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ABSTRACT: The rates of protein (un)folding are often described as
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advanced single-molecule spectroscopic techniques. This has also I Dpwwt
sparked the interest of theorists in better understanding reactive Unfolded & T exp(—pAGH)
transition paths. Here we focus on these issues aiming to establish (i) M I S

practical guidelines for the mechanistic interpretation of transition
path times (TPT) and (ii) methods to extract the free energy surface 4
and protein dynamics from the maximum likelihood analysis of

photon trajectories (MLA-PT). We represent the (un)folding rates as diffusion on a 1D free energy surface with the FRET efficiency
as a reaction coordinate proxy. We then perform diffusive kinetic simulations on surfaces with two minima and a barrier, but with
different shapes (curvatures, barrier height, and symmetry), coupled to stochastic simulations of photon emissions that reproduce
current SM-FRET experiments. From the analysis of transition paths, we find that the TPT is inversely proportional to the barrier
height (difference in free energy between minimum and barrier top) for any given surface shape, and that dividing the TPT into
climb and descent segments provides key information about the barrier’s symmetry. We also find that the original MLA-PT
procedure used to determine the TPT from experiments underestimates its value, particularly for the cases with smaller barriers (e.g.,
fast folders), and we suggest a simple strategy to correct for this bias. Importantly, we also demonstrate that photon trajectories
contain enough information to extract the 1D free energy surface’s shape and dynamics (if TPT is >4—S-fold longer than the
interphoton time) using the MLA-PT directly implemented with a diffusive free energy surface model. When dealing with real
(unknown) experimental data, the comparison between the likelihoods of the free energy surface and discrete kinetic three-state
models can be used to evaluate the statistical significance of the estimated free energy surface.

" Free Energy Time ‘

B INTRODUCTION

Protein folding rates are determined by the stochastic search
for the native state on a hyperdimensional phase space defined

physical force fields employed in these simulations make it
essential to benchmark their results with experiments. In this
regard, theory also proposes that the rate can be described as

by the coordinates of all the protein atoms and surrounding
solvent molecules." The theoretical expectation is hence that
individual protein molecules follow myriads of microscopic
paths, resulting in broad distributions of mechanisms.””’
Multiple parallel pathways have been observed in coarse-
grained“_6 and atomistic simulations.””'® However, such
expected microscopic heterogeneity is inaccessible to conven-
tional bulk kinetic experiments, which, regardless of temporal
resolution, only report on the collective relaxation rate.
Molecular dynamics simulations in explicit solvent, which
provide high-resolution 3D structures in picosecond time
intervals from single trajectories,11 and now reach milli-
seconds, >~ "* may ultimately provide such detailed informa-
tion. However, the imperfect/approximate nature of the
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diffusion on the projection of the energy landscape onto a few
15 . .

(even one) order parameter(s), thus giving rise to a Kramers-

like rate expression:16
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where D is the intramolecular diffusion coefficient, @? is the
curvature of the well (e.g,, folded and unfolded), —(e*)? is the
inverted curvature at the barrier top, and AGT is the free
energy barrier on the projected free energy surface (FES). All
these terms become empirical (not derivable from first-
principles) and contain a great deal of mechanistic information,
which makes them dependent on the projection,'”'® the
structure of the protein, and its sequence.'” This approach also
raises other important issues, such as the emergence of free
energy barriers caused by entropic bottlenecks,” whether the
intramolecular diffusion coefficient (D) is invariant along the
reaction coordinate,”** or which and how many order
parameters are needed to conform an effective reaction
coordinate.”

It is important to note that the terms of even a simplified
rate expression like eq 1 remain inaccessible to bulk kinetic
experiments, which accordingly have not been able to directly
test theoretical predictions or to extract much mechanistic
information from the rates.”* Fast folding experiments”*>°
provided a first exposure to these issues by (i) measuring the
sub-microsecond time scales of elementary protein conforma-
tional motions,””*® (ii) detecting an additional, superfast
kinetic (“molecular”) phase on sub-millisecond foldin
proteins that reflects the relaxation from the barrier top,”
and (iii) identifying and characterizing the time scales of
barrierless (downhill) folding.*® Those results led to estimates
of the overall pre-exponential in eq 1, or folding speed limit,*’
which not only enabled the thermodynamic analysis of
experimental rates and confirmed the entropic origin of
folding barriers” but also raised new questions about the
source of the rate’s temperature dependence.’® Comparative
analysis of the “molecular” phase has recently shown that the
overall pre-exponential term can chan§e by at least 10-fold on
fast folders of the same size and fold.”

Advances from fast-folding techniques notwithstanding, the
only way to experimentally dissect (un)folding rates is by
detecting individual molecules with sufficient resolution to
resolve the reactive transition paths.”® Transition paths are the
segments of a stochastic trajectory during which the protein
crosses the free energy barrier. It has been shown that the
shape of transition paths and their distribution can provide
sufficient information to dissect the rate expression””***” and
hence to infer the underlying mechanisms.”® There currently
are two options to access transition paths by experiment:
single-molecule Forster resonance energy transfer (SM-
FRET) and force spectroscopy (FS).”” Recent FS experi-
ments and simulations have provided strong evidence,"""** and
direct observation,*’ of multiple mechanical unfolding paths in
otherwise “two-state” folding proteins. Mechanical (un)folding
transition paths have recently been resolved using optical
tweezers'”* and atomic force microscopy.*® However, in
mechanical unfolding experiments the molecule is tethered to a
pulling device (beads or cantilever) that introduces strong
dynamic effects”” for which one must account.”® In parallel, the
implementation of MLA-PT methods™ has led to major
advances in the effective time resolution of SM-FRET. For
instance, MLA-PT combined with elementary (two- and three-
state) kinetic models has been used to determine fast
(un)folding rate coefficients (k)*° and microsecond mean
transition path times (TPT) on several small proteins.*>">>
TPTs alone do not contain enough information to extract the
FES or D,*”>* but the ratio between TPT and rate coefficient
has been used to estimate the barrier and overall pre-

exponential term.” Such analysis approximates the TPT to
an analytical expression for a harmonic barrier >2kgT
developed by Szabo:****

(trp) ~ In[2e’BAGT]/Dp(w*)? )

where y is Euler’s constant (0.577...) and (@¥)? is the curvature
of the barrier. It also involves the assumption of equal
curvature for the wells and barrier, so they can be eliminated
from the ratio. The same general approach has been recently
extended to folding upon binding transitions of IDPs in which
TPTs seem to be somewhat slower.”>*°

This methodology for the analysis of SM-FRET experiments
raises some interesting questions, such as: How accurate are
the TPTs so estimated? How do they depend on the various
terms of the rate expression? Ultimately, is the approach
potentially extensible to directly determine the shape of
transition paths and hence probe the underlying folding
mechanisms? In previous work, we explored the performance
of MLA-PT in extracting a known 1D free energy surface of
fixed shape and diffusion coefficient from simulated photon
trajectories coupled to intramolecular diffusion on that
surface.”” That study showed that the method could extract
the barrier height and diffusion coefficient when the shape of
the free energy surface is predefined.”” Very recently,
Taumoefolau and Best have used coarse-grained folding
simulations to assess the suitability of the FRET efliciency
(E) as reaction coordinate and of the two-/three-state MLA-
PT procedure to estimate the TPT.*® In that case, the authors
compared the results from the simulated photon trajectories
with the TPT obtained by projecting the molecular trajectories
as a function of the fraction of native contacts (Q), an order
parameter that is %engrally accepted as a suitable folding
reaction coordinate.’ "'

Here we investigate the relationships between the shape of
the free energy surface, the reactive transition paths, and the
performance of various MLA-PT methods. We start by
assuming that the (un)folding process can be described as
diffusion on a 1D FES and that E is a reasonable reaction
coordinate. We then introduce a simple phenomenological
model of 1D FES with adjustable shape (symmetry, minima
and barrier curvatures, and barrier height) and use it to
simulate diffusive molecular trajectories coupled to stochastic
donor/acceptor photon emissions. From these simulations, we
develop some practical guidelines for the interpretation of
transition paths and the analysis of photon trajectories with
various maximum likelihood approaches. We find that, in
principle, there is sufficient information on the photon
trajectories to determine the shape of the free energy projected
onto E (provided that E is a suitable reaction coordinate) as
well as the intramolecular diffusion coefficient. We hence
propose to directly perform the MLA of experimental photon
trajectories with a diffusive 1D FES model of adjustable shape,
which lends to more accurate TPT values and to mechanistic
information than is not obtainable from discrete kinetic
models.

B METHODS

Landau Free Energy Surface Model. To represent a
projected 1D free energy analytically, we use a phenomeno-
logical model based on a Landau quartic polynomial. The
model is similar to the variable barrier model one of us co-
developed for the analysis of differential scanning calorimetry

https://doi.org/10.1021/acs.jpcb.1c05401
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experiments,59 but in this case, it is defined according to a
generic order parameter (x) rather than the unfolding
enthalpy. In this model, the Gibbs free energy as a function
of the order parameter is defined at isostability conditions (G,
= G(ay) = G(ag)) as

2 4
Go(x) = —2ﬂ[ai] + |ﬁ|(ai] forx <0

U (8]

2 4
Gy(x) = —2/3[01] + |ﬁ|(ai] forx > 0
F

F

©)

where ay and oy are the positions of the unfolded and folded
(U and F) minima along the order parameter x, respectively,
and x is defined with the condition that max(x) + Imin (x)I =
1. f3 defines the free energy barrier (placed at x = 0) that
separates states U and F. The sign of # determines whether the
region between the two minima is convex (positive barrier) or
concave (downhill: unimodal); when positive, its magnitude
determines the height of the free energy barrier (AG¥). The
ratio ¢ = layl/(layl + ag) defines the asymmetry of the free
energy surface, with ¢ = 0.5 indicating a perfectly symmetric
surface (i.e., barrier halfway between U and F). Therefore, the
model can produce bimodal—unimodal 1D free energy surfaces
with shape (barrier height and curvatures of minima and
barrier) controlled by these four parameters. To account for
any changes in free energy as a function of (un)folding
thermodynamic bias, we introduce the linear function Gy, (x)
= Jx, where 4 = Gy,(max (x)) — Gy(min(x)). The
probability density as a function of the order parameter is
hence:

exp(—(Gy(x) — Ax)/RT)

px) =
fexp(—(Go(x) — Ax)/RT) dx (4)
_k1,2 kz,l 0
ki, —(ky+kyy) kg,
K=| 0 ka3
0 S
0 0 0

where the microscopic rates to go from the ith microstate to
the previous (i — 1) and following (i + 1) microstates are given

by
ki1 = D2 &4‘1
' 28x7\ p

D [P
—Z[Ll + 1]
2827\ p

This rate matrix can be solved as an eigenvalue problem using
standard methods. The calculation provides the sets of
eigenvectors and eigenvalues of the system. The slowest
nonzero eigenvalue represents the global equilibration rate. An
example of 1D free energy surface (for a symmetric profile at
isostability conditions and f# = 3 kJ/mol) is given in Figure S1,

(8a)

i+l =

(8b)
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The kinetics of the process is described as diffusion on the free
energy surface Go(x) — Ax as determined by the intramolecular
diffusion coefficient D, which is assumed to be constant (i.e.,
independent of the order parameter). For the calculations
presented in this study, we set 1 = 0, so AGT is the same in
both directions (folding and unfolding).

Analytical Calculation of Mean Transition Path
Times. To calculate the transition path time (TPT) from
the 1D free energy surface (eq 3) and diffusion coefficient, we
followed the treatment developed by Hummer.”* This
procedure starts with the definition of the transition
boundaries (x, and x;) and the calculation of the splitting

probabilities:
/x] exp(G(«x')/RT) dv’
Py(x) = =5
/x exp(G(«x')/RT) dx’
fxx exp(G(x")/RT) d«’
Pp(x) = —5

/xolexp(G(x’)/RT) dx’ )

which allow to calculate the mean length of the transition paths
as

[ exp(=G()/RT) ¢ (x) () dx [ exp(G(x')/RT) d’
D

<tTP> =
(6)

Diffusive Kinetics on the 1D Free Energy Surface. To
calculate the diffusive dynamics on the surface, we used a
discretized version of the free energy surface and the following
diffusive rate matrix:>’

0 0
0
n—1,n—2 0
—(kyia + Kymrn) Ky
ky—1,n —kyn—1 (7)

together with the amplitudes (as a function of the order
parameter) of the three slowest nonzero eigenvalues in the
relaxation in response to an infinitesimal free energy
perturbation.

Stochastic Diffusive Kinetic Simulations. We carried
out stochastic diffusive kinetic simulations on the discretized
version of the free energy surfaces. Particularly, we used a grid
of 121 points, which provides sufficient resolution to smoothly
reproduce the shape of the surfaces (even for the most
asymmetric ones). The simulations were performed at constant
time intervals with an algorithm and procedure explained
before.”” Briefly, we defined three possible outcomes starting
from microstate i after an elapse of time At: moving forward to
i + 1, moving backward to i — 1, or staying at i. According to
this move set, the time-dependent probability of each of the
microstates is obtained from the relationships

https://doi.org/10.1021/acs.jpcb.1c05401
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Figure 1. Landau 1D free energy surfaces used in this study. (Left) 1D free energy surfaces corresponding to the two extremes of the barrier range
we used in this study. The light blue surface represents the highest barrier (10 kzT), and the navy blue represents the lowest (0.4 kzT). All these
free energy surfaces are generated with ¢ = 0.65. (Right) 1D free energy surfaces corresponding to the two extremes of the range we used to
investigate the effects of the position of the barrier along the reaction coordinate. The light blue represents a surface with ¢ = 0.5 (symmetric), and

the navy blue represents a surface with ¢ = 0.9 (highest asymmetry).

pi—>i+1)=At DZ LITR

2Ax j4 (9a)
p(i—i—1)=At D2 By

2Ax J4 (9b)

pli=i)=1-[pi»i=1)+pli—=i+1]l  (9)

when At < (Ax)?/D. The time scale for moving along the
surface is determined by the intramolecular diffusion
coefficient D and the free energy gradient between neighboring
microstates. Simulations with increasing barrier height were
performed using proportionally faster D and smaller At to keep
the total simulation time constant (20 s), while ensuring
sufficient sampling statistics and enough number of transitions
per burst on the photon trajectory simulations. The parameters
used for each stochastic simulation are given in Table SI.
Examples of diffusive molecular trajectories from simulations
on surfaces of different barrier height are provided in Figure
S2.

Analysis of Transition Paths from Stochastic Kinetic
Trajectories. For condensed phase reactions, a transition path
is the segment of a reactive diffusive trajectory (U —F or vice
versa) that corresponds to the actual crossing of the barrier
separating the two minima. Such a definition, of course, makes
transition paths dependent on how one defines the effective
transition region, which is somewhat arbitrary even when the
free energy surface is known a priori. This problem is related to
the better studied one of identifying the transition state
ensemble (TSE). In this regard, the TSE is defined as the set of
points in configuration space that share an equal probability of
reaching the reactant region and the product region when
propagated forward in time. An alternative definition explored
by Hummer builds upon the concept of TSE regions as
localities common to most reactive trajectories, that is, as those
points in configuration space with the highest probability that
equilibrium trajectories passing through them are indeed
reactive.”* Transition paths are then identified as trajectory
segments that exit from a reactant region and reach a product
region without crossing back into the initial reactant region,
and vice versa. We used the Hummer approach to define and
simulate transition paths. Namely, we define a transition path
as a trajectory that starts from a point on the reactant basin of
attraction that is on route to the barrier (x,) and, when
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propagated forward in time, crosses over to an equivalent point
on the product basin of attraction (x;) without revisiting x.
The transition paths in the opposite direction are simply
defined by reversing x, and x;. For a known 1D free energy
surface, the TPT can be calculated analytically,”* but it still
requires that the boundaries of the transition region ([xg, x;])
are defined. We thus explored the effect on the TPT of the
transition region boundaries while ensuring symmetry so that
the relative distance from x, to the barrier top was equal on
both sides (Figure 1). For each set of boundaries, we
calculated the TPT analytically and also generated thousands
of stochastic trajectories to obtain the distribution of transition
path times in each direction (folding and unfolding) as well as
the crossing probability. We define the crossing probability as
the fraction of the total number of trajectory trials that starting
at xy reached x, before returning to x, For comparative
purposes, the transition paths for each simulation were rescaled
by the ratio between a reference diffusion coeflicient and the
diffusion coeflicient used in the specific simulation. Transition
path times were then expressed relative to the transition path
time obtained for the halfway boundaries and on the free
energy surface with the highest barrier (¢ = 0.65 and 10 kg T).

Simulated Time-Stamped Photon Trajectories. We
simulated the outcome of single-molecule FRET experiments
by performing stochastic simulations of donor/acceptor
photon emission events as a function of time and the position
of the molecule on the 1D free energy surface. The donor and
acceptor emission rates were determined by the “experimental”
count rate, which we set within realistic values for current SM-
FRET experiments, and the probability of emitting a donor or
an acceptor photon, as defined by the FRET efficiency (E) of
each microstate on the surface (p, = E and pp, = 1 — E). For
simulations with the lowest barriers, we used the same count-
rate we obtained experimentally on the protein gpW, which
folds/unfolds over a barrier of ~1 kBT.60 For simulations with
higher barriers, we progressively increased the diffusion
coefficient (D) to obtain approximately the same overall
relaxation rate (similar numbers of folding/unfolding events in
each simulated trajectory), and we adjusted At and photon
count-rate accordingly to ensure comparable conditions (all
the relevant parameters are given in Table S1).

We generated stochastic trajectories of interphoton times
according to an exponential distribution with g = 1/CR, where
CR is the total photon (A + D) count rate, as explained
before.”” Each photon in the PT trajectory was then colored

https://doi.org/10.1021/acs.jpcb.1c05401
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(assigned an acceptor or donor tag) based on probabilities kep, = ko (12¢)

defined by the FRET efficiency of the microstate occupied by
the molecule at the time the photon was emitted. The result of
this procedure is a strip of time-stamped donor/acceptor
photons emitted stochastically by the molecule as it is moving
diffusively along the 1D free energy surface. This long strip of
photons (4 to 25 million) was then divided into segments of
300—2000 photons to represent the number of photons per
burst/trajectory that are typically obtained in SM-FRET
experiments.

To determine the FRET efficiency as a function of the order
parameter (E(x)), we used a linear function defined according
to the empirical parameters Ey and Ey, corresponding to the E
values at a; (unfolded minimum) and a5 (folded minimum),
respectively:

E(x) = Ey + ¢(Eg — EU)[I - i] forx <0
Ay

E(x) = Egg + (1 — ¢)(Eg —Eu>ai forx > 0 o)
F

where Erg = Ey + ¢(Ep — Ey) is the FRET efficiency at the
barrier maximum (x = 0). For all the photon trajectory
simulations in this work, we used Ey; = 0.574 and E; = 0.88S,
which are the E values we have obtained from the analysis of
SM-FRET experiments on the fast folder gpW. These values
are also in good agreement with those reported by other
authors on single-domain proteins at their chemical denatura-
tion midpoint.” >

Maximum Likelihood Analysis of Mean Transition
Path Times from Photon Trajectories. We used the
Gopich—Szabo MLA-PT* to determine the TPT from the
difference between the maximum likelihood of a two-state
model (ie., instantaneous transition: path not resolved) and
that of a model with a virtual intermediate state (its lifetime
provides the TPT).*"** The likelihood function for a photon
trajectory with N photons is given by the expression

N
L= 1" [T [F() exp(Re)1 F(e) p,

j=2 (11)
where K is the rate matrix for the given kinetic model, ; is the
time interval between the jth and (j — 1)th photon, p, is the
vector with equilibrium probabilities of different states (as
defined by K), ¢, is the color of the first photon in the
trajectory, and ¢; is the color of the jth photon. F(acceptor) = E
and F(donor) = I — E, where E is a diagonal matrix with the
FRET efficiencies of the states included in the model (e, ...,
€y)- The total likelihood of a set of photon trajectories was
maximized in base 10 logarithm units to avoid number
overflow and minimize numerical precision errors. Hence, the
total likelihood for an entire data set was calculated as
logL = ZN logL,, and then maximized. The procedure

involves comparing the likelihoods of two- and three-state
models. The fit to the two-state model is performed according
to

U=F
pp TPy =1 (12a)
k=k +k, (12b)

where pr, is the fraction of protein in the native state and py is
the fraction of protein in the unfolded state with FRET
efficiencies, e; and ey, respectively. k¢ and k, are the folding
and unfolding rate coeflicients, which result in the rate matrix

[ | ]
K=
f Ky (12(1)

The three-state model represents a finite transition path time,
defined by introducing an intermediate state S with lifetime 7
= 1/2k, that represents the average transition path time (typ).
The kinetic scheme and parameters for the three-state model
are

UsS=aF
Pp TP tpy =1 (132)
kepy = kapp = poks (13b)
ki k, 0
K=|k =2k k,
0 k& —k, (13¢)

where pyy, pp, and pg are the fraction of protein molecules in
the unfolded, folded, and intermediate states, respectively.
Alog L(zg) = log L(S) — log L(0) is calculated for a grid of 7y
and &g values, where log L(0) is the likelihood for the two-state
model with an instantaneous transition and log L(S) is the
likelihood for the three-state model with a finite transition.
Each kinetic model was fit to the photon trajectory data using
the MATLAB multidimensional unconstrained nonlinear
minimization (Nelder—Mead) algorithm fminsearch by mini-
mizing the negative of log L. The two-state model was fit to
obtain e, &y, k; and k, For the three-state model (finite
transition path), k¢ and k, were fixed to the values obtained
with the two-state model. The FRET efliciencies for the three
states were obtained in two ways: (a) & and &y from the two-
state model and &g fixed as halfway: This is a simpler, more
common method of obtaining the TPT,*" and will be referred
to as Alog L, ,, in this work. (b) &p and &y obtained from the
MLA-PT of the three-state model by fixing k; and k, to the
values obtained from the two-state fit: Alog L(S) is then
calculated for a 2D grid of values of &g (in the range &y < &5 <
€r) and 7g. The combination of &g and 7 values that gives the
highest Alog L(7g) is selected. We will be referring to this
method as Alog L;, in this work.

These two methods are essentially equivalent with one
difference: method (a) is simpler and assumes that the
estimates of & and &y are not affected by the introduction of
the virtual intermediate state (i.e., &z and &y values from the
two-state fit are correct); method (b) allows for relaxing & and
&y to accommodate for the presence of the virtual intermediate
state. We introduced the latter because we realized that for
surfaces with low free energy barriers the two-state fit tends to
bring the two minima closer (moves ¢ and &; away from their
true values and toward each other).

Maximum Likelihood Analysis of Photon Trajectories
As Diffusion on a Free Energy Surface. To determine the
ability to extract the free energy surface and dynamics of the
system from photon trajectories, we analyzed them with the
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MLA-PT**** implemented with the Landau free energy
surface model (as described above). For these calculations
we followed exactly the procedure we previously developed for
a 1D free energy surface model with restricted shape in which
the asymmetry of the barrier is fixed.”” Particularly, we globally
analyzed the simulated photon trajectories for each given free
energy surface to maximize the total likelihood. The fitting
procedure involved finding the values of the S5 model
parameters that maximize the likelihood: 8, ¢ (4 = 0) for
the free energy surface; Ey; and E, for the FRET efliciency; D
for the dynamics.

B RESULTS AND DISCUSSION

1D Free Energy Surface. We carried stochastic kinetic
simulations on 1D free energy surfaces with different shapes
using the Landau free energy surface model that we introduce
here (see “Methods” section). In addition, we set all the free
energy surfaces to isostability conditions (1 = 0) to ensure an
identical barrier height for folding and unfolding and hence
facilitate comparison. Particularly, we generated free energy
surfaces with barriers from 10 kzT down to 0.4 kyT, which is a
range that covers the barriers estimated for two-state single-
domain proteins®* and fast folders™>*® (Figure 1A). These
surfaces have exactly the same shape, with the barrier placed at
0.65 along the reaction coordinate (¢ = 0.65), which is
consistent with the experimental average ¢-value of over 800
mutations on 24 single-domain proteins.”® We also generated
free energy surfaces with different levels of asymmetry (Figure
1B). The asymmetry range that we explore here (¢ from 0.5 to
0.9) covers the range in beta-Tanford (f1) values determined
from the ratio of the slopes of the chevron plot for two-state
folding proteins.®”%*

Defining the Transition Region: Transition Path
Times and Crossing Probabilities. The analysis of
transition paths relies on the definition of the boundaries
([« %1]), which is somewhat arbitrary. A simple strategy is to
set the boundaries halfway between the reactant minimum and
the barrier top (Figure 2), but there are no particularly strong
arguments for using such definition beyond convenience.

E
0.5 0.6 0.7 0.8 0.9
T
Transition region
1
>‘5/6‘-
<
)
f=
Lu g
o 172
o
71"
1/6 |
0

Figure 2. Transition region boundaries. The transition region is
defined by its boundaries x, and x; on the reaction coordinate. Five
examples are given in which x, and «; are defined as a fraction of the
distance between the minimum and the barrier top (x = 0). The
halfway (1/2) transition region is highlighted as a green swath with a
schematic representation of a possible transition path as example. The
reaction coordinate (x) is shown on the bottom, and the
corresponding changes in E used for simulating photon trajectories
are shown on the top.

However, the actual boundaries should have a significant
impact on both the TPT and the crossing probability. We
explored this issue analytically and via stochastic kinetic
simulations using different boundaries (Figure 2) for all the
free energy surfaces of this study. Figure 3 shows how the TPT
(calculated analytically) and crossing probability change
depending on the transition region boundaries for an
exemplary free energy surface (¢p = 0.65 and 1.2 kgT). The
results as a function of the barrier height are given in Figure S3.

As expected, Figure 3 shows that the TPT is strongly
influenced by the transition region boundaries, changing by
nearly 20-fold between a narrow region (5/6) and a wide
region (1/6). The same trend was found on all other free
energy surfaces (Figure S3). However, we also observed that
the sensitivity to the transition region boundaries is less
marked the higher is the barrier, being reduced to about 7-fold
for the 10 kg T barrier. This result is consistent with theoretical
studies that found transition paths to be roughly insensitive to
its precise definition for transitions that take place over barriers
significantly higher than ks T.>” The crossing probability, which
provides a measure of how often a molecule that starts at one
boundary successfully crosses to the other, follows the inverse
trend, increasing as the transition region becomes narrower.
This is again expected as longer paths necessarily involve many
more chances for the molecule to revert its trajectory. As the
region becomes narrower, the crossing probability approaches
0.5,1in a§reement with the TSE (barrier top) in transition state
theory.’

These results highlight the importance of the choice of
boundaries for the analysis of transition paths, particularly for
the modest free energy barriers expected for the (un)folding of
single-domain proteins.”* The question is which is definition is
most useful. The analysis of the eigen spectra of the diffusive
rate matrix offers one point of reference. As shown in Figure
S1, the second slowest nonzero eigenvalue (4,) represents the
equilibration between the barrier top and the two minima;
hence, it is closely related to the reactive transition paths.
Figure 3A shows that the inverse of this eigenvalue is very
similar to the TPT for the halfway transition boundaries.
However, 4, reflects the flux from either basin to the top rather
than the crossing from one basin to the other. We hence
conclude that 1/4, represents a lower bound for the effective
TPT, and therefore, that the transition region should ideally be
somewhat broader than halfway. An alternative, empirical way
to address this question is to look for the transition region
boundaries that produce the best scaling between the ratio
Tign/ (27(71p)) and AG* over the range of barriers that is most
significant for protein (un)folding.>” Here 7, is the overall
relaxation time (1/4,), and (zrp) is the TPT for each boundary
definition. This calculation for the data from Figure S2 shows
again that the definition of transition region boundaries has
small impact for the highest barriers. However, this calculation
overestimates AG¥ for the smaller barriers in general, and
increasingly so as the boundaries of the transition region
become narrower. For instance, the TPT for the narrowest
transition region (5/6) results on AG* ~ 3 kT for the surface
with a 0.4 kgT barrier. Hence, we decided to use the 1/3
transition region as the most convenient definition for the
analysis of transition paths in the range of free energy barriers
that we explore here.

Effects of the Free Energy Barrier on the Transition
Paths. The rate and TPT obtained from experiments have
been used to estimate the barrier height by combining eqs 1
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Figure 3. Transition path time (TPT) and crossing probability as a function of the transition region boundaries. (A) TPT calculated analytically for
the different transition region boundaries (as in Figure 2) on a free energy surface with ¢ = 0.65 and 1.2 kT barrier. The dashed horizontal line
indicates the inverse of the second slowest nonzero eigenvalue of the rate matrix (1/4,; see Figure S1). (B) Crossing probability.
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Figure 4. (A) TPT (black, left axis) and free energy barrier curvature (green, right axis) as a function of the barrier height. The barrier curvature is
shown normalized with respect to the highest barrier used in this study. (B) Barrier dependence of the TPT multiplied by the barrier curvature.
The line represents the expectation from the Szabo transition path time analytical expression.

and 2. This procedure involves the assumption that the
curvatures for both minima and barrier are equal and the
diffusion coefficient is constant, so all these terms can be
dropped from the ratio of eqs 1 and 2. Under those
assumptions, the TPT is expected to increase proportionally
to the barrier by In[2e’AG¥]. However, the TPT, determined
either analytically or from stochastic kinetic simulations for
free energy surfaces with the same shape but different barrier
heights, exhibits the opposite trend; namely, the TPT increases
monotonically as the barrier drops from 10 to 0.4 kzT (Figure
4A). The effect is significant with a TPT about 3-fold longer
for the marginal barrier than for the highest. The data in Figure
4 corresponds to the 1/3 transition region, but similar results
are obtained for other transition boundaries (Figure S3). The
analysis of the crossing probabilities sheds some light onto this
seemingly counterintuitive result. The crossing probability,
which reflects how many attempts to cross the barrier from x,
are indeed reactive, decreases abruptly as the transition region
becomes wider (Figure S3B). This is because longer paths have
a higher probability for the molecule to reverse its trajectory at
some point. Such effect is amplified by the gradient on the free
energy surface; hence, the crossing probability drops
dramatically when the barrier raises (about 3 orders of
magnitude from 0.4 to 10 kT, see Figure S3B). In other
words, a steeper free energy gradient enhances the probability
of a trajectory reversal occurring during the climbing segment
of the path, which makes most trials unproductive and slows
down the rate. However, by the same token, the few
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trajectories that do indeed make it over the top are those
that do not linger, that is, those that minimize the crossing
time, which results in shorter TPTs.

The hidden factor behind the actual TPT barrier depend-
ence is the curvature of the surface. The free energy surfaces
used for this analysis have an identical shape: the same position
of the minima and barrier top. However, as the barrier height
increases, so does its curvature (green in Figure 4A), which
affects the TPT in inversely proportional fashion, as shown in
eq 2. We note that the second derivative of the Landau free
energy surface is discontinuous at the barrier top (eq 3).
Hence, we calculated the curvature separately on each side of
the barrier top and averaged them out to obtain the barrier
curvature. Figure 4B shows that when the TPT is multiplied by
the barrier curvature of the corresponding surfaces the data
closely follow eq 2 for barriers >2 kgT (third point in Figure
4B). Only when the barrier becomes comparable to thermal
energy does the TPT diverge from eq 2, as expected since this
equation was derived for high barrier scenarios. Similar
conclusions have been reached from theoretical analyses of
the shape of transition paths.’®*”** Importantly, these results
indicate that faster folding proteins are likely to exhibit longer
transition paths, a conclusion of practical significance for the
experimental analysis of protein (un)folding rates and
transition paths. In other words, the best candidates for the
single-molecule analysis of transition paths are fast-folding
proteins, because their transition paths are longer and they
undergo many more reactive transitions per unit of time.
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Asymmetry of the Free Energy Surface and Tran-
sition Paths. Theoretical analysis indicates that it is possible
to extract the shape and height of the free energy surface from
the shape of the transition paths.”**”*® In contrast, existing
methods for the analysis of SM-FRET experiments only
produce TPT estimates; hence, there is a need for an
independent measurement of the free energy surface.” Here
we further explore the connection between the shape of the
free energy surface and the transition path times using surfaces
with different levels of asymmetry: from perfectly symmetric to
a surface in which the barrier is at 90% of the distance between
U and F (Figure 1B). We note here that in nonsymmetric
surfaces, the transition state, defined as the position on the
surface with splitting probabilities of 0.5, does not coincide
with the barrier top. The transition state is in fact shifted
toward the broader side of the barrier proportionally to the
degree of asymmetry on the surface. This discrepancy is,
however, of not much practical consequence for the calculation
of the TPT, whether analytically with eqs 5 and 6 or from
simulations. We thus generated transition paths in both folding
and unfolding directions on surfaces with varying asymmetry
(Figure S). The TPT is the same in the forward (folding) and

25 T T T

Tnorm
o
\

Tnorm

Lphaton

Figure S. TPT as a function of the asymmetry of the free energy
surface (¢). (Top) TPT in the folding direction (U — F), showing
the climb (navy) and descent (cyan) segments of the path. (Middle)
As shown in the top panel but in the unfolding direction (F — U).
(Bottom) Likelihood per photon (multiplied by 10*) from the MLA
of photon trajectories simulated on a ¢ = 0.65 surface as obtained
using Landau free energy surfaces at fixed asymmetry values.

reverse (unfolding) directions, as expected from time reversal
symmetry (blue on top and middle panels of Figure S).
Moreover, in general, the TPT is not very sensitive to the
asymmetry of the free energy surface, as it has been
theoretically proposed.’®*”*® This is particularly true for
small barriers. For instance, on the lowest barrier of this study
(~04 kgT), the TPT increases by just ~4% from the
symmetric to a ¢ = 0.9 surface, whereas the TPT increases
by ~36% on the largest barrier (~ 10 kgT). The longer TPT is

due to the fact that as the surface grows in asymmetry the
segment of the transition path that corresponds to the broad
side of the barrier becomes an increasingly larger fraction of
the total path. Since the free energy gradient on that segment
of the path is shallower, the overall crossing time increases.
This effect is equivalent to the TPT becoming longer as the
barrier decreases (Figure 4A), which also explains why surfaces
with lower barriers are much less sensitive to this effect.

That observation also points to the convenience of
separating the path into climb and descent segments as a
way to extract information about the surface’s asymmetry. The
climb corresponds to the segment from the moment the
molecule enters the transition region (x,) to the instant that it
reaches the barrier top (x = 0) for the first time. The descent
corresponds to the time it takes to reach x; for the first time
starting from x = 0, but the molecule can return to x = 0
multiple times as long as it does not backtrack all the way to x,.
These segments are equivalent to trp(x = 0 | xy) and tgp(x; | x
= 0) in Makarov’s definition,”” respectively. These two
segments are identical for folding and unfolding transitions
paths, but in reverse: swapping x, and x,. The separation of
TPT into climb and descent segment does indeed reveal
interesting symmetry-dependent properties (Figure S). For the
symmetric barrier case, we note that the downhill descent takes
about 3 times longer than the climb. This is again because the
productive climbs minimize the path (or else they return to the
originating basin and are not considered), whereas the descent
allows for much more lingering. However, the most important
result is that the climb and descent TPT segments are very
sensitive to the free energy surface’s asymmetry (Figure S).
The implication is that the ratio between climb and descent
TPT segments provides key information about the shape of the
free energy surface for nontrivial cases in which the barrier
curvature is not symmetric (hence, the rate is not exactly
described by eq 1, and the transition state does not coincide
with the barrier top). This finding has potentially great
significance for the single-molecule characterization of protein
(un)folding reactions. The reason is that obtaining estimates of
the average time for each segment is much easier than fully
resolving the shape of the path. We further explore this issue in
the following sections.

Estimating the Mean Transition Path Time from
Photon Trajectories. MLA-PT is the approach available to
estimate the TPT from single-molecule FRET experiments.
One of its limitations is the need a priori of a kinetic model to
compute and maximize the likelihood.”"**®® In its simplest
version, this procedure compares the likelihoods obtained with
a two-state and a simplified three-state model with a virtual
intermediate. The lifetime of the virtual intermediate in the
three-state model represents the TPT; hence, the comparison
between the three-state likelihood as a function of the
intermediate lifetime (1/2kg) and the likelihood of the two-
state model (Alog L,.,,) provides an estimate of whether the
TPT is resolved and of its value (the maximum along the Alog
Lyg.s curve). This methodology has been recently tested by
Taumoefolau and Best using coarse-grained molecular
simulations of protein folding to explore fundamental issues
such as the significance of using projected surfaces and E as
reaction coordinate.”® Here we perform a similar test but using
photon trajectories generated from the diffusive stochastic
kinetics on 1D free energy surfaces with E as reaction
coordinate. This type of analysis informs us of the inherent
accuracy and limitations of the approach for an idealized
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Figure 6. Alog L plots obtained from photon trajectory simulations on free energy surfaces with varying barrier (simulation parameters in Table
S1). Results for simulations with increasing barrier are shown from top left to bottom right with the barrier height indicated in units of kzT: Alog
L., (magenta, left scale) and Alog L, 5, (blue, right scale) methods. The vertical dashed line signals the actual TPT using 1/3 boundaries for the
transition region. Ny is the number of million photons used in the analysis.

problem; thus, it is complementary to that of Taumoefolau and
Best. It also provides a direct point of reference for the analysis
of experiments. For this purpose, we generated stochastic
diffusive kinetic trajectories on 1D free energy surfaces with
asymmetry of ¢ = 0.65 and barriers ranging from 0.4 to 8.1 kzT
(Figure 1A). We then simulated photon emission trajectories
associated with the intrinsic dynamics on the surface using a
simple linear function E(x) defined based on the Ey and Eg
values (E values at the two minima), which we chose to be
consistent with typical SM-FRET experiments of single-
domain protein (un)folding at the chemical denaturation
midpoint. We then performed the two-/three-state MLA-PT as
described above and in the “Methods” section. The results of
these analyses are summarized in Figure 6.

The first point to note is that although log L is proportional
to the total number of photons included in the analysis, Alog L
is only sensitive to the fraction of photons emitted during the
actual transition paths. In the original implementation, the
analysis is only performed on the small segments of photon
trajectories that contain a transition (identified independently
using a heuristic criterion, such as the detection of a sharp
change in E in the binned photon data). This also requires that
the ey and & parameters are determined independently and
fixed during the procedure,””” because the short trajectory
segments including the transition paths do not have enough
information to define the positions of the minima. We tried
this procedure using different heuristic criteria to identify
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transitions and procedures to estimate &y and & We also
performed a direct analysis of all the photon data without
preselection and globally fitting ey, g, k,, and k¢ with the two-
state model (see the “Methods” section). The latter procedure
is more straightforward because it eliminates the need for
identifying the specific segments corresponding to transitions,
which is not easy to do when the transition path times are just
slightly longer than the interphoton times, Ey; ~ E, or there is
some degree of acceptor blinking/bleaching.”’ The only issue
against performing a global analysis is the added computational
cost. However, the analysis is trivially parallelizable by
distributing photon trajectories among multiple threads/
cores, so we strongly recommend performing this analysis
using all the available photons, especially for fast-folding
proteins with low barriers.

As for its performance, we find that Alog L, reliably
produces a maximum for all the free energy surfaces, at least up
to a barrier of ~8 kzT (magenta in Figure 6). Therefore, this
procedure does indeed detect transition paths, even when they
are only ~5 times longer than the average interphoton time
(compare Figure 6 with count-rates in Table S1). For the
highest barrier, the position of the Alog L,y ,, maximum is
nearly identical to the actual TPT obtained analytically for the
1/3 boundaries. As the barrier decreases, however, the
estimated and actual TPT diverge, with the Alog L, ,,
maximum underestimating the TPT by up to 2.5-fold for the
lowest barriers (Figure 6). This result is consistent with the
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findings of Taumoefolau and Best on surfaces projected from
coarse-grained simulations, which had barriers on the lower
end of the range we explore here.”® Notably, the Alog Lyg s
value at maximum follows the opposite trend, with the
marginal 0.4 kgT barrier producing a maximum at ~240
(statistical significance of 1—107**), whereas it is only ~7
(significance of 1—1077) for the 8.1 k5T barrier (magenta scale
in Figure 6). The difference in Alog L, ,, is even more drastic
when it is corrected by the number of photons used in the
analysis (Table 1). However, we note that this difference is

Table 1. Difference in Likelihood Values per Photon
(Expressed in Log Units) for Different Methods

AGF (kT) Alog Ligs., Alog Ly 5, Alog Ly,
0.4 476 x 107™* 418 x 107+ 54 %1078
1.2 1.76 x 107* 1.36 x 107 1.99 x 107°
2.5 7.38 X 107° 5.6 x 107° 1.96 x 107°
3.7 3.02 X 107° 2.0 x 107° 1.08 X 107°
6.1 521 % 107¢ 22 % 107° 1.7 X 107¢
8.2 7.72 % 1077 2.7 x 1077 3.0 x 107°

simply a reflection of the number of “significant” photons that
are contained in each data set, that is, the photons that are
emitted during the transition paths. A simple way to correct for
the number of “significant” photons is to multiply Alog L, »,
per photon (Table 1) by exp(AGT¥). Such a calculation shows
that the Alog L, per “significant” photon is almost 5-fold
higher for the tallest relative to the shallowest barriers,
explaining why this method performs well on two-state-like
free energy surfaces, but underestimates the TPT when the
barrier drops below 4 kgT (Figure 6).

We also tried an alternative procedure in which the analysis
with the three-state model is performed with fixed k, and k¢
(values from the two-state analysis), but &y and &y are adjusted
together with kg to accommodate for the virtual intermediate
(Alog Ls,,). This analysis generally produced much higher
Alog L maxima (blue in Figure 6), increasingly so as the
barrier lowers. This is expected since lower barriers are more
populated and hence more consistent with the presence of a
virtual intermediate. However, the Alog L;, ,, as a function of
the intermediate lifetime lends a broader curve with its
maximum overestimating the TPT, particularly for the
intermediate to low barriers. The most important practical
result from this comparative analysis is that, together, the two
procedures set a useful range and their mean provides a good
estimate of the actual TPT even when the barrier is very small
(Figure 7).

Maximum Likelihood Analysis as Diffusion on a 1D
Free Energy Surface. The combination of Alog L, and
Alog Lj,, can thus lead to fairly accurate TPT estimates.
However, they do not provide any information about the
underlying free energy surface, nor an accurate estimate of the
barrier height given that barrier curvature and height are
directly linked (Figure 4). In principle, if the rate of a process
can be effectively described as diffusion on a free energy
surface, then the photon trajectories from single molecules
should contain all the information about the free energy
surface and diffusion coefficient. The key question is whether,
or to what extent, such information can be extracted via MLA-
PT. This question has been addressed for idealized 1D free
energy surfaces in which the barrier height varied but the
specific shape of the surface was kept constant.”” Here we aim

Tn()rﬂ]

Barrier (kzT)

Figure 7. Relative TPT (normalized as before) as a function of the
free energy barrier. The normalized actual TPT is shown in black. The
TPT estimated from the maximum of the Alog L, ,; and Alog L, 5,
plots of Figure 6 are shown in magenta and blue, respectively.

to determine whether it is practically feasible to extract the
basic terms of a rate expression such as eq 1 (barrier height,
curvatures of minima and barrier, and diffusion coefficient) by
analyzing photon trajectories directly as diffusion on an
adjustable 1D free energy surface (FES-MLA, see the
“Methods” section).

The first observation from the FES-MLA is that the photon
trajectory data that we used for the analysis with two-/three-
state models (previous section) contain sufficient information
to accurately retrieve the original free energy surface, regardless
of how high is the barrier that separates the two minima
(Figure SS). Alog Lpgg., is in fact much higher than Alog
Lyg.29 or even Alog Ls,,, for all the barriers (Table 1). This
result confirms that there is enough information in the photon
trajectories to determine the barrier height and dynamics.
Moreover, the FES-MLA also resolves the climb and descent
segments of transition paths, and hence, it can determine the
degree of asymmetry (shape) of the free energy surface (Figure
S, bottom). The comparison between Alog Lgs.,, and Alog
L., provides an empirical reference to ascertain whether a
given photon data set can define the shape of the free energy
surface relative to the presence of a discrete intermediate (the
Landau MLA has the same number of fitting parameters as a
restricted three-state model with single kg; see the “Methods”
section). This comparison can be particularly useful to
discriminate between dynamics on a free energy surface with
a shallow barrier and the relaxation of an intermediate
separated from U and F by barriers. For instance, the Alog L
results summarized in Table 1 indicate that for our simulated
conditions (protein dynamics, count-rates and E values) about
120 000 photons are sufficient to distinguish (with statistical
significance of 1—107"%) the dynamics on a 0.4 kzT surface
from a relaxation through a discrete intermediate. Table 1
shows that such a shallow barrier is the most challenging
scenario to discriminate, whereas resolving the diffusive
transition paths becomes comparatively easier the higher is
the barrier (provided the count rate is at least 4—5-fold higher
than 1/TPT).

The comparative analysis reveals another byproduct of
fitting the photon trajectories to discrete kinetic models;
namely, we find that the two-state model does not place € and
&y where the surface minima are but rather closer together
(magenta lines in Figure SS). The discrepancy is minimal for
the scenarios with the highest barriers, but it grows
proportionally to the barrier shallowness. This effect seems
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to reflect dynamic averaging with the population of the
microstates at the barrier. To test this idea, we performed the
two-state fitting with the actual e and &y fixed to the known
Ep and Ey values, which returned many orders of magnitude
lower likelihoods, indicating that the effect does indeed reflect
dynamic averaging from excursions along the barrier slope (for
a 0.4 kgT barrier the population at the top is 2/3 of that at the
minimum). Because the shift in &; and & reflects the true
dynamics of the system, it is preferable to fit these parameters
jointly with k, and k; as we suggested above, rather than fixing
them to expected values from an independent measurement. In
fact, the observation of a shift in &z and & between the two-
and three-state analyses could be used as first indication that
the TPT might be resolvable. The three-state model partially
corrects the shift in &; and &y by introducing an intermediate.
However, the three-state model fails to place &g at the exact
barrier top: &g is shifted toward U for the lower barriers and
toward F for the highest ones (blue lines in Figure SS). We
note that these issues arise from the use of discrete kinetic
models. Hence, we conclude that an MLA procedure that
directly uses a model of diffusion on a simple 1D free surface is
preferable, as it has been proposed before by us®’ and more
recently by others.”® This is particularly true if the shape of the
idealized 1D surface (barrier height and asymmetry) can be
controlled with specific parameters, as with the Landau model
we introduce here.

B CONCLUSIONS

There has been a growing interest in the analysis of the reactive
transition paths of protein (un)folding® and other biomo-
lecular reactions driven by large conformational changes.”>*°
This is so because such transition paths contain essential
information to unravel the complex mechanisms that
determine the rates of these processes.”” A major motivating
factor has been the recent developments in single-molecule
fluorescence and force techniques, which have opened the
opportunity to address these questions experimentally for the
very first time. Here we tackled two related questions: (i) how
to interpret transition paths in mechanistic terms and (ii) how
to extract transition path information from single-molecule
experiments. We started by assuming that the rates and
transition paths of protein (un)folding and related processes
can be described as diffusion on a simple free energy surface
that represents the projection of the hyperdimensional energy
landscape onto a single reaction coordinate. We describe such
free energy surface analytically using a Landau quartic
polynomial, which produces an idealized 1D surface with
two minima separated by a barrier of controllable height and
symmetry. Using stochastic diffusive simulations on such
surfaces, we closely looked into the direct relationships
between the shape of the free surface and the transition
paths (shape and time). From this analysis we can extract three
main conclusions: (a) The choice of transition region
boundaries has strong impact on the resulting TPT and
crossing probability. However, we find that setting the
boundaries at 1/3 of the distance between the minimum and
the barrier top best captures the dynamics on the surface,
particularly for barriers in the range that is most relevant to
protein folding reactions (0—10 kzT). (b) For free energy
surfaces with the same shape (symmetry), the TPT is inversely
proportional to the barrier height, being the longest when the
surface has a positive, marginally high barrier. We show that
this behavior reflects the tight connection between barrier
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curvature and height, and it is consistent with the known
expression (zrp) & In [2e¢’BAG*]/Dp(@*)*. Practically, this
result implies that resolving the transition paths of fast-folding
proteins should be easier because they will be both longer and
much more frequent. (c) Whereas the TPT is insensitive to the
surface asymmetry, as indicated by theoretical analysis,***”**
we find that the climb and descent segments of the transition
path are highly sensitive to the barrier’s asymmetry. Therefore,
resolving the climb and descent fractions of the TPT could
provide key information to estimate the shape of the surface.
We then investigated the performance of various MLA-PT
approaches for extracting transition path information. Our
results show that the original analysis (Alog L,,,) under-
estimates the TPT, particularly for barriers smaller than 4 kT,
consistently with recent results from a similar study based on
coarse-grained molecular simulations.”® The major factor
behind such underestimation is that the two-state model shifts
the two minima closer together in response to the population
at the barrier, which makes the estimated transition path
shorter than the real one. We introduce here a variant in which
the three-state model is allowed to accommodate the position
of the two minima (Alog Ls,.,,). This variant overestimates the
lifetime of the intermediate, and hence the TPT. However, the
two MLA procedures combined provide a rather accurate
mean TPT over the entire range of barriers explored here.
However, we do find that the MLA implemented with a
model of diffusion on a free energy surface (MLA-FES) offers a
far superior performance. Such analysis renders much higher
likelihoods than the discrete kinetic models with equal number
of parameters, indicating that there is sufficient information in
the simulated photon trajectories to extract the diffusive
dynamics on the free energy surface. We then confirm that this
analysis obtains the correct barrier throughout the 0—10 kT
range, as well as the asymmetry of the free energy surface. For
a real experiment, in which the free energy surface is not
known a priori, the researcher can compare Alog Lggg ,, and
Alog L, ,, as indicator of the statistical significance of the FES
analysis (e.g., Table 1). Accordingly, we strongly recommend
that the analysis is performed with a flexible 1D free energy
surface model, like the one we introduce here. This model is
parametrically as simple as a three-state model, and it allows us
to dissect the terms of the rate expression. Such representation
is amenable to direct comparison with theory and the results
from molecular simulations. Furthermore, the MLA-FES can
easily accommodate more complex scenarios: a diffusion
coefficient that changes along the reaction coordinate, as it has
been postulated by theory' and observed in simulations,'®”" or
the use of higher dimensional surfaces to reproduce the results
from experiments that monitor several distances in the protein
(multiparametric and/or three-color FRET experiments).
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