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Abstraci—The fast development of object detection techmiques has
attracted attention to developing efficient Deep Neural Networks (DNNs).
However, the current state-of-the-art DNN models can not provide a
balanced solution among accuracy, speed, and model size. This paper
proposes an efficient real-time object detection framework on resource-
constricted hardware devices through hardware and software co-design.
The Tensor Train (TT)} decomposition is proposed for compressing the
YOLOvS model. By unitizing the unique characteristics given by the TT
decomposition, we develop an efficient hardware accelerator based on
FPGA devices. Experimental resulis show that the proposed method can
significantly reduce the model size and improve the execution time.

Index Terms—Deep learning, FPGA, Tensor Train, Energy Efficiency

[. INTRODUCTION

Nowadays, from companies to academics, researchers across the
world are interested in developing Deep Neural Networks (DNNs)
due to their incredible feats in various applications, such as image
recognition, playing complex games, and large-scale information
retrieval such as web search. Among them, object detection as the
major computer vision task has been attracted with more research
efforts in the computer vision field, including event detection, image
segmentation, action detection, and image annotation. These tasks are
widely emploved in autonomous robotics, UAV obstacle avoidance,
and robot vision that demand high accuracy and low latency DNN
runmning on resource-limited electronic devices.

However, the current DNN can achieve a strong representation and
consume more resources simultaneously. For example, the ResNet
consists of 152 layers with more than 60 million parameters [1].
Consequently, it requires more than 20 (GFLOPs) with an input
images (224 x 224 resolution). Obviously, it keeps us far away to
fulfill the demands of running high accuracy and low latency DNN
on resource-limited electronic devices. To achieve the goal, there
are two approaches have been proposed in the past decades [2]:
two steps architecture [3]-[6] and one step [7]-[10] architecture.
The one-step architecture DNNs mainly focus on balancing accuracy
and latency in opposite to the two-step architecture. Among research
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efforts in one-step architecture DNN, You Only Look Once (YOLQO)
architectures [2], [7]-[11] have collected more attention due to its
promising performance. Although these efforts significantly improve
accuracy and latency, these types of single-shot detector [2], [9]-[12]
still requires intensive computation on compute-intensive electronic
devices to achieve acceptable accuracy.

There are intensive research efforts on reducing machine learning
model’s parameters and computations [2], [13]-[15]. Among them,
model compression techniques have drawn more attention than other
methods due to their effectiveness to reduce computational complex-
ity and lessen the memory size [2], [13]-[19]. Although Tensor Train
(TT) decomposition is a promising mathematical tool to decompose
a large tensor to a group of smaller tensor cores, the current TT
decomposition for the latest YOLOvS architecture is still unexplored.

In this paper, we first attempt to develop a TT decomposition
method for YOLOvS5. Then, we proposed a hardware accelerator
design employing software and hardware co-design methodology.
Specifically, the main technical contributions are as follows:

« We have developed a novel approach to enable tensor train
decomposition to be applied to the YOLOvS framework. Com-
pared with other compression work, this paper firstly attempts
to marriage the TT-decomposition techmique with the latest
YOLOvS.

» To accelerate the proposed TT-YOLOvS framework, we propose
a novel specialized hardware architecture based on the unique
characteristics of tensor train decomposition. The hardware
accelerator based on an FPGA device is designated to take
advantage of the hardware-friendly TT-YOLOv5 framework we
proposed fully and achieves high computation efficiency.

The remainder of this paper is organized as follows: In Section II,
we expound the related background. Section IIT presents the TT-
decomposition algorithm for YOLOvS5. In Section IV, we introduce
the proposed hardware accelerator using software and hardware co-
design methodology. Section V shows experimental results using the
proposed method to analyze software and hardware performance.
Finally, Section VI concludes the manuscript.

II. RELATED WORK
A, Object detectors

In the past decade, target detection using deep learmning has been
developed rapidly. LeCun et al. [20], [21] firstly proposes a DNN



classification method based on document recognition and extends the
ability to detect objects on handwritten images. In general, DNN-
based object detectors contain two main categories: (i) two-stage
detectors and (ii) one-stage detectors.

Two-stage detectors Two-stage detectors adopted two stages in
their architectures: extraction of Region of Interest (Rol) and classi-
fication. In the classification stage, classification and bounding box
regression are derived out after extracting the Rol. The representative
two-stage detectors are R-CNN [4], Fast R-CNN [3], and Faster R-
CNN [22]. R-CNN [4] is the first network using a Support Vector Ma-
chine (SVM) to perform classification tasks after CNN extracting the
features. The depth features extracted by the CNN are used to replace
traditional HOG [23], SIFT [24] features, which greatly improve the
model efficiency. Some other efforts have been applied to achieve
the great improvement both precision and detection performance,
such as fast R-CNN and faster R-CNN. For fast R-CNN [3] using
softmax to replace SVM for classification, it is noted that the fast R-
CNN can efficiently classify object proposals without additional space
for storing intermediate features. In particular, faster R-CNN [22]
employs a Region Proposal Network (RPN) that stores all detection
network features to produce an efficient region proposal. Although
these two-stage detectors have achieved the highest accuracy, the
main drawback is the high calculation and long inference time
according to their working mechanism.

One-stage detectors Using the CNN as a feature extraction
network, one-stage detectors regress the position coordinates and
category probability of the target object directly without computing
the region proposal. Nowadays, SSD [12] [25] , YOLO [7] [8] [9]
and RetinaNet [26] have emerged. YOLO can comprehensively regard
the whole image, including content information. Consequently, it
can decrease the detection error. YOLOv1 [7] employs a standard
architecture to extract features from the whole image, and then to
predict bounding boxes and categories. To improve speed and preci-
sion, YOLOv2 [8], YOLOV3 [9], YOLOv4 [10], and YOLOVS [11]
are proposed. However, the one-stage detector demands GPUs to
achieve high-performance computing. Moreover, it takes advantage
of an optimized trade-off between accuracy and speed.

Lightweight detectors Lightweight object detectors are proposed
for overcoming these issues. SSDlite [27] is proposed to implement
SSD on mohile devices by employing an inverted residual structure
and lightweight convolutions to extract features. YOLO-lite [28] is a
faster and smaller YOLO model based on YOLOv2, YOLObile [2]
has proposed an efficient framework on mobile devices through
compression-compilation. Co-design based on YOLOv4. Some other
works, such as Tiny-DSOD [29] employs a Deeply Supervised Ob-
ject Detection (DSOD) framework, depth-wise dense block (DDB),
and feature-pyramid-network (D-FPN) to adopt resource-constricted
devices as its computing devices. However, the accessibility of the
Tiny-DSOD to a resource-constricted device leads to a significantly
reduced accuracy.

B. You Only Look Once (YOLO) Network v3

You Only Look Once (YOLO) network is an advanced real-time
object detection system. As technology evolves, YOLO model keeps
iterating to become faster, lighter, and better. Now, the YOLO series
contains YOLOv1 [7], YOLOV2 [8], YOLOV3 [9], YOLOv4 [10],
and YOLOvS [11]. As the latest version of YOLQ series, YOLOvS
network [11] is developed for a high accuracy and fast inference
speed framework. Specifically, it can reach 140 frames per second
with a lightweight size and is approximately 90% smaller than
YOLOv4, indicating that the YOLOv5 network is very suitable and

efficient for deployment to resource-constrained applications real-
time object detection tasks. The YOLOvS framework includes four
versions, termed YOLOvS5s, YOLOvSm, YOLOvSI, and YOLOv3x,
respectively. The number of model parameters among these four
versions increases from YOLOvSs to YOLOv5x. Although YOLOv5s
is the smallest among the four versions, the m A Fso.05 of YOLOv5s
under COCQO dataset has been reduced to 36.7. Thus, a new de-
sign method for more efficient YOLOvVS is needed. The YOLOvS
framework consists of three main pieces, including: Backbone, Neck,
and Head, as shown in Fig. 1. In the image prepossessing stage,
YOLOvS load training data with some data augmentation techniques,
such as mosaic augmentation, color space adjustment, and scaling.
These data angmentation techniques can greafly enrich the dataset
and maximize performance. To reduce information redundancy and
improve the running speed, the method of auto learning bounding box
anchors is introduced to get the best bounding box adaptively during
the training processing. Moreover, the images that are scaled and
increased by the positive sample anchor can enhance the convergence
speed and make the performance of YOLOvS.

Backbone network is a convolutional neural network that ag-
gregates images with contrasting granularities and generates image
features. Important modules used in the backbone network include
Focus, Conv (or CBL), C3, and SPP. The Focus module is designed
to eliminate the computational load of the model and accelerate
the operating speed. This module segments the input image with
a size of 3 x 640 x 640 into four slices of 3 x 320 x 320
through slicing operation. After that, it uses the concat operation
to connect them in depth, which forms the feature map in the size of
12 x 320 x 320. Finally, the output feature map with the size of X
%320 x 320 is generated through the Conv module that composed of
X output channels. C3 is the third module that includes a bottleneck
module using the classical residual structure. Tt is adopted from the
CSPNet [30] which is designed to improve depth feature extraction
from images. Finally, Spatial Pyramid Pooling (SPP) employs the
maximum pooling with a size of 5 x 5, 9 x 9 and 13 x 13 multiscale
feature fusion. In all these backbone modules, SPP is embedded to
extend the reception range and separate the context by including
features with a fixed arbitrary size of the feature vectors.

Neck network is a compounded feature layer consists of a series
of blended and mixed image features, which is mainly used for
enhancing the detection in applications of objects in multiple scales.
YOLOvS uses PANET(Path Aggregation Network) [31] to aggregate
features. To improve the propagation of low-level features, the new
FPN architecture is designed by modifying the bottom-up path.
Combined with the C3 module, YOLOvS can greatly enhance the
transmission of low-level features and strengthen the network feature
fusion ability. Therefore, the network can accurately identify the
object with different sizes and scales.

Head netweork is a prediction network that can produce the
output of detection results. Anchor boxes are generated on the output
along with a vector that represents the class probability and the
bounding box around the object. YOLOVS contains three detecting
layers, which makes the YOLOvS5 have the ahility to detect targets
of different sizes. In addition, GloU [32] as loss for bounding box
regression to further increase the detection accuracy of the algorithm.

[II. THE PROPOSED TENSOR TRAIN (TT) DECOMPOSITION FOR
YOLOVS

Tensor Train (TT) Decomposition is proposed by Oseledets [33]
firstly as a spatially efficient method by factorizing higher-dimension
tensors into the product of several tensor cores with low-rank.
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Fig. 1. Architecture of the YOLOvSs model. [11]

Subsequently, Novikov et al. [34] introduce a tensorizing neural
network where the TT decomposition is applied to a fully connected
layer, which contains very big weight matrices. They tensorize the
layer and decompose the weight into several tensor cores using the
TT decomposition. Consequently, it can greatly compress the model
size and save considerable memory space. Dedicating to a fully shrink
weight model, an efficient approach from Garipov et al. [35] greatly
reduces the number of parameters by applying TT decomposition to
a convolutional layer. Inspired by the previous work, we adopt the
TT decomposition to propose a novel framework termed T7-YOLOvS5
to improve the real-time object detection on resource-constricted
devices.

A. TT Decomposition

can be defined as A €
A(al,,‘..,ai,awl,...,aN) is the
elements under the tensor A4, where i = 1,2,..., N and a; € [1, [;].
We define the tensor core with G;a;] € R™—1%1iX"i Therefore,
the N-order tensor can be factorized as:

Herein, an N-order tensor
Rlelg><AA.><I7;><I¢+1><M><IN’

.A(al, veey Ay A1y oeny aN) =
g1[a1] Teee gi[ai] . gi+1[ai+1] T 'gN[aN]

where the (ro,71, ..., 74, Ti41, ..., 7 ) is defined as the TT-ranks with
ro = ry = 1, and - denotes the product operation. The complexity
of the TT decomposition is determined by the ranks. An N-order
tensor A is represented by the TT-format that requires > iV: L rieidirs
parameters, which is significantly less than the number of original
parameters Hﬁ\’: 1 1i. Please note that the reason why ro = ry =
1 is the dimensions multiplied by several tensor cores need to be
consistent with the dimensions of original tensor.

M

B. TT decomposition for vectors and matrices

To make the TT decomposition efficient for large vectors and
matrices, we propose a more compact way to express the TT-format
for them. Herein, we define boldface letters k, K and IC as a vector,
a matrix, and a tensor, respectively.

For a vector k € R?, Q = HZV: 1 ¢i. We can construct a bijective
function F(a) = [fi(a),..., fi(a), fiy1(a), ..., fn(a)] to map the

index a = 1,2,...,Q, where f;(a) € 1,...,q; and i € [1,N].
Therefore, the TT-format of a vector k(a) can be defined as:

k(a) =K(F(a)) = K(f:(a), ..., fi(a), fir1(a), ...fn(a)) )
:gl [fl (CL)L ceey gZ[fl(a)]v gi+1 [fi+1 (a)]7 ceey gN[fN(a)}

Consider the matrix K € RY*F where Q = H:; LG
and P = [IY,p; we construct two bijective functions
F(a‘) - [fl(a)7“‘>fi(a‘)7fi‘l‘l(a‘)w“:fN(a)]’ a = 1:27-“:Q
and G(b) - [gl(b)>"'7.qi(b)7gi+1(b)7“‘791\7([7)]: b = 1727-~:P
to represent the index (a,b) of the matrix K, where
fila) € (1, ..., pi), g:(b) € (1,...,q:),¢ = 1,2, ..., N. Sequentially,
K{(a,b) as the elements of the K can construct the tensor JC using
F(a) and G(b):

K(a,b) = K(F(a),G(b))
= K((f1(a), g1(b)), ... (fi(a), gi(b)),
(fir(a), giv1 (D)), ..(fn(a), gn (b))
= Gi[(f1(a), g1(B)]; ..., Gil(fi(a), g: (b))],
Gir1(fivi(a), girr ()], ... Gn[fn(a), gn (b))
C. TT convolutional layer for YOLOvS

Due to the complexity and compaction of the YOLOV5 network,
we conduct experiments to explore the characteristics of various
layers in YOLOVS. Considering the sensitivity of layers in YOLOVS,
we develop the TT-YOLOVS based on our empirical experiments. We
use the following formula to express the mode of operation of the
convolution kernel:

3

Y-XoWIB @

X and Y represent the convolution input and output and B repre-
sents the bias. To facilitate the convenience of solving the parameters,
we rewrite the formula as:

k kK C
thc - Z Z Z Wmncéxhwc

m=1n=1c=1

&)

The conventional 2D convolutional operation takes the 3-dimension
input tensor X € R¥*"* and outputs a tensor of Y € R *W*¢
using a 4-dimension kernel tensor W &€ RFXFXOXC 1y —
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Fig. 2. Tensor train decomposition on convolution layer

1,2,...k and h € [1,H], w € [1,W], h € [1,H|, @ € [1,W].
We denote H = H —m+1, W = W —n + 1. Utilizing the method
Garipov et al. [35] we have proposed here, the kernel tensor W
can be reshaped as a matrix W with size k2C x C-
Wnnes = W(m + k(n — 1) + k*(c — 1), ¢) (6)

Then, we reshape the matrix W into the tensor W e R** T i
where the dimension C' = [[Y, ¢; and C [1Y, ¢ are de-
composed. Thus, this approach makes the TT decomposition more
convenient and efficient, because it is flexible to the values of the
input channel and output channel by adding some dummy channels
filled with zeros. It is noted that N-th dimension has a length of k>
for ¢ = 0 and C;C; for i € [1, N].

Therefore, we can obtain the efficient TT decomposition for
convolutional kernels given by:

W(m+k(n—1)+ k(" —1),¢)
= W((m + k(n — 1), 1), (1, ¢1),
ceey ((J.L', Cl) (Ci+1, il.i+1), ceey (CN, éj\r))
=G [m+ k(n —1),1]G1]e1, é¢1]

.Gilei, ¢i)Giyr[cir, Giv1]...On[en, en],

N i—1
where ¢ = c1 + 2:(0Z - 1) H Cj
=2 j=1

@

ok .
cC =C1

N i—1
-6
i=2 j=1

To simplify the notation, the formula of the TT decomposition for
the convolutional kernel can be expressed as:

W'mv,'n,,u* X = g() [771/, 71]_(/'1 [(31 y (‘1] g, [Cf[,, (‘,]
. ) (¥
- Git1lcit1, Giy1]...Gnlen, eN]
Based on the theoretical foundation using TT decomposition for
YOLOVS, we reconstruct the latest YOLOvS model using the TT
format with the convolutional kernel and propose our model named

TT-Yolov5 kernel
Conv PE 1
Input buffer %S%%:
Line Butfer | R
| Conv . Middle Output
[ | Compute : Result
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Register L %hg%hg
TT-weight | | ;
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Fig. 3. Overall hardware architecture of TT-YOLOvS implementation.

TT-YOLOvS. As shown in Fig. 2, convolutional layers in our pro-
posed model can be defined as:

:ZZ Z Go[m, n)Gi[e1, é1]...

m=1n=1cy,....,cnN

y/’z,,lif,i’l,.“,("]\/ (9)

Gilci, ¢i] - Gigalcivt, Cirn]...Gn [en, C'Ar']Xh,w,cl,...,cN

IV. OVERALL ARCHITECTURE OF FPGA ACCELERATOR FOR
TT-YOLOVS

Fig. 3 demonstrates the structure of our TT-YOLOvVS framework
with its hardware implementation on the FPGA device. Implementing
YOLOVS on resource-constricted devices is still challenging because
YOLOVS is a relatively large model in model size. In this section, we
leverage the unique characteristics of the proposed TT decomposition
for YOLOVS to develop a novel hardware architecture. The overall
hardware implementation of the proposed TT-YOLOVS is shown in
Fig. 3. The proposed architecture consists of processing elements
(PE), off-chip DRAM, MAC cluster, a TT-weight reconstructor, and
data buffer. The Processing element is used for implementing the
computation. The PE and MAC perform all convolution processes.
The TT-weight reconstructor is used to reconstruct the weight for our



compressed tensor cores. Lastly, all data will initially store in DDR4
memory.

In our architecture, the input data and the tensor cores will first
be fetched from the off-chip DDR4 memory through PCI-E lanes.
Tensor cores will be reconstructed and loaded into the register for
computation using the TT-weight reconstructor. The input data will
first store in the input buffer and then be broken into one-dimension
hardware-friendly data in the line buffer. All data will be read and
deployed by the Convolution Compute Routing, and then the routing
function sends the control signal to the PEs. Each PE calculates the
multiplication and outputs the partial result to the buffer. Depending
on the current process, DSP will be used for accumulation, either
sending back the result for the next convolution or sending out the
final result of each frame.

V. EXPERIMENT AND RESULTS

In this paper, we propose a novel TT-YOLOvS framework that
performs real-time object detection tasks. Our TT-YOLOVS frame-
work dedicates to the YOLO framework with resource-restricted
devices utilizing the efficient TT decomposition to compress the
model size within the high-performance architecture based on FPGA
devices. Comparing with state-of-the-art methods, the TT-YOLOv5S
framework can achieve remarkable achievement in model size without
significant accuracy degradation and throughput increasing. In this
section, we implement our proposed work in VOC and COCO
datasets. The experimental results both in hardware and software are
collected.

A. Experimental Setup

The proposed TT-YOLOvVS framework adopts the TT decom-
position with selected convolution layers to keep a balance of
model accuracy and size. The training method utilizes PyTorch API,
an open-source machine learning library [40]. Our proposed TT-
YOLOVS framework is trained with 300 epochs on Intel 19-9920X
+ RTX3090 PC, and the hyper-parameters are in the default setup,
which is the same as the baseline YOLOvS model. Specifically, the
model’s input size is 640 x 640 x 3, and it is trained using MS
COCO [41] dataset and PASCAL VOC dataset [42], separately. In
addition, we observed that the TT-ranks are vital to the performance
of the TT-YOLOVS framework. In this section, we also explore the
variation of various TT-ranks. Therefore, we initialize TT-ranks with
various combinations of [2,2,2,2,1],[4,4,4,4,1],[8,8,8,8,1] and
[16,16,16,16, 1] and name them as rank 2, rank 4, rank 8 and rank
16, respectively. We perform the experiments on the PyTorch API
with the metrics such as mAP and throughput, and the analysis details
are given in this section.

B. Comparison to State-of-the-Art in VOC and COCO dataset

Firstly, we evaluate the parameter size and compression ratio
of the selected convolution layers, where our TT-decomposition is
implemented. We employ several evaluation metrics such as Average
Precision under IOU 0.5 (mAPsp), the IOU under 0.5 to 0.95
(mAPsp.95), throughput, and GPU speed. As mentioned above, both
accuracy, the number of parameters, and performance are affected
by In Table I, we exhibit the impacts of various TT-ranks on our
proposed TT-YOLOVS5 framework. It is noted that using our proposed
TT-YOLOVS5 framework can achieve a significant parameter reduction
within an accepted accuracy drop. Comparing with the original
YOLOv5s model [11], we perform the experiment with the RANK
varying from 16 to 2. As result, the size of the selected layers is
reduced to 101.4K, 25.9K, 6.73 and 1.81K, which is equivalent to
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Fig. 4. The model size and mAP comparison in COCO dataset under different
models

24x,95x%, 367x, 1363 reduction, respectively. We can also achieve
a good performance in terms of other metrics. For instance, the
RANK 8 model is trained on the COCO dataset and reaches 34 in
mAPso.05, 54.1 in mAPso, 17.7 in GFLOPs, and 2.12 ms/img in
GPU speed.

We further analyze the performance across multiple metrics be-
tween the original model and our TT-YOLOv5 model, as shown in
Fig. 5. It is noted that the number of parameters in our proposed T'T-
YOLOVS5 is significantly reduced to approximately 2/3 of the original
model, which aligns with the results we present in Table I. Besides the
considerable reduction of the number of parameters, the proposed TT-
YOLOVS5 losses 0.015 mAPso and increase 1.9 GFLOPs throughput,
and increase (0.2 GPU speed with the VOC dataset. Similar results
are presented with COCO results as well. We also observe that the
proposed TT-YOLOVS varies in performance with different TT-ranks.
Smaller TT-ranks can achieve a larger compression ratio but lead to a
larger accuracy loss, higher GFLOPs, and GPU speed than other T'T-
ranks. On the other side, the proposed TT-YOLOVS provides flexible
design freedom to the designers. For example, if the user requires
good accuracy, RANK 16 can be selected. However, the trade-off
between reduction of model size and accuracy loss and performance
drops is not balanced. For example, we can achieve 367 times
compression rate with an accuracy loss (0.49 mAPso), a GPU speed
increasing (0.02 ms/img), a GFLOPs increasing (0.02).

In Fig. 4, we validate the effectiveness of our TT-YOLOvV5 with
several representative object detection works. As shown in Fig. 4,
it demonstrates the comparison in terms of mAP and model size of
TT-YOLOvVS5 with other reference frameworks. Comparing with the
other lightweight object detectors such as YOLOv4-tiny, YOLObile,
and YOLOvVSs, TT-YOLOVS has a much higher accuracy but similar
model size. On the other hand, TT-YOLOvS has smallest model size
than other detectors such as SSD, CenterNet-DLA, and YOLO4. TT-
YOLOVS has a better accuracy than SSD but worse than CenterNet-
DLA and YOLOA4.

Finally, we also conduct a comparison with other object detection
models using VOC and COCO datasets. Table II reveals that our
model makes a good balance between the model performance and
the number of parameters. For example, the proposed TT-YOLOvS
with rank-8 in both VOC and COCO dataset achieves a significant
parameter drop and throughput improvement with a minor accuracy
loss. TT-YOLOvV5 with any rank achieves a higher mAP than a full-



TABLE I

PERFORMANCE UNDER DIFFERENT RANKS IN VOC AND COCO DATASET

# Parameters in Comp.Rate of .
Ranks Dataset mAPsnos  mAPxg selected layers(K)  selected Conv, Layers GFLOPs  GPU Speed(ms/img)
- VOC 07+12 51.9 784 16.5 1.7
Original 00 111] 36.7 55.4 246784 1x 17.0 2
VOC 07+12 18.8 76.9 18.4 1.9
16 COCO 342 54.6 1014 24X 18.9 2.11
VOC 07+12 475 752 17.2 1.77
8 COCO 34 54.1 259 95x 17.7 2.12
VOC 07+12 45.9 73.5 16.7 1.72
4 COoCo 31.5 51.1 6.73 367x 17.2 2.19
VOC 07+12 453 T34 16.6 1.71
2 COCO 30.6 50.2 1.81 1363 17.1 2.33
TABLE II
PERFORMANCE COMPARISON ACROSS MODELS AND DATASETS [2], [36]
Dataset Models Input Size Backbone mAPs0.05  mAPsp  # Parameters (M)  GFLOPs
Faster R-CNN [22] 600 VGG - 732 134.7
Faster R-CNN [22] 600 ResNet-101 - 764 -
R-FCIN [37] 600 ResNet-101 - 795 509
SSD300 [12] 300 VGG - 758 26.3
YOC 07+12 DSSD321 [25] 321 ResNet-101 - 78.6 >52.8
GRP-DSOD320 [36] 320 D5/64-192-48-1 - 787 14.2 -
YOLOvSs 640 - 51.9 784 711 16.5
TT-YOLOv5s (Rank 16) 640 - 48.8 76.9 474 184
TT-YOLOv5s {Rank 8) 640 - 47.5 752 4.67 172
TT-YOLOv5s {(Rank 4) 640 - 45.9 73.5 4.65 167
TT-YOLOv5s (Rank 2) 640 - 453 733 4.64 16.6
CenterNet-DLA [38] 512 DLA34 39.2 57.1 16.9 52.58
CornerNet-Squeeze [39] 511 - 344 - 31.77 150.15
55D [12] 300 VGG16 25.1 43.1 26.29 62.8
MobileNetv1-SSDLite [27] 300 MobileNetv1l 222 - 431 2.30
MobileNetv1-SSDLite [27] 300 MobileNetv2 22.1 - 3.38 1.36
Tiny-DSOD [29] 300 - 23.2 404 1.15 1.12
YOLOV4 [10] 320 CSPDarknet53 382 573 64.36 355
COCO YOLO-Lite [28] 224 - 1226 - 0.6 1.0
YOLOV3-tiny [9] 320 Tiny Darknet 14 29 8.85 3.3
YOLOV4-tiny [10] 320 Tiny Darknet - 40.2 6.06 4.11
YOLObile [2] 320 CSPDarknet53 31.6 49 4.59 3.95
YOLOv3s [11] 640 - 36.7 554 7.3 17.0
TT-YOLOv5s (Rank 16) 640 - 342 54.6 4.90 18.9
TT-YOLOv5s {Rank 8) 640 - 34 54.1 1.83 177
TT-YOLOv5s (Rank 4) 640 - 31.5 51.1 4.82 172
TT-YOLOv5s {(Rank 2) 640 - 30.6 502 4.81 17.1

size SSD but lower than CenterNet. However, the TT-YOLOvV3 has
lower throughput than SSD, YOLOv4, and CenterNet (3.6x, 2.1x
and 3x, respectively). We also compare our TT-YOLOvS5 with other
lightweight detectors such as YOLObile, YOLO-Lite, MohileNetv2-
SSDLite, YOLOV4-tiny, and YOLOV3-tiny and note that our TT-
YOLOvS has higher mAP but higher thronghput. Compared with the
tiny version of YOLOvSs, our TT-YOLOvS can largely reduce the
number of parameters with ignoring accuracy drop and throughput
increasing.

C. Hardware Evaluation

Our experimental hardware measurement is based on FPGA
evaluation board Xilinx Ultrascale+ KCU116 with the XCKUSP
computing unit being commected to a PC throngh PCI Express. The
PCI Express allows the FPGA to access the DDR4 ram as temporary
storage for the input data and model. We present the hardware
evalnation resnlts in Table III. For TT-YOLOvS5, every frame requires
a group of convolution computations. The LUT and Flip-Flop (FF)
resources are demanded to process the on-chip computation. Off-chip

memories are also required for our design becaunse it is not realistic to
store the model into the on-chip register only. The LUT collaborates
with both register and logic computation modules, and the utilization
ratio of this hardware is about 80% from our experiments. The FF
is used as the shared register and buffer, while the piped-lining rate
is not possible to raise due to the dependency of the data. The FF
utilization is 20-30% and varies with the model compressing ratio.
The BRAM utility remains the same becanse of using tensor shape
manipulation that is designated to hold more space for redundancy
and not tightly allocate the data and model. The BRAM nutility in
VOC 07+12 dataset is 45.8% and 49% in the COCO dataset. To
process the convolution, we design MAC (Multiply Accumulate)
as processing units that consist of multiple DSPs. We observe that
the higher the parallelism channel lane deploved, the higher DSP
utilization will be obtained. Thus, our utilization rate reaches about
65% to 75% of the available resources. To raise the speed of the
process, we can invest more DSP resources for the design. Table III,
we measure the power consumption within two places: on-chip and
off-chip. The on-chip power is drained by all on-chip resources and



TABLE III
HARDWARE EVALUATION IN DIFFERENT DATASETS AND RANKS COMPARISON.

. . . . DDR4  Onchip
Model Param Util Util Util Util i
Ranks Dataset Size(MB) M) LUT %) FF (%) BRAM %) DSP (%) Power  Power  GOPS
(W) W)
16 VOC 07+12 9.76 474 182,022 839 123,098 28.4 220 458 1,321 724 1.30 15.3 42.6
8 VOC 07+12 9.61 4.67 175,330  80.8 122,088 28.1 220 458 1,321 724 1.31 14.7 43.8
4 VOC 07+12 9.57 4.65 174,341 804 85,230 19.6 220 458 1,212 664 1.28 12.3 44.1
2 VOC 07+12 9.56 4.64 168,050 775 85,002 19.6 220 458 1,200 658 1.28 12.1 449
16 COCO 10.1 4.9 187,022 862 143,728 33.1 235 49 1,351 741 1.33 16.1 342
8 COCO 9.93 4.83 180,330  83.1 132,018 304 235 49 1,335 732 1.33 15.7 34.5
4 COCO 9.89 4.82 177,541 81.8 126,642 29.2 235 49 1,312 719 1.31 14.3 36.2
2 COCO 9.88 4.81 170,050 784 120,132 27.7 235 49 1,280 70.2 1.28 14.1 36.4
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Fig. 5. GPU speed, throughput, and m A Pso comparison of our TT-YOLOvS5 and original YOLOvS5s.

the connection between the chip and the I/0O supply by the evaluation
board. Off-chip power is consumed by the DDR4 memory that is
connected through the PCI-E to the FPGA. Table III presents the
overall power of the VOC dataset. TT-YOLOVS, with rank 16, reaches
the highest power usage (16.6 W). TT-YOLOVS with rank 2 reaches
the smallest power consumption (13.38 W). On the opposite way,
TT-YOLOVS5, with rank 16, presents the smallest GOPS (42.6). In
the COCO dataset, the highest power is consumed by TT-YOLOvS
with rank 16 (17.43 W), and the smallest power is consumed by TT-
YOLOV5S with rank 2 (15.38 W). The GOPS of the various TT-ranks
in both datasets exhibits the highest value in the rank 2 models (44.9
in the VOC dataset and 36.4 in the COCO dataset).

VI. CONCLUSION

This paper presents a novel Tensor Train (TT) based YOLOvVS5
framework and its hardware implementation on the FPGA board.
Comparing with the original tiny version of the YOLOv5 model
(YOLOVSs), our TT-YOLOvVS achieves a significant reduction in
parameter size with less than 0.094x accuracy drop in mAPs,

0.165x GPU speed increasing, and 0.118X increase in throughput.
Specifically, we reach 24x, 95x%, 367, 1363 X in compression ratio
with various RANKs 16, 8, 4, 2 respectively. Moreover, our TT-
YOLOVS5 can achieve a balance of performance and model size
compared to other state-of—of-art object detection models. For the TT-
YOLOvS5 with RANK 8 model, we observe 47.5 and 34 in mAPso:05,
75.2 and 54.1 in mAPso, 4.67 and 4.83 in parameter size, 17.2
and 17.7 GFLOPs in throughput under VOC and COCO dataset
respectively. Our hardware measurements show that the proposed
TT-YOLOvVS can perform an efficient computation in both VOC
and COCO datasets with small power consumption and hardware
usage. Thus, our TT-YOLOV5 and its hardware design can benefit
the research of edge computation and its applications.
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