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The hadron resonance gas (HRG) model and its extensions are often used to describe the hadronic

phase of strongly interacting matter. In our work we use lattice-QCD simulations with temporal

extents of #g = 8, 10 and 12 to quantify corrections to the ideal HRG. Firstly, we determine a num-

ber of subleading fugacity expansion coe�cients of the QCD free energy via a two-dimensional

scan on the imaginary baryon number chemical potential (`⌫) - strangeness chemical potential

(`() plane. Using the aforementioned coe�cients, we also extrapolate ratios of baryon number

and strangeness fluctuations and correlations to finite chemical potentials via a truncated fugacity

expansion. Our results extrapolated along the crossover line )c (`⌫) at strangeness neutrality are

able to reproduce trends of experimental net-proton fluctuations measured by the STAR Collabo-

ration.
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1. Introduction

During the recent decades, the mapping of the QCD phase diagram has been in the focus of attention
for both theoretical and experimental research. Many aspects of QCD thermodynamics are known
at zero baryon density [1–3], however, at finite `⌫ the theory still proves to be perplexing. In
particular, first principle lattice QCD simulations at non-vanishing `⌫ are still hindered by the sign
problem, although there are methods to circumvent it, such as reweighting [4–10], Taylor expansion
at zero chemical potential [11–15], and extrapolation from purely imaginary chemical potential
[16–25]. In this study the last was implemented, which also involves analytic continuation, hence it
is essential to make use of some physical insight regarding the functional form of a given observable
as a function of `.

The ideal hadron resonance gas (HRG) and its extensions are frequently used in describing the
hadronic phase of strongly interacting matter [26, 27]. The ideal HRG model treats the interacting
gas of hadrons as a free gas of hadrons and resonances, hence only the attractive resonant interactions
are accounted for. The model performs well at describing thermodynamic observables at zero
chemical potential, however, at finite ` a number of discrepancies emerge. In principle, the HRG
can be systematically improved via the (-matrix formalism if the appropriate scattering matrix
elements are known [21, 28]. Furthermore, it is also straightforward to extend the HRG using
a kind of mean field model that takes into account the short-range repulsive and non-resonant
interactions. The importance of the hard-core short-range repulsive interactions has been pointed
out [22, 29], which leads to a significant negative contribution to the fugacity expansion coe�cients
with baryon number two.

The HRG model is also heavily used in the interpretation of experimental data. Apart from being a
non-critical baseline, the so-called thermal fits provide means to estimate the chemical freeze-out
temperature and chemical potential in heavy-ion collision experiments [30, 31]. Precise description
of the hadronic phase – including the e�ect of interactions – is important to test di�erent scenarios in
heavy-ion physics, such as a single freeze-out temperature versus di�erent freeze-out temperatures
for light and strange hadrons [32].

In this paper we present our findings for subleading fugacity expansion coe�cients from first
principle lattice QCD simulations. We perform calculations in the two-dimensional plane of
purely imaginary baryo- and strangeness chemical potentials. The fugacity expansion coe�cients
could be regarded as Fourier coe�cients in the imaginary values of chemical potentials. This
way we are able to separate the di�erent contributions to the thermodynamics by the baryon
number and strangeness quantum numbers of the hadrons. We hope that our results will not
only improve our understanding of the discrepancies between the HRG model and lattice results,
but will give a new edge in constructing more realistic phenomenological models as well. Upon
procuring the aforementioned coe�cients we used a truncated fugacity expansion to extrapolate
baryon number and strangeness fluctuation ratios of experimental interest to finite baryochemical
potentials on the phenomenologically relevant strangeness neutral line. On the crossover line our
results approximately reproduce the di�erent trends seen in the net-proton fluctuation ratios from
the STAR experiment. This conference contribution is based on Ref. [33].
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2. QCD in the Grand Canonical Ensemble

2.1 Generalised Susceptibilities

The generalised susceptibilities of the di�erent quark flavours are defined as partial derivatives of
the grand canonical potential (or pressure ?) with respect to the di�erent chemical potentials. For
the case of the conserved charges baryon number ⌫, electric charge & and strangeness (, we have:

j⌫&(8 9: =
m8+ 9+: (?/)4

)

m ˆ̀8⌫m ˆ̀ 9&m ˆ̀:(
, (1)

where ) denotes the temperature and e.g. ˆ̀⌫ = `⌫/) is the dimensionless chemical potential of
the baryon number. The chemical potentials ˆ̀& and ˆ̀( are defined analogously for electric charge
and strangeness. In this proceedings we use `& = 0 and only consider fluctuations and correlations
of baryon number and strangeness.

2.2 Fugacity Expansion of the QCD Free Energy

Apart from the Taylor expansion, one can use a Laurent expansion in the fugacity parameters
exp( ˆ̀⌫) and exp( ˆ̀() near 1. Based on charge conjugation symmetry the Laurent series can be
expressed as an expansion in hyperbolic cosine functions of the chemical potentials, hence

?(), ˆ̀⌫, ˆ̀()
)4

=
’
9 ,:

%⌫(9: ()) cosh( 9 ˆ̀⌫ � : ˆ̀() . (2)

The %⌫(9: ()) coe�cients are the fugacity coe�cients or sector coe�cients referring to the fact that
they only get contributions from Hilbert subspaces of fixed ⌫ = 9 and ( = : quantum numbers –
for examples see Table 1.

Table 1: Examples of di�erent hadronic states contributing to the di�erent sector coe�cients %⌫(9: .

(⌫, () (0, 0) (1, 0) (0, 1) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2)

hadrons c, d, [ ?,�  ⇤, ⌃ ⌅ ?-?  - ?-⇤, ?-?- 

The ideal HRG model receives its main contributions from the sectors (⌫, () = (0, 0), (0, 1), (1, 0),
(1, 1),(1, 2) and (1, 3). Further coe�cients for ⌫ � 1 are close to zero, which is – as we will see – a
clear deviation from the lattice results. At purely imaginary chemical potentials ` = 8`I , and with
cosh(8`I) = cos(`I) Eq. (2) becomes a Fourier series. By di�erentiating Eq. (2) with respect to
the `⌫ and `( one can derive the functional forms of the generalised susceptibilities – to be used
later in the fitting procedure.
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The coe�cients %⌫(01 , %⌫(10 , %⌫(11 , %⌫(12 and %⌫(13 are sizeable even in the ideal HRG model, however,
they also get contributions from interactions such as c-# scattering for the sector %⌫(10 or from ⇤-#
interaction for %⌫(21 . The %⌫(1�1 sector is zero in the ideal HRG, but it can get contributions from e.g.
the #- + scattering. The ⌫ = 2 sectors get contributions from various processes; e.g. %⌫(20 from
#-# , %⌫(21 from #-⇤/⌃, %⌫(22 from #-⌅ or ⇤/⌃-⇤/⌃ and %⌫(23 from #-⌦ or ⇤/⌃-⌅ interactions.
The %⌫(02 and %⌫(03 sectors get contributions from two- and three-kaon scatterings respectively. The
⌫max = 3 sectors include three-baryon scattering processes with various strangeness contents.

3. Lattice Setup

In our lattice setup a staggered fermion action with four steps of stout smearing – with smearing
parameter d = 0.125 – and a tree-level Symanzik-improved gauge action was used [15]. For the
scale setting the pion decay constant was fixed to 5c = 130.41 MeV. The used lattice spacings
are #g ⇥ #3

G = 8 ⇥ 243, 10 ⇥ 323 and 12 ⇥ 363, which correspond to the !) ⇡ 3 aspect ratio.
During continuum extrapolation we assume linear scaling in 1/#2

g . For each lattice spacing we ran
simulations at four di�erent temperatures: ) = 145 MeV, 150 MeV, 155 MeV and 160 MeV. At
each temperature and lattice spacing a two-dimensional scan of the ( ˆ̀I⌫, ˆ̀I( ) plane was performed
at points ˆ̀I⌫ = 8c/8 with 8 = 0, 1, . . . , 15 and ˆ̀I( = 9c/8 with 9 = 0, 1, . . . , 8, which sums up to a
total of 144 simulation points. In each `I < 0 point a Rational Hybrid Monte Carlo stream with
several thousand trajectories was simulated, from which every fifth configuration was evaluated to
determine the fluctuation observables. The statistical errors are handled with the jackknife method.
During the systematic error estimation di�erent continuum ansatzes and di�erent truncations of the
fugacity expansion were taken into account.

4. Numerical results

In order to estimate the sector coe�cients %⌫(9: a linear correlated fit was carried out. At van-

ishing chemical potential the j⌫(20 , j⌫(11 , j⌫(02 , j⌫(40 , j⌫(31 , j⌫(22 , j⌫(13 and j⌫(04 susceptibilities were
considered, while for the remaining 143 simulated ensembles the Imj⌫(01 and Imj⌫(10 were used.
The block diagonal covariance matrix was estimated with the jackknife method. The truncation of
the fugacity expansion is not unequivocal, hence we introduced two di�erent cuts in the maximal
baryon number as ⌫max = 2 or 3. The used sectors in the correlated fits are presented in Table 2.

Table 2: The used sectors in the ⌫max = 2 and 3 fits. The ⌫max = 3 column includes those sectors which are
added to the ⌫max = 2 case upon extension, hence we can detemine 12(+4) coe�cients in total.

⌫max = 2 ⌫max = 3

⌫, ( 1,0 0,1 1,-1 1,1 1,2 1,3 2,0 2,1 2,2 2,3 0,2 0,3 3,0 3,1 3,2 3,3

The results for the di�erent sectors at our finest lattice #g ⇥ #3
G = 12 ⇥ 363 at ) = 155 MeV are

shown in Fig. 1. It can be noted that the estimation of the ⌫ = 3 sectors is not accurate enough, and
their inclusion does not improve the quality of the fits, but the ⌫ = 2 sectors remain consistent.
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Figure 1: Results for the sector coe�cients %⌫(9: at ) = 155 MeV at our fines lattice. The leftmost five
sectors are accounted for even in the ideal HRG model. For the next seven sectors we get stable solutions
and are used later in phenomenological calculations. The ⌫max = 3 sectors are not stable enough as of yet.
The vertical axis is set to log-scale, hence we introduced colours to indicate the sign of the coe�cients;
negative-blue, positive-red.

The continuum limit extrapolation of the sector coe�cients proceeds through a combined two-
dimensional fit with the following ansatz as a function of temperature and temporal extent:

5 (), #g) = 00 + 01) + 02)
2
+ (10 + 11) + 12)

2
)

1

#2
g

. (3)

In the systematic error estimation we have taken into account the e�ects whether we include the
⌫max = 3 set or not during the correlated fit and whether we include the coe�cient 12 in the
continuum ansatz from Eq. (3). All the fits had good j2 values. After the continuum limit fits are
carried out we combine the four results with uniform weights for all the analysed sectors.

The final results of our beyond-HRG sectors are shown in Fig. 2. According to our findings the
sectors %⌫(20 and %⌫(21 are rather similar to each other. For higher temperatures they get more and
more negative. This can be attributed to the short-range repulsive interactions, which start to take
e�ect. The sector %⌫(22 gets smaller and for %⌫(23 we get a result roughly close to zero – hence it is not
included. As comparison, if one sums over the strangeness sectors in the ideal HRG as

Õ
: %

⌫(
2: , the

result will be O(10�5
) – orders of magnitude smaller than what we get from the lattice simulations.

The sector %⌫(02 goes below zero within 1f uncertainty at about 155 MeV. The results for %⌫(1�1
are rather large, which is in consistence with the phenomenological analysis in Ref. [34]. Our
results are also in approximate agreement with predictions from more phenomenological models.
The sectors %⌫(20 and %⌫(21 are 1f away from predictions of repulsive mean field models, while the
%⌫(22 is within 2f at all temperatures [29]. Furthermore, the sector %⌫(1�1 is within 1f agreement
below 150 MeV and within 2f at 160 MeV in (-matrix calculations [34]. The leading order sector
coe�cients have already been published in earlier works [21], thus their analysis is not repeated
here.

With the determined sector coe�cients at hand di�erent thermodynamic observables can be readily
calculated. We consider the di�erent baryon number and strangeness fluctuations and correlations

5
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at the experimentally relevant strangeness neutral line given by the constraint j(1 = 0. The
extrapolation to real values of chemical potential is done via the expression in Eq. (2) at fixed )
and #g with truncation at ⌫max = 2, which is followed by the continuum limit estimation using the
same ansatz as for the sectors defined in Eq. (3). The same systematic error analysis was performed
as for the fugacity expansion coe�cients. The considered susceptibility ratios are j⌫1 /j

⌫
2 , j⌫3 /j

⌫
1 ,

j⌫4 /j
⌫
2 and j⌫(11 /j(2 ; our results are presented in Fig. 2. The parameterisation of the crossover line

is )c( ˆ̀⌫) ⇡ )0
c (1 � ^2 ˆ̀2

⌫), where )0
c = (158.0 ± 0.6) MeV and ^2 = 0.0153 ± 0.0018 [25].

Figure 2: (Right) Our continuum limit estimates for the subleading sector coe�cients from combined )-
1/#2

g and )-by-) continuum fits. Systematic errors coming from the choice of ⌫max and the inclusion of 12

are taken into account. (Left) Continuum estimates of phenomenologically relevant generalised susceptibility
ratios extrapolated to finite chemical potential at di�erent temperatures and on the )c (`⌫) crossover line.

The ratio j⌫1 /j
⌫
2 shows strong dependence on the chemical potential, while depends weakly on the

temperature, hence it can be used as a good proxy of `⌫. The case for the ratios j⌫4 /j
⌫
2 , j⌫3 /j

⌫
1 and

j⌫(11 /j(2 is quite the opposite, hence these ratios can be regarded as possible baryonic and strangeness
thermometers. The latter ratio is of great phenomenological interest, since a good experimental
proxy of it can be constructed from net-kaon and -lambda fluctuations as f2

⇤/(f
2
⇤ +f2

 ), for which
it is shown that it is not strongly a�ected by experimental e�ects [35]. Our results are consistent

6
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with recent lattice studies in which the ratios have been estimated using the Taylor method [15].
Furthermore, we also make comparisons with experimental net-proton skewness-to-mean ⇠3/⇠1

and kurtosis-to-variance ⇠4/⇠2 ratios from the STAR Collaboration [36]. For this comparison one
must assume that the chemical freeze-out and crossover lines are close to each other on the QCD
phase diagram. The similarity of trends can be seen in Fig. 3.

Figure 3: Comparison of our continuum estimates of fluctuation ratios with the STAR data.

5. Summary and Outlook

In our present work we calculated the subleading sector coe�cients of the QCD free energy from
first principle lattice simulations. This way we could separate contributions coming from Hilbert
subspaces with fixed baryon number and strangeness quantum numbers, hence the possibility is
open to separate processes like ?-? or  - scatterings. We estimated the continuum limit results by
considering lattices with temporal extents #g = 8, 10 and 12 with aspect ratio !) ⇡ 3. Our results
quantify corrections to the ideal HRG directly from first principle calculations. After the estimation
of the sector coe�cients, we used a truncated fugacity expansion to calculate phenomenologically
relevant fluctuation ratios. The comparison has many caveats [37] but our results can reproduce the
trends observed on the experimental STAR data of net-proton fluctuations.
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