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15 Explainer: Measuring clustering and

segregation

MOON DUCHIN AND JAMES M. MURPHY

This explainer will focus on a statistic—“Moran’s I”—that is so ubiquitously used
in geography tomeasure spatial structure in a dataset that it has become almost
interchangeable with the concept of spatial structure in that field. This explainer
assumesmath-major background in some places, but we hope it is still accessible
at a high level for all readers. We begin with a little bit of history.

BACKSTORY

Though P.A.P. Moran developed it slightly earlier, the statistic calledMoran’s Iwas
brought into geography during the rise of spatial analysis, a subdiscipline that
emerged during the late 1940s. Before that turn, geography as a university disci-
pline had been framed as a study of places and regions, with an emphasis on de-
scriptionandcharacterization. AfterWorldWar II, universities became increasingly
entangled with what Eisenhower had famously dubbed the “military-industrial
complex,” which led to increased research emphasis in areas connected to defense,
planning, and decision science. This brought a so-called “quantitative revolution”
to geography, amongmany other domains.

By the 1950s, with a boost fromRed Scare politics, a newmuscularlymathematized
toolset had pushed cultural and Marxist geography to the margins, sometimes
seeing geography departments entirely eliminated in the course of postwar mod-
ernization. In the 1970s, the pendulum began to swing back, and critiques of
the spatial analysis framework—as reductive, politically, and culturally discon-
nected, and too far from the more descriptive geography of the early twentieth
century—becamemore audible. But by then, the rise of computing meant that
the calculational spirit of spatial analysis was fairly entrenched. Metrics like I,
which were developed tomeasure the degree of spatial patterning in data, could
now become instantly accessible in spatial software. Now one could load a dataset
with population demographics for Chicago and, at the push of a button, learn that
I = .884 for Black population and I = .828 for Latino population, both very high
numbers in a citywhere randompopulation distributionswould yield scores closer
to zero. With this ease of use, the straight-up comparison of one score to another,
across different localities and time periods and contexts, became unavoidably
tempting.

What is a score like this trying tomeasure? ArthurGetis, oneof the standard-bearers
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of the spatial analysis school, cites the following definition:

Given a set S containing n geographical units, spatial autocorrelation
refers to the relationship between some variable observed in each of
the n localities and ameasure of geographical proximity defined for all
n(n −1) pairs chosen from n. [1]

This is essentially just a quantification of the common-sensemaxim called Tobler’s
First Law of Geography: Everything is related to everything else, but near things
are more related than distant things. As we will see, the Imetric attempts to take
this literally by measuring how much the values in a unit are like the values at
the neighbors. When the score was built to focus on literally adjacent units, as
in the early work of Moran and his contemporaries, it was sometimes called a
contiguity ratio. In its more general form, it was given the lasting name of spatial
autocorrelation inan influential conferencepaperbyCliffandOrd in1968, followed
by amonograph in the early 1970s [2, 3].

So the story of I is a story of a chalkboard-math intervention in spatial statistics
that caught on because of the academic politics of its era. Just as the need to prove
geography’s mathematical bona fides was starting to fade, the rise of computers
made it easy to crunch numbers on larger and larger datasets, keeping I alive for
the next generation. And once a formula becomes a button to press, themeaning
of what it measures can fade away from the forefront of debate.

Below, we’ll turn back the clock and look at measurements of clustering (a.k.a.
segregation), poking themwith amathematical stick to see what we find.

WHAT IS SEGREGATION?

A classical problem in quantitative social science is to define ameasurement of
segregation that matches up with the ways that people talk about their communi-
ties. More precisely, given a geography with location data about a demographic
subgroup, the problem is to quantify howmuch the group is separated rather than
undifferentiated from the rest of the population in terms of residential patterns.

Figure 1: How interspersed or separated are the black and white colors—i.e., how segregated are these
cities? Segregation scores attempt to answer this quantitatively.

In Chapter 10, Chris Fowler talked about this question, and noted that geographers
think of this as amultiscale measurement problem—as Figure 1makes clear, the
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answer might depend on how the pattern falls against a chosen set of units. We’ll
develop that ideamathematically here.

(DIS)S IMILARITY ACROSS GEOGRAPHICAL
UNITS

One approach is to demarcate the geography into smaller units and analyze the
demographics on these units. For instance, we can divide up a city into its census
tracts and look at demographic population proportion by tract. Suppose the units
are numbered 1 through n, and we want to study the population of a group B
relative to the total population. We can denote the number of B-type people and
the total population of unit i as bi and pi , respectively, and write the totals for the

large geography as B =
n∑

i=1
bi and P =

n∑
i=1

pi . Let’s write ρi = bi /pi for the share of B

population in unit i and ρ = B/P for the global ratio. Then, if the local population
shares ρi are the same for all i , and therefore equal to the global ratio ρ, we would
declare the city completely unsegregated at the scale of the units we have chosen.
But if there is one part of the city where the local ratio is far higher and another
part of the city where it’s far lower, that sounds segregated.

Black population by tract Hispanic/Latino population by tract

Figure 2: These histograms showhow theBlack population (left) andHispanic/Latino population (right)
are distributed across the 853 census tracts in Chicago. There are over 200 tracts that are more than
90% Black, but no comparably large number of heavily Latino tracts.

Reasoning this way, we can define the dissimilarity index by comparing bi /pi to
the global ratio B/P in each unit, which turns out to be equivalent to comparing
bi /B to pi /P . We define:

D = 1

2

n∑
i=1

∣∣∣∣bi

B
− pi

P

∣∣∣∣= 1

2ρ

n∑
i=1

pi

P
· ∣∣ρi −ρ

∣∣ .

That means a geographical unit makes no contribution to dissimilarity if the pop-
ulation share in that unit, ρi , is the same as the share in the whole geography, ρ.
But if one unit has very different population proportions than the region overall, it
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contributes significantly to the overall dissimilarity.1,2

Wecanwrite thepopulationshares inanordered list, or vector;wecan thensubtract
off the average to record howmuch each unit deviates from the overall average.(

ρ1,ρ2, . . . ,ρn
)−→ (

ρ1 −ρ, ρ2 −ρ, . . . , ρn −ρ
)

.

If we call this deviation vector x = (x1, . . . , xn), so that xi = ρi −ρ, then we see that
dissimilarityD can be interpreted as the averagemagnitude of deviation—it begins
with the average of the |xi |, weighted by the population of each unit. (Then there’s
a normalization by a factor out front.)

For example, let’s consider Black population in Chicago, according to the 2010
decennial census. There are 853 (populated) census tracts in the city, and we
can make a vector of length 853 recording the Black population share by tract.
The citywide Black population was 32.2%, so we can subtract off .322 from each
coordinate to get our deviation vector. We compute D = .54 for Black population.
The Hispanic population share citywide is .288 and D = .45. If you rescale these to
get dissimilarity on a zero-one scale, you’d see that the Black population is scored
byD as having roughly 80% of themaximumpossible dissimilarity for a population
of that size, while the Hispanic/Latino dissimilarity is 63% of its maximum.

Youmight have noticed amajor limitation of dissimilarity for understanding seg-
regation: each unit is treated separately, with no spatiality taken into account, so
the scoremakes no distinction between a left/right split and a checkerboard (see
Figure 1). That’s not a great fit for how we talk about segregation, where the former
is clearly more segregated than the latter.

SPATIALIZ ING SEGREGATION

Next, we can treat the geography as a spatial network, recording the spatial relation-
ships by placing edges between the nodes when the units they represent are adja-
cent. Possibly the simplest networkmodel is an undirected graphG = (V ,E) where
the vertices correspond to geographical units (like the census tracts of Chicago)
and the edge set encodes spatial adjacency of units. We show Chicago as a dual
graph (a graph dual to the tracts) in the right column of Figure 3.3

1There is a large body of literature on the dissimilarity index. This expression for D matches the one
used in Frey andMyers [4]; an expression with a different normalization coefficient is cited inMassey
and Denton [5], where it is noted that the formulations have varied in the literature.

2More generally, the dissimilarity index allows us to compare any two populations B and C with an
exactly similar formula, with C in place of P. What is presented here is the special case that C is the total
population. For this case, let’s examine the scale or range of values for the above formalism. Consider
a group with population share ρ = B/P . It’s clear that the lowest possible dissimilarity would be D = 0
when every unit has ρ share. The highest possible would occur if some units (roughly ρn of them) have
share approaching 1 and the rest have share 0. With the normalization shown here, this yields D = 1−ρ.
That is, small populations can register as very segregated, but large populations can’t get a very high D
score. This is not crazy, as a reflection of howwe talk about segregation! But if you want to rescale to get
D ranging from zero to one, you would divide by 1−ρ.

3Just to fix terminology: we use “graph” and “network” interchangeably, and we use “node” and
“vertex” interchangeably, as is common in the literature.
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Figure 3: Demographics in spatial context: population share of minority group, deviation from average,
and dual graph. Green is above average, purple below average.

Now quantifying how much a subgroup is segregated is a question not only of
statistics but also of the graph structure (sometimes called the network topology).
The connectivity of the underlying graph determines to a large extent what kinds of
patternswill countas segregated. In this sense,meaningfulmeasuresof segregation
must not only account for fluctuations of ρi around its mean, but must also relate
to the structure of the underlying network.

Finally we can defineMoran’s I [6, 7]. If we start with any numerical values asso-
ciated with the nodes, such as the population shares ρi , Moran’s I returns a real
number, usually between −1 and 1. The standard interpretation is that values near
1 indicate extreme segregation, values near zero indicate no pattern, and negative
values flag a kind of “anti-segregation," where the units alternate between one
population subgroup and the other (as in a checkerboard). Just as before, we’re
going to start with a vector of population shares by unit and subtract off the average
to get a deviation vector. We’ll do one thing differently this time: we’ll assume that
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all we know is the share at each node, and not the total population. When we take
an average, we’ll have to do so weighting all nodes equally. This time, if (ρ1, . . . ,ρn)
is the share by unit, and β = 1

n

∑n
i=1 ρi is the average of these values, we get the

deviation vector xi = ρi −β. For census tracts in Chicago, for instance, this way of
averagingmakes fourpercentagepoints of difference: the averageBlackpopulation
in a census tract is β= .362 rather than the citywide ρ = .322 Black population share,
indicating that tracts with high Black percentages are relatively underpopulated.

Now suppose the graph/networkG has m pairs of adjacent units (i.e., the graph
has m edges) in all. Then we can define

I(x1, . . . , xn) = n

m

∑
i∼ j xi x j∑

i xi
2

where i ∼ j if spatial units i and j are adjacent. This is asking how the average
product of neighboring values compares to the average product of a value with
itself. Computing for the Black andHispanic population in Chicago, we get I= .881
and I= .825, respectively.

We can interpret I as looking for patterns in the locations where the x values are
positive or negative. To see why I detects patterns, think again about the left/right
configuration versus the checkerboard. If the units are chosen so that they have
solid, alternating colors (the checkerboard situation), each term in the numerator
will be negative (because xi and x j have different signs), making I negative overall.
In the left/right division, most terms will contribute positively to the numerator
because theywill have negative next to negative or positive next to positive,making
the expression positive overall. And if there is no pattern, we will tend to see a lot
of cancellation. So I is telling us whether there is a coarse pattern (positive), a fine
pattern (negative), or no pattern at all.

Compare that to dissimilarity values for Black and Latino population that were,
respectively, .8 and .63 of their max. So in a sense, these populations lookmore
segregated when you consider spatial patterns (via I) and not just the existence of
units with large deviation (via D).

I AS A SLOPE

There are two intuitive interpretations of I that bear mentioning. First, I is the
slope of the best-fit line relating the value at a node to the value at the neighbors
(which is called the lagged value).4

So if tracts are just like their neighbors except in a small transitional area, I ≈
1. If everything is the opposite of its neighbor, then there will be clusters in the
northwest and southeast corners of the scatterplot, and I≈−1. And if there are no
patterns at all, then the average of your neighbors will tend to be the same as the
overall average, nomatter what your value is, whichmakes the fit line flat, or I≈ 0.

Perhaps a few limitations of this approach are now visible. By just reporting the
slope of the fit line, it loses a great deal of information from the scatterplot (see

4This would be perfectly accurate for regular graphs, see [8].
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Figure 4: Moran scatterplots for the Black andHispanic population of Chicago—note that the projection
of theseplots to the x-axiswouldgiveback thehistograms inFigure 2. Segregation inChicago is captured
by the fit line being nearly diagonal: tracts tend to have neighboring tracts with similar demographics.

.

Figure 4 for scatterplots and lines of best fit for the Black and Hispanic population
of Chicago). It fails to adequately distinguish the bimodal distribution of Black
population inChicago,which ismuchmorecharacteristicof thewaywe thinkabout
segregation, from the less concentrated Latino population. Another drawback is
made clear by this way of visualizing the score: it’s going to give meaningless
answers for a very uniformly distributed population, because all the data points
will be in one small area of the scatterplot. When you fit a line through a small
ball of points, its slope does not have much meaning! So in the case of a very
unsegregated population, the score is more noise than signal, and in the limit
when the population is exactly even over the units, the score is undefined.

I VIA LINEAR ALGEBRA

There’s another ready interpretation of the I formula that sheds a lot of light on
what it’s doing, from amathematician’s perspective. Let A be the adjacencymatrix
of the graph: an n ×n matrix that has a zero in position i , j if the i and j units are
not adjacent, and a one if they are. Let x be the vector (x1, . . . , xn) of deviations from
the mean, as above. Then there’s a neat way to write the calculation in matrix
notation: I(x) = n

2m

(
xAxᵀ

xxᵀ

)
. Those who have some linear algebra background will

recognize this expression in parentheses as a Rayleigh quotient: it is exactly what
youmaximize orminimize to get the largest and smallest eigenvalues of A, and the
values of xwhere these occur are the corresponding eigenvectors.5 The study of
eigenvalues formatrices coming from graphs, like our adjacencymatrix A, belongs
to the kind of math called spectral graph theory.

5If the effect of A is to stretch a vector v by a factor λ, then λ is called an eigenvalue and v is called an
eigenvector—the list of eigenvalues is called the spectrum of A. Eigenvalues come up absolutely all over
pure and appliedmathematics.
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Amajor theme in spectral graph theory is to relate the connection structure of the
graphG to the eigenvalue spectrum of associatedmatrices. In particular, when the
graph is regular (same number of edges incident to every node), the eigenvectors
of A associated with the largest eigenvalues are known to capture latent cluster
structure in the data [9].6

This suggests that a population deviation vector xwill give a large, positiveMoran’s
I score precisely when it puts its positive and negative values into highly intercon-
nected graph clusters, which are often colorfully called “communities.”7 Back to
plain English: this segregation score maxes out when you can find two parts of
the graph that are relatively well connected internally but relatively separate from
each other, and your population groupmainly lives in one of these clusters. (See
Figure 5. Ever since Figure 1, we have wanted a score that can tell a checkerboard
from a left-right pattern, and nowwe’ve done it!)

Gridminimizer: I=−1.0247 Gridmaximizer: I= 1.0211

NC counties minimizer: I=−.59834 NC counties maximizer: I= 1.1034

Figure 5: Top: a 45× 30 grid-graph (n = 1350 vertices, m = 2625 edges). Bottom: the North Carolina
counties dual graph (n = 100, m = 244). By showing which x vectors have the highest and the lowest I
values, we are exploring themeaning ofMoran’s I. High I values detect clustering, butminimal I values
are less interpretable once we depart from the world of grids.

Aswe’ve seen, Imaximizers tend to concentrate the group’s population in a cluster,
and this remains true on a grid or a real-world graph like the counties of North
Carolina (Figure 5). On grid-graphs, for example, rectangular grids, the pattern

6In spectral graph theory, it’s more common to study eigenvalues of a relatedmatrix called the graph
Laplacian rather than the adjacency matrix; when the graph is regular of degree d , the Laplacian is
L = d I − A, so the spectrum of L is related to the spectrum of A by translation and reflection.

7Translating this into the related language of Fourier theory, the patterns that correspond to large
eigenvalues have low frequency, so theymay just have one negative area and one positive area, while
the ones for the low eigenvalues have a high frequency, whichmay correspond to fast oscillation from
positive to negative. Think of this as being like a sinusoid function that takes a long time to complete a
period (low frequency) versus another that oscillates rapidly (high frequency).
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minimizing I forms a checkerboard pattern. However, most dual graphs are not
bipartite (i.e., admittinganalternatingpattern). Theeigenvectorsof Awith smallest
eigenvalues may be hard to interpret, both on abstract graphs [10] and on the
irregular graph structures that come up in practice.

For our part, we conclude that it’s not advisable to read toomuch into negative I
values—which in any case are very rare inpractice for real-world demographic data.
And, more problematically for overall usability, we have no good plain-English
interpretation for intermediate values of I across graphs. That is, what does an
I= .6 residential pattern in one city or state have in common with an I= .6 pattern
in another? It’s not so clear.

SO. . . WHAT IS SEGREGATION?

This explainer has explored perhaps the twomost prominent metrics in the social
science literature for measuring clustering/segregation: dissimilarity andMoran’s
I. Both are very widely used, withD appearingmuchmore commonly in cross-city
comparisons in the popular press8 and I in technical work in GIS and in fields as
diverse as epidemiology, urban planning, and environmental studies [1].

As for the latter, we should look at how people actually useMoran’s I in the social
science literature. In the examples we have found, authors usually apply a kind
of significance testing for I to see if the answer is larger than you should expect
[11, 12, 13, 14]. That is, does the observed demographic data get a score indicating
that it is more segregated than would be expected under a “null model,” where
values are distributed at random according to a normal or some other distribution?
By comparing to randomized values on the same fixed graph, this kind of inference
controls for the role of graph connectivity. We explore these themes further in a
paper we recently wrote with ThomasWeighill [8].

Are there other ways to measure segregation? Of course! Many mathy readers
are probably itching to play around with or replace the definition entirely, such
as by using an idea like the probability that your neighbor belongs to your own
group—this family of ideas is called assortativity in network science, and it plays
out a bit differently than the two we saw here [15]. But we hope that this brief intro
models a few good practices: First, when it comes to metrics, an open-minded
mathematical inspection can give you insight into how best to use the scores (and
what to avoid!) and whether their meaning is stable across contexts. Also, and
crucially, to do good interdisciplinary work youmust engage the literature in other
fields than your home discipline, rather than thinking you’re painting on a blank
canvas.

As for our motivating question, “what is segregation?”, we think that looking hard
at the notions picked out by different metrics shows us that our shared intuitions
don’t fully specify an answer: both D and I leave something to be desired. So there
is still both conceptual andmeasurement work to be done!

8For just a few recent examples, check out two posts from the data blog 538 on diversity vs. segrega-
tion (fivethirtyeight.com/features/the-most-diverse-cities-are-often-the-most-segregated)
and partisan dissimilarity (projects.fivethirtyeight.com/republicans-democrats-cities).

https://fivethirtyeight.com/features/the-most-diverse-cities-are-often-the-most-segregated/
https://projects.fivethirtyeight.com/republicans-democrats-cities/
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