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Abstract
We show that the quasiparticle kinetic theory for quantum and classical
Calogero models reduces to the free-streaming Boltzmann equation. We rec-
oncile this simple emergent behaviour with the strongly interacting character
of the model by developing a Bethe—Lax correspondence in the classical case.
This demonstrates explicitly that the freely propagating degrees of freedom are
not bare particles, but rather quasiparticles corresponding to eigenvectors of the
Lax matrix. We apply the resulting kinetic theory to classical Calogero parti-
cles in external trapping potentials and find excellent agreement with numeri-
cal simulations in all cases, both for harmonic traps that preserve integrability
and exhibit perfect revivals, and for anharmonic traps that break microscopic
integrability. Our framework also yields a simple description of multi-soliton
solutions in a harmonic trap, with solitons corresponding to sharp peaks in the
quasiparticle density. Extensions to quantum systems of Calogero particles are
discussed.
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1. Introduction

The emergence of macroscopic fluid behaviour from the chaotic motion of microscopic parti-
cles is a truth universally acknowledged, whose mathematical derivation nevertheless continues
to present insurmountable difficulties. Aside from certain tractable classical cases [1] and a
handful of quantum examples [2], microscopic derivations of hydrodynamics remain beyond
reach at present. A significant conceptual advance in this area was the realization that large-
scale dynamics in a wide range of extended integrable systems [3, 4] could be reduced to
a kinetic theory of solitons [5—12]. This synthesis has created a powerful and increasingly
rigorous [13—16] tool for understanding the emergence of hydrodynamic behaviour in real-
istic models from microscopic first principles, that moreover yields excellent agreement with
state-of-the-art experimental results [17-19].

One experimentally important question that remains unclear, despite several recent related
studies [20—25], is the extent to which a kinetic theory of solitons continues to provide an
accurate description in the presence of integrability-breaking trapping potentials. From this
viewpoint, the family of Calogero-type models, which are integrable one-dimensional systems
that remain integrable in the presence of certain carefully chosen trapping potentials [26], are
natural objects of study. Moreover, their (zero temperature) hydrodynamics has been explored
in some depth [27-30].

In this paper, we develop a quasiparticle kinetic theory for Calogero models. We first derive
the kinetic theory of the quantum Calogero model using established thermodynamic Bethe
ansatz techniques [3, 4], showing that it reduces to a free-streaming Boltzmann equation. We
then obtain the kinetic theory of the classical Calogero model as a semiclassical limit of the
kinetic theory of the quantum model, following the analogous procedure for the Toda lattice
[31-33] (see also references [34—38]), which also turns out to be of non-interacting Boltz-
mann form. For the classical Calogero model, we explain this simple behaviour using the
Bethe—Lax correspondence proposed in previous work [31]. This provides an independent
check on the kinetic theory description and illustrates that the freely streaming degrees of free-
dom are not bare particles, as one might expect from the absence of velocity dressing, but
instead quasiparticles that can be identified with eigenvectors of the Lax matrix.

We then study the validity of the quasiparticle kinetic theory, as augmented by a naive
Boltzmann force term, in the presence of external trapping potentials. For the integrability-
preserving case of a harmonic trapping potential (also known as the Calogero—Moser model)
we find that this kinetic theory captures the finite-temperature dynamics to within numerical
accuracy, including non-trivial features such as perfect revivals and soliton excitations [30]. For
integrability-breaking anharmonic potentials, we again find excellent agreement with numer-
ics. This is attributed to an unusual robustness of integrability of the Calogero dynamics to
external trapping potentials. We close with some remarks on the dynamics of trapped quantum
Calogero particles.

2. Kinetic theory

2.1. Quantum Calogero model

Consider the N-particle, quantum (rational) Calogero model, with Hamiltonian

N
1 g
H= — —9? .- S— 1
Z D S (1)
i=1 i<j
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where we set h = m = 1 and g = a(a — 1) for some o« > 0. This model is integrable, and its
exact spectrum can be obtained from Sutherland’s method of asymptotic Bethe ansatz [39].
The two-particle phase shift is given by

@(k) = (o — 1) sgn(k), 2)

implying that the differential phase shift is
1
Ky = 7@'(k — k)= (a— Dik —K). 3)
7r

For states in thermal equilibrium with chemical potential ;2 and inverse temperature S, it fol-
lows by thermodynamic Bethe ansatz [40] that quasiparticle energies satisfy the Yang—Yang
equation

1 [~ £
=75 T H + B/ dk' Ky In(1 + e~ 7%, @

while the total density of states satisfies

o 1
it | O Kbl = 5 5)
S ™
with Fermi factors given by 6; = (1 4 e”%)~!. For the phase shift equation (3), different val-
ues of pseudomomentum k decouple. The Yang—Yang equation can thus be expressed as a
transcendental equation for 6, that fixes the occupied density of states p, = pi0k:
O 1
= . 6

O+ (=00 1+e/®/2m ©
1 Oy
S 2m L+ (a— DO

Px (7
For a = 0, equation (7) recovers the occupation numbers for free bosons, while for o = 1, it
yields the occupation numbers for free fermions. For other values of «, these equations describe
the thermodynamics of free anyons [41].

To proceed from thermodynamic Bethe ansatz to the generalized hydrodynamics of the
Calogero model, we require an expression for the quasiparticle group velocity on a given equi-
librium state [3, 4]. (Note that for the Calogero model, the kinetic theory description is expected
to be equivalent to a generalized hydrodynamics consisting of countably many hydrodynamic
equations, with no subtleties arising due to vacuum modes [42].) Recall that the derivatives of
energy and momentum for a quasiparticle excitation on a given equilibrium state with Fermi
factors {0 }rer satisfy

00
6;{ + / dk/ Kk,k’ek’e;(/ - k,

o0

o0 )
P+ / dK' Ky O p™ = 1.
For the differential phase shift equation (3), these reduce to
(1 + (o — Dbe, =k, 9
(14 (@ — DOYP™, = 1. (10)



J. Phys. A: Math. Theor. 54 (2021) 474001 V B Bulchandani et al

It follows that the quasiparticle group velocity in a given equilibrium state simply equals the
bare velocity:

u =€,/ p" = k. (11)

Thus the Bethe—Boltzmann equation for the Calogero model reduces to the free-streaming
Boltzmann equation,

Aupx + kOxpr = 0. (12)

Note that state independence of the group velocity equation (11) additionally implies that
its fluctuations vanish on equilibrium states, and hence that the Navier—Stokes correction to
equation (12) vanishes [11, 43]. This implies that the Calogero model is non-interacting in the
sense of Spohn [44], despite its singular inter-particle interactions.

2.2. Classical Calogero model

We now derive the thermodynamic Bethe ansatz and kinetic theory for the classical Calogero
model by passing to the semiclassical limit, adapting the analogous derivation for the Toda lat-
tice [31-33]. Our starting pointis the quantum Calogero model with Planck’s constant restored,
namely

( l_xj)z

N
-y - (ha)2+zh0‘(“‘1). (13)
i=1

The semiclassical limit is obtained by expressing the quantum TBA equations in terms of clas-
sical momentum p = %k, before taking 7 — 0 with ¢ = K« constant [45]. To obtain a finite
free energy in this limit, we define classical energies and chemical potentials

1 1
el =¢,+ 3 Inh/t, pt=p— 3 In /2. (14)

For non-zero 7, the Yang—Yang equation and dressing equations can be written exactly in terms
of p, as [31]

cl p2 cl 1 BGC]/
epzj_/i +E/ dPK/hp/hln(l—Fhf 7)) (15)
and
e, + / dp' Ky a0y /Wy = p, (16)
dr/ / dr/
P p+/ dp'Ky /10y /)P s =1 (17)

The classical total density of states satisfies 277!, = pd‘;,. In the limit 72 — 0, the phase shift
is given by

Kily = im Ky, = limhta— D(p— p) = £6(p = p). (1)

and the Yang—Yang equation becomes

=Ly —e Y, (19)
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Note that this is independent of the interaction strength, ¢. In fact, so are the dressing equations,
and read

(1 + 676621)6(:]; =p, (20)
(1 +e 9 = 1. Q1)

This reflects the fact that the leading asymptotic kinematics in the classical Calogero model
[46] is independent of ¢. However, the classical density of occupied states does depend on ¢,
and is given by

- L 1 1 1
pp = limpi6, =

= — 22
70 21 ] 4P ¢ 22)

Finally, we note that the classical dressing equations equations (20) and (21) imply an effective
velocity

vy=el /p" = p (23)

that is free-particle like. The resulting kinetic theory takes the form of a free-streaming
Boltzmann equation,

0,5y + pOupy = O, (24)

as in the quantum case.
In the presence of an external trapping potential, the naive modification of equation (24) by
a Boltzmann force term reads

Oipp + pOxpyp — V' (x)0,p, = 0. (25)

The regime of validity of this equation is not immediately clear, as the presence of an external
trapping potential is expected in general to break integrability and generate finite quasiparticle
lifetimes, ultimately invalidating any description based on a kinetic theory of quasiparticles.
This crossover time-scale for the onset of chaos, which depends on the initial condition, was
previously obtained for the classical hard rod model with integrability broken by a harmonic
trap [21].

However, Calogero-type models are unusual among integrable models because they remain
integrable in the presence of certain carefully chosen external trapping potentials. For the ratio-
nal Calogero model considered here, the known integrability-preserving potentials take the
form [47]

Vx) =ax* + bx> + x> +d, a,b,c,d € R. (26)

For this restricted class of potentials, the validity of equation (25) is more plausible. This result
also suggests a qualitative robustness of Calogero particles to integrability-breaking by generic
smooth potentials V(x), since approximating V(x) by the first four terms of a Taylor expansion
about any given point x = x will always yield an integrable model.

3. Bethe—Lax correspondence

The classical Calogero model exhibits a Lax pair formalism [47], just as for the classical Toda
model [48]. In previous work, it was noted that conserved quasiparticles in the Toda model

5
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could be understood as eigenvectors of the Lax matrix [31, 37]. In particular, it was found that
the equation of state for quasiparticle currents [31, 36] could be interpreted as a statement about
thermal averages of eigenvectors of the Lax matrix. It is natural to conjecture that a similar
correspondence holds for the classical Calogero model. We shall show that this is indeed the
case, and moreover, that the Bethe—Lax correspondence explains why the current density of
states takes the simple, non-interacting form

), = Ppp. 27)

3.1. From matrix models to Lax pairs: a reminder
It will be useful to recall that the classical Calogero model can be obtained from the
Hamiltonian reduction of a Hermitian matrix model [47], defined by the Lagrangian

1 S
L= 3 Tr(MM") — Tr V(M), (28)

where M is an N x N Hermitian matrix and V(M) is usually a polynomial function (the
potential). The equations of motion read

dm dA
= =A —— =FM 2
dr : & (M), (29)

where F(x) = —V'(x) is the force.

The SU(N) symmetry of the action means that one should be able to describe the dynam-
ics solely in terms of the eigenvalues of M. To this end, let U denote the dynamical unitary
transformation diagonalizing M:

M =U'XU, X = diag(xy,...,xy). (30)
Then the motion of M has a ‘radial’ and ‘angular’ part

d . .
M =U (X +iXx.A)U, iA=0U", (31)

i.e. where A is the Hermitian matrix generating the angular motion. Letting L denote the rotated
version of A,

d .
A=U'LU, &A =U' (L+i[LA]) U (32)
the equations of motion for M and A can be rewritten in terms of X and L as
X +iX,Al =L, (33)
L+i[L,A]l = F(X) G4
(note that we used UF(M)U' = F(X), which assumes that F(M) is analytic). To see how the
Calogero model emerges explicitly, we need to fix the ‘angular momentum’ associated with

the SU(N) symmetry. The conserved current is

J=—ilM,M]=J=0. (35)
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The Calogero model comes from choosing a traceless matrix with one-dimensional kernel
for J:

J=/lwvt =TI), ovlv=N. (36)
Then, since

J = —i[M,M] = U'[X,[X,A]|U, (37)
we have

[X,[X,A]] = UJU" = Luu' — 1), u:=Uw. (38)

Now the lhs has zero diagonal elements, so |u,~\2 =1, and we can set u; = 1. Then the
above equation implies A;; = in;z for i # j (x;j:=x; — x;). The diagonal elements are set by

utA = 0, so that we have

Aij = =60 xi” + (1= Sl (39)
ki

It follows from (33) that
Lij = 0y + (1 = 6. (40)
We have thus recovered the Lax pair for the classical Calogero model.

3.2. Statement of the correspondence

In the absence of an external potential, the force F(X) vanishes and the flow of the Lax matrix
is isospectral, i.e. its eigenvalues are conserved. The question then arises of how these con-
served eigenvalues relate to the conserved quasiparticle momenta in the classical Boltzmann
description, equation (24). As in previous work on the Toda lattice [31], we argue that these
quantities can be identified, and moreover that the eigenvectors of the Lax matrix are natu-
rally interpreted as quasiparticles, giving rise to a ‘Bethe—Lax correspondence’ between the
semiclassical Bethe ansatz and the spectral data of the classical Lax matrix.

Concretely, note that if V(M) = 0 in equation (29), then M = A is conserved and by SUN)
symmetry can be chosen to be diagonal:

A =diag(\p, ..., \y), A=0. (41)

Since L and A are related by the similarity transformation equation (32), it follows that {\;}Y_,
are the eigenvalues of L. Also, since L = UA U', we can directly identify the columns of U with
the eigenvectors of L, yielding the expressions

. d .
U= IMUL L) = XN, 3 ) = 1A), 42)
j

where the last identity follows from (31), as the ‘Schrodinger equation’ corresponding to the
unitary evolution U. It is also useful to define the spectrum of X as X|x,) = x,|x,).

We now claim that |);) corresponds to a quasiparticle with momentum J\;, which is delo-
calized in space as the ‘wavefunction’ | \;), i.e. has a distribution with weight |(x,|\;)|* at x,.

7
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Equivalently, we identify the density pp(x) with the local density of states of L (which we shall
call the empirical quasiparticle density) in the hydrodynamic limit:

py"P(x) = pp(x) in the hydrodynamiclimit, where (43)
N N

P () =Y ) |(xa AN [PE(x — x)3(p — A (44)
a=1 j=1

Equation (43) is the main result of this paper: it relates a microscopic configuration of the
Calogero model to a macroscopic description in terms of the quasiparticle density. In what
follows, we shall justify it with both analytical and numerical arguments.

3.3. Relation to thermodynamic Bethe ansatz

A first consequence of the Bethe—Lax correspondence (44) is that the density of states of the
Lax matrix, averaged over thermal configurations, is given by the solution of the classical
Yang-Yang equation, see equations (19) and (22):

pp=lim Zé(p A (45)

N,L—0o0
N/L= const =

where the bars denote thermal averages and the particles are assumed to be confined to a large
box of length L (this is necessary to define a thermal state, since otherwise the particles are
unbounded [47]).

Equation (45) can be checked analytically at zero temperature, at which the particles are
immobile (x, = 0) and form a lattice, x, — x, = (a — b)/p, where p = N/L is the density. In
the N — oo limit, the Lax matrix is a circulant matrix and can be diagonalized by Bloch plane
waves in the Brillouin zone [—7p, Tp). As a result, we obtain a constant density of states in
the interval [—£pm, £p], in agreement with the prediction of equation (22) (with § — co and
suitable chemical potential).

At non-zero temperature, a proof of (45), as was achieved for the particle density of states
for the Toda lattice by analogy with Dumitriu—Edelman random matrix ensembles [35], seems
beyond reach at present. Nevertheless, we can check this equation numerically by generating
thermal states from classical Monte Carlo simulations and diagonalizing the L matrix. We
observe good agreement with numerics at various non-zero temperatures and densities. See
figure 1 for detailed methods and a sample of results.

3.4. Boltzmann equation

A further important check of the Bethe—Lax correspondence is to show that the empirical quasi-
particle density p;"P(x) (44) satisfies the Boltzmann equation (25), subject to an appropriate
approximation in the hydrodynamic limit.

To this end, we rewrite the empirical quasiparticle density as

emp(x) Tr [5(p —L)d(x — X)],
where §(p — L) = [(p ie—L)y ' —(p+ie— L)—l]€_>0+, (46)

and similarly for 6(x — X), by the Stieltjes inversion formula. Expanding the matrix inverses at
complex infinity, the above formula can be viewed as a resummation of the moments Tr[X"L™].

8
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1
0-10 T=10,p=1

Pp

0 10
P

Figure 1. Thermal quasiparticle density from the Lax matrix (markers) vs predictions
from thermodynamic Bethe-ansatz (TBA), equations (19) and (22). For the Lax matrix
data, we confine N = 256 particles in a box of length L = N/p (p = 1 and 1/2) and gen-
erate 10* thermal states of temperature 1/3 = 1 and 10 using the standard Markov-chain
Monte Carlo method. We diagonalize the resulting Lax matrices and plot the averaged
density of states (normalized so that f dpp, = p). To obtain the TBA prediction, we
solve the Yang—Yang equation numerically and adjust the chemical potential ' to
match p. We set £ = 1 for all comparisons.

To calculate the time derivative, it is simplest to work with unrotated operators equation (29)
and rotate back after differentiation. This yields

OTil(p— L' x=X)"1=Trl(p— L) 'FX)(p— L)' (x —X) 7]
+Trl(p— L) ' (x = X) 'Lix —X)7']
= Trl(p — L) ?FX)(x — X)™']
+ Trl(p— L)' L(x — X) ] 4+ O(IX, L))
= =0, Trl(p— L)' FX)(x — X)7']
— O Trl(p— 1)~ 'L(x = X)'1 4+ O(X, L]). (47)

In the second line, we invoked a semiclassical approximation consisting of ignoring the com-
mutator [X, L] (and, assuming F is analytic, [F(X), L]). We shall discuss the physical inter-
pretation and validity of this step below. Assuming its validity for now and substituting into
equation (46), we have

APy (x)

X —8, Tr[8(p — L)F(X)(x — X)] — 9, Tr[6(p — L)Lé(x — X)] + O([X, L])

—(pOx + F(x)9p)p, ™ (x) + O(X, L]). (48)

We thus conclude that the empirical density satisfies the Boltzmann equation with the naive
forcing term, assuming the semiclassical approximation.

9
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We now discuss the meaning of this approximation, and provide some arguments in its
favour. First, we focus on the case without a trap, F = 0 (the trapped case will be discussed in
section 4 below). With no trap, we can show that this approximation captures the exact time
evolution of the first and second moments in position of the empirical quasiparticle density.
More concretely, the moments are defined as

(x"), = / dx x" p"™P (x). (49)

If p™(x) satisfies the non-interacting Boltzmann equation, we would expect %(x">p =
pn{x"~") . Starting from the definition (44) and using the equations of motion equations (33)
and (34), it is not hard to check that this is indeed the case for n < 2:

%(x">p:pn<x"71>, n<2, F=0. (50)
In particular, 0, (x) »= pé is the current density, so the above identity for n = 1 implies the
current equation of state (27) for homogeneous states. Usual arguments then imply that the
forceless Boltzmann equation equation (24) is satisfied if the empirical quasiparticle density
varies slowly in space and time: the error term O([ X, L]) corresponds to subballistic corrections.
To see this more explicitly, consider the n = 3 moment (similar arguments apply for n > 3,
though their complication increases with n):

9/(x*), = 3ppz + Do, (51)
D, = Tr[6(p — DIX, LIX] (52)

N
=il 3(p — AD(Njlu) (ulX|\j) — ib(x) . (53)

J=1

where |u) = (1, 1,...,1)T. On the right-hand side of (51), the ballistic term p,_, = Tr[d
(p— L)X '], while the correction D, involve (n — 2) powers of X. Now, in a system with
N > 1 particles at order 1 density, || X|| ~ N as an operator; hence prima facie, D, is of order
1/N compared to the ballistic term. There is however a caveat: the vector |u) has norm v/N.
Nevertheless, its overlap with quasiparticle wavefunctions |(u|A)|? is large (~N at most) only
if the wavefunction is delocalized; for localized wavefunctions, the overlap is 1/N smaller, of
order unity. In the latter case, the term involving |u) is also subleading in the hydrodynamic
limit.

Thus the semiclassical approximation relies on the localization of quasiparticle eigen-
states. (This is after all expected, since by basic quantum mechanics [X, L] measures the
position uncertainty of the quasiparticle eigenstates.) Now, at nonzero temperature, the ther-
mal ensemble of Lax matrices L closely resembles a power-law random matrix ensem-
ble studied recently [49], for which it is shown that most eigenstates are localized alge-
braically: |(x,|A;)|* ~ |x, — x| 77 for v ~ 2, where x is the localization centre of the wave-
function. On the other hand, as T — 0, the randomness disappears and the quasiparticles
delocalize. We therefore expect the most stringent dynamical tests of the Bethe—Lax cor-
respondence to be quenches from zero/low temperature states, in the presence of spatial
inhomogeneity.

We now offer some more speculative remarks on the validity of the non-interacting Boltz-
mann description equation (48). First, notice that the commutator correction to the n > 2

10
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1.0

5057
QU

01 ; . = ; ; ; ; ; ;
—-500 0 500 =500 O 500 =500 O 500 =500 0O 500
T x T x

Figure 2. Time evolution of particle and energy density starting from a two-reservoir
initial condition. Left reservoir: N = 256 particles confined to [N, 0] at 7 = 1. Right
reservoir: 256 particles confined to [0,3N/2] at T = 2. The numerical data (circles) is
averaged over 400 thermal samples. The analytical prediction (solid curves) is obtained
from the TBA equation and the free Boltzmann equation, see equation (57). We set ¢ = 1
for all plots.

moment equations, as in equation (53), while subleading in N also scales with the interac-
tion strength ¢. Thus at the level of hydrodynamics, the Calogero interaction strength controls
the strength of higher-order corrections to the non-interacting Boltzmann description. In the
standard Calogero model, the interaction strength ¢ is taken to be independent of N. How-
ever, equation (53) suggests a possibility of accessing different dynamical scaling regimes by
varying the scaling of ¢ with N.

We next note that although the empirical distribution function does not, in general, satisfy
the non-interacting Boltzmann equation exactly, there is another distribution function,

N
P =D 60 — (X)NS(p — Ay, (54)
j=1

where (X); = (\;|X|);), which does satisfy equation (24) exactly when F = 0, as a conse-
quence of the microscopic equations of motion equations (33) and (34). On the other hand,
equation (54) is somewhat unphysical, in the sense that it is non-local in the bare particle
coordinates x,. Nevertheless, a comparison with the empirical density of states equation (43),
together with the identity |(x,|\;)|* = 9(X);/Ox,, suggests the identification

= 9(X);
S~ (X)p~ > %5@ — xa). (55)
a=1 a

This conjectural formula relates the local density of a single quasiparticle to the local densities
of all bare particles. Its Jacobian form is reminiscent of the idea that quasiparticle dressing in
integrable systems is equivalent to a nonlinear coordinate transformation from free particles
[5, 9, 50-52]. By the previous discussion, we expect that the error in equation (55) is also
controlled by the degree of quasiparticle localization, i.e. the magnitude of the commutator
[X, L]. However, since equation (54) does not generalize readily beyond harmonic trapping
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potentials (unlike the more approximate, but more physical, empirical quasiparticle density),
we shall not pursue its investigation further in this paper.

3.5. Two-reservoir initial condition

To conclude this section, we test the kinetic theory of p}™"(x) numerically in a standard ‘two-
reservoir’ setting. For this purpose, we prepare two different equilibria confined to the boxes
[—A, 0] and [0, B] respectively (usually the reservoirs are considered semi-infinite; yet such
a limit is hard to attain with the Calogero long-range interaction). At ¢t = 0, the particles
are released. We then measure the time evolution of particle and energy density under the
Calogero dynamics (with F' = 0). We note that the long-range Calogero interaction means that
an a priori definition of the energy density is not obvious. We define it using the Bethe—Lax
correspondence, as

1
e = [ a5, (56

The numerical data are then compared with the non-interacting kinetic theory prediction

(x+A)/t x/t
p(x, 1) = / dpp(p) + / dp pr(p), (57)
x/t (x—B)/t

where p; and py are the quasiparticle density of the reservoirs, obtained by TBA. An excellent
agreement is found, see figure 2. This is not trivial given that the temperatures of the reservoirs
are low enough that the localization length of the quasiparticle wavefunctions (at t = 0) is
about half the box size. Even so, the semiclassical approximation appears to be robust.

4. Trapped dynamics

We argued above that the quasiparticle density of the Calogero model, defined via the
Bethe—Lax correspondence, satisfies a non-interacting Boltzmann equation even in the pres-
ence of trapping potentials. In this section, we test the non-interacting Boltzmann description
against microscopic simulations of dynamics in harmonic and anharmonic traps. We find
excellent agreement in all cases, even for complicated nonlinear phenomena such as soliton
dynamics in the harmonically trapped Calogero—Moser model [30].

4.1. Harmonic trap

As recalled in section 2.2, the classical Calogero model remains integrable in the presence of
a harmonic trapping potential, V(x) = Jw?x?. In the matrix model formulation equation (29),
the corresponding potential reads V(M) = %sz 2. Thus F(M) = —w*M and the variable

0 =wM —iM, (58)
simply rotates:
Q = iwQ = 0(1) = ' Q(0). (59)

From periodicity of Q, it is immediate that the dynamics of the harmonically trapped Calogero
model exhibits ‘perfect revivals’ at each trap period, T = 27 /w.
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Figure 3. Top panels: the empirical quasiparticle density in a harmonic trap with fre-
quency w' = 1.5, evolving from an initial condition consisting of a thermal cloud of 256
particles at temperature 7 = 1 and confined to a harmonic trap with frequency w = 1.
The dashed curves show an ellipse that rotates with angular velocity w’. The bottom pan-
els compare the measured particle density (circles, average of 200 thermal samples) to
the naive kinetic theory prediction (solid curves). We set ¢ = 1 for all plots.

Intriguingly, this property is shared by the naive kinetic theory equation (25), which for a
harmonic trap takes the form

8tp~p + paxﬁp - Wxapﬁp =0, (60)
and has an exact solution by characteristics, with characteristic curves given by

d d
X =D &p = —Wwx, (61)

de
corresponding to uniform rotation of the distribution function p with frequency w on constant-
energy ellipses, p* + w?x? = 2E.

The Bethe—Lax correspondence provides a direct relation between the Boltzmann equation
equation (60) and the microscopic motion. Indeed, it predicts that the empirical quasiparticle
density p°"'P rotates in the simple manner described above. In section 3.4, we showed that p®™
satisfies equation (60) under the semiclassical approximation but only discussed its justification
in the case F' = 0. For a harmonic trap ' = wX, the situation is similar. The naive kinetic theory
(60) again yields the exact time evolution of the lowest moments, but one must now consider
moments in both x and p. Indeed, defining

(x"p") = /dx dpx"p" ;" (x) = Tr[X"L"], (62)

the equations of motion (33) and (34) imply that

dit <x11pm> _ n<x1171pm+l> — mw <x11+lpmfl> , n < 2’m < 2’ (63)

which can also be derived by assuming p7"?(x) satisfies (60). For higher moments, the above

equation still holds modulo a correction which has a commutator [X, L] and n + m — 1 powers
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Figure 4. Left panels: time evolution of the empirical quasiparticle density of a two-
soliton solution (64) and (65), with/ = 1,w = 1,71 = —zp = 0.251247i, N = 101. The
dashed line rotates with angular velocity w. The solitons appear as peaks in the (x, p)
plane, rotating with angular velocity w. Right panel: the evolution of particle positions
of the same solution, over a period. Note that the trajectories do not cross each other; the
solitons are a collective phenomenon involving all particles.

of X and L, which is one less compared to the rhs of (63). The argument then proceeds as in
the flat case, provided one observes that in presence of the trap, both X and L have eigenvalues
of order /N typically (recall that in contrast, L ~ O(1) and X ~ O(N) typically in the flat
case). Hence we expect finite-size effects to be more pronounced in the presence of a trapping
potential.

We now test and illustrate the Bethe—Lax correspondence with two numerical examples.
First, we consider a quench in which a Calogero—Moser gas is prepared at low temperature
T in a trap of frequency w, and at ¢ = 0, the trap frequency is quenched to w’ # w. We then
compute the empirical quasiparticle density at different times (by solving the dynamics using
equation (59) and diagonalizing the Lax matrix). Plotting this in the (w'x, p) phase space, we
can clearly see that the empirical quasiparticle density rotates simply as predicted by the naive
kinetic theory, see figure 3. We also verify that this picture yields quantitatively correct predic-
tions for the local particle density, despite the pronounced finite-size effect (in particular near
the edge of the distribution).

As a more spectacular example, we consider a two-soliton solution, revealed in reference
[30]. The initial conditions for the two soliton solution are chosen as follows. We choose two
dual complex variables z; and z,. The initial conditions are chosen such that the following
conditions are satisfied:

N
1 14 1 1 1 1
wx;j =1/ Z —( + —+ + >
i — Xk 2 Xj— 21 X;— 21 Xj—22 Xj— 22

k=10
(64)
14 1 1 1 1
p= L ( N S ) . (65)
’ 2 Xj— 21 X;j— 21 Xj—22 Xj—22
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Figure 5. Left: non-interacting Boltzmann prediction for the particle density. Middle:
comparison between hydrodynamic and microscopic predictions for the mean squared
width of the packet. Right: microscopic evolution. Model parameters are set to N = 32,
{=1.

For fixed z; and z,, equations (64) and (65) are non-trivial to solve. However, one can employ
a damping equation [26, 53] that leads to a potential minimization problem. Once we find
the initial condition for the two-soliton case, the subsequent evolution can be performed via
the matrix formulation given in equation (59). We then numerically compute the empirical
quasiparticle density of the two-soliton solution and plot it in figure 4. Remarkably, the solitons
manifest themselves as sharp peaks on either side of the disk distribution (which corresponds to
the zero-temperature state in a harmonic trap). The peaks appear near the edge of the disk and
rotate in phase space as if they were free particles in the harmonic potential, never encountering
one another.

4.2. Nonintegrable anharmonic traps

A distinctive feature of the conjectured Bethe—Lax correspondence is that it can be formulated
for general anharmonic traps, even non-integrable ones: the empirical quasiparticle density,
defined in equation (44), should satisfy the non-interacting Boltzmann equation equation (25).
By the arguments in section 3.4, this statement is true under the ‘semiclassical approximation’
in which commutators of the form O([X, L]) are neglected. However, the dynamics of X and
L depend on the shape of the potential under consideration, in such a way that it is difficult to
formulate general analytical arguments beyond the harmonic case.

We therefore proceed directly to a numerical test. To this end, we prepare a zero-7 cloudin a
harmonic potential V(x) = %xz and then quench to an anharmonic potential, V(x) = 2v/1 + x2,
that is not expected to preserve integrability. We see that the non-interacting Boltzmann
equation equation (25) successfully captures the relaxation dynamics, which therefore consists
solely of single-(quasi)particle dephasing on accessible time-scales (figure 5).

The performance of the simple kinetic theory in an integrability-breaking trap is intrigu-
ing. On general grounds, we expect the agreement to break down eventually as the dynamics
becomes chaotic [21]. However, for the trapped Calogero model we were unable to observe
the onset of chaos on accessible time-scales. This is probably due to the robustness of the
Calogero model’s integrability to fourth-order trapping potentials (cf the discussion around
equation (26)), which suggests a robustness to trapping potentials in general, compared to
other integrable models. This expectation is borne out by numerical simulations of Poincaré
sections for the two-particle Calogero model in an integrability-breaking trap compared to the
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Figure 6. Top panels: orbits of the recurrence map in the Poincaré section defined by
E =10 and p; = —p,, in a system with two particles in an external potential V(x) =
Vx2 + 1 and interacting with potentials 1/(x; — x»)* (Calogero, left) and e~ *17%2)
(Toda, right). Different colours are assigned randomly to trajectories to distinguish them.
Integrability of the Toda interaction is broken by the trap: the black points represent a
single chaotic trajectory that is ergodic in a large portion of the phase space. Meanwhile,
that of the Calogero interaction seems robust. Bottom panel: growth of the separation
10x]|, = |x1(n) — x| ()| + |x2(n) — x5(n)| between a pair of nearby orbits (x; and x},
separated by an initial distance ||6x||o = 10~%) under either dynamics. In the Toda case,
the orbits start from x;(0) + x2(0) = 0.1, x;(0) — x,(0) = —0.5 in the chaotic basin, and
exhibit exponential growth with a positive Lyapuov exponent. In the Calogero case, we
found no such chaotic trajectory after an exhaustive search. The illustrated orbit starts
from x;(0) + x,(0) = 0.1, x;(0) — x,(0) = 3.

two-particle Toda chain in such a trap, see figure 6. It is also consistent with studies of the Toda
chain in power-law pinning potentials [54, 55], which exhibit a crossover to normal diffusion
at large system sizes, at variance with our observations of purely ballistic evolution for the
Calogero model.

5. Discussion

We have derived the kinetic theory of Calogero quasiparticles on a line, which reduces to the
non-interacting Boltzmann equation. We showed that this simplification could be understood
from an emergent quasiparticle description in terms of eigenvectors of the Lax matrix. The
resulting expression for the empirical single-particle distribution function, equation (43), yields
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excellent agreement with the non-interacting Boltzmann equation on accessible time-scales,
even in the presence of integrability-breaking trapping potentials.

One point which merits further comment is the long-ranged character of interactions in the
Calogero model. At first sight, such long-ranged interactions render the conserved charges
and currents of the Calogero model non-local [44], which calls into question the validity of
a local, hydrodynamic description. At the same time, the Calogero model is exactly solv-
able using the asymptotic Bethe ansatz [56], suggesting that the scattering behaviour of its
quasiparticles is much the same as for short-range-interacting integrable models. Indeed, the
validity of hydrodynamics for the Calogero model is most easily justified in the quasiparti-
cle language: according to the Bethe—Lax correspondence presented above, dynamics in the
Calogero model is captured by quasiparticles that are localized in space at non-zero tempera-
ture, despite the long-ranged interactions between bare particles. In this sense, the quasiparticle
kinetic theory of the Calogero model is no different from that of a short-ranged integrable
model.

We noted earlier that there is a mature theory of the zero-temperature (‘superfluid’) hydro-
dynamics of quantum and classical Calogero models based on collective field theory [27-30].
When subballistic derivative corrections to the latter are neglected, it matches the zero-
temperature limit of our results. We anticipate that a systematic treatment of the commutator
corrections to the free Boltzmann evolution in equation (48) (or perhaps a first-principles
treatment of equation (55)) would recover these subballistic derivative corrections at non-
zero temperature. Another interesting common feature between our analysis and the collective
field theory of Calogero models is that the latter remains integrable in arbitrary external trap-
ping potentials [57], just like the non-interacting Boltzmann equation equation (25). Finally,
a natural extension of our work would be to develop a kinetic theory for the broader family
of compactified Calogero—Sutherland models with trigonometric or hyperbolic interactions,
which inherit the property of remaining integrable in suitably chosen trapping potentials [26].
It seems plausible that a Bethe—Lax correspondence analogous to equations (44) and (45) holds
for all of these models.

Our results demonstrate that the integrability-breaking effects of external trapping poten-
tials, as arise in present-day experiments on ultracold Bose gases [17, 19, 58], can be rather
subtle. For example, the absence of diffusion on the Navier—Stokes scale for both the quantum
and classical Calogero models seems to imply that the mechanism of diffusive thermalization
proposed recently for trapped integrable gases [23, 25] does not apply. A related question is
whether the trapped Calogero model exhibits a finite ‘time to chaos’, that was observed for
systems of trapped classical hard rods [21] but appears to be numerically inaccessible for the
Calogero model, even in traps that are expected to break integrability. Both findings suggest
that the tendency to chaos for trapped Calogero particles, quantum or classical, is remarkably
weak. Thus identifying the signatures of broken integrability in the Calogero model might
pave the way towards a deeper understanding of broken integrability in the quantum Newton’s
cradle [58].
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