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The hadron resonance gas (HRG) model and its extensions are often used to describe the hadronic
phase of strongly interacting matter. In our work we use lattice-QCD simulations with temporal
extents of N, = 8, 10 and 12 to quantify corrections to the ideal HRG. Firstly, we determine a num-
ber of subleading fugacity expansion coefficients of the QCD free energy via a two-dimensional
scan on the imaginary baryon number chemical potential (up) - strangeness chemical potential
(us) plane. Using the aforementioned coefficients, we also extrapolate ratios of baryon number
and strangeness fluctuations and correlations to finite chemical potentials via a truncated fugacity
expansion. Our results extrapolated along the crossover line T, (up) at strangeness neutrality are
able to reproduce trends of experimental net-proton fluctuations measured by the STAR Collabo-
ration.
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1. Introduction

During the recent decades, the mapping of the QCD phase diagram has been in the focus of attention
for both theoretical and experimental research. Many aspects of QCD thermodynamics are known
at zero baryon density [1-3], however, at finite up the theory still proves to be perplexing. In
particular, first principle lattice QCD simulations at non-vanishing up are still hindered by the sign
problem, although there are methods to circumvent it, such as reweighting [4—10], Taylor expansion
at zero chemical potential [11-15], and extrapolation from purely imaginary chemical potential
[16-25]. In this study the last was implemented, which also involves analytic continuation, hence it
is essential to make use of some physical insight regarding the functional form of a given observable
as a function of u.

The ideal hadron resonance gas (HRG) and its extensions are frequently used in describing the
hadronic phase of strongly interacting matter [26, 27]. The ideal HRG model treats the interacting
gas of hadrons as a free gas of hadrons and resonances, hence only the attractive resonant interactions
are accounted for. The model performs well at describing thermodynamic observables at zero
chemical potential, however, at finite u a number of discrepancies emerge. In principle, the HRG
can be systematically improved via the S-matrix formalism if the appropriate scattering matrix
elements are known [21, 28]. Furthermore, it is also straightforward to extend the HRG using
a kind of mean field model that takes into account the short-range repulsive and non-resonant
interactions. The importance of the hard-core short-range repulsive interactions has been pointed
out [22, 29], which leads to a significant negative contribution to the fugacity expansion coeflicients
with baryon number two.

The HRG model is also heavily used in the interpretation of experimental data. Apart from being a
non-critical baseline, the so-called thermal fits provide means to estimate the chemical freeze-out
temperature and chemical potential in heavy-ion collision experiments [30, 31]. Precise description
of the hadronic phase — including the effect of interactions —is important to test different scenarios in
heavy-ion physics, such as a single freeze-out temperature versus different freeze-out temperatures
for light and strange hadrons [32].

In this paper we present our findings for subleading fugacity expansion coefficients from first
principle lattice QCD simulations. We perform calculations in the two-dimensional plane of
purely imaginary baryo- and strangeness chemical potentials. The fugacity expansion coefficients
could be regarded as Fourier coefficients in the imaginary values of chemical potentials. This
way we are able to separate the different contributions to the thermodynamics by the baryon
number and strangeness quantum numbers of the hadrons. We hope that our results will not
only improve our understanding of the discrepancies between the HRG model and lattice results,
but will give a new edge in constructing more realistic phenomenological models as well. Upon
procuring the aforementioned coefficients we used a truncated fugacity expansion to extrapolate
baryon number and strangeness fluctuation ratios of experimental interest to finite baryochemical
potentials on the phenomenologically relevant strangeness neutral line. On the crossover line our
results approximately reproduce the different trends seen in the net-proton fluctuation ratios from
the STAR experiment. This conference contribution is based on Ref. [33].
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2. QCD in the Grand Canonical Ensemble

2.1 Generalised Susceptibilities

The generalised susceptibilities of the different quark flavours are defined as partial derivatives of
the grand canonical potential (or pressure p) with respect to the different chemical potentials. For
the case of the conserved charges baryon number B, electric charge Q and strangeness S, we have:

pos _ 9 (p/TY) 0
Xijk _6Aiaf\jaf\k’
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where T denotes the temperature and e.g. fip = up/T is the dimensionless chemical potential of
the baryon number. The chemical potentials fip and fis are defined analogously for electric charge
and strangeness. In this proceedings we use 1o = 0 and only consider fluctuations and correlations
of baryon number and strangeness.

2.2 Fugacity Expansion of the QCD Free Energy

Apart from the Taylor expansion, one can use a Laurent expansion in the fugacity parameters
exp(fip) and exp(fls) near 1. Based on charge conjugation symmetry the Laurent series can be
expressed as an expansion in hyperbolic cosine functions of the chemical potentials, hence

p(T, jip, fis) . -
ST = ) PR (T) cosh(jfis ~ ki) - @

J-k

The Pflf (T) coeflicients are the fugacity coefficients or sector coefficients referring to the fact that
they only get contributions from Hilbert subspaces of fixed B = j and S = k quantum numbers —
for examples see Table 1.

Table 1: Examples of different hadronic states contributing to the different sector coefficients Pflf .

8.5 | 0o |aolon|dan|dyleoleh| @2
hadrons H ﬂ,p,?’]‘ P, A ‘ K ‘ AZ ‘ = ‘ p-p ‘ K-K ‘p—A,p-p-K

The ideal HRG model receives its main contributions from the sectors (B, S) = (0, 0), (0, 1), (1,0),
(1,1),(1,2) and (1, 3). Further coefficients for B > 1 are close to zero, which is — as we will see —a
clear deviation from the lattice results. At purely imaginary chemical potentials u = iu?, and with
cosh(iu?) = cos(u?) Eq. (2) becomes a Fourier series. By differentiating Eq. (2) with respect to
the up and ps one can derive the functional forms of the generalised susceptibilities — to be used
later in the fitting procedure.
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The coeflicients Pgls s PfOS s Pﬁs, szs and Pﬁs are sizeable even in the ideal HRG model, however,
they also get contributions from interactions such as 7-N scattering for the sector Pfos or from A-N
interaction for Pfls . The Pf_sl sector is zero in the ideal HRG, but it can get contributions from e.g.
the N-K* scattering. The B = 2 sectors get contributions from various processes; e.g. Pfos from
N-N, Pfls from N-A/Z, szs from N-E or A/E-A/% and P%S from N-Q or A/X-E interactions.

The P(%S and P(%S sectors get contributions from two- and three-kaon scatterings respectively. The

Bmax = 3 sectors include three-baryon scattering processes with various strangeness contents.

3. Lattice Setup

In our lattice setup a staggered fermion action with four steps of stout smearing — with smearing
parameter p = 0.125 — and a tree-level Symanzik-improved gauge action was used [15]. For the
scale setting the pion decay constant was fixed to f; = 130.41 MeV. The used lattice spacings
are No X N3 = 8 x 24%,10 x 323 and 12 x 36°, which correspond to the LT ~ 3 aspect ratio.
During continuum extrapolation we assume linear scaling in 1/N2. For each lattice spacing we ran
simulations at four different temperatures: 7 = 145 MeV, 150 MeV, 155 MeV and 160 MeV. At
each temperature and lattice spacing a two-dimensional scan of the ( ﬁf;, ﬁf; ) plane was performed
at points ﬁg =in/8withi=0,1,...,15 and ,&g = jr/8 with j =0,1,...,8, which sums up to a
total of 144 simulation points. In each u? # 0 point a Rational Hybrid Monte Carlo stream with
several thousand trajectories was simulated, from which every fifth configuration was evaluated to
determine the fluctuation observables. The statistical errors are handled with the jackknife method.
During the systematic error estimation different continuum ansatzes and different truncations of the
fugacity expansion were taken into account.

4. Numerical results

In order to estimate the sector coefficients Pfks a linear correlated fit was carried out. At van-
hi : : BS ,BS ,BS ,BS ,BS _BS BS BS

ishing chemical potential the x5, X175 Xon > Xa0 s X31 s Xon » X135 and xg,° susceptibilities were
considered, while for the remaining 143 simulated ensembles the Im/\(égls and Im)(ﬁ)s were used.
The block diagonal covariance matrix was estimated with the jackknife method. The truncation of
the fugacity expansion is not unequivocal, hence we introduced two different cuts in the maximal

baryon number as B, = 2 or 3. The used sectors in the correlated fits are presented in Table 2.

Table 2: The used sectors in the Bna.x = 2 and 3 fits. The Byax = 3 column includes those sectors which are
added to the Bp,x = 2 case upon extension, hence we can detemine 12(+4) coefficients in total.

H Bmax:2 ‘ Bmax:3
B,SH 10 01 1-1 11 12 13 20 21 22 23 02 0,3\3,0 31 32 33

The results for the different sectors at our finest lattice Ny X N3 = 12 x 36° at T = 155 MeV are
shown in Fig. 1. It can be noted that the estimation of the B = 3 sectors is not accurate enough, and
their inclusion does not improve the quality of the fits, but the B = 2 sectors remain consistent.
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Figure 1: Results for the sector coefficients Pf,f at T = 155 MeV at our fines lattice. The leftmost five
sectors are accounted for even in the ideal HRG model. For the next seven sectors we get stable solutions
and are used later in phenomenological calculations. The Bpa.x = 3 sectors are not stable enough as of yet.
The vertical axis is set to log-scale, hence we introduced colours to indicate the sign of the coefficients;
negative-blue, positive-red.

The continuum limit extrapolation of the sector coefficients proceeds through a combined two-
dimensional fit with the following ansatz as a function of temperature and temporal extent:

1
f(T,N;) =a0+a1T+a2T2+(b0+b1T+b2T2)m. 3)

T

In the systematic error estimation we have taken into account the effects whether we include the
Bmax = 3 set or not during the correlated fit and whether we include the coefficient b, in the
continuum ansatz from Eq. (3). All the fits had good y? values. After the continuum limit fits are
carried out we combine the four results with uniform weights for all the analysed sectors.

The final results of our beyond-HRG sectors are shown in Fig. 2. According to our findings the
sectors Pz%s and PzBls are rather similar to each other. For higher temperatures they get more and
more negative. This can be attributed to the short-range repulsive interactions, which start to take
effect. The sector szs gets smaller and for P%S we get a result roughly close to zero — hence it is not
included. As comparison, if one sums over the strangeness sectors in the ideal HRG as Y P35, the

result will be O(107>) — orders of magnitude smaller than what we get from the lattice simulzaktions.
The sector P(?ZS goes below zero within 1o uncertainty at about 155 MeV. The results for Pf_sl
are rather large, which is in consistence with the phenomenological analysis in Ref. [34]. Our
results are also in approximate agreement with predictions from more phenomenological models.
The sectors Pfos and Pﬁs are 1o~ away from predictions of repulsive mean field models, while the
P25 is within 20 at all temperatures [29]. Furthermore, the sector PES is within 1o~ agreement
below 150 MeV and within 20~ at 160 MeV in S-matrix calculations [34]. The leading order sector
coefficients have already been published in earlier works [21], thus their analysis is not repeated

here.

With the determined sector coefficients at hand different thermodynamic observables can be readily
calculated. We consider the different baryon number and strangeness fluctuations and correlations
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at the experimentally relevant strangeness neutral line given by the constraint ,\(15 = 0. The
extrapolation to real values of chemical potential is done via the expression in Eq. (2) at fixed T
and N, with truncation at Bn,x = 2, which is followed by the continuum limit estimation using the
same ansatz as for the sectors defined in Eq. (3). The same systematic error analysis was performed
as for the fugacity expansion coefficients. The considered susceptibility ratios are x£/x2, x2/x B,
Xf / )(f and Xﬁs / ,\/f ; our results are presented in Fig. 2. The parameterisation of the crossover line

is Te(fip) = TO(1 — k2/i%), where T = (158.0 + 0.6) MeV and ; = 0.0153 + 0.0018 [25].
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Figure 2: (Right) Our continuum limit estimates for the subleading sector coefficients from combined T-
1/ Nz and T-by-T continuum fits. Systematic errors coming from the choice of By,x and the inclusion of b,
are taken into account. (Left) Continuum estimates of phenomenologically relevant generalised susceptibility
ratios extrapolated to finite chemical potential at different temperatures and on the 7. () crossover line.

The ratio /\(fg / Xf shows strong dependence on the chemical potential, while depends weakly on the
temperature, hence it can be used as a good proxy of . The case for the ratios x£/x%, x2/x¥ and
Xﬁs / Xf is quite the opposite, hence these ratios can be regarded as possible baryonic and strangeness
thermometers. The latter ratio is of great phenomenological interest, since a good experimental
proxy of it can be constructed from net-kaon and -lambda fluctuations as 0'/2\ / (0'/2\ + 0'12(), for which
it is shown that it is not strongly affected by experimental effects [35]. Our results are consistent
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with recent lattice studies in which the ratios have been estimated using the Taylor method [15].
Furthermore, we also make comparisons with experimental net-proton skewness-to-mean C3/C;
and kurtosis-to-variance Cy4/C; ratios from the STAR Collaboration [36]. For this comparison one
must assume that the chemical freeze-out and crossover lines are close to each other on the QCD
phase diagram. The similarity of trends can be seen in Fig. 3.
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Figure 3: Comparison of our continuum estimates of fluctuation ratios with the STAR data.

5. Summary and Outlook

In our present work we calculated the subleading sector coefficients of the QCD free energy from
first principle lattice simulations. This way we could separate contributions coming from Hilbert
subspaces with fixed baryon number and strangeness quantum numbers, hence the possibility is
open to separate processes like p-p or K-K scatterings. We estimated the continuum limit results by
considering lattices with temporal extents N, = 8, 10 and 12 with aspect ratio LT = 3. Our results
quantify corrections to the ideal HRG directly from first principle calculations. After the estimation
of the sector coefficients, we used a truncated fugacity expansion to calculate phenomenologically
relevant fluctuation ratios. The comparison has many caveats [37] but our results can reproduce the
trends observed on the experimental STAR data of net-proton fluctuations.
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