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We study the representational power of Boltzmann machines (a type of neural network) in quantum
many-body systems. We prove that any (local) tensor network state has a (local) neural network
representation. The construction is almost optimal in the sense that the number of parameters in the neural
network representation is almost linear in the number of nonzero parameters in the tensor network
representation. Despite the difficulty of representing (gapped) chiral topological states with local tensor
networks, we construct a quasilocal neural network representation for a chiral p-wave superconductor.
These results demonstrate the power of Boltzmann machines.
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A generic state in quantum many-body systems is classi-
cally intractable for the reason that the dimension of the Hilbert
space grows exponentially with the system size. However,
physically relevant states are often nongeneric in the sense of
having structures, making use of which we may overcome the
curse of dimensionality. Traditionally, tensor networks are
used to characterize such structures and efficiently represent
states in classical simulations [1]. Recently, Carleo and Troyer
[2] proposed neural networks as an (alternative) ansatz for
quantum many-body states. Benchmark calculations suggest
that this is a promising approach.

Besides numerical experiments, it is also important to
explain the working principle of neural network methods.
One step in this direction is to characterize the representa-
tional power of neural networks. Here we specialize to
Boltzmann machines [3], and our main contributions are
(i) We prove that any (local) tensor network state can be
converted into a (local) neural network without significantly
increasing the number of parameters. (ii) Despite the diffi-
culty of representing (gapped) chiral topological states with
local tensor networks [4], we construct a quasilocal neural
network representation for a chiral p-wave superconductor.

The first result states that the representational power of
neural networks is at least not weaker than that of tensor
networks. The second gives a physically relevant example
where neural networks may go beyond tensor networks. In
combination, these results provide complementary evi-
dence that neural networks are a promising ansatz.

Boltzmann machines.—We provide a minimum back-
ground for those people with no prior knowledge of
Boltzmann machines. The goal is to motivate the definition
of neural network states, rather than a general-purpose
introduction from the perspective of machine learning.
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Formally, a Boltzmann machine is a type of stochastic
recurrent neural network. In the language of physicists, it is
a classical Ising model on a weighted undirected graph.
Each vertex (also known as a unit or a neuron) of the graph
carries a classical Ising variable s; = +1 and a local field
h; € R, where j is the index of the vertex. For a reason that
will soon be clear, the set of vertices is divided into the
disjoint union of two subsets V and H so that |V| + |H| is
the total number of units. Vertices in V are called visible
units, and those in H are called hidden units. For notational
simplicity, we assume that visible units have small indices
1,2,...,|V|, and hidden wunits have large indices
V| +1,|V|+2,...,|V| + |H|. Each edge of the graph
carries a weight w; € R that describes the interaction
between s; and s;.. The energy of a configuration is given by

E({s;}) = Zh,sj + ijksjsk. (1)

A restricted Boltzmann machine [5] is a Boltzmann
machine on a bipartite graph, i.e., wj # 0 only if the edge
(j, k) connects a visible unit and a hidden unit.

At thermal equilibrium, the configurations follow the
Boltzmann distribution. Without loss of generality, we fix
the temperature 7 = 1. Let Z = Z{S_}e{il}xuvmm) e EdsH)
be the partition function. The probabifity of each configura-
tion {s;} is given by e~* ({5} / Z. Furthermore, the probability
of each configuration {s,<y} of visible units is the marginal
probability obtained by summing over hidden units:

Z e~E(s;}) (2)

1
P{sjgv} =7
{Sj>\v\}€{il}x‘m
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The process of training a Boltzmann machine is specified
as follows. The input is a (normalized) probability distribu-
tion Q over the configurations of the visible units. (Here we
assume, for simplicity, that Q is given. In practice, Q may not
be explicitly given but we are allowed to sample from Q.) The
goal is to adjust the weights w; and local fields 4; such that
the probability distribution P (2) best approximates (as
measured by the Kullback-Leibler divergence or some other
distance function) the desired distribution Q. This is a
variational minimization problem. We minimize a given
objective function of P with respect to the ansatz (2), in which
the weights and local fields are variational parameters. Note
that Monte Carlo techniques are usually used in training a
Boltzmann machine.

An interesting question is whether an arbitrary Q can be
exactly represented by a Boltzmann machine. Because of
the strict positivity of exponential functions, it is easy to see
that the answer is no if the probability of some configu-
ration is zero. Nevertheless,

Theorem 1.—(Le Roux and Bengio [6]) Any probability
distribution Q can be arbitrarily well approximated by a
restricted Boltzmann machine, provided that the number
|H| of hidden units is the number of configurations with
nonzero probability. In general, |H| < 2/V.

This result can be slightly improved [7]. Indeed, a simple
counting argument suggests that an exponential number of
hidden units is necessary in general. As a function from
{:I:I}XW| to [0, 1] with one constraint (normalization), the
probability distribution Q has 2!V/ — 1 degrees of freedom.
Therefore, a good approximation of Q requires an expo-
nential number of bits.

Neural network states.—Carleo and Troyer [2] devel-
oped a minimal extension of Boltzmann machines to the
quantum world. In this extension, each vertex still carries a
classical spin (bit). This is very different from another
extension [8], in which each vertex carries a quantum spin
(qubit). It should be clear that the latter extension is more
quantum. In the former extension, we use classical com-
puters to simulate quantum many-body systems.

Expanded in the computational basis {£1}*!V], a quan-
tum state |y) of |V| qubits can be viewed as a function from
{£1}VI to B(0,1) with one constraint (normalization),
where B(0,1) denotes the closed region |z| <1 in the
complex plane. Recall that a probability distribution Q is
characterized by the probability of each configuration.
In comparison, a state |y) is characterized by the proba-
bility amplitude of each configuration. This analog between
classical probability distributions and quantum states moti-
vates the following ansatz dubbed neural network states.

Consider a graph as before. The visible units correspond
to physical qubits, and hidden units are auxiliary degrees of
freedom (to be summed over). The local field h; € C at
each vertex and the weight w;; € C carried by each edge
are promoted to complex numbers because probability
amplitudes are generally complex. An (unnormalized)

neural network state based on a Boltzmann machine is
given by

|l//> _ e_Zjhij_Ej.kwjkstk

{Sl.Sg,...,S‘VH‘H‘}G{il}x(‘v‘ﬂm)

X |{S1,S2,...,S|V‘}>. (3)

Note that summing over hidden units is very different from
taking partial trace, for the latter usually results in a mixed
state. Similarly, a neural network state based on a restricted
Boltzmann machine is given by Eq. (3) on a bipartite graph
as described previously.

A very minor modification of the proof of Theorem 1
leads to

Corollary 1.—Any N-qubit quantum state ) can be
arbitrarily well approximated by a neural network state
based on a restricted Boltzmann machine with w;, € R,
h; € C, provided that the number |H| of hidden units is the
number of configurations with nonzero probability ampli-
tude. In general, |H| < 2V.

The formalism of neural network states developed thus far
applies to general quantum many-body systems. We now
consider the situation that the qubits are arranged on a lattice.
The lattice allows us to introduce the notion of locality [9]
(with respect to the shortest path metric), which underlies
almost all successful methods for simulating quantum lattice
systems. Hence, it is desirable to incorporate locality into the
neural network. To do this, we define a position for each unit.
Leteach site of the lattice carry a visible unit and some hidden
units. We require thatw ;. # 0 only if units j and k are close to
each other. As an example, Deng et al. [10] showed that the
ground state of the toric code in two dimensions can be
exactly represented as a local neural network state based on a
restricted Boltzmann machine.

Using variational quantum Monte Carlo techniques
(“quantum Monte Carlo” is not a quantum algorithm;
rather, it is just a classical Monte Carlo algorithm applied
to quantum systems), Carleo and Troyer [2] performed
practical calculations for quantum lattice systems in one
and two spatial dimensions. For the models they studied,
they observed that variational approaches based on neural
networks are at least as good as those based on tensor
networks. It seems worthwhile to devote more study to the
practical performance of neural network states.

Tensor network states.—We provide a very brief intro-
duction to tensor network states following the presentation
in Ref. [11], Sec. 6.3 or Ref. [12], Sec. 2.3. Then, it will be
clear almost immediately that any (local) tensor network
state has a (local) neural network representation.

An [-dimensional tensor 7 is a multivariable function
T:{1,2,....d;} x{1,2,...,d,} x---x{1,2,...,d;} = C, and
D = max;d; is called the bond dimension. It is easy to
see that 7 can be reshaped to an [’-dimensional
(I' =, [log,d;] with [-] the ceiling function) tensor 7"
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with bond dimension 2 by representing every input variable
in binary. Moreover, there is a straightforward way to
identify 7" with an I’-qubit unnormalized state expanded in

the computational basis:
s,+3
sy @

’ S 1 +3 52 +3
> (st
{s; {11
Thus, a neural network state with |V| visible units is a
|V|-dimensional tensor with bond dimension 2. Indeed,
each visible unit corresponds to an input variable to the
tensor. As a restatement of Corollary 1,

Corollary 2.—Any [-dimensional tensor 7 can be
arbitrarily well approximated by a restricted Boltzmann
machine with wj, € R, h; € C, provided that the number
|

ly) =

- .h-s-—g $;S E E WSS
ezjlf G VikS Sk ]// ik ./k/k|{s

{S] 2825058\ V|| H| }E{il}x(‘v‘v‘m)
;oo / x(|V|+[H"])
{s].8h.0s S\V’H\H’\}e{i]}

oo o —f C
S.L. 8§15 ,827=58,...,8. =S¢

Note that only visible units are allowed to be contracted on,
and such visible units become hidden after the contraction.
Thus, the Boltzmann machine after contraction has |V| +
|V'| = 2¢ visible and |H| + |H'| + ¢ hidden units.

A multiqubit state |y) is a tensor network state if its
tensor representation 7" (4) can be obtained by contracting
a network of C-dimensional tensors, where C is a small
absolute constant. The bond dimension D of a tensor
network is defined as the maximum bond dimension of the
constituting tensors in the network.

Theorem 2.—Any tensor network state |p) can be
arbitrarily well approximated by a neural network state
based on a Boltzmann machine with wy €R, h; € C,
provided that the number |H| of hidden units is sufficiently
large. Let §)(T;) be the number of nonzero elements in a

constituting tensor 7;, and #(T;) be the number of
elements. It suffices that
|H| =) [0(T;) + logs#(T;) + O(1)], (6)

J=1

where n is the number of constituting tensors. Furthermore,
the number of parameters in the neural network represen-
tation is upper bounded by

ZQ

The neural network is local (translationally invariant) if the

tensor network is local (translationally invariant).
Proof.—We first represent each T; with a restricted

Boltzmann machine as in Corollary 2 and then contract

Nog,#(T;) + less significant terms.  (7)

|H| of hidden units is the number of nonzero elements in 7.
In general, [H| <[]}, d

Informally, tensor contraction is defined as
follows. Suppose we have two three-dimensional tensors
T1(ji.J2.J3)s T2y, J5.J5) of shapes dy xdyxds,
dy x d, x dj, respectively. Their contraction on the middle
indices is a four-dimensional tensor Z?il T,(j1, ], J3)X
Ta(Jy: J: J5)-

Similarly, suppose we have two Boltzmann machines
w1th units {s;} =V UH, {sj} =V'UH', weights wy,

]k, and local fields h;, h’ respectlvely Their contraction
on the first ¢ visible units is defined as identifying s; with s’ f
and then summing over s; for j=1,2,....¢c

slV\}> ® |{slc+1’ slc+2’ e Siv’\}>' (5)

138420 ooes

|
the restricted Boltzmann machines in the same way as 7';’s
are contracted. Note that the Boltzmann machine after
contraction is generically not restricted. The first term on
the right-hand side in Eq. (6) is the total number of hidden
units in all constituting restricted Boltzmann machines, and
the other terms are responsible for the production of hidden
units in the contraction process. Equation (7) is the total
number of parameters in all constituting restricted
Boltzmann machines, and the contraction process does not
introduce any new parameters. It is obvious that the con-
struction is locality and translational-invariance preserving.

This result is almost optimal in the sense that the number
of parameters in the neural network representation is at
most a logarithmic (in the bond dimension) multiple of the
number of nonzero parameters in the tensor network
representation. In cases that the tensors are sparse (possibly
due to the presence of symmetries), this conversion to
neural network states has the desirable property of auto-
matically compressing the representation.

As an example, we specialize Theorem 2 to matrix
product states [13].

Corollary 3.—To leading order, any N-qubit matrix
product state with bond dimension D has a neural network
representation with 2ND? hidden units and 4ND? log, D
parameters.

Chiral topological states.—It seems difficult to obtain a
local tensor network representation for gapped chiral
topological states. Early attempts did not impose locality
[14] or just target at expectation values of local observables
rather than the wave function [15]. Recent progress [4,16]
shows that local tensor networks can describe chiral
topological states, but the examples there are all gapless.
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Indeed, Dubail and Read [4] even proved a no-go theorem,
which roughly states that for any chiral local free-fermion
tensor network state, any local parent Hamiltonian is
gapless. Here we construct a Boltzmann machine that
approximates the unique ground state of a (gapped) chiral
p-wave superconductor. The approximation error is inverse
polynomial in the system size, and the neural network is
quasilocal in the sense that the maximum distance of
connections between units is logarithmic in the system
size. This example explicitly demonstrates the power of
Boltzmann machines.

From now on, we consider fermionic systems, for which it
is necessary and there are multiple ways to account for the
exchange statistics of fermions. We take a straightforward
approach: Each vertex carries a Grassmann variable &; rather
than an Ising variable s, and the sum over Ising variables in
hidden units is replaced by the Grassmann integral. We work
in the second quantization formalism. Let c;, c; forl1 <j<
|V| be the fermionic annihilation and creation operators, and
|0) be the vacuum state with no fermions. We identify c; with
&; so that Z|0) represents a fermionic state, where Z is an
arbitrary Grassmann variable in the algebra generated by
1,85, -+, &y)- As an analog of Eq. (3),

) = ( / e‘zf-kwf"‘ff‘fkﬂdéwz)I@ (8)

is an (unnormalized Gaussian) fermionic neural network
state. Note that we have set h; = 0. This class of states
appeared previously in Ref. [4].

One of the simplest examples of a chiral topological
phase is the p + ip superconductor [17]. For concreteness,
we consider the lattice model in Ref. [18]. Let c3, c; be the
fermionic annihilation and creation operators at site X € Z>
on a two-dimensional square lattice. Let i = (1,0) and j =
(0, 1) be the unit vectors in the x and y axes, respectively.
The Hamiltonian is

_ SPRTIDS SRS S SUEUE B
H = chﬂfx + CLy3Cx + 2 iS5 + i, +Cy + H.c.
ez

Y cles

iez?

ueR. 9)

Let k = (k,. k,) be the lattice momentum, and [, dk be
the integral over the Brillouin zone (—z, z]*2. To slightly
simplify the presentation, we will be sloppy about unim-
portant overall prefactors in the calculations below. The
Fourier transform

¢ :/ e‘””c%dk,
BZ

=l —

;= / e*Ferdk  (10)
BZ

leads to

H= | Hk
BZ
H; = A;c%ci; + AZe_pep + 2Myeicy (11)

in the momentum space, where

Ap=sink, —isink,, Mj=cosk,+cosk,—u. (12)

The quasiparticle spectrum is given by

Ep =2, /|6¢7 + M?

- 2\/sin2kx + sin®k, + (cosk, + cosk, —pu)*.  (13)

Hence, H is gapless for 4 = 0, £2 and gapped otherwise.
The unique ground state of H is

1T ak
) o e ) (14)

where |0) is the vacuum state, and

o up=—y/IAP MR- My (15)

so that v; = —v_; and u; = u_g. It is not difficult to see
that the model (9) is a trivial superconductor for |u| > 2. It
is topological superconductors with opposite chirality for
-2 <u<0and 0 < u <2, respectively.

Indeed, a state of the form (14) has an exact local neural
network representation (8) [4] if ug, vy are constant-degree
trigonometric polynomials, i.e., polynomials in e*/x, e*iky
In particular, we have each site X carry a visible and a
hidden unit. To simplify the notation, the Grassmann
variable in the visible unit is identified with c;, and that

in the hidden unit is denoted by &;. The Fourier transform of

Grassmann variables is defined as & = [;, e"'k‘y‘fl—gdl:. In
the momentum space, it is easy to see that the state (14) can
be represented as

) o ([laggehe St it o) g

where [[d&;] denotes the integral over all Grassmann
variables in the momentum space with a proper measure.
Transforming to the real space, [d&;] becomes [ [;cz2 déz,
and the exponent in parentheses is local because uz, vy are
trigonometric polynomials (the maximum distance of
connections between units is proportional to the degree
of the trigonometric polynomials). Thus, Eq. (16) reduces
to Eq. (8) with additional properties: (i) the neural network
representation is translationally invariant; (ii) there are no
connections between visible units.

Generically, exact representations are too much to ask
for; hence, approximate representations are acceptable.
Furthermore, we usually have to work with a finite system
size in order to rigorously quantify the error of the
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approximation and the succinctness of the representation.
We now justify these statements with an example. Matrix
product states are an excellent ansatz for ground states in
one-dimensional gapped systems [19]. A generic gapped
ground state in a chain of N spins (i) cannot be exactly
written as a matrix product state with bond dimension
e°W); (ii) is not expected to be approximated (in the sense
of 99% fidelity) by a matrix product state with bond
dimension O(1) because errors may accumulate while
we truncate the Schmidt coefficients across every cut
[20]; (iii) can be approximated by a matrix product state
with bond dimension N°() [21].

The goal is to construct an as-local-as-possible neural
network representation (8) for the ground state of the
model (9).

Proposition 1.—Let |y) be the ground state of the model
(9) on a (finite) square lattice of size L x L with periodic
boundary conditions. There exists a neural network state
|p) such that the fidelity |(¢|w)| > 1 — 1/poly(L) and that
the maximum distance of connections between units is
O(e'log L), where ¢ is the energy gap.

Proof—For concreteness, we consider 0 <u < 2. It
should be clear that the same result applies to other values
of u provided that the system is gapped. The main idea is to
approximate u; (15) with a trigonometric polynomial. The
approximation error is exponentially small in the degree of

the polynomial because u; is a real analytic function of k.
The locality of the neural network is due to the smallness of
the degree.

We now provide the details of the construction. Assume
L is odd. This slightly simplifies the analysis, but it should
be clear that a minor modification of the analysis leads to
the same result for even L. We abuse the notation by letting
BZ denote the set of viable points {0,+2z/L,...,

+(L — 1)=/L}*? for lattice momenta in the Brillouin zone,
and hBZ = {k € BZ|k, > OV(k, =0 A k, > 0)} be the
“right half” of BZ. The Fourier transform (10) becomes
discrete:

1 -
T~ —ik¥ T
C/—{ = I E e Cl—(»,

1 ik-x
p Cy = Z Z e C]z, (17)
keBZ

keBz

and the Hamiltonian in the momentum space is given by

_ i ot x
H=2 Z M/?C,;CE + M,;c_lzc_z + A;clzc_l-{. + A]-(.c_,;c,-(»
kenBZ
+ ZME:6C1§':6CE:6' (18)
The normalized ground state is
"CtCT< 7
)= ® W) Iy e 0). (19)

kehBZ

This equation should be understood as the k = 0 mode of
|y} being vacant. Consider the normalized state

m m vectet_ful™
40 = @ Igf"). ") e o), (20)

kehBZ

(m)

where uz is a degree-m trigonometric polynomial

obtained by expanding u; in Fourier series and computing

the partial sum up to order m. Similar to Eq. (16), |¢")) has
an exact neural network state representation (8) such that
the maximum distance of connections between units
is O(m). .

As up is a real analytic function of k, its Fourier
coefficients of order m decay exponentially as e~"/¢ for
some constant £ > 0. The decay rate ¢ is a function of u
and can be solved analytically; see, e.g., Ref. [22],
Chapter 2. In the regime the energy gap e is small, we
obtain & = O(1/¢). Therefore,

) —Q(em)

Jul” V k € hBZ. (21)

Furthermore, the absolute values of ug, vy are bounded
away from O:

gl 2 Q(L2),  |vg|2QL"), VkehBZ. (22)

Equations (21), (22) imply
fr= 1" )| 2 1-1/poly(L), VEehBZ  (23)

for m = O(e 'logL) with a sufficiently large constant
prefactor hidden in the big-O notation. As |y), |¢\")) are
product states in the momentum space, the fidelity is given by

(™ )| = H fz > [1-1/poly(L)]°")
kehBZ

1
=1- ooly(L) (24)

We complete the proof by letting |¢) = [¢!™)).

It is not difficult to see that |y) is well approximated by a
thermal state at inverse temperature O(logL). Since the
thermal state has a projected entangled pair approximation
with quasipolynomial bond dimension e©(°¢’L) [23-25],
there exists a projected entangled pair state |p) with bond
dimension e?°*L) such that |(ply)| > 1 —1/poly(L). It
is an open problem to improve the bond dimension of |¢)
to poly(L).
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Note added.—Very recently, we became aware of some
related papers [26-28], which studied the relationship
between neural and tensor network states using different
approaches. In particular, Theorem 2 and Corollary 3 are
stronger than Theorem 3 in Ref. [28]. After the present
work had been on arXiv, some other related papers [29-36]
appeared.
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