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ABSTRACT

The issue of honesty in constructing confidence sets arises in nonparametric regression. While optimal
rate in nonparametric estimation can be achieved and utilized to construct sharp confidence sets, severe
degradation of confidence level often happens after estimating the degree of smoothness. Similarly, for
high-dimensional regression, oracle inequalities for sparse estimators could be utilized to construct sharp
confidence sets. Yet, the degree of sparsity itself is unknown and needs to be estimated, which causes
the honesty problem. To resolve this issue, we develop a novel method to construct honest confidence
sets for sparse high-dimensional linear regression. The key idea in our construction is to separate signals
into a strong and a weak group, and then construct confidence sets for each group separately. This is
achieved by a projection and shrinkage approach, the latter implemented via Stein estimation and the
associated Stein unbiased risk estimate. Our confidence set is honest over the full parameter space without
any sparsity constraints, while its size adapts to the optimal rate of n~1/4 when the true parameter is indeed
sparse. Moreover, under some form of a separation assumption between the strong and weak signals,
the diameter of our confidence set can achieve a faster rate than existing methods. Through extensive
numerical comparisons on both simulated and real data, we demonstrate that our method outperforms
other competitors with big margins for finite samples, including oracle methods built upon the true sparsity
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of the underlying model.

1. Introduction

Consider high-dimensional linear regression
y=XB+e, (1)

where y € R", X = [Xi|---|X,] € R"™P, B € RP,
e ~ N,(0,0%1,) and p > n. While there is a rich body of
research on parameter estimation under this model concerning
signal sparsity (e.g., Bickel, Ritov, and Tsybakov 2009; Zhang and
Huang 2008; Negahban et al. 2012), how to construct confidence
sets remains elusive. In this work, we focus on confidence sets
for the mean p = XpB with the following two properties: First,
the confidence set C is (asymptotically) honest over all possible
parameters. That is, for a given confidence level 1 — «,

hnrggéfﬁlélép Pg{XpeCl>1-a, (2)

where Pg is taken with respect to the distribution of y ~
N, (XB,0°1,), regarding X as fixed. Second, the diameter of Cis
able to adapt to, respectively, the sparsity and the strength of .
In practical applications, sparsity assumptions are very hard to
verify, and for many datasets they are at most a good approxima-
tion. The first property guarantees that our confidence sets reach
the nominal coverage probability without imposing any sparsity
assumption, while the second property allows us to leverage
sparse estimation when B is indeed sparse. Building confidence
sets for the mean of a multivariate Gaussian distribution is one

of the most classical problems in statistical inference. Under a
regression setting, it arises naturally when one is interested in
making simultaneous inference for the mean responses among
a group of individuals. As another example, the problem of
recovering signals from noisy observations may be formulated
as inference of a mean vector as well (Beran and Diimbgen
1998).

Our problem is related to the construction of confidence
sets in nonparametric regression, for which a line of work
has laid down important theoretic foundations and provided
methods of construction (Li 1989; Beran and Diimbgen 1998;
Baraud 2004; Cai and Low 2006; Robins and van der Vaart
2006). Despite such notable advances, lack of numerical support
casts doubt on the merit of borrowing these nonparametric
regression methods directly for sparse regression. Taking the
adaptive method in Robins and van der Vaart (2006) as an
example, an honest confidence set for u can be constructed as
@ ={u e R": n12|pu— Xﬁ” < r,}, where Xﬁ is an
initial estimate independent of y, and its (normalized) diameter
|6a|:=2rn = Op(n_l/4 + n_1/2||X,é — XB]). A common choice
for ﬁ under model (1) for p > n is a sparse estimator, such as the
lasso (Tibshirani 1996) or £o-penalized least-square estimator.
With high probability, the prediction loss of the lasso estimator
typically satisfies

1 ~ !
1xp — xp|2 < 08P
n n

)
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for some ¢ > 0, uniformly forall 8 € B(s) := {v € R? : ||v[lp <
s}; see, for example, Bicke/li Ritov, and Tsybakov (2009). Under
this choice, the diameter |C,| is of the order

|6a| =0y (n_1/4 + \/slogp/n> (4)

for all B € H(s). For a precise statement, see Theorem 7. This
method has nice theoretical properties when s = o(n/logp).
But even for moderately sparse signals with s/n — § € (0,1),
the bound on the right-hand side of Equation (4) approaches
coasp > n — oo and thus offers little insight into the
performance of the confidence set. The upper bound (3) also
critically depends on the regularization parameter used for the
initial estimate f. In fact, our numerical results show that, for
finite samples with (s,n,p) = (10,200, 800), this confidence
set can be worse than a naive x? region {u : |y — u|* <
02X}, where x?, denotes the 1 — o quantile of the x?
distribution with n degrees of freedom. A similar issue occurs
in the related but different problem of constructing confidence
sets for B. Nickl and van de Geer (2013) have shown that one
can construct a confidence set for 8 that is honest over % (k;)
for k; = o(n/logp), and for s < ki, the diameter is on the
same order as that in Equation (4) for any 8 € %(s). Compared
to the unrestricted honesty in Equation (2) over the entire
space R?, the restriction on the honesty region to Z(k;) also
reflects the challenge faced in the construction of confidence
sets when p > n. Carpentier (2015) further extended the result
of Nickl and van de Geer (2013) to construct confidence sets
that are adaptive to multiple sparsity levels, by imposing margins
between subspaces with different sparsity. Ewald and Schneider
(2018) provided an exact formula to compute a lower bound of
the coverage rate of a confidence set centered at the lasso, over
the entire parameter space; however, low dimension (p < ) is
a vital condition in their proof, making it difficult to generalize
their idea to the high-dimensional problem that we are studying.

The construction of confidence sets is fundamentally differ-
ent from the problem of inferring error bounds for a sparse
estimator (Nickl and van de Geer 2013). It is seen from Equation
(4) that no matter how sparse the true g is, the diameter of /Ca
cannot converge at a rate faster than n~1/4, Indeed, results in Li
(1989) imply that, for the linear model (1) with p > n, the diam-
eter of an honest confidence set for u, in the sense of Equation
(2), cannot adapt at any rate o(n~1/4). The rate of n~1/* has also
been observed in hypothesis testing and accuracy assessment for
high-dimensional regression (Arias-Castro, Candés, and Plan
2011; Cai and Guo 2018; Ingster, Tsybakov, and Verzelen 2010;
Verzelen 2012). This is in sharp contrast to error bounds for a
sparse point estimator, such as that in Equation (3), which can
decay at a much faster rate when g is sufficiently sparse. It is not
desired to construct confidence sets directly from error bounds
like Equation (3) even we only require honesty for 8 € A(k;)
with a given k; = o(n/log p), because its diameter, on the order
of \/ki log p/n, cannot adapt to any sparser 8 € HA(s) fors < kj.

Motivated by these challenges, we propose a new two-step
method to construct a confidence set for © = X, allowing
the dimension p > # in Equation (1). The basic idea of our
method is to estimate the radius of the confidence set separately
for strong and weak signals defined by the magnitude of |B;|.

Using a sparse estimate, such as the lasso, one can recover the
set A of large |B;| accurately and expect a small radius for a
confidence ball for 114, the projection of 1 onto the subspace
spanned by Xj,j € A. By construction, (4 — pa) is com-
posed of weak signals. Thus, in the second step, we shrink
our estimate of this part toward zero by Stein’s method and
construct a confidence set with Stein’s unbiased risk estimate
(Stein 1981). Combining the inferential advantages of sparse
estimators and Stein estimators, our method overcomes many
of the aforementioned difficulties. First, our confidence set is
honest for all B € R?, and its diameter is well under control
for all possible values of B including the dense case. Second, by
using elastic radii our confidence set, an ellipsoid in general, can
adapt to both sparsity and signal strength. The radius for strong
signals adapts to the sparsity of the underlying model via sparse
estimation or model selection, while the radius for weak signals
adapts according to the degree of shrinkage of the Stein estimate.
Without any signal strength assumption, the diameter of our
confidence set is Op(n~1/4 + /slog p/n), the same as Equation
(4), for B € H(s). It may further reduce to Op(n*l/4 + /s/n)
under an assumption on the separability between the strong and
the weak signals. Third, we provide a data-driven selection of
the set A from multiple candidates, which protects our method
from a bad choice and thus makes it very robust. To maximize
the practical significance of our method, we have developed
efficient algorithms to approximate all constants involved in
our theory. We demonstrate with extensive numerical results
on both simulated and real-world datasets that our method
can construct much smaller confidence sets than the adaptive
method (Robins and van der Vaart 2006) discussed above and
oracle approaches making use of the true sparsity of 8 (the
oracle).

Note that the construction of confidence sets for u = X is
different in nature from the construction of confidence intervals
for an individual B; or a low-dimensional projection of . For
the latter, the optimal rate of an interval length can be n—1/2
when B is sufficiently sparse (Schneider 2016; Cai and Guo
2017), such as the intervals constructed by de-biased lasso meth-
ods (Javanmard and Montanari 2014; van de Geer et al. 2014;
Zhang and Zhang 2014). Li (2020) further developed a bias-
corrected de-biased lasso with bootstrap, of which the sample
complexity for asymptotic normality is improved from n >
(slogp)? as in the above work to # > max{slog p, (log p)?},
where s is the number of weak signals of O(y/log p/n). The idea
of separating strong and weak signals is in a similar spirit to
our method. Although simultaneous inference methods have
been proposed based on bootstrapping de-biased lasso estimates
(Zhang and Cheng 2017; Dezeure, Bithlmann, and Zhang 2017),
these methods are shown to achieve the desired coverage only
for extremely sparse 8 such that || 8] = o(y/n/(logp)?), which
severely limits their practical application.

The remainder of this article is organized as follows: Sec-
tion 2 develops our two-step Stein method in details, includ-
ing its theoretical properties and algorithmic implementation.
To demonstrate the advantage of our method, we develop in
Section 3 a few competing methods making use of the lasso
prediction or the oracle of the true sparsity. Extensive numerical
comparisons are provided in Sections 4 and 5 to show the



superior performance of our two-step Stein method, relative to
the competitors, in a variety of simulation settings, including
when B is quite dense, and in a real data analysis. The paper
is concluded in Section 6 with discussions on some limitations
of and potential improvements for our method. Proofs of all
theoretical results are deferred to the supplementary materials.

Throughout the article, we always assume model (1) with
e ~ N, (0,021,) unless otherwise noted. We denote by Pg the
distribution of [y | X] and Eg the corresponding expectations,
where the subscript 8 may be dropped when its meaning is clear
from the context. Denote by [p] the index set {1,...,p} and
by |A| the size of a set A. Write a, = Q(by,) if b, = O(a,)
and a, < b, ifa, = O(by) and b, = O(a,). We use ,(.)
and =, if the above statements hold in probability. For a vector
v = (V))r.m> let va = (¥j)jea be the restriction of v to the
components in A. For a matrix M = [M; | ... | My], where
M; is the jth column, denote by My = (Mj)jca the submatrix
consisting of columns in A. We use ||v||4 to denote the £, norm,
q € [0,00], of a vector v, and ||v|| for the Euclidean norm (¢,
norm). For a,b € R”, {a,b) := a'b is the inner product. Define
aV b:=max{a, b} and a A b:=min{a, b} for a,b € R.

2. Two-Step Stein method

Dividing 8 into strong and weak signals, our method constructs
a confidence set a(y) with an ellipsoid shape for Xg that is
honest as defined in (2). Note that under a high-dimensional
asymptotic framework, all variables X = X(n), y = y(n),
B = B(n)ands = s, dependonnasp = p, > n — oo,
while X (n) is regarded as a fixed design matrix for each n. We
often suppress the dependence on # to simplify the notation.

2.1. Preliminaries on Stein Estimation

We will use a simplified Stein estimate (Li 1989) to construct the
confidence set for weak signals. For a linear estimate i = Ty,

where y ~ Ny (u,0%1,) and T, € R"™", let R, = I, — Ty, and
define

~ ~ o tr(Rn)

palys i) =y — ————>"Ruy, €)

IRl
o o (tr(Rn))
Lypi) =1 — ———, (6)
Y Al Ry |2

where [i(y;1) is the Stein estimate associated with the
initial estimate f and UZL()/; [) is the Stein unbiased risk
estimate (SURE). Li (1989) proved the uniform consistency
of L.

Lemma 1 (Theorem 3.1 in Li 1989).
Nu(p,021,). For any a €
cst(a) > 0 such that

Assume that y ~
(0,1), there exists a constant

liminf inf P, ”azi —n Yo =) < cst(a)ozn_l/z}
n—o0 MER”
>1—-a, ™)

where [t and I are defined in Equations (5) and (6).
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2.2. Method of Construction

Now, consider the linear model (1) and let © = Xp. Given a
preconstructed candidate set A = A, C [p], independent of
(X, y), define

fa =Pap,  pi=Piu= I, —Pou,

where Py is the orthogonal projection from R” onto span(Xy4)
and P; is the projection to the orthogonal complement. A good
candidate set A is supposed to include all strong signals, say A =
{j : 1B8j1 > t}. With such a choice, || || will be small. Typically,
we split our dataset into two halves, (X, y) and (X', '), and apply
a model selection method on (X', y') to construct the set A. See
Section 2.3 for more detailed discussion.

We estimate j14 and |, respectively, by jia and i, com-
pute radii 74 and r_ , and construct a (1 — ) confidence set C
for w in the form of
1Pas — fal® | WPxp— Aul®

+ <1l;. (8
- - ®)

C={ueRr":

Note that C is an ellipsoid in R”, where r4 = ra(a) and
r1 = ri(a) correspond to two radii. Our method consists of
a projection and a shrinkage step:

Step 1: Projection. Let ig = P4y and k = rank(X,) < |A].
Since A is independent of (y, X), we have

lfa — pnall® = IPaell* | A~ oy} 9)
Thus, we choose

ri =c17'i =c102)(,ia/2/n, (10)

where X]fa P is the (1 — «/2) quantile of the X;? distribution and
c1 > 1isa constant, so that
[Pape — frall?
P{—Z <1l/ca{=1—a/2.

nry

(11)

Step 2: Shrinkage. Let y; = Piy. As mentioned above,
under a good choice of A that contains strong signals, || || is
expected to be small. Therefore, we shrink y, toward zero via
Stein estimation to construct /i . Note that y; is inan (n — k)-

dimensional subspace of R". Letting ji = 0 and R, = P in
Equations (5) and (6), we obtain
AL =pa(y1;0)=(0-Byi, (12)
L=L(y;;00=1-B8, (13)
where the shrinkage factor
= (n =k’ /Iyl (14)
It then follows from Lemma 1 that
Jimintinf P {[o°] — (n 0L — e
< cse(@)o?(n — k)_l/z} >1l—« (15)

for any sequence of A = A, aslong as (n — k) — oco. Therefore,
if we choose

—k R
rﬁ_ = cz?ﬁ_ = czn o? {L + cse(/2)(n — k)_l/z} ,  (16)
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where ¢; > 1is a constant, we have

A2
liminf inf P Mfl/cz >1—a/2. (17)
(n—k)—o00 BeRP nriy

In practical implementation, we estimate the constant ¢y ()
in Equation (15) by simulation, which will be discussed in
Section 2.5.

If 1/c; + 1/c; = 1, confidence set (8) made up from
Equations (11) and (17) is honest and the expectation of its (nor-
malized) diameter |6| :=2(rq V r1) can be calculated explicitly
for all B € R?:

Theorem 1. Assume 1/c;+1/c; = 1, A isindependent of (y, X)
with rank(X4) = k, and (n — k) — oo asn — oo. Then the
confidence set C (8) constructed by the two-step Stein method
is honest in the sense of Equation (2). Furthermore, the squared
diameter of C has expectation

n—k
n

2
Xk,a/Z

IE|’C\|2 = 402 max {cl ,C2

x (1_1@ 'Z_k +cst<a/2><n—k>1/2)}, (18)
Xn_ic(P)

where x S—k(p) follows a noncentral x2 distribution with
n — k degrees of freedom and noncentrality parameter p =

i l?/o2.

In the above result, we did not impose any assumptions on
A except (n — k) — 00, which allows many choices of A. Our
confidence set C is honest as in Equation (2) and its diameter
is under control for all B € RP. Since E[1/x2 ,(p)] > 0,a
uniform but very loose upper bound

n—k
n

2
-~ Xka/2
]E|C|2 < 402 max 1 o/ , 6
n

x (14 cxe(e/2)(n — k)~%)} (19)

holds for all B € RP. In particular, when B is dense, the
diameter will be comparable to that of a naive x? region. As
corroborated with the numerical results in Section 4.4, this
protects our method from inferior performance when sparsity
assumptions are violated, making it robust to different datasets.
Note that our choice of the confidence level of 1 — /2 for both
the strong and the weak signal parts in Equations (11) and (17)
is out of convenience. There might be an optimal choice of the
two confidence levels that minimizes the diameter |C|. But we
do not expect a faster convergence rate.

Next, we will show that our confidence set is adaptive: When
B is indeed sparse, the radii r4 and r will adapt to the optimal
rate with a proper choice of A that contains strong signals.

2.3. Adaptation of the Diameter

To simplify our analysis, we first set c; = ¢ = 2 so that they can
be ignored when calculating the convergence rates of r4 and .
These rates do not change as long as ¢; and c; stay as constants
when n — 00. We will discuss choices of ¢; and ¢, near the end
of this subsection.

Lemma 2 gives the rates of r4 and r | , and specifies conditions
for the diameter of C to converge at the optimal rate n=1/4,

Lemma 2. Suppose that A is independent of (y,X), k =
rank(Xa), and ||| = o(v/n — k). Then

ik, ||m||2>

n n

3 =p k/n, i =0, (
Therefore, if k = O(J/n) and ||uL|| = O(n'/*), then the
diameter of C

ICl = 2(ra v r1) =p n 4
The ¢, norm of the weak signals ||t || can be bounded by
|Bac]l under the sparse Riesz condition on X and a sparsity
assumption on . A design matrix X satisfies the sparse Riesz
condition (Zhang and Huang 2008) with rank s* and spectrum
bounds 0 < ¢, < ¢* < o0, denoted by SRC(s*, ¢, ¢*), if

I Xavi®
= 2
nlvll

< c*, forall A with

|A| = s* and all nonzerov € R*.
Under our asymptotic framework, s*, ¢* and ¢, are allowed to

depend on #.

Theorem 2. Suppose A is independent of (y, X), k = rank(X,),
and X satisfies SRC(s*, cx, c™) with s* > |supp(B8) N A°|. If
lim sup,, ¢* < 00, k = o(n) and || Bac|| = o(1), then

€1 = 0p {4+ 1Bl v Vi)

for the two-step Stein method. In particular, IC| =, n V4 if

k= O(/m) and || Bac|| = O/,

(20)

Remark 1. Let us take a closer look at the conditions in this
theorem for |6| = n~1/4, Suppose that B has O(/n) strong
coeflicients that can be reliably detected by a sparse estimator,
while all other signals are weak such that ||Bac|]| = O(n=1/%),
Then we may have k < |A| = O(4/n) with high probability.
This shows that the sparsity s = ||8]|o is allowed to be O(/n).
The only additional constraint on s comes from the assumption
SRC(s*, ¢4, c*) with s* > s, which holds for Gaussian designs if
slog p = o(n) (Zhang and Huang 2008). Compared to Equation
(4) which requires slogp = O(y/n), the sparsity assumption on
B to attain the optimal rate n~1/* for our method will be relaxed

if the weak signals || Bac|| < /slogp/n.

Now we discuss a few methods to find A so that our con-
fidence sets can adapt to the sparsity and the signal strength
of B, respectively. We split the whole dataset into (X, y) and
(X', y), with respective sample sizes n and #’, so that they are
independent. Henceforth, we assume an even partition with
n' = n, which simplifies the notation and is commonly used
in practice, unless otherwise noted. The first method is to apply

lasso on (X', %'):
) 201 Y : 1 / / Q112
B =By, X;2):=argming gy I:%H)’ —X'BI" + )~||,3||1i| ,

1)

where X is a tuning parameter. Then, we define the set of strong
signals by the support of f:

A={j: B #0). (22)



A

Under this choice, f4c = 0 by definition and thus ||B¢| in
Equation (20) can be bounded by

I1Bacll < 1B — Bl = Op(y/slogp/n),

where the £ error bound of the lasso is valid without any beta-
min condition (Zhang and Huang 2008; Bickel, Ritov, and Tsy-
bakov 2009). This leads to the same rate (4) for |6|, which adapts
to the sparsity s without any assumption on signal strength. This
is the first conclusion of the following corollary:

Corollary 3. Suppose that X and X" satisfy SRC(s*, ¢, ¢*), where
0 < ¢ < c* are constants. Let the confidence set C (8) be
constructed by the two-step Stein method with A chosen by
Equation (22) and A = c¢oo/c*logp/n,co > 24/2. Assume
s < (s —1)/(2 + 4c*/cy) and slogp = o(n). Then for any
B € AB(s) we have
Il =0, (n*l/‘* + slogp/n) . (23)
Let Ag = supp(B) and Sg = {j € Ao : |Bj| > K\/slogp/n} fora
sufficiently large K. If in addition || Bag\s, || = O(n~'/*), then
Cl =0, (rfl/‘l v s/n) . (24)
The second conclusion of the above corollary shows that our
method can achieve a faster rate (24) if || Bag\s, Il = O(n~ /4.
Together with the definition of Sy, this essentially imposes a
separability assumption between the strong and the weak signals
when slogp > +/n. To weaken the beta-min condition on
strong signals in Sp, we may apply a better model selection

method to define A, such as using the minimax concave penalty
(MCP) (Zhang 2010):

1 u
ot y) = / (1 - —) du
0 YA 4

_ 1 =2/Qya)if |t < ya
]l yAr/2 if [t| > yA”’

for y > 1. Accordingly, a regularized least-square estimate is
defined by

AP = frRX)

(25)

p
. 1
= argming ey | Iy = X'BI*+ 24D pUBjls k)
j=1
(26)

Suppose we choose A = supp(,é)r:l;P) in our two-step Stein
method. The model selection consistency of ,3;1;10 makes it

possible for IC| to adapt at the rate (24) under the same SRC
assumption but a weaker beta-min condition than that in the
definition of Sy.

Corollary 4. Suppose that X and X’ satisfy SRC(s*, c,, c*), where
0 < ¢ < ¢* are constants, s* > (c¢*/cy + 1/2)s, and slogp =
o(n). Choose a sequence of (Ay, y,) satisfying A, > /logp/n
and v, > ¢;'VA+ /5 If B € ZAB(s) and infy, |Bj] >
(vn + 1)Ay, then P{supp(ﬁ;:;};) = Ao} — 1, and consequently
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the C constructed by the two-step Stein method with A =
supp(B;:fEn) has diameter

ICl =0, (n*l/‘* v s/n) . 27)
Remark 2. Compared to (4) for confidence sets centering at
a sparse estimator, the diameter of our method in Equations
(24) and (27) converges faster by a factor of (log p)l/ 2 when
s = Q(4/n). Accordingly, our method achieves the optimal
rate when s = O(4/n) instead of s = O(y/n/logp) as for
Equation (4). Under a high-dimensional setting with p > n,
say p = exp(n®) for a € (0,1/2), this improvement in rate
can be very substantial, which is supported by our numerical
results. The faster rate of our method is made possible by its
adaption to both signal strength and sparsity, while the rate of
Equation (4) is obtained by adaption to sparsity only (cf. The-
orem 7). We emphasize that our method achieves the adaptive
rates in the above results, while being uniformly honest over the
entire R? (Theorem 1). One could construct a confidence set
with diameter Op(y/s/n) using only the covariates selected by a
consistent model selection method, which would be faster than
the rate (27). However, such a confidence set is not honest over
R?, because it cannot reach the nominal coverage rate for those
B that do not satisfy the required beta-min condition for model
selection consistency. Our method overcomes this difficulty
with the shrinkage step, based on the uniform consistency of
the SURE (Lemma 1).

Remark 3. For an uneven partition of the whole dataset, the
conclusions of Corollaries 3 and 4 still hold as long as both
n =< n — oo. However, it is a common and reasonable choice
to have n = #/, since (X’,y’) and (X,y) can be swapped to
construct a confidence set for X’ 8, making full use of the whole
dataset.

Carpentier (2015) developed algorithms to construct a con-
fidence set for B that is honest and adaptive for multiple sparsity
levels {1, ...,s} over a restricted parameter space. Approximate
sparse vectors are considered by Carpentier, but here we focus
on exact sparse vectors (k) for easy comparison. For two
sparsity levels k1 < kz and some 8 € (0, 1), define a set

9§(k2,k1) = {u € Bky): inf |u—v|| > 8} (28)
VE,%(kl)

by enforcing a margin from the set Z(k;) of k;-sparse vectors.
The restricted parameter space is defined as

P=20J [U Bk k — 1)] :

k=2

A confidence set B of Carpentier (2015) is honest with level 1 —§
for B € P, while its diameter is on the order of (slog(p/8) /n)'/?
with probability > 1 — § forany § € H(s) NP ands < 5.
This is a very interesting theoretical result. However, it is difficult
to verify in practice whether 8 lies in the restricted parameter
space P. For B ¢ P, the confidence set B may not achieve
the desired coverage probability. On the contrary, the coverage
of our confidence set C is guaranteed for the full parameter
space without any restriction. This is a critical result for practical
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applications, since it is hard, if not impossible, to verify such a
margin condition as in Equation (28) or even a sparsity assump-
tion. The price is that our confidence set can only adapt to a
rate no faster than n~1/4. Note that for Carpentier’s method to
achieve a faster rate than n~1/4, it is necessary that slog(p/8) <
/n. For high-dimensional data with a relatively small sample
size n, this is again a severe assumption on the sparsity level s.
Furthermore, Carpentier (2015) did not consider adaptation to
signal strength, although the margin condition implies certain
m1n1mum 51gnal strength: For any u € B(ky, k1), we have
Zj>k1 u(]) > 82, where uj is in descending order in terms of
4]

Choice of c1 and c;. When A # @, we consider two criteria to
choose the constants ¢; in (10) and ¢, in (16). The first criterion
is to minimize the log-volume of 6, namely,

log V(E) = klog(ra) + (n — k) log(r1)

up to an additive constant, which becomes a constrained opti-
mization problem

1;1111Cr21 {klog(/c17a) + (n — k) log(/c27 1)}, (29)

subjectto 1/c;1 +1/c; =1land 1 < ¢1,¢3 <E,

where 74 and 7 are defined in Equations (10) and (16) and
E > 2 is a predetermined upper bound. It is easy to obtain the
solution

= E \/(”/\E) = E \Y " ANE
TTE 0 \k 2T \h—k '
(30)

For all numerical results in this article, we use E = 10. Without
the constraint ¢;,¢; < E, the minimizer would be (c1,¢;) =
(n/k,n/(n — k)) so that under the conditions of Corollary 3,
ra = \/n_/k?A =p 1 and thus the diameter |6| would not con-
verge to 0. Therefore, a finite upper bound E must be imposed.
The second criterion is to minimize the diameter |C |

minmax({ra, 7}, subjectto 1/c; +1/c2 =1, (31)
1,62
which yields the solution
2 22
rA—i—rJ_)/rA, o= (ry +7r)/r] (32)

Asaresult, wehavery =r| = (?i + ?i)l/ 2 and the confidence

set reduces to a ball. Note that by definition 74 (10) and 7| (16)
are independent of the constants ci, ¢;. Their rates are given
by the rates of r4 and r; in Lemma 2 (established under the
assumption that ¢; = ¢; = 2). Consequently, under this
criterion,

. . k n—k 2

Then it is easy to verify that all the results in this subsection hold
for the second criterion as well.

2.4. Multiple Candidate Sets

It is common to have multiple choices for the candidate set A in
our two-step Stein method. Let

H:{Amg[p]xm: 1)--~3Mn}

be a collection of candidate sets. We can apply the two-step Stein
method to construct M = M, confidence sets for u, denoted
by Cyn> and then choose an optimal set Cpr by certain criterion
such as minimizing the volume or the diameter. Furthermore,
the cardinality of 7 may be unbounded as # increases, that
is, M, — oo. In what follows, we show that under mild
conditions, Equations (11) and (17) hold uniformly forall A €
H after modifying r4 and r| accordingly, which implies C,,+ is
asymptotically honest.

Put k = rank(Xy) for A € H and kypax = maxaey k.
Intuitively, the cardinality of H (i.e., M) and the maximum size
of A in H (ie, lcmax) determine the radii and the coverage
probabilities of {C,,}.

For strong signals, we apply the following concentration
inequality to show Equation (11) holds uniformly:

Lemma 3. Suppose x2 follows a x? distribution with n degrees
of freedom. Then for any § > 0,

p{ 25}§2ﬂp(—§).

This lemma with a union bound implies

dER R B

AeH
Then choosing

(33)

2

1
n|1— =2
nX”

82
< 2Mexp (_Z> .

1 [+ 2 Flogtantza |

as the radius for strong signals, we have

rh=caf = (34)

]P’{ [Pape — fiall?
sup —————
AeH nry

For weak signals, we establish Equation (17) uniformly over
‘H via the following result:

< l/cl} >1—ow/2.

Lemma 4. Suppose all components of ¢ in (1), &;,i = 1,...,n,
have mean 0, common second, fourth, and sixth moments and
their eighth moments are bounded by some constant d. For any
8 > 0 there exists a positive number D depending on d such that

{wpv klo?l— -k Mu—uﬂW>a%}
AeH

-}

(35)

<P{sup«/n—

AeH

M
+D Z k)2 54



The proof of Lemma 4 mainly follows the ideas in Li (1985).
In our model with & ~ A},(0,0%1,,), the first term on the right-
hand side of Equation (35) simplifies to

P{suan—k

AeH

32
< 2Mexp (—E>

via Lemma 3. Assume that the cardinality of 7 and the maxi-
mum size of A € H satisty M <« (n — kmax)?. To achieve the
desired coverage for weak signals, it is sufficient to pick § such
that §2 = Q(log M) and §* = Q(M). Therefore, we can set

1
2 L2
o° — ——||Pye

> (72§
-2

8 = c(a/2)MY* > (log M)/?
for some constant c(e/2) > 0, and the corresponding radius

- n
Tzl = Czri =0

1/4

(36
Jn—k } )
for any A € H, so that the upper bound in Equation (35) is
< «/2. Now we generalize Theorem 1 to establish asymptotic
honesty uniformly over H:

—k Z{A
o“ 1L+ c(a/2)

Theorem 5. Given H, construct confidence sets am,m =
I,...,M, with r4 and r; as in Equations (34) and (36),
respectively, for A = A,,. Suppose lim,,_, oo M/(n— kmax)?> = 0,
1/c1 + 1/c; = 1, and each A, is independent of (X, y). Then
the confidence sets C,, are uniformly honest over H, that is,

liminf inf P |:ﬂ {X,B € Em}:| >1—a.
m

n—00 BeRP

Consequently, C,+ chosen by any criterion is asymptotically
honest.

Remark 4. The increment of rf\ in Equation (34),

2/klog(4M/a)/n, reflects the cost for achieving uniform
honesty over . But this factor will not cause a slower rate
for r4 if logM = O,(k*), where k* is the size of the selected
candidate set A,+. Compared with Equation (16), the factor
M1/4/«/n —k in Equation (36), also the cost for uniform
honesty, will in general lead to slower convergence of r].
However, this is a worthwhile price to protect our method
from an improper candidate set A that does not satisfy the
assumptions in Theorem 2. For example, if the candidate set
A misses some strong signals, we may end up with L =p 1and
the radius of weak signals r; will not converge to 0 at all. Such
bad choices of A will be excluded if C,y+ is chosen by minimizing
its volume over H. In this sense, our method provides a data-
driven selection of an optimal candidate set.

To construct H, we threshold the lasso B in Equation (21)
calculated from (X', y’) to obtain

Am={j€lp): 18]l > Tm),

for a sequence of threshold values 7,, = ay;,X, for example,
am € [0,4]. It is possible for two different 7, to define the same
A, which will be counted once in H. By setting 7,, = 0 for some
m, A = supp(B) will be included in H, though it may not be

(37)
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selected as the optimal Cpr. In the proof of Corollary 3, we have
shown ||,3||0 = Op(ﬁ), and therefore both M and kp,x are
Op(ﬁ), which means M <« (1 — kmax)? with high probability.
Asaresult, we can guarantee uniform honesty over all Cy. Other
choices of H are possible, such as stepwise variable selection
with BIC. It is possible that A = & for a large value of 7,,. In
this special case, 74 = 0, so the confidence set reduces to a ball,
that is, {/,L eR™: ju—aL)? < nri}

Remark 5. The multiple candidate sets {A,,} define a family
of linear subspaces for the projection step. This idea has some
connection to the work in Baraud (2004). Given a finite family
of linear subspaces {S,,} of R”, Baraud (2004) first tested the
hypothesis that the mean vector © € S, for each m, and
calculate a corresponding radius p,. Let /1 index the subspace
with the minimum p,, among all S, for which the hypothesis
is accepted. Put i = Ps,y and p = py. A confidence ball
is then constructed with center i and radius p. At a con-
ceptual level, our method is different in a few aspects. First,
we have a shrinkage step using Stein estimator to handle the
residual after projection. This step will be especially helpful,
compared to Baraud’s method, if none of the proper subspaces
contains the mean vector. Second, Baraud’s method was not
designed to exploit any potential separation between strong
and weak signals, which is one of the key contributions of
our approach. More technically, the coverage probability of
Baraud’s method is guaranteed for any finite sample size n,
while ours is asymptotic in nature. Baraud (2004) established
an upper bound for the radius p if the true mean p is in some
subspace S;,. Our general result on the diameter of C does
not restrict 4 to any subspace, except that ||B4c|| is small (c.f.
Theorem 2). An interesting future direction for our work is to
develop a similar test-based procedure to select a good subspace
for the projection step of the two-step Stein method, such that
the volume or diameter of the constructed confidence set is
minimized.

2.5. Algorithm and Implementation

We implement our method with a sequence of candidate sets
Ay defined by (37). Given the dataset, o2, A in Equation (21)
and threshold values {a,A}1<m<Mm, this section describes some
technique details in our algorithm to construct the confidence
set (8) by the two-step Stein method.

Data splitting. We split the original dataset into (X’,y’) and
(X, ). Apply lasso on (X', y') to get B in (21) with the tuning
parameter A. Threshold ,3 by tw = amiform = 1,...,M in
(37) to define candidate sets A,,. Note that A,,,, m = 1,..., M,
are independent of (X, y).

Computation of ¢y (). For any candidate set A, the radius
r1 (16) depends on the constant cs (o), which is essentially the
quantile of the deviation between 02 and the loss of the Stein
estimator /1. We use the following simulation procedure to
estimate cg (). First draw 17] ~ Nu(0,06%1,) forj=1,2,...,N.

For each j, compute
2
and Lj:<1— o ) . (38)
Y.”Z
112/,

o (1-" ) §
m=(1-==) %
w12/,
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Algorithm 1 Two-step Stein method
form=1,...,Mdo
A=A,
compute fi4 = Payand i by (12)
compute ¢; and ¢ according to (29) or (31)
compute r4 and r| by (10) and (16)
construct /C\m in the form of (8)
end for
find m* by minimizing the volume or the diameter of C,,, over
m

Then the (1 — ) quantile of the empirical distribution of

Jn

? O'zLj_nilnl\lJ”z > j:1,...,N, (39)
is a consistent estimator of cy(c) as long as |1 || = o(y/n),

which is the case under the assumptions of Corollary 3. Expres-
sion (39) can be written as a function of a X% random variable,
which simplifies its simulation.

Clearly, the estimate of cs(r) does not depend on A and
is used for any candidate set A € 7 in our implementation.
Moreover, we find the multiple set adjustments on the radii,
that is, the factors of (log M)'/? and M'/4, are usually negligible
given a reasonable sample size, say n > 100. Therefore, we
simply use the radii r4 and r; in Equations (10) and (16) for
each A € H.

Algorithm 1 summarizes the two-step Stein method with
multiple candidate sets A,,.

Remark 6. In the calculation of | and cs (), we use truncated
SURE for [ = (1 — B)4 in (13) and similarly for I:j in (38). Such
a truncated rule has been used for the James-Stein estimator
(Efron and Morris 1973) and does not affect the asymptotic
validity of our method.

2.6. Estimated Noise Variance

In practice, the noise variance o2 is usually unknown. Conse-

quently, an estimated variance 62 will be used in (10) and (16) to
construct the confidence set C (8). Similar to the candidate set A,
we use sample splitting to estimate 52 = 2(y/, X’) from (X', y/)
so that 52 is independent of (X, y). Under a suitable convergence
rate of 62, we establish that C is honest and its diameter adapts
to the same rate as that in Theorem 2.

Our first step is to generalize Lemma 1 with 62 in place of the
true error variance o2, based on which we show that C is honest
over the whole parameter space 8 € R?.

Lemma 5. Assume that y ~ Ny, (it,0°1,). Let fi and L be the
Stein estimate f1(y; 0) in (5) and i(y; 0) in (6) with 0% replaced
by 62. For any @ € (0,1) and any sequence 6 = 67 satisfying
|62 — 0?| < M;/+/n when n is large, there exists a constant
i (o) > 0 (depending on M) such that

limsup sup PH62i —n M- pll?| = c;t(a)c%zn‘”z} <a.
n—oo0 peR?

(40)

Theorem 6. Suppose all assumptions in Theorem 1 hold and in
addition that k = o(n). Let 6> = 672 be a sequence satisfying
|62 — 02| < My /+/n when n is large. Let r4 be computed as in
(10) with 62 in place of 2 and r; be computed as in (16) with
6% and ¢ () in place of 02 and ¢y (er). Then the confidence set
C (8) is honest in the sense of (2).

The key assumption in the above theorem on 672 is its 4/n-
consistency, under which the next lemma shows that the radii
of the strong and weak signals, r4 and r,, computed with 62
converge at the same rates as in Lemma 2.

Lemma 6. Suppose all assumptions in Lemma 2 hold. Let 6% =
62 be asequence satisfying |62 —o?| < M;//nwhen nislarge.
If r4 and r| are computed with 62 as in Theorem 6, then

/n—k 2
5 op(” +||m||)_

2
e =p k/n, 1| =
A=p K = n n

It follows from Lemma 6 that Theorem 2 holds when 62
is used in place of o2, As discussed in Remark 3, we split the
whole data into two equal halves with sample sizes n = n’. In
the above results, we have assumed that 62 — o> = O(1//n).
Consequently, if 62 is y/n-consistent, then all nice properties
of our method are reserved with probability approaching one.
The scaled lasso (Sun and Zhang 2012) provides one way to
construct a 4/n-consistent estimator. Under a similar SRC con-
dition and a sparse scaling slog p <« +/n, Theorem 2 in Sun and
Zhang (2012) implies that for any 8 € Z(s), the 52 estimated by
scaled lasso is «/n-consistent and a central limit theorem holds,

n'2(6 /o —1) 4 N(0,1/2). Finally, we emphasize that 52 and
the candidate set A can be estimated by different methods, as
long as the estimators satisfy their respective conditions with
high probability.

Remark 7. Note that ¢ (@) is invariant to the value of the true
o2, Even if we plug 62 in the simulation of ¢y () discussed
in Section 2.5, we will still estimate the ¢y () associated with
the true o2 instead of ¢, (o). However, the empirical study in
Section 4.5 shows that using so estimated ¢, (r) with 62 does not
lead to any decrease in coverage. On the other hand, the proof of
Lemma 5 provides a conservative way to theoretically compute
(o) from ¢t (). In particular, if 62 is estimated by scaled lasso,
we propose an efficient method to approximate cy' (). See the
supplementary materials for more details.

2.7. Main Contributions of Our Work

Here, we briefly summarize the key contributions of our
method. By dealing with strong and weak signals separately,
our work combines sparse regression techniques with Stein
estimation to build an honest and adaptive confidence set
in high-dimensional regression. Corollaries 3 and 4 provide
theoretical guarantees for the use of popular sparse regression
methods, lasso and MCP, in our two-step method. In contrast
to many existing works in this area which focus primarily on
theoretical aspects, we also make a lot of efforts in practical
implementation by approximating all involved constants in our
method, such as the computation of ¢y (cr) in Section 2.5. To



broaden its application, our honesty result in Theorem 1 is
almost assumption-free, without restricting to a sparse setting
as in Nickl and van de Geer (2013); Carpentier (2015). The
numerical results will show that our method works well even
if B is dense (Section 4.4) or the relation between y and X is
potentially nonlinear (Section 5).

Moreover, the confidence sets by our method can adapt to
both sparsity and signal strength. When the signal strength is
separable to certain degrees, the diameter of our confidence
sets achieves [C| = Op(n~ Y4 v /s/n) (Corollaries 3 and
4) with candidate set A defined by different sparse regression
methods. Theorem 2 provides a general statement relating the
adaptive rate to the subspace for projection. As far as we know,
such theoretical results have not been established for high-
dimensional inference. We have also proposed a data-driven
way to choose an optimal candidate set among multiple choices,
making our method more applicable in practice. Theoretical
guarantees (Theorem 5) are established for this data-driven
selection.

3. Competing Methods

To illustrate the effectiveness of our two-step Stein method, we
first present three alternative procedures that can be derived by
extending ideas from construction of nonparametric regression
confidence sets in conjunction with lasso estimation. Since all of
them make use of the lasso, we review an error bound for lasso
prediction due to Bickel, Ritov, and Tsybakov (2009).

3.1. Lasso Prediction Error

Given X, y and A > 0, consider the lasso estimator § =
ﬁ(y,X; A) defined as in (21). Let o (X) = maxj(||Xj||2/n). Error
bounds of lasso prediction have been established under the
restricted eigenvalue assumption (Bickel, Ritov, and Tsybakov
2009). For S C [p] and ¢y > 0, define the cone

€ (S,co):=18 € RP : Z 18j] < co Z 1851

jese jes

(41)

We say the design matrix X satisfies RE(s, ¢p), for s € [p] and
co > 0,if

i [IX8]]
IS]=¢ 370 {J_IISsII

Lemma 7 (Theorem 7.2 in Bickel, Ritov, and Tsybakov 2009). Let
n > 1land p > 2. Suppose that ||B]lp < s and X satisfies
Assumption RE(s, 3). Choose A = Ko\/log(p)/n for K > 2+/2.

Then we have

K (s, co; X):= € 6 (S, co)} >0. (42)

r e 16K (X)

1-K?/8

slogp} >1—-p
(43)

Remark 8. The original theorem in Bickel, Ritov, and Tsybakov
(2009) assumes that all the diagonal elements of the Gram
matrix X" X/n are 1 for simplicity, while we remove this assump-
tion by including the term  (X).
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3.2. Another Adaptive Method

Here, we develop another adaptive method following the proce-
dure in (Robins and van der Vaart 2006, sec. 3), which constructs
a confidence set for u from y ~ N, (u,0?1,) via sample
splitting. Applied to the linear model (1), the method can be
described as follows. Split the original dataset into (X’,y’) and
(X,y), of which the former is used to obtain an initial lasso
estimate 8 = (¥, X; 1) (21), and the latter is used to compute
two quantities

1 - 2 "2 204 462 2
Rn=;||y—XﬂI| -0 7, =—+—|IX/3 XBII%,

(44)

where R, is an estimate of the loss || X8 — X,3||2/n. Then, a
confidence ball for © = X is constructed in the form of

Ry —nlp — XBIP
T

-~

Ca:{,ue}R”:

> _ZO[} > (45)

where z,, is the (1 —«) quantile of the standard normal distribu-
tion. Note that 7, in Equation (45) contains the term ||u — XS ||
as well so an explicit form of the confidence ball is

{M eR": %Ilu—Xﬁll2 <r =Rn+o(\/(Rn+ 1)/n)},

where 7, is the radius.

To establish the convergence rate of the diameter of [
we need an assumption, similar to RE(s, ¢p), on the restricted
maximum eigenvalue of X"X/n over the cone €(S, co) (41). For
se[pland ¢y > 0, let

£ (s, ¢p; X):= max max

IS|=s 870

{ IXsl
Jnllss|

Theorem 7. The (1 — «) confidence set Ea (45) is honest for all
B € RP.Suppose slog p = o(n), the sequence X = X(n) satisfies

(S %(S, o) } .

limsup ¢(s,3;X) = ¢ < o0,

n—o0

liminf x(2s,3; X) =k > 0,
n— o0

limsupw(X) = w < o0,
n—oQo

and so does the sequence X’ = X’(n). Then with a proper choice

of & < /logp/n, for any § € ZH(s) the diameter

|6a| =0, (n_1/4 + slogp/n) . (46)

These properties have been informally discussed in the intro-
duction (Section 1). Although Ca is also honest over the entire
parameter space, the upper bound on its diameter critically
depends on the sparsity of 8. The scaling slogp = o(n) is
the minimum requirement for the lasso to be consistent in
estimating u or 8. In general, this scaling is also needed for the
RE assumption to hold with lim inf,, « (25, 3; X) > 0 (Negahban
et al. 2012) and for the upper bound on |Ca| to be 1nformat1ve
This is different from the umversal bound (19) on E|C |2 for the
two-step method. The diameter |Cal adapts to the optimal rate
for sufficiently sparse B as slogp = O(y/n); see Remark 2 for
related discussion. Our numerical results in Section 4.4 demon-
strate that [C,| can be substantially larger than the diameter of
our two-step Stein method when 8 is not sparse.
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3.3. An Oracle Lasso Method

We calculate the lasso ,3 = ,é(y, X; A) from the whole dataset
without sample splitting, which we denote by (X, y) in this
subsection.

Assuming the true sparsity sg = || B¢ is known (the oracle),
a (1 — «) confidence ball for X8 is constructed as

{u € R L XIP = colero? L8L :=r§} ,
n n

where ¢,(«) is a constant depending on the design matrix X
and the tuning parameter A. We estimate ¢,(v) by a similar
procedure to be described in Section 3.4 for a two-step lasso
method. Although there are sharper upper bounds, for example,
O(sg log(p/sp)/n), for lasso prediction error (e.g., Hastie, Tib-
shirani, and Wainwright 2015, chap. 11), our choice of A is tuned
to achieve the desired coverage rate in our numerical results and
thus the corresponding r, is already optimized in this sense.

It should be pointed out that the oracle lasso is not imple-
mentable in practice since the true sparsity sg is unknown. In
theory, it can build a confidence set with a diameter on the order
of (sg log p/n)'/2, potentially faster than the rate n~1/4, however,
the constant ¢,(a) can be large and difficult to approximate.
Indeed, in comparison with the oracle lasso, our method often
constructs confidence sets with a smaller volume even under
highly sparse settings, which highlights the practical usefulness
of our two-step method.

3.4. A Two-Step Lasso Method

To appreciate the advantage of using Stein estimates in the
shrinkage step of our construction, we compare our method
with a two-step lasso method, in which we replace the Stein
estimate by the lasso to build a confidence set for 1 , the mean
for weak signals. Consider the two-step method in Section 2.2
with a given candidate set A. Let k = rank(X,) and further
assume A contains strong signals only, that is, A € supp(B).
We use the same method to find [i4 and r4 (10) in the projection
step. Like the oracle lasso, we assume the true sparsity sg = || Bllo
is given and construct a confidence set for ;| based on the error
bound for lasso prediction.

Apply lasso on (PyX,y1) =
parameter

(le-X, Pj;y) with a tuning

A2 = Ko /log(p — k) /n, K > 22,

to find the estimate

(47)

B =B02)

1
= argming gy [Enn — PiXBI” + xznﬁnl} . (48)

It is natural to estimate the center u; = Pj w1 by the lasso
prediction i = Pf{X,g. As a corollary of Lemma 7, we find
an error bound for ||i1 — pi ||%

Corollary 8. Letn > 1 and p > 2. Suppose that ||B[lp < s and
Assumption RE(s, 3) holds for X. Choose A, as in Equation (47).

Then for any fixed A € supp(B) with k = rank(X4) < s, we
have

16K%0 2w (X)

L Q 2
]P’{IIPAX(ﬂ—ﬂ)II = 263X

(s — k) log(p — k)}

>1—(p—k K78 (49)
Accordingly, the radius for weak signals is chosen as
— k)1 —k

rﬁ_ = cﬁi = czcl(a/2)02 (sp ) log(p ), (50)

where ¢j(«/2) = ¢(x /2;PjX) is a constant. Last, we combine
(ft1,r1) with (fta,ra) as in Equation (8) to define the confi-
dence set C.

Again we use sample splitting to define the candidate set
A by thresholding the lasso estimate B(y,X’; 1) in Equation
(21) with a threshold value 7 = QP(HB — Blloo) so that
P (A € supp(B)) — 1, satisfying the assumption in Corol-
lary 8. Upper bounds on || ,é — Blloo are available under certain
conditions; see, for example, (Hastie, Tibshirani, and Wain-
wright 2015, theor. 11.3).

Remark 9. Suppose B is sufficiently sparse so that sglogp «
/1. Then, it follows that both r4 and | of the two-step lasso
converge faster than the rate of #~/4. This is not surprising
and shows the advantage of the oracle knowledge of the true
sparsity sg. Of course, in practice we do not know sg and
therefore, this two-step lasso method, like the oracle lasso, is not
implementable for real problems. The numerical comparisons
in the next section will show that our two-step Stein method,
which does not use the true sparsity in its construction, is
more appealing than the two-step lasso: Its adaptation to the
underlying sparsity is comparable to the two-step lasso, while
its coverage turns out to be much more robust.

We follow the same procedure as the two-step Stein method
to implement the two-step lasso method with multiple candidate
sets Ay, m = 1,..., M — threshold ﬁ(y/,X’; A) with a sequence
of threshold values to construct A,, (37) and then choose the
confidence set with the minimum volume or diameter. The main
difference lies in how to approximate ¢;(e) in (50), which is done
by the following approach.

We first use b = maXe[p (X;Ty’)/ I1X; |? as a rough upper
bound for || 8||ec. Forj = 1,2,...,N, we draw an sg-sparse vec-
tor, y; € RP, of which the nonzero components follow U/ (—b, b).
Then we sample Y]* ~ Nu(X Vj> 021,) and calculate lasso

A

estimate y;(A) = f (YJ?", X; ) asin Equation (21) with the tuning
parameter A for all j. Let ¢; = [ X(y;(%) — yj)||2/(<725ﬁ log p).
For alarge N, ¢;(«) can be approximated by the (1 — &) quantile
of {¢;}. Here, A = v - Koz,/logp/n, where v < 1 is a
predetermined constant. This choice is slightly smaller than the
theoretical value in Lemma 7, but gives a stable estimate of ¢;(«)
with the desired coverage. As we calculate b with (X’,5’) in the
above, our estimate of ¢j(«) is independent of the response y.
It is possible that a candidate set A,, defined by Equation (37)
may contain s or more predictors. In this case, we will only
include the largest s — 1 predictors in terms of their absolute
lasso coeflicients, as Corollary 8 requires |A,,| < s.



4. Numerical Results

We will first compare our method with the above competing
methods when g is sparse relative to the sample size, that is,
s/n is small, and then consider the more challenging settings
in which s is comparable to n. We will also examine the perfor-
mance of these methods with an estimated error variance and
their robustness when key assumptions for the error distribution
are violated.

4.1. Simulation Setup

The rows of X and X', both of size n x p, are independently
drawn from N, (0, ¥) and the columns are normalized to have
an identical £, norm. We use three designs for X as in Dezeure
et al. (2015):

Toeplitz: Tij = 0.5/,
Exp.decay: (= h= 0.4/l
Equi.corr: 21,] = 0.8 forall i # j, Zi,i =1 for all i.

The support of B is randomly chosen and its s nonzero compo-
nents are generated in two ways:

1. They are drawn independently from a uniform distribution
U(=b,b).

2. Half of the nonzero components follow U/ (—b, b) while the
other half following 1/(—0.2,0.2), so there are two signal
strengths under this setting.

Last, yand y’ are drawn from NV, (X, 021,,) and N, (X' B, 021,,),
respectively. In our results, we chose n = n’ = 200, p = 800,
0% = lands = 10, and b took 10 values evenly spaced between
(0,1) and (1,5). In total, we had 60 simulation settings, each
including one design for X, one way of generating 8, and one
value for b. Under each setting, 100 datasets were generated
independently, so that the total number of datasets used in this
simulation study was 6000.

The confidence level 1 — o was set to 0.95. The threshold
values {a,,} in Equation (37) were evenly spaced from 0 to 4
with a step of 0.05. All the competing methods use lasso in
some of the steps, and the tuning parameter A was chosen by
three approaches: 1) the minimum theoretical value in Bickel,
Ritov, and Tsybakov (2009), Ava = 2+/20/logp/n, 2) cross-
validation Ay, and 3) one standard error rule Aqs. For the one
standard error rule, we choose the largest A whose test error in
cross-validation is within one standard error of the error for Acy.
Since it is time-consuming to approximate c,(a) = ¢,(ct; X, 1)
for the oracle lasso when A is chosen by a data-dependent way,
we set ¢o(05 X, Aev) = N1Co(a; X, Aya) and ¢ X, Aige) =
2o (a3 X, Aval), Where the factors ny were chosen such that the
overall coverage rate across datasets simulated with b > 0.3 was
around the desired level.

Unlike the adaptive method in Section 3.2 and our two-
step methods, the oracle lasso method does not require
sample splitting. Consequently, a confidence set is con-
structed based on the whole dataset including both (X,Y)
and (X',Y’) for a fair comparison. We compare the geo-
metric average radius 7 = (r‘f‘rTlA‘)l/ " of our two-step
methods with 7, of the adaptive method and r, of the oracle
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lasso. This is equivalent to comparing the volumes of the
confidence sets.

4.2. Results on the Two-Step Stein Method

In this subsection, we compare the two-step Stein method with
the adaptive method and the oracle lasso. The constants ¢; and
c2 of our method were chosen by minimizing the volume in
Equation (29) with upper bound E = 10.

Figure 1 compares the geometric average radius r among the
three methods against the signal strength b under the first way
of drawing 8. Each point in a panel was computed by averaging
7 from 100 datasets under a particular simulation setting. It is
seen from the figure that 7 by our method was dramatically
smaller than the other two methods for almost every setting.
This suggests that the volumes of our confidence sets were
orders of magnitude smaller than the other two methods, as
the ratio of the radii will be raised to the power of n = 200
for comparing volumes. When X was drawn from the equal
correlation (Equi.corr) design, 7 of the oracle lasso and the
adaptive methods kept increasing as b increased, while 7 by our
method became stable after b > 2. Overall, the equal correlation
design was more challenging than the other two designs, for
which our method outperformed the other two methods with
the largest margin. Unlike the other two methods, our method
was less sensitive to the choices of A and the designs of X.
Essentially, r4 and r; by our method are determined by the
candidate set A. Even if a different A is used, our method can
choose adaptively an optimal A close to supp(8), showing the
advantage of using multiple candidate sets.

In a similar way, Figure 2 plots 7 against b in the second
scenario of drawing 8. When b is large (e.g, b > 1), the B
contains a mixture of weak and strong signals. Again, we see that
7 of our method was smaller than the other two competitors for
most settings. The average radius by our method often decreased
as b > 1, which shows that our method can properly distinguish
strong signals and weak signals.

The coverage rates, each computed from 100 datasets, for
each of the three ways of choosing A are summarized in
Figure 3. We pooled the results from three types of design
matrices together in the figure, because the coverage rates
distributed similarly across them. The coverage rates of our
method matched the desired 95% confidence level very well,
with coverage rate > 0.9 for 96% of the cases. This result is
particularly satisfactory for a quite small sample size of n = 200.
The adaptive method also showed a good coverage, but slightly
more conservative than the desired level. The oracle lasso
had the most variable coverage rate across different settings
when A was selected in a data-dependent way (Acy or Ajge).
In fact, its coverage could drop below 0.5 for these two cases
(not shown in the figure). This shows the difficulty in practice
to construct stable confidence sets using error bounds like
Equation (43) even with a known sparsity. Together with the
results in Figures 1 and 2, this comparison demonstrates the
advantage of the proposed two-step Stein method: It builds
much smaller confidence sets, while closely matching the
desired confidence level. In particular, our confidence sets
were uniformly smaller than those by the adaptive method
(Section 3.2) for all simulation settings and all choices of A.
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Figure 1. Geometric average radius against b under the first way of generating . Each panel reports the results for one type of design (row) and one way of choosing A
(column), where the dashed line indicates the naive X2 radius.
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Figure 2. Average radius r against b in the second scenario of generating 8.
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4.3. Comparison With the Two-Step Lasso Method

We discussed in Section 2.3 two ways to choose ¢; and ¢, that
is, by minimizing the volume or by minimizing the diameter
of the confidence set for our proposed two-step framework.
Here we compare the two-step Stein method and the two-step
lasso, each with the two ways to choose the constants. The two-
step Stein method by minimizing the volume (abbreviated as
TSV) is the same method used in the previous comparison.
Similarly, we use the short-hand TSD, TLV, and TLD for the two-
step Stein method by minimizing diameter, the two-step lasso
method by minimizing volume and by minimizing diameter,
respectively. The true sparsity s = 10 was given to the two-
step lasso methods. Only the first scenario of generating 8 was
considered in this comparison, since most results in the second
scenario were similar. Figure 4 shows the plots of radius against
b by the four methods under different settings, while Figure 5
reports the distribution of the coverage rates. The two-step lasso
methods apply the lasso twice, one to generate candidate sets
Ay, and the other to compute i and r; for weak signals. To
clarify, the three ways of choosing X in these figures refer to the
step to generate candidate sets A,,, while A, in Equation (48)
was set to vKa2,/log(p — |A])/(n — |A]), where v = 0.5 in our
simulation.

We make the following observations from the two figures.
First, the two-step Stein methods showed a substantially more
satisfactory coverage than the two-step lasso methods. The cov-
erage was close to 0.95 for both TSV and TSD, while the coverage
rates of TLV and TLD had a much larger variance and were espe-
cially poor when X was chosen via cross-validation. The confi-
dence sets by the two-step lasso methods had a slightly smaller
average radius than the two-step Stein methods for the Toeplitz
and the exponential decay designs. However, given their low
and unstable coverage rates, this does not imply the two-step
lasso methods constructed better confidence sets. Recall that
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IC| = O, (n~Y* v \/s/n) for the two-step Stein methods and
|6| = Op(y/slogp/n) for the two-step lasso methods. The
signals were very sparse in our simulation, with s = 10 much
smaller than p, favorable for the two-step lasso methods. Even
so, we find the two-step Stein methods very competitive, noting
that the radii of both TSV and TSD were actually comparable or
slightly smaller than the two-step lasso methods for the equal
correlation designs, in which the predictors were highly cor-
related. This comparison demonstrates that the two-step Stein
method is more appealing in practice, as it does not require any
prior knowledge about the underlying sparsity but gives a better
and more stable coverage. Second, both ways of choosing the
constants ¢; and ¢, worked well for the two-step Stein method.
On the contrary, it is seen from Figure 5 that the coverage rate
of TLV was significantly lower than that of TLD in the bottom
two panels. Lastly, between using Acy and A in the lasso for
defining candidate sets A,,, we recommend the latter, as it tends
to give comparable radii but a better coverage, especially for the
two-step lasso.

We also compared the performance between the oracle lasso
method and TLD, both constructing confidence sets based on
the lasso prediction (43) with a known sparsity. The coverage
rates of the two methods were quite comparable as reported in
Figures 3 and 5. The geometric average radius of the oracle lasso
method (Figure 1) was 2 to 5 times that of TLD (Figure 4). The
difference was especially significant when the signal strength
was high (large b). This comparison confirms that, by separating
strong and weak signals, our two-step framework can greatly
improve the efficiency of the constructed confidence sets.

4.4. Dense Signal Settings

We have shown the advantages of our two-step Stein method
in the last two subsections under sparse settings. Recall that the
dimension of our data was (n, p) = (200, 800) with sparsity s =
10 for B in the previous comparisons. The goal of this subsection
is to illustrate the stable performance of our method when the
true signal is dense. As such, we changed the sparsity to s = 100
for the first way of generating 8 and s = 200 for the second
way of generating 8. We focused on the equal correlation design,
which was the most difficult one among the three designs. With
the same set of values for the signal strength b, we had 20 distinct
parameter settings for data generation in this comparison, and
again we simulated 100 datasets under each setting. The tuning
parameter A was selected as A1 for all the results here.

Figure 6 compares the geometric average r against b and the
coverage among the adaptive method, the oracle lasso and our
two-step Stein method. In all the scenarios reported in panels (a)
and (b), our method outperformed the other two methods with
very big margins in terms of the volume of a confidence set.
For b > 1, the radius of our method approached the naive 2
radius (x72,/n)'/? as suggested by Theorem 1, while the radii
of the oracle lasso and the adaptive methods kept increasing
to a level much greater than the naive x2 radius. This shows
that the two competing methods failed to construct acceptable
confidence sets when the signal was dense. Since the sparsity
level s is comparable to n for the datasets here, the upper bounds
for the diameters of these two methods, |C,| = O,(y/slogp/n)
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and |6a| = Op(n_l/4 +/slog p/n), are no longer useful or even
valid. It is seen from Figure 6(c) and (d) that the coverage rates
of the two-step Stein method were much better than the oracle
lasso, but slightly lower than the adaptive method. Nevertheless,
our confidence sets still maintained a minimum coverage of 0.9
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Figure 6. Comparison results under dense signal settings. (a) and (b) Geometric
average radius against b. (c) and (d) Boxplots of the coverage rates.

in most cases, which is quite satisfactory given the way smaller
diameters than the adaptive method.

To understand the behavior of our method in this dense
signal setting, we examined the number of variables selected as
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Figure 7. The boxplot of k across datasets for each value of b
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strong signals in the set A, that is, k = |A|. Figure 7 displays the
boxplot of k across 100 datasets for each value of b under the first
way to generate 8. When b < 1, our two-step method still chose
a nonempty candidate set, but k dropped to 0 for b > 2, that is,
A = @. Note that the radius of our method will be close to the
naive x? radius when k = n or k = 0; see (18) in Theorem 1.
When the signal strength b < 1, some small nonzero coeflicients
are close to zero so B is effectively quite sparse, in which case
the lasso can select a good subset A of strong signals. On the
contrary, when b is large, the lasso will not be able to select a
majority of the strong signals, leaving || || = ||Pj‘- || too big.
In this setting, our method automatically adjusts its “optimal”
choice to A = @, constructing a confidence set centered at the
Stein estimate [i(y; 0) with radius estimated via the SURE.

4.5. Estimated Error Variance

We further examine the performance of our method using a
plug-in 62 instead of the true variance o2. Recall that we split
our sample into (X', y’) and (X, ). First, an estimated variance
6% = 62(X’,y) was calculated by ordinary least-square regres-
sion of y’ onto X/,, where A’ is the set of variables selected by the
scaled lasso (Sun and Zhang 2012, 2013). Although the scaled
lasso provides a consistent estimator for o'2, it sometimes yielded
extremely large 62, which led to inaccurate inference by all the
methods. In contrast, the least-square estimate after the scaled
lasso selection gave a much more stable value. To simplify the
comparison, we only used a single candidate set A = supp(B)
in this comparison, where f is the lasso estimate with A chosen
by the three approaches in Section 4.1. In particular, 5 was used
in place of o2 to calculate the theoretical value Ay,. We input the
same 6 to the adaptive and the oracle lasso methods.

For brevity, we only present results on the datasets simulated
under the first way of generating f as in Section 4.1. The average
radii and coverage rates are reported in Figures 8 and 9, respec-
tively. It is seen from Figure 8 that the trend of 7 against the signal
strength b is quite similar to Figure 1 for all three methods. Our
two-step Stein method constructed smaller confidence sets than
the other two methods for most settings, except for the equal
correlation design under which the 7 of our method was quite
comparable to that of the adaptive method when X was selected
by cross-validation or the one standard error rule. As shown in
Figure 9, the overall coverage of the adaptive method and our
method was around or above the desired level of 95% for most
settings. In particular, the coverage rates of our method were
slightly higher than the adaptive methods when using Ay or
A1se> two practical ways of choosing the lasso tuning parameters.
There are some outliers in the boxplots, representing low cover-
age rates for some datasets generated under the equal correlation
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design—the most difficult design due to high correlation among
the predictors. Using Ay,, the adaptive method and our method
yielded almost an equal number of outliers, while using A, or
M1se our method had fewer outliers.

As expected, the coverage rates here in Figure 9 are somewhat
lower than those reported in Figure 3 assuming o2 is known.
Among those datasets for which either our method or the
adaptive method failed to cover the true f, the 62 for more
than 60% of them was either < 0.8 or > 1.2 (recall 62 =
1), suggesting that the lower coverage was mostly caused by
the inaccuracy of 62. On the other hand, the pattern of 7 of
our method under the Toeplitz and the exponential designs
is very similar between Figure 1 for known o2 and Figure 8
here, while the 7 of the adaptive method increased slightly when
6% was plugged in. Under the equal correlation design, the 7
of our method also increased but not faster than the adaptive
method.

4.6. Normality and Homogeneity Assumptions

Our method is developed under normality and homogeneity
assumptions that the error vector & ~ N, (0, 2I), which may
not hold in practice. In this section, we test the robustness of
our two-step Stein method when the above assumptions are
violated in comparison with the adaptive method. To this end,
we designed the following four simulation settings. Let f; denote
the ¢-distribution with d degrees of freedom. In the first setting,
all components of ¢ were independently drawn from t4 with a
scale parameter o, while in the second setting from #;. These
two settings were designed to test the robustness against the
violation of normality, and the next two settings against the
homogeneity assumption. Let u, be the a-percentile of the
components w;,i € [n] of the mean vector u = XB. We drew

&i ~ N(0,07) independently for i = 1,...,n, where
0i =0 + 40 (i — Ho.05)+/ (K095 — [40.05)
in the third setting and
0i =0 + 90 {(1i — 10.05)+/ (1095 — [0.05)}>

in the fourth setting. These two models were motivated by the
observation that the variance of &; usually increases with u;.
In particular, o; increases quadratically with w; in the fourth
setting, severely against the homogeneity error assumption. We
only tested the Toeplitz design in this study, while using the
same choices of the other parameters in data generation as in
Section 4.1. The lasso tuning parameter A for both methods was
selected by the one standard error rule, and 62 was estimated in
the same way as in Section 4.5.

The average radii and coverage rates of the constructed con-
fidence sets are summarized in Figure 10. It is comforting to see
that the coverage rates of both methods across all settings were
above or close to the nominal level of 95%, with only mild drop
compared to their coverage rates under iid normal errors (lower
panel of Figure 9). This observation shows that both methods
are quite robust against possible violation of error assumptions.
On the other hand, the average radius of our two-step Stein
method was uniformly smaller than that of the adaptive method
(top panels of Figure 10) in all the four settings, demonstrating
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the higher relative efficiency of our confidence sets when model
assumptions are not satisfied, or even severely violated.

As shown in Figure 10, as b increased, the average radius
of the adaptive method approached or exceeded the estimated

two-step stein

naive x? radius, 6 ( Xia /m)'/2, under iid normal errors, where

62 is the estimated error variance. This trend suggests that the
adaptive method could be too conservative when the model
assumptions are violated, with diameter not necessarily con-
verging to 0. In contrast, the average radius of our two-step Stein
was stable and uniformly < & for all values of b.

For our method, the shrinkage factor B = (n — k)62/||y. ||?
defined in (14) plays a vital role against heterogeneity. Note that
the left-hand side of the inequality (15) is essentially determined
by B. Even the error variances are different, ||y ||?/~/n — k still
follows approximately a normal distribution when n — k is large,
similar to the case with homogeneous errors. Consequently, the
distribution of B does not change that much and the inequality
(15) still holds in spite of error heterogeneity, which guarantees
good coverage for our method.

5. Real Data Analysis

In this section, we apply the two-step Stein method on
the riboflavin dataset compiled by Bithlmann, Kalisch, and
Meier (2014) to demonstrate its practical significance. This
dataset contains a real-valued response variable y, which is the
logarithm of the riboflavin production rate, and the expression
levels in log-scale of p = 4088 genes as covariates. There
are n = 71 individuals in total so that the design matrix X
is 71 x 4088. Unlike van de Geer et al. (2014) and Dezeure
et al. (2015) that aim at gene selection, we focus on joint
inference about the mean riboflavin production rates for a
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Figure 10. (Upper) Average radius r against b and (lower) boxplots of coverage rates of all settings under t-distributions or heterogeneous error variance. The dashed lines
in the four top panels indicate the average naive x2 radius. The dashed lines in the boxplots indicate the nominal coverage level of 95%.

group of individuals, which is also a scientifically significant
problem.

Before our analysis, the columns of X was normalized to have
an identical ¢, norm and y was centered to have zero mean.
Again, we split (X, y) into two subsamples. One of them was
used to calculate an initial lasso estimate B (21) for the adaptive
method and a single candidate set A = supp( B) for our method,
as well as an estimated variance 2. The tuning parameter for
the lasso estimate 8 was chosen by the one standard error rule,
while 62 was calculated by least-square regression after scaled
lasso selection, the same procedure used in Section 4.5. The
other subsample was used to construct a confidence set. In our
analysis, the n individuals were partitioned into two subsamples
by their gene expression clustering pattern. Define the distance
between two individuals by 1 — |p|, where p is the correlation
coeflicient between their gene expression vectors. The hierar-
chical clustering dendrogram on the # gene expression vectors
is shown in Figure 11, from which we see a clear separation into
two clusters. It makes sense to infer the riboflavin production
rates simultaneously for individuals in the same cluster, due to
the strong correlation among their gene expression profiles. We
also swapped the two subsamples to build two confidence sets,
one for each subsample.

We applied our method and the adaptive method to this
dataset to construct 95% confidence sets. The results are sum-
marized in Table 1. One sees that the radius 7 of the adaptive
method was substantially greater than the 7 of our method.
Considering ||y||/+/n = 0.914, the confidence sets constructed

] ———
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Figure 11. Hierarchical clustering of gene expression vectors among all individuals.

by our method achieved substantial reduction in the uncertainty
in u, especially given the small sample sizes n < 44 after
sample splitting and the large number p > 4000 of covariates.
To appreciate how much smaller the confidence sets of our
method were, consider a sequence of vectors v e R" for
m = 0,1,...,n. The ith coordinate of v(™ is given by vgm) =
yil(lyil > tm), where t,, is a threshold value and 1(-) the
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Table 1. Confidence sets constructed on the riboflavin dataset.

Cluster 1 Cluster 2
Cluster size 27 44
Adaptive T 0.641 0.943
Two-step Stein r 0.375 0.337
rs 0.409 0.175
ry 0.354 0.348
indicator function. We chose an increasing sequence, fp = 0

and t,, = |yum| for m = 1,...,n, where y(,,) is ordered so
that |yy| < -+ < [y |. In particular, v® = y is the observed
response vector and v = 0 is the origin. The confidence set for
cluster 2 (n = 44, Table 1) by the adaptive method contains all
v™ including v = 0.In contrast, our confidence set contains
only the first 24 of them, that is, v, . . ., v Loosely speaking,
the adaptive method allows the mean of the individual with
the largest absolute response value y(,) to be zero, suggesting
that the responses of all the 44 individuals in cluster 2 could
be the same (as y had been centered). Our method suggests
this is not the case. Ranking the individuals by the absolute
values of their responses, the first 23 individuals, that is, those
with responses y(1), . . ., ¥(23), behave rather differently from the
other 21 individuals.

The sharp reduction in size of the confidence sets in favor
of our method is clearly observed in Table 1. But since the
true riboflavin production rate for each individual is unknown,
one may doubt if the reduction in the volume of a confidence
set might result from compromising the coverage probability.
To address this concern, we conducted two simulation studies
based on this dataset to assess the coverage probability. In the
first simulation, we generated a coefficient vector B € RP
by randomly choosing s nonzero components uniformly in
(—b&,b6), and then drew y/ = Xp' + &', &' ~ N,(0,6°1,),
where 6 = 0.320 was estimated from (X, y). We computed
confidence sets for the two clusters given (X, ), and verified
whether the confidence sets covered the true mean XB'.
The whole process was repeated 100 times for each b €
{0.1,0.3,0.5,0.7,0.9,1}. We chose b < 1 since the maximum
magnitude of the estimated 8 from the original data was close
to &. The sparsity s = 14 was chosen to match the support size
of the scaled lasso solution. Note that a total of 600 datasets
were generated, each under a random g’ with different support
and coeflicients. In the second study, we perturbed y to simulate
v~ Nu(y, &21,), and then applied each of the two competing
methods on the perturbed data (X, y*) to construct confidence
sets and checked whether they covered the original response
vector y. Although y is the mean of y*, the relation between
y and the predictors X is noisy and could be nonlinear, which
makes this test more challenging. The whole process, starting
from the simulation of y*, was repeated 400 times.

The average results of both simulations are summarized in
Table 2. Considering the extremely high dimension and small
sample sizes (p > 4000,n < 44), the coverage probabilities
of both methods (> 90%) are quite satisfactory. Consistent
with the results for the original data (Table 1), our method
achieved much smaller average radius 7 across all cases than
the adaptive method. Moreover, the 7 of the adaptive method
was even greater than the radius of the naive x? set for the

Table 2. Confidence sets for datasets simulated by linear models or via perturba-
tion based on the riboflavin data.

Cluster 1 Cluster 2
Cluster size 27 44
%2 Radius 0.541 0.424
Adaptive r 0.425 0.438
(linear model) Coverage 0.983 0.975
r 0.297 0.259
Two-step Stein rs 0.413 0.311
(linear model) ry 0.293 0.255
Coverage 0.975 0.905
Adaptive r 0.745 0.985
(perturbation) Coverage 0.898 0.942
r 0.530 0.411
Two-step Stein rs 0.631 0.482
(perturbation) ry 0.478 0.404
Coverage 0.960 0.933

more challenging perturbation datasets, making it not practi-
cally useful, while the 7 of our method was still smaller than the
naive radius. This is a very encouraging result given the noisy
and potentially nonlinear relationship between y and X, as we
mentioned above.

Lastly, it is worth reiterating that our confidence set makes
simultaneous inference on all w;, i = 1,...,n. As the sample
size n becomes large, the diameter of the set will shrink to zero
at certain rate (e.g., n~'/4). This is particularly useful when we
wish to control family-wise error rate over a large number of
individual tests (n large). On the contrary, if we apply Bonferroni
correction on # individual inferences, each on a single w;, the
power can be much lower than our approach. This highlights
another aspect of the practical significance of our inference
method.

6. Discussion

For high-dimensional regression, oracle inequalities for sparse
estimators cannot be directly utilized to construct honest and
adaptive confidence sets due to the unknown signal sparsity.
To overcome this difficulty, we have developed a two-step Stein
method, via projection and shrinkage, to construct confidence
sets for u = XpB by separating signals into a strong group
and a weak group. Not only is honesty achieved over the full
parameter space RP, but also our confidence sets can adapt to
the sparsity and the strength of 8. We also implemented an
adaptive way to choose a proper subspace for the projection
step among multiple candidate sets, which protects our method
from a poor separation between strong and weak signals. Our
two-step Stein method showed very satisfactory performance in
extensive numeric comparisons, outperforming other compet-
ing methods under various parameter settings.

The focus of this work is on the confidence set for u = Xg8.
Although related, it is different from the problem of inference
on B. In general, it is difficult to infer a confidence set for
from the confidence set for X8 without any constraint on X
and B, because X does not have a full column rank under the
high-dimensional setting. However, if we know that [|B]lo <s,
then a confidence set C for p can be converted into a confidence
set for B as B := {8 € HB(s) : XB € C}, which is the
union of s-dimensional subspaces intersecting C.Itis interesting



future work to study the convergence rate of |B| and related
computational issues, such as how to draw g from B. On the
other hand, if X satisfies SRC(s, ¢y, c*), then

FBIZ = IXBIP/n, VB € B(s).

A hypothesis test about the mean X8 can be carried out by using
the confidence set C to obtain a lower bound on IXB]l, which
carries over to a lower bound on || 8| with the above inequality
and thus can be used to perform a test about 8. See Nickl and
van de Geer (2013) for a related discussion. A recent work of
Cai and Guo (2020) develops methods to construct confidence
intervals for T8, where ¥ is the covariance matrix of the
covariates in a random design. For a fixed design, BTX8 =
|XB|1>/n is a function of the mean vector © = X, and thus
it is interesting to explore connections between inferences on p
and on BTEB. Although asymptotic coverage guarantees have
been established, our method may have a lower coverage rate
than the nominal level for finite samples with an estimate of o2,
as reported in the numerical results (e.g., Figure 9). Recall that
the shrinkage factor B (14) also depends on the estimated o?,
making our method more sensitive to inaccurate 62. Incorpo-
rating a robust estimate of the noise variance is an important
future direction to improve our method.

We have also demonstrated that our method works well even
when the underlying g is dense, for example, || 8]lo =< #, which
is important for practical applications. See Bradic, Fan, and
Zhu (2018) for recent theoretical results on high-dimensional
inference for non-sparse . Besides linear regression models, an
abundance of literature has contributed to the construction of
confidence sets in functional space (Hoffman and Lepski 2002;
Juditsky and Lambert-Lacroix 2003; Genovese and Wasserman
2005; Bull and Nickl 2013). It remains an open and interest-
ing question how to apply the idea of separating strong and
weak signals to this problem. Another future direction is to
incorporate the confidence set C with the method of estimator
augmentation (Zhou 2014; Zhou and Min 2017) for lasso-based
inference. Estimator augmentation can be used to simulate from
the sampling distribution of the lasso without solving the lasso
problem repeatedly, provided a point estimate of u = XB. Given
C, one may randomize the point estimate of u by sampling
from the confidence set, which has been shown to improve the
inferential performance of estimator augmentation (Min and
Zhou 2019).

Finally, we briefly comment on predictive inference in high-
dimensional linear regression, which is related to this work. As
a recent example, Lei et al. (2018) proposed a general frame-
work for distribution-free prediction inference. Assuming that
¢ follows a zero-mean distribution, their method constructs pre-
diction bands for new responses as well as in-sample prediction
intervals with any estimator ft(x) for the mean response value
given covariates x. They showed that the constructed predic-
tion bands are close to oracle bands constructed with a known
error distribution. In general, in-sample prediction bands can
be built upon a confidence set for the mean vector X8, together
with the error distribution. For example, under a normal error
assumption, one may construct in-sample prediction bands for
all observations (x;,¥:),i € [n]as{u +v: pu € C,v € B(n)},
where C is a confidence set for u and B(r) is a ball with center
0 and radius r. The radius r depends on the error variance

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 19

o2 and the confidence level for the prediction bands. A novel
contribution of the method in Lei et al. (2018) is to study the
distribution of {|y; — [i(x;)] i € [n]} and make use of
order statistics to get rid of restrictive assumptions on the error
distribution. It is an interesting future direction to investigate
how our method can take advantage of such order statistics to
minimize assumptions on the error distribution.
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