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Rapid environmental change continues to have alarming consequences for the
world’s oceans, including shifts in the distribution and phenology of species,
the nature and strength of species interactions, and the alteration of ecosystems
and provision of their services [1-3]. Threats to biodiversity from overharvest-
ing, climate change, invasion, habitat degradation, disease and their combined
effect are amplifying [4,5], suggesting that local and global extinctions will soon
follow [6]. Despite the growing body of research documenting the effects of
environmental change on marine species, communities and ecosystems, the
field has yet to develop robust predictions of how marine species and ecosys-
tems will ultimately respond, persist or recover under these threats [7,8].
Because such predictions require a basic understanding of how organisms
have adapted to their current environments—and how such adaptation may
shape the capacity of future generations to respond—any successful predictive
framework must integrate the principles of evolutionary biology. As famously
noted in 1973 by Theodosius Dobzhansky, ‘Nothing in biology makes sense
except in the light of evolution.’

While the study of the interaction between physical, chemical and biological
processes has yielded considerable insight into the ecology of marine and other
systems, evolutionary thinking has not been historically well integrated within
the ocean sciences. In marine systems, oceanographic forcing is a key factor
driving evolutionary processes. Dispersal (gen flow), random mortality (drift)
and non-random mortality (selection) all occur for species within oceano-
graphic settings, which results in strong coupling between physical and
evolutionary processes in the sea [9,10]. At the same time, there is potentially
strong decoupling between the larval environment (and origin) and adult
environment, especially for sessile organisms with pelagic larvae [11]. Marine
species are also often characterized by large effective population sizes, high
fecundity and potential for long-distance dispersal of gametes or larvae.
Despite this high dispersal capacity, many marine species exhibit local adap-
tation on spatial scales well below the dispersal distance (microgeographic
adaptation) [8,12,13]. While an understanding of evolutionary processes is
key to predicting responses to climate change, considering these aspects of
marine systems can also give new insights into evolutionary processes. This
Special Feature highlights research at the intersection of evolutionary processes
and marine science that aims to advance knowledge in both fields.

Both adaptation and phenotypic plasticity can facilitate population persist-
ence in a changing environment [11,14]. A widespread notion is that
populations experiencing increased climate variability (e.g. fluctuations) will
evolve increased plasticity, thereby making them less vulnerable to environ-
mental change. This idea, known as the ‘climate variability hypothesis’, arose
from a prediction in macroecology that species from thermally variable
environments should tend to have broader thermal niches [15]. This idea also
forms the basis of indexes of population vulnerability based on climate novelty
[16,17], which are based on the amplitude of historical climate fluctuations
experienced by a population.

Two studies in this Special Feature challenge the widespread notion that
increased climate variability also increases thermal tolerance and plasticity
[18,19]. Bitter ef al. reviewed theoretical predictions for the evolution of plas-
ticity in fluctuating environments, and showed that it is the predictability
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(rather than the amplitude) of fluctuations that primarily
drive the amount of phenotypic plasticity present in natural
populations. They also showed that because most experimen-
tal studies in marine systems have manipulated the
amplitude, and not the predictability, of fluctuations, effective
tests of theory have rarely been conducted [19]. They pro-
posed an experimental design that future studies can use to
tease apart the effects of the amplitude, predictability and
novelty of climate fluctuations on population fitness and per-
sistence [19]. In another study, Barley ef al. conducted a meta-
analysis of within-species variation in thermal plasticity, but
did not find support for the climate variability hypothesis
[18]. Instead, their analysis showed that populations with
greater thermal tolerance had reduced plasticity, which was
evidence for trade-offs between thermal tolerance and ther-
mal plasticity [18].

Trade-offs can also manifest across the life cycle and
across environmental gradients. Two studies in this Special
Feature provide different perspectives on trade-offs. Albecker
et al. reviewed how trade-offs manifest across complex life
cycles, and showed that the field still has a poor understand-
ing of whether trade-offs across the life cycle will constrain or
promote adaptation in response to rapidly changing environ-
ments [20]. They showed how genomic data can be used to
provide new insights into life cycle trade-offs, and how
within-generation selection experiments can be designed to
test whether climate change reshapes fitness trade-offs
among life stages [20]. On the other hand, trade-offs can
also manifest across environmental gradients on short spatial
scales, whereby organisms seeking refuge from a major stres-
sor will be exposed to another stressor [21]. In another study,
Blakeslee et al. showed how this conundrum is faced by mud-
crabs in estuaries, whereby the selective pressure from an
invading castrating parasite occurs at high salinity sites, but
refuge from the parasite at low salinity sites imposes osmotic
stress [22]. Blakeslee et al. found evidence consistent with
the hypothesis that standing genetic variation for salinity
tolerance allowed mud crabs to find refuge from the
body-snatching parasites at low salinity sites, thus reshaping
the ecological landscape of the species [22].

The evolutionary capacity of organisms to evolve in
response to novel environments arises from both phenotypic
plasticity and standing genetic variation, both of which can
follow a genetic model of inheritance [23,24]. Plasticity can
also be induced in parents and then inherited and expressed
by offspring; such transgenerational plasticity can follow an
epigenetic model of inheritance [25]. Griffiths et al. teased
apart the roles of standing genetic variation and transgenera-
tional plasticity in low salinity tolerance of the Eastern oysters
in the Gulf of Mexico, which is predicted to experience declin-
ing salinities under climate change. Low salinity conditions
resulted in slower growth and reduced body size at metamor-
phosis, which was associated with mortality at later stages
[26]. While they did not find evidence of strong transgenera-
tional plasticity, they did find high heritability for body size
under low salinity conditions, suggesting that there is
ample genetic variation for this trait to evolve in response
to declining salinity in the future [26].

Standing genetic variation can also manifest across
metapopulations, with among-population differences in
the capacity to withstand stress. For ectothermic species dis-
tributed across broad temperature gradients, metabolic
theory predicts that populations residing in warm locations

will have higher rates of growth compared to those residing
in cool habitats because warming increases the rate of
metabolic processes [27]. Villeneuve tested this prediction
with data characterizing the performance of a marine snail
across latitudinal thermal gradients in North America [28].
Using common garden experiments, they found that, con-
trary to theory, northern (cooler) populations had higher
thermal optima and higher maximum growth rates than
southern (warmer) populations, despite experiencing overall
cooler temperatures [28]. Although inconsistent with
metabolic theory, these complex patterns of thermal perform-
ance curves are consistent with a pattern of ‘latitudinal
compensation’, in which northern populations exhibit
elevated growth rates compared to southern populations
[29]. Such findings are important for more accurate pre-
dictions for how populations within species will respond to
climate change.

Understanding the interaction of gene flow, selection and
genetic drift is also important for understanding metapopula-
tion responses to climate change. How these evolutionary
processes unfold is particularly important—but rarely eluci-
dated—at range margins, where edge populations play a
critical role in enabling species to adapt to changing environ-
ments [30]. Clark et al. [31] showed that although the
northern range margin of a clownfish species experiences
strong genetic drift and has reduced genetic diversity, their
genomes also showed evidence that is consistent with
thermal adaptation at the range margin. These results
illustrated how range edge populations can become locally
adapted, despite the potential for both strong genetic drift
at the range edge and moderate gene flow from the core
populations [31].

Ultimately, the integration of oceanographic and eco-evol-
utionary frameworks is urgently needed to foster robust
predictions of how organisms will respond to climate
change, and to inform effective management strategies.
Xuereb et al. reviewed the use of eco-evolutionary individ-
ual-based models to achieve these goals, and highlighted
opportunities for the development of models that advance
our understanding of how oceanographic processes, genetic
architecture, non-genetic inheritance, demography and mul-
tiple stressors interact to promote or constrain adaptation to
environmental change [32]. Importantly, Xuereb et al. also
provided a simulation case study that illustrates how to incor-
porate patterns of connectivity based on oceanographic
models into an eco-evolutionary model to predict the distri-
bution of a species under different climate change scenarios
[32]. Because population connectivity can strongly influence
the sources and sinks of genetic variation that serve as the
fuel of evolutionary change, it is essential that we better under-
stand its role in shaping adaptation across multiple spatial
and temporal scales. This will inform the vital role that
connectivity plays in management and conservation [33-35].

In the absence of drastic, cooperative change in emissions,
oceans, seas and coasts are likely to undergo abiotic shifts
that may generate novel (no analogue) ocean chemistries
and temperature regimes [17]. Research at the intersection
of oceanographic, ecological and evolutionary processes is
critical to advance our knowledge of how biodiversity will
ultimately respond to this novelty. The research presented
in this special issue advances our knowledge not only by
challenging previously held ideas, but also by generating
new methods that can be applied to diverse systems and
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taxa, offering new insights via synthesis, and stimulating

research questions to guide future research. Such advances
will aid in efforts to preserve marine environments and the

biodiversity they sustain.

There are no data associated with this manuscript.
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