to a principal subspace) before the main analysis is performed, in scoring data-based
competitions [BH15], and in the reuse of holdout or test data [DFH+15¢, DFH+15a).

The general problem of adaptive data analysis was formally modeled and studied
in recent papers by Dwork et al. [DFH+15b] and by Hardt and Ullman [HU14]. The
striking results of Dwork et al. [DFH+15b] gave the first nontrivial algorithms for
provably ensuring statistical validity in adaptive data analysis, allowing for even an
exponential number of tests against the same sample. In contrast, [HU14, SU15b]
showed inherent statistical and computational barriers to preventing false discovery
in adaptive settings.

The key ingredient in Dwork et al. is a notion of “algorithmic stability” that is suit-
able for adaptive analysis. Informally, changing one input to a stable algorithm does
not change its output too much. Traditionally, stability was measured via the change
in the generalization error of an algorithm’s output, and algorithms stable according
to such a criterion have long been known to ensure statistical validity in nonadaptive
analysis [DW79a, DW79b, KR99, BE02, SSSS10]. Following a connection first sug-
gested by McSherry,! Dwork et al. showed that a stronger stability condition designed
to ensure data privacy—called differential privacy [DMNS06, Dwo06]—guarantees
statistical validity in adaptive data analysis. This allowed them to repurpose known
differential privacy algorithms to prevent false discovery. A crucial difference from
traditional notions of stability is that differential privacy requires a change in one
input lead to a small change in the probability distribution on the outputs (in partic-
ular, differentially private algorithms must be randomized). In this paper, we refer to
differential privacy as maz-KL stability (Definition 2.3) to emphasize the relationship
to the literature on algorithmic stability, and to the other notions of stability that we
study (Kullback—Leibler (KL) and total variation (TV) stability, in particular).

In this work, we extend the results of Dwork et al. along two axes. First, we
give an optimal analysis of the statistical validity of max-KL stable algorithms.
As a consequence, we immediately obtain the best known bounds on the sample
complezity (equivalently, the convergence rate) of adaptive data analysis. Second,
we generalize the connection between max-KL stability and statistical validity to a
much larger family of statistics. Our proofs are also significantly simpler than those

1See, e.g., [McS14], although the observation itself dates back at least to 2008 (personal commu-
nication).
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of Dwork et al., and clarify the role of different stability notions in the adaptive
setting.

1.1. Overview of results.

Adaptivity and statistical queries. Following the previous work on this subject
[DFH+15b], we formalize the problem of adaptive data analysis as follows. There
is a distribution P over some finite universe X, and a mechanism M that does not
know P, but is given a set x consisting of n samples from P. Using its sample, the
mechanism must answer queries on P. Here, a query ¢, coming from some family @,
maps a distribution P to a real-valued answer. The mechanism’s answer a to a query
q is a-accurate if |a — q(P)| < o with high probability. Importantly, the mechanism’s
goal is to provide answers that “generalize” to the underlying distribution, rather
than answers that are specific to its sample.

We model adaptivity by allowing a data analyst to ask a sequence of queries

q1,92,---,q € @ to the mechanism, which responds with answers ai,as,...,a;. In
the adaptive setting, the query ¢; may depend on the previous queries and answers
q1,a1,-..,qj—1,a;—1 arbitrarily. We say the mechanism is a-accurate given n samples

for k adaptively chosen queries if, with high probability,?2 when given a vector x of n
samples from an arbitrary distribution P, the mechanism accurately responds to any
adaptive analyst that makes at most k£ queries.

Dwork et al. [DFH+15b] considered the family of statistical queries [Kea93]. A
statistical query ¢ asks for the expected value of some function on random draws from
the distribution. That is, the query is specified by a function p : X — [0,1] and its
answer is ¢(P) = E,..p[p(2)].

The most natural way to answer a statistical query is to compute the empir-
ical answer E.. .x[p(z)], which is just the average value of the function on the
given sample x.3 It is simple to show that when k queries are specified nonadap-
tively (i.e., independent of previous answers), then the empirical answer is within
q(P) £ « (henceforth, “a-accurate”) with high probability so long as the sample has
size n 2 log(k)/a?.*5 However, when the queries can be chosen adaptively, the em-
pirical average performs much worse. In particular, there is an algorithm (based on
[DN03]) that, after seeing the empirical answer to k = O(a?n) random queries, can
find a query such that the empirical answer and the correct answer differ by «. Thus,
the empirical average is guaranteed to be accurate only when n 2> k/a?, and so expo-
nentially more samples are required to guarantee accuracy when the queries may be
adaptive.

Answering adaptive statistical queries. Surprisingly, Dwork et al. [DFH+15b],
showed there are mechanisms that are much more effective than naively outputting
the empirical answer. They show that “stable” mechanisms are accurate and, by
applying a stable mechanism from the literature on differential privacy, they obtain
mechanisms that are accurate given only n > vk /% samples, which is a significant

2By “with high probability,” we mean that we are primarily interested in accuracy statements
that hold with probability 1 — 8 for arbitrarily small 8. Typically 8 will decay exponentially in the
number of samples.

3For convenience, we will often use x as shorthand for the empirical distribution over x. We use
z <R X to mean a random element chosen from the uniform distribution over the elements of x.

4This guarantee follows from bounding the error of each query using a Chernoff bound and then
taking a union bound over all queries. The logk term corresponds to the Bonferroni correction in
classical statistics.

5To simplify notation in this introduction, we write n > f(k, ) to denote that n must be at least
as large as some quantity that is approximately f(k,«) to within polylogarithmic factors.
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improvement over the naive mechanism when « is not too small. (See Table 1 for
more detailed statements of their results, including results that achieve an exponential
improvement in the sample complexity when |X| is bounded.)

Our first contribution is to give a simpler and quantitatively optimal analysis
of the generalization properties of stable algorithms, which immediately yields new
accuracy bounds for adaptive statistical queries. In particular, we show that n 2
vk /a? samples suffice. Since 1/a? samples are required to answer a single nonadaptive
query, our dependence on « is optimal.

Beyond statistical queries. Although statistical queries are surprisingly general
[Kea93], we would like to be able to ask more general queries on the distribution P
that capture a wider variety of machine learning and data mining tasks. To this end,
we give the first bounds on the sample complexity required to answer large numbers
of adaptively chosen low-sensitivity queries and optimization queries, which we now
describe.

Low-sensitivity queries are a generalization of statistical queries. A query is spec-
ified by an arbitrary function p : X™ — R satisfying |p(x) — p(x')| < 1/n for every
x,x" € X" differing on exactly one element. The query applied to the population is
defined to be ¢(P) = Ex. ,pr[p(x)]. Examples include distance queries (e.g., “How
far is the sample from being well-clustered?”) and maxima of statistical queries (e.g.,
“What is the classification error of the best k-node decision tree?”)

Optimization queries are a broad generalization of low-sensitivity queries to ar-
bitrary output domains. The query is specified by a loss function L : X" x © —
R that is low-sensitivity in its first parameter, and the goal is to output 6 € ©
that is “best” in the sense that it minimizes the average loss. Specifically, ¢(P) =
arg mingeg Bz npn[L(2;0)]. An important special case is when © C R? is convex
and L is convex in @, which captures many fundamental regression and classification
problems.

Our sample complexity bounds are summarized in Table 1.

Subsequent work. Our bounds were applied in subsequent work of Dwork et al.
[DFH+15¢, DFH+15a] in the analysis of their “reusable holdout” construction.

TABLE 1
Summary of results. Here k = number of queries, n = number of samples, a = desired accuracy,
X = universe of possible samples, d = dimension of parameter space ©.

Sample complexity

Query type

[DFHF15b]

This Work

Time per query

Statistical (k < n?)

~( Vk
o(2)

o)

poly(n, log |X])

Statistical (k > n?)

o

VIog [X] - log®/? k

35

)

O(m»ogk>
3

«

poly(n, |X])

Low sensitivity (k < n?)

(%)

poly(n,log |X])

Low sensitivity (k> n?)

S (log|X|3' logk:>
fes

poly(]xX|™)

Convex min. (k < n?)

a2

°()

poly(n, d, log | X|)

Convex min. (k> n?)

o <(\/E+logk) . \/1og|X|>
o3

poly(n,d,|X])
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1.2. Overview of techniques. Our main result is a new proof, with optimal
parameters, that a stable algorithm that provides answers to adaptive queries that
are close to the empirical value on the sample gives answers that generalize to the
underlying distribution. In particular, we prove the following.

THEOREM 1.1 (main “transfer theorem”). Let M be a mechanism that takes a
sample x € X™ and answers k adaptively chosen low-sensitivity queries. Suppose that
M satisfies the following for some a, 8 > 0:

1. For every sample x, M’s answers are («,af)-accurate with respect to the
sample x. That is, Pmaxjek |¢j(x) — aj] < o] > 1 — af, where q1,...,qx :
X" — R are the low-sensitivity queries that are asked and a1, ...,ar € R are
the answers given. The probability is taken only over M’s random coins.
2. M satisfies (o, af)-maz-KL stability (Definition 2.3, identical to (c, af)-
differential privacy).
Then, if x consists of n samples from an arbitrary distribution P over X, M’s answers
are (O(«), O(B))-accurate with respect to P. That is, P [max;ek |¢;(P) — a;] < O(a)] >

1 — O(B), where the probability is taken only over the choice of x <, P™ and M’s
random coins.

Our actual result is somewhat more general than Theorem 1.1. We show that
the population-level error of a stable algorithm is close to its error on the sample,
whether or not that error is low. Put glibly, stable algorithms cannot be wrong
without realizing it.

Compared to the results of [DFH+15b], Theorem 1.1 requires a quantitatively
weaker stability guarantee—(a, o/3)-stability, instead of (a, (3/k)'/)-stability. It also
applies to arbitrary low-sensitivity queries as opposed to the special case of statistical
queries.

Our analysis differs from that of Dwork et al. in two key ways. First, we give
a better bound on the probability with which a single low-sensitivity query output
by a max-KL stable algorithm has good generalization error. Second, we show a
reduction from the case of many queries to the case of a single query that has no loss
in parameters (in contrast, previous work took a union bound over queries, leading
to a dependence on k, the number of queries).

Both steps rely on a thought experiment in which several “real” executions of
a stable algorithm are simulated inside another algorithm, called a monitor, which
outputs a function of the “real” transcripts. Because stability is closed under post-
processing, the monitor is itself stable. Because it exists only as a thought experiment,
the monitor can be given knowledge of the true distribution from which the data are
drawn and can use this knowledge to process the outputs of the simulated “real” runs.
The monitor technique allows us to start from a basic guarantee, which states that a
single query has good generalization error with constant probability, and amplify the
guarantee so that (a) the generalization error holds with very high probability, and
(b) the guarantee holds simultaneously over all queries in a sequence. The proof of
the basic guarantee follows the lines of existing proofs using algorithmic stability (e.g.,
[DW79a]), while the monitor technique and the resulting amplification statements are
new.

The amplification of success probability is the more technically sophisticated of
the two key steps. The idea is to run many (about 1/, using the notation of The-
orem 1.1) copies of a stable mechanism on independently selected datasets. Each
of these interactions results in a sequence of queries and answers. The monitor then
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selects the query and answer pair from among all of the sequences that has the largest
error. It then outputs this query as well as the index of the interaction that produced
it. Our main technical lemma shows that the monitor will find a “bad” query/dataset
pair (one where the true and empirical values of the query differ) with at most con-
stant probability. This implies that each of the real executions outputs a bad query
with probability O(3). Relative to previous work, the resulting argument yields bet-
ter bounds, applies to more general classes of queries, and even generalizes to other
notions of stability.

Optimality. In general, we cannot prove that our bounds are optimal. Recently,
[HU14, SU15b] showed that n > min{v/k, /log |X[}/a samples are necessary to an-
swer adaptively chosen statistical queries. In addition, clearly n > log(k)/a? are
necessary, even for nonadaptive queries. However, the gap between the upper and
lower bounds is still significant.

However, we can show that our connection between max-KL stability and gener-
alization is optimal (see section 7 for details). Moreover, for every family of queries we
consider, no max-KL stable algorithm can achieve better sample complexity [BUV14,
BST14]. Thus, any significant improvement to our bounds must come from using a
weaker notion of stability or some entirely different approach.

Computational complexity. Throughout, we will assume that the analyst only
issues queries ¢ such that the empirical answer ¢(x) can be evaluated in time poly(n,
log |X]). When k < n? our algorithms have similar running time. However, when
answering k > n? queries, our algorithms suffer running time at least poly(n, |X|).
Since the mechanism’s input is of size n-log | X, these algorithms cannot be considered
computationally efficient. For example, if X = {0,1}¢ for some dimension d, then in
the nonadaptive setting poly(n, d) running time would suffice, whereas our algorithms
require poly(n,2¢) running time. Unfortunately, this running time is known to be
optimal, as [HU14, SU15b] (building on hardness results in privacy [Ull13]) showed
that, assuming exponentially hard one-way functions exist, any poly(n,2°@) time
mechanism that answers k = w(n?) statistical queries is not even 1/3-accurate.

Stable/differentially private mechanisms. Each of our results requires instantiat-
ing the mechanism with a suitable stable/differentially private algorithm. For sta-
tistical queries, the optimal mechanisms are the well-known Gaussian and Laplace
mechanisms (slightly refined by [SU15a]) when k is small and the private multiplica-
tive weights mechanism [HR10] when k is large. For arbitrary low-sensitivity queries,
the Gaussian or Laplace mechanism is again optimal when k is small, and for large k
we can use the median mechanism [RR10].

When considering arbitrary search queries over an arbitrary finite range, the
optimal algorithm is the exponential mechanism [MT07]. For the special case of
convex minimization queries over an infinite domain, we use the optimal algorithm
of [BST14] when k is small, and when k is large we use an algorithm of [Ull15] that
accurately answers exponentially many such queries.

Other notions of stability. Our techniques apply to notions of distributional sta-
bility other than max-KL/differential privacy. In particular, defining stability in terms
of TV or of KL divergence leads to bounds on the generalization error that have poly-
nomially, rather than exponentially, decreasing tails. See section 4 for details.

2. Preliminaries.

2.1. Queries. Given a distribution P over X or a sample x = (x1,...,2,) € X",
we would like to answer queries about P or x from some family ). We will often
want to bound the “sensitivity” of the queries with respect to changing one element

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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of the sample. To this end, we use x ~ x’ to denote that x and x’ € X" differ on at

most one entry. We will consider several different families of queries:

e Statistical queries: These queries are specified by a function ¢ : X — [0, 1] and
(abusing notation) are defined as

aP)= E _[z)]  ad g =1 > alr)

i€[n]

The error of an answer a to a statistical query ¢ with respect to P or x is defined
to be
erry (¢,a) = a — q(x) and et (¢,a) = a — q(P).

e A-sensitive queries: For A € [0,1], n € N, these queries are specified by a
function ¢ : X" — R satisfying |¢(x) — ¢(x’)] < A for every pair x,x’ € A"
differing in only one entry. Abusing notation, let

qP)=_E_ [q(z)].
z<grP"
The error of an answer a to a A-sensitive query ¢ with respect to P or x is defined
to be
P (qa a) - E [errz (‘L a)] =a-— Q(P)

erry (¢,a) = a — q(x) and err
z<—RrP"

We denote the set of all A-sensitive queries by Qa. If A = O(1/n) we say the
query is low sensitivity. Note that 1/n-sensitive queries are a strict generalization
of statistical queries.

e Minimization queries: These queries are specified by a loss function L : X™ x
O — R. We require that L has sensitivity A with respect to its first parameter,
that is,

sup |L(x;0) — L(x';0)| < A.
€O, x,x'€X™ x~vx/

Here © is an arbitrary set of items (sometimes called “parameter values”) among
which we aim to choose the item (“parameter”) with minimal loss, either with
respect to a particular input dataset x or with respect to expectation over a distri-
bution P.

The error of an answer # € © to a minimization query L : X" x © — R with respect
to x is defined to be

erry (L,0) = L(x,0) — min L(x,0")

0*cO
and, with respect to P, is
P . *
Lo = E 2 (L,0)= E [L(z0)]—- E L(z,0%)].
o (L.0) = | B fom, (LO)] = | B, L0~ B, |min 2.0°)

Note that ming«cg Ezppn[L(Z,0%)] > Euppn [mingsco L(z, 6%)], whence

E  [L(z,0)] — min E_ [L(z,60")] <er® (L,0

LB (Dm0 = min B [L(2,6%)] < en® (L),

so the quantity err? (L, ) upper bounds the standard notion of population error.
Note that minimization queries (with ©® = R) generalize low-sensitivity queries:
given a A-sensitive ¢ : X" — R, we can define L(x;0) = |0 — ¢(x)| to obtain a
minimization query with the same answer.
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A chooses a distribution P over X.
Sample x1,...,2, <5 P, let x = (x1,...,2,). (Note that A does not know
x.)
Forj=1,...,k

A outputs a query g; € Q.

M(x, g;) outputs a;.

(As A and M are stateful, ¢; and a; may depend on the history
q1,0a1,.--,45-1, &j—1~)

F1G. 1. The accuracy game Accy,  qo[M, Al.

We denote the set of minimization queries by @ ,,in. We highlight two special cases:

— Minimization for finite sets: We denote by Qmin,p the set of minimization
queries where © is finite with size at most D.

— Convex minimization queries: If © C R? is closed and convex and L(x;-) is
convex on O for every dataset x, then the query can be answered nonprivately
up to any desired error «, in time polynomial in d and . We denote the set
of all convex minimization queries by Qo -

2.2. Mechanisms for adaptive queries. Our goal is to design a mechanism
M that answers queries on P using only independent samples z1,...,z, < P. Our
focus is the case where the queries are chosen adaptively and adversarially.

Specifically, M is a stateful algorithm that holds a sample x1,...,x, € X, takes
a query ¢ from some family ) as input, and returns an answer a. We require that
when x4, ..., 2, are independent draws from P, the answer a is “close” to ¢(P) in
a sense that is appropriate for the family of queries. Moreover we require that this
condition holds for every query in an adaptively chosen sequence ¢, ..., ;. Formally,
we define an accuracy game between a mechanism M and a stateful data analyst A
in Figure 1.

DEFINITION 2.1 (accuracy). A mechanism M is («, §)-accurate with respect to
the population for k£ adaptively chosen queries from @ given n samples in X if for
every adversarial data analyist® A,

P Plga)| <al>1-38.
Accn x. o M.A] ;Ié%ﬁ |err (QJva‘])|—a = B

We will also use a definition of accuracy relative to the sample given to the
mechanism, described in Figure 2.

DEFINITION 2.2 (sample accuracy). A mechanism M is (a, )-accurate with
respect to samples of size n from X for k adaptively chosen queries from @ if for
every adversary A,

P max err S Qs <« >1-—A.
SampAcc,, ;. o [M,A] | jE[K] ‘ x(q]7 ])| = = B

6As the data analyst is assumed to be arbitrary, it is often convenient to think of it as an
adversary and thus we will sometimes interchange the terms adversary and data analyst.
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A chooses x = (x1,...,X,) € X"
Forj=1,....k
A outputs a query g; € Q.
M(x,q;) outputs a;.
(¢; and a; may depend on the history ¢1,a1,...,qj—1,a;-1 and on x.)

FIG. 2. The sample accuracy game SampAcc,, ;. o[M, A].

2.3. Max-KL stability (a.k.a. differential privacy). Informally, an algo-
rithm is “stable” if changing one of its inputs does not change its output too much.
For our results, we will consider randomized algorithms and require that changing one
input does not change the distribution of the algorithm’s outputs too much. With
this in mind, we will define here one notion of algorithmic stability that is related
to the well-known notion of KL-divergence between distributions. In section 4.1, we
will give other related notions of algorithmic stability based on different notions of
closeness between distributions.

DEFINITION 2.3 (max-KL stability). Let W : X™ — R be a randomized algo-
rithm. We say that W is (e,6)-max-KL stable if for every pair of samples x,x" that
differ on exactly one element, and every R C R,

PW(x) e R <e -PW(KE) e R]+6.

This notion of (g, §)-max-KL stability is also commonly known as (g, §)-differential
privacy [DMNS06]; however, in this context we choose the term max-KL stability
to emphasize the conceptual relationship between this notion and other notions of
algorithmic stability that have been studied in machine learning. We also emphasize
that our work has a very different motivation to the motivation of differential privacy—
stable algorithms are desirable even when privacy is not a concern, such as when the
data does not concern humans.

In our analysis, we will make crucial use of the fact that max-KL stability (as well
as the other notions of stability discussed in section 4.1) is closed under postprocessing.

LEMMA 2.4 (postprocessing). Let W : X™ — R and f : R — R’ be a pair of
randomized algorithms. If W(x) is (g,0)-maz-KL stable, then the algorithm f(W(x))
is (,0)-maz-KL stable.

2.3.1. Stability for interactive mechanisms. The definition we gave above
does not immediately apply to algorithms that interact with a data analyst to answer
adaptively chosen queries. Such a mechanism does not simply take a sample x as input
and produce an output. Instead, in the interactive setting, there is a mechanism
M that holds a sample x and interacts with some algorithm A. We can view this
entire interaction between M and A as a single noninteractive meta algorithm that
outputs the transcript of the interaction and define stability with respect to that
meta algorithm. Specifically, we define the algorithm W[M, A](x) that simulates the
interaction between M(x) and A and outputs the messages sent between them. The
simulation is also parameterized by n, k, @, although we will frequently omit these
parameters when they are clear from context.
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Input: A sample x € X"
Forj=1,...,k
Feed a;_; to A and get a query g; € Q.
Feed g; to M(x) and get an answer a; € R.
Output ((q1,a1), -+, (qr, ax))-

Note that W[M, A] is a noninteractive mechanism, and its output is just the
query-answer pairs of M and A in the sample accuracy game, subject to the mech-
anism being given the sample x. Now we can define the stability of an interactive
mechanism M using W.

DEFINITION 2.5 (stability of for interactive mechanism). We say an interactive
mechanism M is (g,0)-max-KL stable for k queries from Q if for every adversary A,
the algorithm W, . o[M, Al(-) : X" — (Q x R)* is (g,0)-maz-KL stable.

2.3.2. Composition of max-KL stability. The definition above allows for
adaptive composition. This follows directly from composition results of (g,d)-
differentially private algorithms. A mechanism that is (g, d)-max-KL stable for 1
query is (= eVk,~ 0k)-stable for k adaptively chosen queries [DMNS06, DRV10].
More precisely, for every 0 < ¢ < 1 and 4,6’ > 0, if a mechanism that is (g,0)-
max-KL stable for 1 query is used to answer k adaptively chosen queries, it remains

(e\/klog(1/8") + 2e2k, &' + kd)-max-KL stable [DRV10].

3. From max-KL stability to accuracy for low-sensitivity queries. In
this section we prove our main result that any mechanism that both is accurate with
respect to the sample and satisfies max-KL stability (with suitable parameters) is also
accurate with respect to the population. The proof proceeds in two main steps. First,
we prove a lemma that says that there is no max-KL stable mechanism that takes
several independent sets of samples from the distribution and finds a query and a set
of samples such that the answer to that query on that set of samples is very different
from the answer to that query on the population. In section 3.2 we prove this lemma
for the simpler case of statistical queries and then in section 3.3 we extend the proof
to the more general case of low-sensitivity queries.

The second step is to introduce a monitoring algorithm. This monitoring al-
gorithm will simulate the interaction between the mechanism and the adversary on
multiple independent sets of samples. It will then output the least accurate query
across all the different interactions. We show that if the mechanism is stable, then
the monitoring algorithm is also stable. By choosing the number of sets of samples
appropriately, we ensure that if the mechanism has even a small probability of being
inaccurate in a given interaction, then the monitor will have a constant probability
of finding an inaccurate query in one of the interactions. By the lemma proven in the
first step, no such monitoring algorithm can satisfy max-KL stability; therefore every
stable mechanism must be accurate with high probability.

3.1. Warmup: A single-sample decorrelated expectation lemma for sta-
tistical queries. As a warmup, in this section we give a simpler version of our main
lemma for the case of statistical queries and a single sample. Although these results
follow from the results of section 3.3 on general low-sensitivity queries, we include the
simpler version to introduce the main ideas in the cleanest possible setting.
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LEMMA 3.1. Let W : X™ — Q be (g,0)-maz-KL stable where @Q is the class of
statistical queries ¢ : X — [0,1]. Let P be a distribution on X and let x <, P".
Then”

E [aP) : ¢=W(x)]— E [¢(x) : ¢=W(x)]| <e” -1+
x,W x,W
Proof of Lemma 3.1. Before giving the proof, we set up some notation. Let x =
(21,...,2p). For a single element ' € X, and an index i € [n], we use X;_,,s to
denote the new sample where the ith element of x has been replaced by the element
z'. Let 2’ +—; P be independent from x.
We can now calculate

x, W
~ 15 B e ¢ g= W)
n | x, W
1 n 1

I
\
h
=
=
&
V
<
)
Il
=
X
o
<

1
< ! Z/ ef ]I;v [q(z;)) >y : ¢=WXise)]+0dy  (by (g,0)-max-KL stability)
0 X

An identical argument shows that

B, 000 g =Wl 2 (B luP) + 4= W] -5).

Therefore, using the fact that |¢(P)| < 1 for any statistical query ¢ and distribu-
tion P, we have

E aP) - ¢=W)] - E [¢(x) : ¢=WE)]| <e®—1+5,

as desired. d
"The notation Ex w[g(P) : g = W(x)] should be read as “the expectation of q(P), where g

denotes the output of W(x).” A more standard (but less readable) notation for the same thing would
beE xw [¢(P)]
g=W(x)
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3.2. Warmup: A multisample decorrelated expectation lemma for sta-
tistical queries. As a second warmup, in this section we give a simpler version of
our main lemma for the case of statistical queries and multiple samples. That is, we
consider a setting where there are many subsamples available to the algorithm. The
multi-sample decorrelated expectation lemma says that a max-KL stable algorithm
cannot take a collection of samples x1,...,x7 and output a pair (g, t) such that ¢(P)
and ¢(x;) differ significantly in expectation.

LEMMA 3.2. Let W : (X™)T — Q x [T] be (g,0)-maz-KL stable where Q is the
class of statistical queries q : X — [0,1]. Let P be a distribution on X and let
X = (x1,...,%X7) <5 (PY)T. Then

o, a®) = (g, ) =WX)] = E g(xi) : (¢,8) = WX)]} <" —14T0.
Proof of Lemma 3.2. Before giving the proof, we set up some notation. Let X =
(x1,...,x7) be a set of T samples where each sample x; = (z41,...,%¢,). For a
single element 2’ € X, and a pair of indices (m,i) € [T] x [n], we use X(,, ;)—o tO
denote the new set of T' samples where the ith element of the mth sample of X has
been replaced by the element z’.
We can now calculate

o laxe) = (g t) = WX)]

a2

1=1m

&=

s

)

3 =

M=

1XI7EW (L= - @(@mi) © (0,1) = W(X)]

= lZ Z/O Xow [Lpi=my - a(@mi) 2y : (q,1) = W(X)] dy.

=1 m=1

3

Now we can apply (g, 0)-max-KL stability.

T 1
1 £
< Z Z (/0 e XIF’W [Litmmy  @(@me) >y ¢ (0,8) = W(Ximiyoar)] + 5) dy

(by (g, 0)-max-KL stability)
T

:% Z Z (65 . » E [1{t:m} . q(.’I,‘m’Z) : (q,t) = W(X(m,l)ﬁm’)] + (5)

X, W

1 n T
= - Z Z (65 . zg;}gw [1{t:m} . q(x/) : (q,t) = W(X)} + 5)

the pairs (2,4, X(m,i)—ar) and (2',X) are identially distributed
=e - E q(a) ¢ (¢,t) =W(X)] +T%

x' X W
= B aP) : (gt) =W(X)]+T6
<,E, [q(P) : (g,t) =W(X)]+ € —14+T5  (since ¢(P) € [0,1]).
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An identical argument shows that

E o) ¢ (@) =W 2 B [4P) ¢ (a.0) = WX+~ 1) ~T6

3.3. A multisample decorrelated expectation lemma. Here, we give the
most general decorrelated expectation lemma that considers multiple samples and
applies to the more general class of low-sensitivity queries.

LEMMA 3.3 (main technical lemma). Let W : (X™)T — Qa x [T] be (¢,8)-maz-
KL stable where Qa is the class of A-sensitive queries q : X™ — R. Let P be a
distribution on X and let X = (X1, ...,%x7) <5 (P")T. Then

EP) ¢ (@) = W)~ E lglx) 5 (a.) = WX]| <2~ 14 T5)An.

We remark that if we use the weaker assumption that W is (e —1+0)-TV stable
(defined in section 4.1), then we would obtain the same conclusion but with the weaker
bound of 2T'(ef — 1 + §)An. The advantage of using the stronger definition of max-
KL stability is that we only have to decrease § with 7" and not . This advantage is
crucial because algorithms satisfying (e, §)-max-KL stability necessarily have a linear
dependence on 1/¢ but only a polylogarithmic dependence on 1/4.

Proof of Lemma 3.3. Let X' = (x},...,x%) <& (P™)T be independent of X.
Recall that each element x; of X is itself a vector (z,1, ..., %), and the same is true
for each element x; of X'. We will sometimes refer to the vectors xi,...,xr as the
subsamples of X.

We define a sequence of intermediate samples that allow us to interpolate between
X and X' using a series of neighboring samples. Formally, for ¢ € {0,1,...,n} and
m e {0,1,...,T}, define Xt = (xP™, ... x5™) € (A™)T by

gom _ [ e, (t>m)or (t=m and i > {),
bt Ty, (t<m)or (t=mandi</).

By construction we have X%! = X0 = X and X™7 = X'. Also X% = Xmm~1
for m € [T]. Moreover, pairs (X%, X‘~1!) are neighboring in the sense that there is
a single subsample, x; such that xf’t and xf_l’T are neighbors and for every t' # t,

0t _0—1p
Xt’ = Xt, .

For ¢ € [n] and m € [T, define a randomized function B4™ : (X™)T x (A")T — R
by

m z:) —q(ze_p) + A, t=m,
B (X7Z):{ a(z) Q(Of’ ‘) {2, Vhere (g,1) = W(X),

where z; _, is the tth subsample of Z with its £th element replaced by some arbitrary
fixed element of X.
We can now expand |XEW [q(P) —q(x¢) : (¢,t) =W(X)]]| in terms of these in-

termediate samples and the functions B%™:
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Thus, it suffices to show that |

X, W

E [o(P)— q(x:) - <q,t>=w<x>l\

X W
Le[n] me[T)
> B ™ =) s (0 t) = W)
Le[n] |me[T)

=3 Y B (e — e+ a)

(
=2 |2 «

Le[n] |me [T]

L€[n] |me[T)

— (gl = k() + A) ¢ (g, 8) = X))

{—1,m )

. Lm
By construction, X,y =%y 4

W [vam(X’ Xe’m) — B&m(X, ngl’m)] (Definition of Bz’m).

[Bl,m(nyl,m) _ BZ,m(X’XZ—l,m,)] | <

me|(T|

2(ef — 1+ Té)A for all £ € [n]. To this end, we make a few observations.

1. Since q is A-sensitive, for every £,m,X,Z, we have 0 < B“™(X,Z) < 2A.

Moreover, since B“™(X,Z) = 0 whenever W(X) outputs (q,t) with ¢ # m,
we have Zme[T [BY™(x,x"™)] < 2A.

. By construction, B™(X, Z) is (e, §)-max-KL stable as a function of its first
parameter X. Stability follows by the postprocessing lemma (Lemma 2.4)
since B®™ is a postprocessing of the output of W(X), which is assumed to

e (g,9)-max-KL stable.

. Last, observe that the random variables X*™ are identically distributed (al-
though they are not independent). Namely, each one consists of nT" indepen-
dent samples from P. Moreover, for every £ and m, the pair (X*™, X) has
the same distribution as (X, X%™). Specifically, the first component is nT
independent samples from P and the second component is equal to the first
component with a subset of the entries replaced by fresh independent samples
from P.

Consider the random variables B%™(X,X%™) and B*™(X,X* 1™) for some
¢ € [n] and m € [T]. Using observations 2 and 3, we have

BZ,'rrL(X’XZ,nL) ~ BZ,m(xé,’m7x) ~(e.5) Bf,m(x@—l,m’ X) ~ B@,m(X, ){Z—l,'rn)7

where ~ denotes having the same distribution and ~(. ;) denotes having (e, J)-max-
KL close distributions.® Thus B4™(X, X*~1™) and B*™ (X, X%™) are (¢, §)-max-KL

close.

81n the spirit of (e, §)-max-KL stability, we say that distributions A and B over R are (g, §)-max-

KL close if for every RC R, P[A € R] < ef-P[B € R] + § and vice versa.
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Now we can calculate

2A
l,m -1, _ Z, {—1,m
o XTI = [ B[O 2 0]y

IN

2A
€, l,m L,m >
/0 <e X’)I(F’,’W [B™(X, X )_y]+5> dy

X, X' W

=e¢ - _E [B*™(X,X"™)] + 20A.
X, X'W

2A
= - / P [BY™(X,X5™) > y] dy + 20A
0

Thus we have

l,m {—1,m
> X,)]E,W[B (X, X‘~1my]
mée[T)

<e [ Y <E, [BY™(X, X5™)] | +2T6A
me|[T] ’

<> E [BE™(X, X5™)] +2(e — 1)A + 2ATS.

- ’
Ty

me(T]

Thus we have the desired upper bound on the expectation of 3, ¢ 7y E[B™(X, X6™)

— B™(X, X*~1™)]. The corresponding lower bound follows from an analogous argu-
ment. This completes the proof. 0

3.4. From multisample decorrelated expectation to accuracy. Now that
we have Lemma 3.3, we can prove the following result that max-KL stable mechanisms
that are also accurate with respect to their sample are also accurate with respect to
the population from which that sample was drawn.

THEOREM 3.4 (main transfer theorem). Let Q be a family of A-sensitive queries
on X. Assume that, for some «, 8 € (0,.1), M is
1. (e = a/64An,§ = af/32An)-maz-KL stable for k adaptively chosen queries
from @Q and
2. (o/ = «a/8,p" = af/16An)-accurate with respect to its sample for n samples
from X for k adaptively chosen queries from Q).
Then M is («, B)-accurate with respect to the population for k adaptively chosen
queries from Q given n samples from X.

The key step in the proof is to define a monitoring algorithm that takes T separate
samples X = (X7, ...,xr) and for each sample x; simulates an independent interaction
between M(x;) and .A. This monitoring algorithm then outputs the query with the
largest error across all of the queries and interactions (k7' queries in total). Since
changing one input to X affects only one of the simulations, the monitoring algorithm
will be stable so long as M is stable, without any loss in the stability parameter.
On the other hand, if M has even a small chance 3 of answering a query with large
error, then if we simulate 7' &~ 1/ independent interactions, there is a constant
probability that at least one of the simulations results in a query with large error.
Thus, the monitor will be a stable algorithm that outputs a query with large error in
expectation. By the multisample decorrelated expectation lemma, such a monitor is
impossible, which implies that M has probability < § of answering any query with
large error.
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Proof of Theorem 3.4. Let M be an interactive mechanism. Let A be an ana-
lyst and let P be the distribution chosen by .A. We define the following monitoring
algorithm.

W(X) = Wp[M, A|(X) :
Input: X = (x3,...,x7) € (X")T
Fort=1,...,T:
Simulate M(x;) and A interacting, let g;1,...,¢:1 € @ be the queries of
A and let
at1,--.,0, € R be the corresponding answers of M.
Let

(j*,t*) = argmax |err® (¢ 5, ar)] -
jelk], te[T]

If a- j» — g+ j«(P) > 0, let ¢* = g4+ j+, otherwise let ¢* = —gu= j+. (Qa is
closed under negation.)
Output: (¢*,t*).

If M is stable, then so is W, and this fact follows easily from the postprocessing
lemma (Lemma 2.4).

CLAIM 3.5. For every e,0 > 0, if the mechanism M is (¢,§)-maz-KL stable for k
adaptively chosen queries from Q, then for every P and A, the monitor We j o[M, Al
is (e,0)-maz-KL stable.

Proof. If M is (g, )-max-KL stable for k adaptively chosen queries from @, then
for every analyst A who asks k queries from @, and every ¢, the algorithm W'(x;)
that simulates the interaction between M(x;) and .4 and outputs the resulting query-
answer pairs is (g, §)-max-KL stable. From this, it follows that the algorithm W' (X)
that simulates the interactions between M(x;) and A for every ¢t = 1,...,T and
outputs the resulting query-answer pairs is (¢, §)-max-KL stable. To see this, observe
that if X, X’ differ only on one subsample x;, then for every t' # ¢, xy = x}, and
thus the query-answer pairs corresponding to subsample ¢’ are identically distributed
regardless of whether we use X or X’ as input to W.

Observe that the algorithm W defined above is simply a postprocessing of these
kT query-answer pairs. That is, (¢*,t*) depends only on {(g:,;, as,; }+err),jer and P,
and not on X. Thus, by Lemma 2.4, W is (e, §)-max-KL stable. O

We will use the W with T = |1/8] . In light of Claim 3.5 and our assumption
that M is (g, )-max-KL stable, we can apply Lemma 3.3 to obtain

) LB (P () ) = W)
<2 (ea/ﬁ4A" —1+T (35‘&)) An < a/8.

To complete the proof, we show that if M is not (¢, 8)-accurate with respect to the
population P, then (1) cannot hold. To do so, we need the following natural claim
about the output of the monitor.

CrLAmM 3.6. Px w [¢*(P) —ag- > a] > 1— (1= B3)T, and ¢*(P) — a,- > 0, where
agq- 18 the answer to ¢* produced during the simulation.
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Proof. Since M fails to be («, 8)-accurate, for every t € [T],

(2) ey |l (P) — ars| > af > 5.

We obtain the claim from (2) by using the fact that the T sets of query-answer
pairs corresponding to different subsamples x1,...,x7 are independent. That is, the
random variables max;ex) [¢:,;(P) — at ;| indexed by ¢ € [T] are independent. Since
q*(P) — ag~ is simply the maximum of these independent random variables, the first
part of the claim follows. Also, by construction, YW ensures that

(3) ¢ (P) — ag > 0. 0

CrLAam 3.7. If M is (o, f)-accurate for the sample but not («, 8)-accurate for
the population, then

(P = () (076 = WK > o/

Proof. Now we can calculate

B0 (P) = 7)) = WX

— B 0P a5 @) = WO B, o ) 5 (007) = WX

>

w
E [ag —q"(xe:) © ¢ = W)

> “(P) = aye : (¢*.1°) =
> | B (P —ap ¢ (¢"8) = WEl| - | B

X, W

> all= (1= 87) = | B o = 0°(x) ¢ (470 = WX (Claim 36)

>at- (-7 - (afs 21 (5 ) an)

(6)
>a/2— (a/8+a/8)=a/d (T =|1/8)).

Line (5) follows from two observations. First, since M is assumed to be
(a/8,a3/16An)-accurate for one sample, by a union bound, it is simultaneously
(a/8,T(af8/16An))-accurate for all of the T' samples. Thus, we have ag« —¢*(x4+) < o/
except with probability at most T'(«8/16An). Second, since ¢* is a A-sensitive query,
we always have ag» — ¢*(x4+) < 2An.? O

Thus, if M is not («, 8)-accurate for the population, we will obtain a contradiction
to (1). This completes the proof. d

4. Other notions of stability and accuracy on average. Definition 4.2 gives
one notion of stability, namely max-KL stability. However, this is by no means the
only way to formalize stability for our purposes. In this section we consider other
notions of stability and the advantages they have.

9Without loss of generality, the answers of M can be truncated to an interval of width 2An that
contains the correct answer ¢*(x). Doing so will ensure |ag+ — ¢*(x¢+)| < 2An.
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4.1. Other notions of algorithmic stability. We will define here other no-
tions of algorithmic stability, and in section 4.2, we will show that such notions can
provide expected guarantees for generalization error which can be used to achieve
accuracy on average.

DEFINITION 4.1 (TV stability). Let W : X™ — R be a randomized algorithm.
We say that W is e-TV stable if for every pair of samples that differ on exactly one
element,

drv(W(x), W(x)) = sup [PW(x) € R]—P[W() € R]| <e.
RCR

DEFINITION 4.2 (KL stability). Let W : X™ — R be a randomized algorithm.

We say that W is e-KL stable if for every pair of samples x,x" that differ on exactly

one element,
. | PW(x) = r] <0
r—pW(x) [Og <P[W(X/) = 7’])] =

The postprocessing property of max-KL stability (Lemma 2.4 in section 2.3) also
applies to the two stability notions above.

LEMMA 4.3 (stability notions preserved under postprocessing). Let W : X" — R
and f : R — R’ be a pair of randomized algorithms. If W is {e-TV, e-KL, (&,6)-
max-KL}-stable, then the algorithm f(W(x)) is {e-TV, e-KL, (e,d)-max-KL}stable.

Relationships between stability notions. e-KL stability implies e-TV stability by
Pinsker’s inequality. Therefore the generalization result we prove for e-TV stable al-
gorithms (Theorem 4.7) apply equally to e-KL stable algorithms. The relationship
between max-KL stability defined in section 2.3 and the above notions is more subtle.
When ¢ < 1, (g,0)-max-KL stability implies e-KL stability and thus also e-TV sta-
bility. When ¢ < 1 and § > 0, (e,d)-max-KL stability implies (2¢ 4 §)-TV stability.
It also implies that M is “close” to satisfying 2e-KL stability (cf. [DRV10] for more
discussion of these notions).

As in section 2.3.1, we define TV stability and KL stability of an interactive
mechanism M through a noninteractive mechanism that simulates the interaction
between M and an adversary A. The definition for these notions of stability is
precisely analogous to Definition 2.5 for max-KL stability.

As with max-KL stability, both notions above allow for adaptive composition. In
fact, e-TV stability composes linearly—a mechanism that is e-TV stable for one query
is ek-stable for k queries. The advantage of the stronger notions of KL and max-KL
stability is that they have a stronger composition. A mechanism that is e-KL stable
for one query is (ev/k)-stable for k queries.

4.2. From TV stability to accuracy on average. In this section we show
that TV stable algorithms guarantee a weaker notion of accuracy on average for
adaptively chosen queries.

4.3. Accuracy on average. In section 2.2 we defined accurate mechanisms to
be those that answer accurately (with respect to either the population or the sample)
with probability close to 1. In this section we define a relaxed notion of accuracy that
only requires low error in expectation over the coins of M and A.

DEFINITION 4.4 (average accuracy). A mechanism M is a-accurate on average
with respect to the population for k adaptively chosen queries from ) given n samples
in X if for every adversary A,
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E max |ertt (¢;, a; < a.
Accn.n.0[M,A] | 5€[K] ’ (45, ])‘ -

We will also use a definition of accuracy relative to the sample given to the
mechanism.

DEFINITION 4.5 (sample accuracy on average). A mechanism M is a-accurate
on average with respect to samples of size n from X for k adaptively chosen queries
from Q if for every adversary A,

E ol < a
SampAcc,, . o[M,A] glé?g]( |errx (qj,(lj)| S o

4.3.1. A decorrelated expectation lemma. Toward our goal of proving that
TV stability implies accuracy on average in the adaptive setting, we first prove a
lemma saying that TV stable algorithms cannot output a low-sensitivity query such
that the sample has large error for that query. In the next section we will show how
this lemma implies accuracy on average in the adaptive setting.

LEMMA 4.6. Let W : X™ — Qa be an -TV stable randomized algorithm. Recall
Qna s the family of A-sensitive queries q : X™ — R. Let P be a distribution on X and
let x <5 P™. Then

E [a(P) : q=W(x)] - E [0 : ¢ =W)]| <24n.
Proof. The proof proceeds via a sequence of intermediate samples. Let x' < P"
be independent of x. For £ € {0,1,...,n}, we define x* = (z4,...,2%) € X" by

0 Xi, 7> é,
Ti = { xh, i <L
By construction, x° = x and x” = x’, and intermediate samples x‘ interpolate be-
tween x and x’. Moreover, x and x‘*! differ in at most one entry, so that we can use
the stability condition to relate W(x*) and W(x**1).

For every ¢ € [n], we define B : X x X" — R by
B'(x,2) = q(z) — q(z_¢) + A, where ¢ = W(x).

Here, z_, is z with the /th element replaced by some arbitrary fixed element of X.
Now we can write

x,x" W

=12, [6) —a q=W<x>]‘
(=1 ’

<2 LB, a6 —axh) g = W(X)]‘
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= > |LE [ =gt +A) = (ax1) — g5 + 4) + g =W(x)]
eefn]

(Since x* , = x*,")

=Y E [Bf(x,x") — Bf(x,x“)]’ (Definition of B).
tefm) 7

Thus, to prove the lemma, it suffices to show that for every ¢ € [n],

E [Bz(x,xz) — BY(x, xe_l)]’ < 2Ae.
x,x' W

To complete the proof, we will need a few observations. First, since ¢ is A-
sensitive, for every ¢, x,z, we have 0 < Bf(x,z) < 2A.

Second, observe that since W is assumed to be e-TV stable, by the postprocessing
lemma (Lemma 2.4) BY(x,z) is e-TV stable with respect to its first parameter x.

Finally, observe that the random variables x°,...,x™ are identically distributed
(although not independent). That is, every x’ consists of n independent draws from
P. Moreover, for every £, the pairs (x,x’) and (x‘,x) are identically distributed.
Specifically, the first component is n independent samples from P and the second
component is equal to the first component with a subset of the entries replaced by
new independent samples from P.

Combining the second and third observations with the triangle inequality, we have

drv (B (x,x"), B (x,x 1))
<dtv (Be(x, xé), Bz(xe,x)) + drv (Be(xe,x), Bé(xe_l,x))
+drv (Bz(xe_l,x), B(x,x'1))
<0+e+4+0=ce.

Using the observations above, for every £ € [n] we have

EW [Bg(x,xz) - B(x, qu)] < 2A -dpy (Be(x, x%), BY(x, xefl)) < 2Ae.

Thus we have the desired upper bound on the expectation of Bf(x,x’) — Bf(x,x‘"1).
The corresponding lower bound follows from an analogous argument. This completes
the proof. ]

4.3.2. From decorrelated expectation to accuracy on average.

THEOREM 4.7. Let Qa be the family of A-sensitive queries on X. Assume that
M is
1. (e = a/4An)-TV stable for k adaptively chosen queries from Q = Qa and
2. (o = a/2)-accurate on average with respect to its sample for n samples from
X for k adaptively chosen queries from Q.
Then M is a-accurate on average with respect to the population for k adaptively
chosen queries from @ given n samples from X.

The high level approach of the proof is to apply Lemma 4.6 to a “monitoring
algorithm” that watches the interaction between the mechanism M (x) and the analyst
A and then outputs the least accurate query. Since M(x) is stable, the decorrelated
expectation lemma says that the query output by the monitor will satisfy ¢(P) ~ ¢(x)
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in expectation; this implies that even for the least accurate query in the interaction
between M(x) and A, ¢(P) = ¢(x) in expectation. Thus, if M is accurate with
respect to the sample x, it is also accurate with respect to P.

Proof of Theorem 4.7. Let M be an interactive mechanism and A be an analyst
that chooses the distribution P. We define the following monitoring algorithm.

W(x) = Wp[M, A|(x) :

Input: x € &A™

Simulate M(x) and A interacting, let ¢1,...,qr € @ be the queries of A and
let

ai,-..,a € R be the corresponding answers of M.

Let j = argmax;_; _, |err® (q;,a;)|.

If a; — q;(P) > 0, let ¢* = g;, otherwise let ¢* = —¢;. (Qa is closed under
negation.)
Output: ¢*.

If M is stable, then so is W, and this fact follows easily from the postprocessing
lemma (Lemma 2.4).

CLAIM 4.8. For every e > 0, if the mechanism M is e-TV stable for k adaptively
chosen queries from Q, then for every P and A, the monitor Wp[M,A] is e-TV
stable.

Proof of Claim 4.8. The assumption that M is e-TV stable for k£ adaptively cho-
sen queries from ) means that for every analyst A who asks k queries from @, the
algorithm W’ (x) that simulates the interaction between M(x) and A and outputs the
resulting query-answer pairs is e-TV stable. Observe that the algorithm W defined
above is simply a postprocessing of these query-answer pairs. That is, ¢* depends
only on ¢1,aq,-..,qx, ar and P, and not on x. Thus, by Lemma 2.4, for every P and
A, the monitor Wp[M, A] is e-TV stable. O

In light of Claim 4.8 and our assumption that M is (a/4An)-TV stable, we can
apply Lemma 4.6 to obtain

(7) E la"(P)—q"(x) : ¢" =W(X)]

<2 (ﬁ) An < «a/2.

To complete the proof, we show that if M is not a-accurate on average with respect
to the population P, then (7) cannot hold.

Cram 4.9. If M is («/2)-accurate for the sample but not a-accurate for the
population, then

E 0 ®)—q'(x) " =W))| 2 a/2
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Proof of Claim 4.9. Using our assumptions, we can calculate as follows:

B (P)—q(x) : ¢" =W(x)]

X

B [¢"(P) —ag = ¢ =W+ E lag —¢"(x) : ¢ =W(x)]

- x, W x, W

2| E["(P)—ag = ¢" =W - B lag- —q*(x) : ¢" = W(x)]
(8) >a — xIE\} l[ag — ¢ (x) : ¢ =W(x)]
9) >a—a/2

= /2.

Line (8) follows from two observations. First, by construction of W, we always have
¢*(P) — ag- < 0. Second, since M is assumed not to be a-accurate on average for
the population, the expected value of |¢*(P) — ag+| > «. Since W ensures that aq- —
¢*(P) > 0, we also have that the absolute value of the expectation of ¢*(P) — ay~ is
greater than a. Line (9) follows from the assumption that M is («/2)-accurate on
average for the sample. ]

Thus, if M is not a-accurate on average for the population, we will obtain a
contradiction to (7). This completes the proof. d

5. From low-sensitivity queries to optimization queries. In this section,
we extend our results for low-sensitivity queries to the more general family of mini-
mization queries. To do so, we design a suitable monitoring algorithm for minimiza-
tion queries. As in our analysis of low-sensitivity queries, we will have the monitoring
algorithm take as input many independent samples and simulate the interaction be-
tween M and A on each of those samples. Thus, if M has even a small probability of
being inaccurate, then with constant probability the monitor will find a minimization
query that M has answered inaccurately. Previously, we had the monitor simply
output this query and applied Lemma 3.3 to arrive at a contradiction. However, since
Lemma 3.3 applies only to algorithms that output a low-sensitivity query, we can’t
apply it to the monitor that outputs a minimization query. We address this by having
the monitor output the error function associated with the loss function and answer it
selects, which is a low-sensitivity query. If we assume that the mechanism is accurate
for its sample but not for the population, then the monitor will find a loss function
and an answer with low error on the sample but large error on the population. Thus
the error function will be a low-sensitivity query with very different answers on the
sample and the population, which is a contradiction. To summarize, we have the
following theorem.

THEOREM 5.1 (transfer theorem for minimization queries). Let Q = Qin be the
family of A-sensitive minimization queries on X. Assume that, for some o, > 0,
M is

1. (e = a/128An,d = af/64An)-max-KL stable for k adaptively chosen queries
from @Q and
2. (¢ = /8,8 = afi/32An)-accurate with respect to its sample for n samples
from X for k adaptively chosen queries from Q.
Then M is («, B)-accurate with respect to the population for k adaptively chosen
queries from Q) given n samples from X .
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The formal proof is nearly identical to that of Theorem 3.4, so we omit the full
proof. Instead, we will simply describe the modified monitoring algorithm.

W(X) = Wp[M, A|(X) :
Input: X = (x1,...,x7) € (A™)T
Fort=1,...,T:
Simulate M(x;) and A interacting, let L; 1,..., L € Q be the queries of
A and let
0:1,...,0.; € R be the corresponding answers of M.
Let (t*,7*) be

(t*,7%) = argmax ‘errP (Lt’j,é?t,j)| .
je(k], te[T]

Let ¢*(x) = errx(L¢= j«, 04 j=) (note, by construction, ¢* € Q2a, ie., ¢* is
2A-sensitive).
Output: (¢*,t*).

6. Applications.

6.1. Low-sensitivity and statistical queries. We now plug known stable
mechanisms (designed in the context of differential privacy) into Theorem 3.4 to ob-
tain mechanisms that provide strong error guarantees with high probability for both
low-sensitivity and statistical queries.

COROLLARY 6.1 (Theorem 3.4 and [DMNS06, SU15a]). There is a mechanism M
that is (a, B)-accurate with respect to the population for k adaptively chosen queries
from Qa where A = O(1/n) given n samples from X for

n>0 (y/k-loglogk -210g3/2(1/a5)> .

(07

The mechanism runs in time poly(n,log|X|,log(1/8)) per query.

COROLLARY 6.2 (Theorem 3.4 and [RR10]). There is a mechanism M that is
(a, B)-accurate with respect to the population for k adaptively chosen queries from
QA where A = O(1/n) given n samples from X for

0 <1og |X] - logk - 10g3/2(1/aﬁ)>

a3

The mechanism runs in time poly(|X|™) per query. The case where A is not O(1/n)
can be handled by rescaling the output of the query.

COROLLARY 6.3 (Theorem 3.4 and [HR10]). There is a mechanism M that is
a-accurate on average with respect to the population for k adaptively chosen queries
from Qsq given n samples from X for

WO <\/10g|X . logk~log3/2(1/aﬁ)>
3 :

(%

The mechanism runs in time poly(n,|X|) per query.
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6.2. Optimization queries. The results of section 5 can be combined with
existing differentially private algorithms for minimizing “empirical risk” (that is, loss
with respect to the sample x) to obtain algorithms for answering adaptive sequences of
minimization queries. We provide a few specific instantiations here, based on known
differentially private mechanisms.

6.2.1. Minimization over arbitrary finite sets.

COROLLARY 6.4 (Theorem 5.1 and [MTO07]). Let © be a finite set of size at most
D. Let Q C Qmin be the set of sensitivity-1/n loss functions bounded between 0 and
C. Then there is a mechanism M that is («, B)-accurate with respect to the population
for k adaptively chosen queries from Qmin given

nZOC%@wmngméﬁuMﬁ>

«

samples from X. The running time of the mechanism is dominated by O((k+log(1/8))-
D) evaluations of the loss function.

6.2.2. Convex minimization. We state bounds for convex minimization queries
for some of the most common parameter regimes in applications. In the first two
corollaries, we consider 1-Lipschitz'® loss functions over a bounded domain.

COROLLARY 6.5 (Theorem 5.1 and [BST14]). Let © be a closed, convex subset of
R? set such that maxgee ||0]]2 < 1. Let Q C Quin be the set of convex 1-Lipschitz loss
functions that are 1/n-sensitive. Then there is a mechanism M that is («, B)-accurate
with respect to the population for k adaptively chosen queries from @Q given

n:O<%%J%3Um%>

[e%

samples from Q. The running time of the mechanism is dominated by k-n? evaluations
of the gradient VL.

COROLLARY 6.6 (Theorem 5.1 and [Ull15]). Let © be a closed, convex subset of
R? set such that maxgee ||0]]2 < 1. Let Q C Qumin be the set of convex 1-Lipschitz loss
functions that are 1/n-sensitive. Then there is a mechanism M that is («, B)-accurate
with respect to the population for k adaptively chosen queries from Q given

_ O(Jlog X+ (Vd + logk) - 1og3/2(1/aﬁ)>

a3

samples from X. The running time of the mechanism is dominated by poly(n,|X])
and k - n? evaluations of the gradient VL.

In the next two corollaries, we consider 1-strongly convex,!! Lipschitz loss func-

tions over a bounded domain.

10 A loss function L : X x R? — R is 1-Lipschitz if for every 6,0’ € R?, z € X, |L(0,z) — L(¢',z)| <
16— 6"]|2.
11 A loss function L : X x R4 — R is 1-strongly convex if for every 0,0’ € R, z € X,

L(6/7$) 2 L(61 '7:) + <VL(07$)19, - 0> + (1/2) : ”0 - 9’”%7

where the (sub)gradient VL(6, z) is taken with respect to 6.
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COROLLARY 6.7 (Theorem 5.1 and [BST14]). Let © be a closed, convex subset of
R? set such that maxgee ||0|l2 < 1. Let Q C Quuin be the set of 1-strongly convex,
1-Lipschitz loss functions that are 1/n-sensitive. Then there is a mechanism M that
is (a, B)-accurate with respect to the population for k adaptively chosen queries from

Q given
ne o(ﬂ ~ 10g3/2(1/a5)>

372

samples from X. The running time of the mechanism is dominated by k-n? evaluations
of the gradient VL.

COROLLARY 6.8 (Theorem 5.1 and [Ull15]). Let © be a closed, convex subset of
R? set such that maxgpee ||0]2 < 1. Let Q@ C Quin be the set of 1-strongly conver
1-Lipschitz loss functions that are 1/n-sensitive. Then there is a mechanism M that
is (o, B)-accurate with respect to the population for k adaptively chosen queries from

Q given

. d logk
n= O<\/10g|X~ (a\sf/z + Oag3 > '10g3/2(1/04ﬂ)>

samples from X. The running time of the mechanism is dominated by poly(n,|X])
and k - n? evaluations of the gradient VL.

7. An alternative form of generalization and tightness of our results.
We now provide an alternative form of our generalization bounds. The following
theorem is more general than Theorem 3.4 because it says that no max-KL stable
procedure that outputs a low-sensitivity query can output any query that distinguishes
the sample from the population (not just max-KL stable procedures that are accurate
for the sample).

First we prove the following technical lemma.

LEMMA 7.1. Let F be a finite set, f : F — R a function, and n > 0. Define a
random variable W on F by

nf(w)
P[W:w]zec ) where C:Ze"f(w).
weF

Then .
E > — —log|F]|.
LFOW)) > ma ) = ~log |F|
Proof. We have

flw) = <logC’+logIF’[W = w]) .

|-

Thus

E[f(W)] =) PIW =uw]f(w)

wekF
= Z P[W = w) 1 <logC+log]P’[W = w])
weF N

= (logC'— H(W)).
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where H(W) is the Shannon entropy of the distribution of W (measured in nats,
rather than bits). In particular,

H(W) < log [support(W)| = log |F,

as the uniform distribution maximizes entropy. Moreover, C > maxy,ecp e (%)
whence %1ogC’ > maxyer f(w). The result now follows from these two inequali-
ties. O

THEOREM 7.2. Let € € (0,1/3), § € (0,£/4), and n > L log(%). Let M : X" —
Qn be (g,0)-max-KL stable where Qa is the class of A-sensitive queries ¢ : X™ — R.
Let P be a distribution on X, let x < P", and let ¢ 5 M(x). Then

)
I [la(P) —a(x)] = 18eAn] < —.

Intuitively, Theorem 7.2 says that “stability prevents overfitting.” It says that
no stable algorithm can output a low-sensitivity function that distinghishes its input
from the population the input was drawn from (i.e., “overfits” its sample).

In particular, Theorem 7.2 implies that if a mechanism M is stable and outputs
q that “fits” its data, then ¢ also “fits” the population. This gives a learning theory
perspective on our results.

Proof. Consider the following monitor algorithm W.

W(X) = Wp[M|(X) :

Input: X = (x1,...,x7) € (X™)T

Set F' = 0.

Fort=1,...,T:

Let g; + M(x;), and set F = F U {(¢,1), (=g, 1)}

Sample (¢*,t*) from F with probability proportional to
exp (% (¢"(x¢+) — ¢*(P))).
Output: (¢*,t*).

We will use the monitor W with T' = |e/d|. Observe that W only accesses its
input through M (which is (g, d)-max-KL stable) and the exponential mechanism
(which is (g,0)-max-KL stable). Thus, by composition and postprocessing, W is
(2¢, 0)-max-KL stable. We can hence apply Lemma 3.3 to obtain

(10) XIEW [q*(x¢+) — q*(P) @ (¢",t") = W(X)] <2 (e* — 14 T6) An < 8=An.
Now we can apply Lemma 7.1 with f(q,t) = q(x;) — ¢(P) and n = % to get

(1) E_[7a" 1) > max f(0,0)~ = log|F| = max|a:(x) — (P)| — 2 log(27).
€[T] IS

gt (@.)EF

Combining (10) and (11) gives

(12) &, maxlatx) - a(@)l| - 2 1og21)
< B0 Ga) =0 (P) (1) = W(X)] < 8ean.
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To complete the proof, we assume, for the sake of contradiction, that M has
a high enough probability of outputting a query ¢ such that |¢(P) — ¢(x)| is large.
To obtain a contradiction from this assumption, we need the following natural claim
(analogous to Claim 3.6) about the output of the monitor.

Cram 7.3. If
[lg(P) — q(x)| > 18cAn] >

Y

(LS

P
x,M
then

N =

5 T
P —q¢P)|>18An| >1—-(1—- - >
(B, [maxlae(x) - ad®)| = 15e0n] 21 (1-2) >

The previous claim implies that

13) E,, ) - 0 (P)

} > 9eAn.
X W [ telT)

Combining (12) and (13) gives
A
9eAn — - log(2T) < 8eAn,
which simplifies to
log(2¢/6) > log(2T) > &%n.

This contradicts the assumption that n > E% log(%) and hence completes the proof.0]

7.1. Optimality. We now show that our connection between max-KL stability
and generalization (Theorems 7.2 and 3.4) is optimal.

LEMMA 7.4. Let a > 6§ > 0, let n > %, and let A € [0,1]. Let U be the uniform
distribution over [0, 1]. There exists a (0,0)-max-KL stable algorithm A : [0,1]" = Qa
such that if X <, U™ and if ¢ +, A(X), then

)
Pr[¢(X) — ¢(U) > aAn] > %
Proof. Consider the following simple algorithm, denoted as B: On input a data-
base x, output x with probability &, and otherwise output the empty database. Clearly,
B is (0, )-max-KL stable. Now construct the following algorithm .A.

Input: A database x € [0, 1]™. We think of x as é databases of size an each:
X = (X1,...,X1/a)-
For 1 <i<1/a, let x; = B(x;).
Let p: [0,1] — {0,1} where p(z) = 1 iff Ji s.t. z € %X;.
Define g, : [0,1]" — R where g,(x) = A Zp(x)
(Note that g, is a A-sensitive query, ngd that it is a statistical query if

A=1/n.)
Output: gp.

As B is (0,0)-max-KL stable, and as A only applies B on disjoint databases, we
get that A is also (0, §)-max-KL stable.

Suppose x = (X1, ...,X1/q) contains independent and identically distributed sam-
ples from U, and consider the execution of 4 on x. Observe that the predicate p
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evaluates to 1 only on a finite number of points from [0, 1], and hence, we have that
¢p(U) = 0. Next note that g,(x) = aAn - |{i : X; = x;}|. Therefore, if there exists an
1 8.t. X; = X, then ¢(x) — ¢(U) > aAn. The probability that this is not the case is
at most

)
1-§Ye<e /o< —
(1-o) s et
and thus, with probability at least %, algorithm A outputs a A-sensitive query ¢ s.t.
q(x) — ¢(U) > aAn. |

In particular, using Lemma 7.4 with o = € shows that the parameters in Theo-
rem 7.2 are tight.
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