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1 Introduction

Gauge and gravitational quantum axial anomalies are a peculiar feature of quantum field
theories with fundamental chiral fermions. First discovered in relation to neutral pion de-
cay [1, 2], they are manifested in a non-conservation of the classically conserved axial cur-
rent at the quantum level in the presence of external gauge and gravitational fields [1, 3–6]:

∂µj
µ
L/R = κεµνλρFµνFλρ + λεµνλρRαβµνR

β
αλρ, (1.1)

where Fµν is the electromagnetic tensor, Rµναβ is the Riemann tensor, εµνλρ is the Levi-
Civita symbol, and κ, and λ are theory-dependent parameters. For a single left Dirac
fermion of unit charge, κ = e2

32π2 and λ = 1
768π2 . Axial anomalies are robust in the sense

that eq. (1.1) is exactly given by the one-loop contribution and does not depend on the
energy scale in the theory [7].

Recently, anomalies have been shown to lead to a special class of transport phenomena-
chiral effects. Assuming that a system is in an external magnetic field and has local velocity
uρ, the parity-odd parts of the expectation values of the axial jµA and vector jµV currents
are given by [8]

(jµV )odd = σ
(V )
B Bµ + σ

(V )
V ωµ, (jµA)odd = σ

(A)
B Bµ + σ

(A)
V ωµ, (1.2)

where ωµ = εµνρσuν∇ρuσ is the vorticity of the fluid flow and Bµ = 1
2ε
µνρσuνFρσ is the

magnetic field in the local rest frame. The vector and axial currents along Bµ are referred
to as the chiral magnetic (CME) and chiral separation effects (CSE), correspondingly, and
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the currents along ωµ are chiral vortial effects (CVE). For a single Dirac fermion of unit
charge, σ(A/V )

B = µV/A

2π2 , σ(A/V )
V = µAµV

2π2 , ξ(V )
A = µ2

A+µ2
V

4π2 + T 2

12 , where µA/V is the chemical
potential conjugated to the axial/vector charge [8]. Although, the CME seems to allow for
a non-zero equilibrium electric current one should be warranted from this interpretation as
it has been shown to be a purely dynamical response [9–12].

Instances of chiral effects have been discussed in various areas of physics. The original
derivation was done by Vilenkin [13, 14] with applications for cosmology/astrophysics.
Later, the significance of chiral effects was also realized for the quark-gluon plasma regime
of QCD [15] where they are believed to be responsible for the charge dependence of the
hadron elliptic flow [8]. In solid state physics, chiral effects are relevant for the physics
of Weyl and Dirac semimetals [16, 17], where chiral fermions are realized as low-energy
excitations. Experimentally, the observed negative magneto resistance in ZrTe5 has been
linked to the presence of the CME [18, 19] and the thermoelectrical transport in NbP
was found to be consistent with the gravitational anomaly [20]. Chiral effects were also
considered in cold atoms [21].

There are several ways in which chiral effects modify the dynamics of a system. In [22]
it was shown that a system with chiral imbalance is unstable toward spontaneous generation
of helical magnetic field due to chiral effects. For a more detailed discussion of instabilities
see [23–28]. Additionally, in strong external magnetic field chiral media exhibit anomalous
class of novel excitations [29–31].

A direct connection of the CME and the CSE to the axial anomaly has been discussed
in literature, for review see e.g. [8]. Connection in the hydrodynamic approximation was
first discussed in [32] and in generalization with two charges [33]. On the other hand,
the thermal part of CVE is not determined by the chiral gauge anomaly [34]. In [35],
the authors argued that it is the gravitational chiral anomaly that is responsible for the
thermal part of the CVE and this relation has been established via the mixed anomaly in
the dual five-dimensional theory. A discussion of the direct connection of this effect to the
gravitational anomalies can be found in [36–43] and references therein.

In this work, we explore further connections between anomalies and transport responses
within the framework of holography. In particular, extending the analysis of [44, 45], we
will show that the chiral gravitational effect (χT in (2.6c)), reported in [37, 46, 47], is
determined by the gravitational anomaly in a holographic theory. We also find that the
CME and CVE (ξB and ξV in eq. (2.4b)) receive gradient corrections that are determined
by the gravitational anomaly (previously analysed numerically in [48]). And, finally, we
found a novel odd current response to gravity (χV in (2.6d)) that is similar to the energy-
momentum response χT . The contributions independent of the gravitational anomaly agree
with the results reported earlier, see e.g. [49].

Similarly to [35], we will consider a strongly interacting holographic plasma in the
presence of a mixed gauge-gravitational anomaly. This model has been previously used to
derive the T 2 term in the CVE [35] and study the effects of the gravitational anomaly on
transport more generally [44]. According to the AdS/CFT correspondence, in the strongly
coupled large-N regime this model is dual to a 5D Einstein-Maxwell theory in AdS [50].
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Finite temperature and chemical potential at the boundary are accounted for by a black hole
in the bulk. The axial anomaly in the R-charged current is present in N = 4 SYM and its
effect on the transport coefficients has been considered in, e.g., [51, 52]. The gravitational
anomaly is not normally present in N = 4 SYM and we introduce it via a mixed anomaly
in the bulk [35, 44]. This model was previously considered in [44], where the effects of
the gravitational anomaly on flat-space hydrodynamic responses were computed for up to
the second order in gradients. We consider the linearized fluid/gravity correspondence in
curved background and calculate responses up to the third order in gradients.

The work is structured as follows. In section 2 we review the general structure of
the linear hydrodynamic, identify all the relevant responses and present our results. In
section 3 we describe the holographic model and outline the procedure for the calculation
of transport coefficients. In section 4 we solve the holographic equations perturbatively
and relate the solutions to the responses of the boundary theory while more technical
details are presented in the appendix. Finally, in section 5 we conclude with a discussion
of the results.

2 Linear responses in hydrodynamics and results

Here we introduce the transport effects discussed above within the hydrodynamics frame-
work [53]. Let us begin by considering a relativistic many-body system in an equilibrium
state with temperature T and chemical potential µ moving with constant velocity uµ. We
assume that the system has only one (anomalously) conserved current of right- or left-
handed fermions. In this case, the expectation values of the energy-momentum tensor and
current are given by

〈Tµν〉 = (ε+ p)uµuν + pηµν , 〈Jµ〉 = nuµ, (2.1)

where P and ε are functions of T and µ corresponding to the local pressure and energy
density of the system and ηµν is the flat Minkowski metric.

Eq. (2.1) can be generalized to states that are at equilibrium only locally and, thus,
are described by slowly varying T (xµ), µ(xµ), and uµ(xν) [53]. Additionally, we allow for
curved backgrounds described by metric tensor gµν(xµ) which we also assume to be slowly
varying. Now the expectation values in eq. (2.1) take form

〈Tµν〉 = Euµuν + P∆µν + (qµuν + qνuµ) + τµν , (2.2a)

〈Jµ〉 = Nuµ + νµ, (2.2b)

where ∆µν = gµν + uµuν is the projector on the directions transverse to the fluid velocity
vector, and E ,P,N , qµ, τµν , and νµ are functions of T , µ, uµ. In order to make the
decompositions unique we also require that qµuµ = νµuµ = 0 and the tensor τµν be
transverse (with respect to the velocity vector), symmetric and traceless. The definitions
of local uµ(x), T (x) and µ(x) are made precise by working in the Landau frame, where we
require qµ = 0, E = ε and N = n [53].
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Because we only confine ourselves to conformal system in this work the stress-energy
tensor has to satisfy an additional constraint [52]〈

Tµµ

〉
= 0, (2.3)

which in equilibrium is equivalent to equation of state ε = 3p. Whereas, the presence of
an anomalous current obeying eq. (1.1) necessitates an inclusion of parity-odd terms in
the constitutive relations eq. (2.2), we will separate those contributions by decomposing
τµν = τµνodd + τµνeven, νµ = νµodd + νµeven, where τµνeven, νµeven are invariant under spatial parity
and τµνodd, ν

µ
odd change sign. Additionally, we only focus on the part of τµνodd and νµodd that

is linear in the amplitude of deviations from the equilibrium. The most general expression
for τµνodd and νµodd reads as

τµνodd = χT ∆e<µεν>βcduβ∇cRde +O(deviation2), (2.4a)

νµodd = ξV ωµ + ξB Bµ + χV εµνρσuν∇ρRσαuα +O(deviation2), (2.4b)

where Rµν is the Ricci tensor correspondning to gµν and ξB/V , χV/T are functions of
derivative operators uµ∇µ and ∇µ∇µ. Also, for arbitrary rank-2 tensor Aµν we have
introduced

A<µν> = ∆λ
µ∆σ

νAλσ −
1
3∆µν∆λσAλσ.

Earlier in eq. (1.2), the coefficients ξB and ξV have been identified as the Chiral Mag-
netic/Separation Effects and Chiral Vortical Effects correspondingly. ξT is the fluid re-
sponse to gravity that have been observed in [37, 46] and χV is novel gravitational response
in the conserved current.

So far the discussion has been compeletely general and eqs. (2.4) apply to any model
with appropriate symmetries. Now we present our results for a holographic model with
gauge and gravitational anomalies described in detail in section 3. This theory has three
free parameters: G5, λ̄ and κ̄ that correspond to the number of degrees of freedom of the
theory and strengths of the gauge and gravitation anomalies, respectively. Hereinafter,
we will consider expressions linearized in µ/T . For the equations of state of this system
we obtain

ε = 3p = 3 (πT )4

16πG5

n

ε+ p
= µ

2(πT )2 . (2.5)

The transport coefficients in eqs. (2.4) have been computed up to the third order in
gradients in the static limit (uµ∇µ = 0). In Fourier space transport coefficients become
functions of k2 and read

16πG5 ξB = 16λ̄µ− 8κ̄µ−

−
[(
π2 + 2

)
λ̄− π2

3 κ̄− 1344κ̄λ̄2 + 7872λ̄3
]
µ

(
k

πT

)2
+O(k3, µ2) (2.6a)

16πG5 ξV = −32λ̄π2T 2 + 2
3 λ̄k

2
[
π2 − 6 log(2) + 6336λ2

]
+O(k3, µ2) (2.6b)
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and for gravitational transport coefficients

16πG5 χT = −16λ̄µ+O(k, µ2) (2.6c)

16πG5 χV = −8λ̄ (log(2)− 1) +O(k, µ2) (2.6d)

The k2 correction to ξB was computed in [49] and coincides with our result in the
absence of the gravitational anomaly. Whereas, all contributions involving λ̄ were not
previously known analytically. By virtue of eq. (3.10) the transport coefficients in eq. (2.6)
are funcions of only the anomaly coefficient defined in eq. (1.1) : χT = 16λµ + O(k) and
χV = 8λ (log(2)− 1) + O(k) which suggests that they might have a universal relation to
the anomalies of the corresponding quantum field theory. This is corroborated by the fact
that our results for χT agree with those computed for other models [37, 46].

3 The holographic model

We work with the four-dimensional theory dual to the Einstein-Maxwell theory with
gauge and mixed anomalies in AdS5. The equilibrium state of the boundary theory at
finite temperature and finite chemical potential corresponds to the bulk solution with a
charged black hole. To study the response to an external gravitational field we need to
find the bulk solution where the boundary limit of the gravitational field corresponds to
perturbed metric.

The model we will use was introduced in [35]. The signature of the five-dimensional
metric is chosen to be (−,+,+,+,+). The Levi-Civita tensor is defined by εMNPQR =
+√−gε(MNPQR), where ε(MNPQR) is a totally anisymmetric tensor normalized by
ε(01234) = +1. The main part of the bulk action reads

SEM = 1
16πG5

∫
M
d5x
√
−g

[
R+ 2Λ− 1

4FMNF
MN +

+ εMNPQRAM

(
κ̄

3FNPFQR + λ̄RABNPR
B
AQR

)]
, (3.1)

where R is the Ricci scalar of the bulk metric gMN , Λ is the cosmological constant that
determines the size of the AdS radius: Λ = 6

L2
AdS

. We choose units such that LAdS = 1 and
Λ = 6. This model reduces to the N = 4 SYM when we put κ̄ = 1

4
√

3 and λ̄ = 0.
Since our manifold has a boundary, the Gibbons-Hawking-York boundary term SGHY

has to be added to make the variational problem well-defined. In the case of action eq. (3.1),
it takes the form

SGHY = 1
8πG5

∫
∂M

d4x
√
−γK− 1

2πG5

∫
∂M

d4x
√
−γλnM εMNPQRANKPLDQK

L
R , (3.2)

where nA is a unit vector normal to the holographic boundary ∂M, DA is covariant deriva-
tive induced on the boundary, and γαβ is the metric induced on the fixed r hypersurface.
We have also used the extrinsic curvature Kµν = γαµDαnν and its trace K = γµνKµν .
The second boundary term is required to reproduce the gravitational anomaly at general
boundary hypersurface.
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The renormalization of action eq. (3.1) is achived by the introduction of counterterms:

Sct = 1
16πG5

∫
∂M

d4x
√
−γ

[
6 + 1

2R̂− log
( 1
r2

)(1
8R̂

µνR̂µν − R̂2 − 1
8 F̂

2
)]

(3.3)

where R̂µν and F̂µν are the four dimensional Ricci tensor and field strength induced on the
boundary. The total action of the theory is S = SEM + SGHY + Sct.

Action eq. (3.1) results in the following bulk equations of motion

GMN − ΛgMN = 1
2FMLF

L
N −

1
8F

2gMN + 2λ̄εLPQR(M∇B(FPLRBN)
QR) (3.4)

∇NFNM = −εMNPQR(κ̄FNPFQR + λ̄RABNPR
B
AQR),

where GMN is the Einstein tensor. The boundary metric of the dual conformal theory
is related to γ as lim

r→∞

(
γµν/r

2) = gCFT
µν . The consistent boundary stress-energy tensor is

defined as

Tµν(con) = − lim
r→∞

(
r2 2√
−γ

δS

δγµν

)
(3.5)

In order to make it gauge invariant one has to add the Chern-Simons current, for a
more detailed discussions see [44]. In particular, for our model from (3.1), (3.2) and (3.3)
we obtain covariant stress-energy tensor

Tµν = 1
16πG5

lim
r→∞

[
2r2

(
Kµν −Kγµν − 3γµν −

1
2Ĝµν

)
+ T ct

µν log
( 1
r2

)
+

+ 2λ̄ε(µαβρF̂αβR̂ρν)

]
(3.6)

where Ĝµν is the Einstein tensor induced on the boundary. The term with T ct
µν , obtained by

variation of counterterm part of the action, removes logarithmic divergences in the presence
of an external metric. As is explained in [45], logarithms only contribute to fourth and
higher orders in derivatives expansion that lie beyond our consideration.

We note that there are additional terms in energy-momentum tensor proportional to
the gravitational anomaly that were calculated in [54, 55]. These terms contribute to
the chiral magnetic conductivity in holographic model with momentum relaxation. At
the same time, we found that they do not yield additional contributions to the boundary
energy-momentum tensor that are linear in perturbations of the metric and gauge field for
our model.

The consistent current is defined as the variation of the action with respect to the
source

Jµ(con) = lim
r→∞

δS

δAµ
(3.7)

It is related to the gauge invariant covariant current by addition of a Chern-Simons term.
The explicit expression for the covariant boundary current is

Jµ = 1
16πG5

lim
r→∞

√
−γ

[
Fµr + 1

2DαF
αµ log

( 1
r2

)]
. (3.8)
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Using Maxwell’s equations, one can get the following non-conservation of the (covari-
ant) boundary current

DµJ
µ = − 1

16πG5
εµνλρ

(
κ̄F̂µνF̂λρ + λ̄R̂αβµνR̂

β
αλρ

)
(3.9)

This corresponds to eq. (1.1) with

κ = − κ̄

16πG5
, λ = − λ̄

16πG5
. (3.10)

The equilibrium configuration of the boundary theory corresponds to the Reissner-
Nordstrom black brane solution of equations of motion (3.4), which in the Eddington-
Finkelstein coordinates reads

ds2 = g
(0)
MNdx

Mdxn = 2dtdr − r2f(r)dt2 + r2(dxi)2 (3.11a)

A = −
√

3Q
r2 dt, (3.11b)

where f(r) = 1− M
r4 + Q2

r6 , M is the mass and Q is the charge of the black hole. Using the
AdS/CFT dictionary [52, 56], we can relate the characteristics of the black hole with the
equilibrium parameters of the boundary theory:

M = (πT )4

24

1 +

√
1 + 2µ2

3π2T 2

33

√
1 + 2µ2

3π2T 2 − 1

 , (3.12)

Q = µπ2T 2

4
√

3

1 +

√
1 + 2µ2

3π2T 2

2

. (3.13)

The solution eq. (3.11) allows a generalization to the boosted version of a black hole

ds2 = −r2f(r)uµuνdxµdxν + r2∆(0)
µν dx

µdxν − 2uµdxµdr, (3.14a)

Aµ =
√

3Quµ
r2 , (3.14b)

where ∆(0)
µν = ηµν + uµuν , uµ is constant and normalized by u2 = −1. Now we con-

sider the perturbations of the background metric and gauge field, closely following [45].
In order to reproduce the fluid dynamics of the boundary theory, we let the velocity
be a function of the coordinates. The curved metric on the boundary is introduced
by defining the projector transverse to velocity field with respect to background metric
∆µν(x) = gCFT

µν (x) + uµ(x)uν(x). Additionally, we modify the guage field in the bulk to
yield aCFT(x) on the boundary. With all the above modifications, the perturbed black
brane metric reads

ds2 = −r2f(r)uµ(x)uν(x)dxµdxν + r2∆µν(x)dxµdxν − 2uµ(x)dxµdr, (3.15a)

Aµ =
√

3Quµ(x)
r2 + aCFT

µ (x), (3.15b)

– 7 –
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where the velocity field has to be normalized with respect to the curved metric

gCFT
µν (x)uµ(x)uν(x) = −1. (3.16)

Metric (3.15) has the desired boundary behaviour with lim
r→∞

(
gµν(x, r)/r2) = gCFT(x).

Following the approach outlined in the previous section, we will consider small pertur-
bations of the dual theory parameters and write

gCFT
µν (x) = ηµν + hCFT

µν , (3.17a)

uµ(x) =
(
−1 + 1

2h
CFT
00 (x), vi(x)

)
, (3.17b)

with hCFT
µν and vµ taken to be small. The linearized version of (3.15) (that we will call the

seed metric) is

ds2
seed = 2dtdr − r2f(r)dt2 + r2dx2

i −
[
2vi(x)drdxi + 2

r2 vi(x)dtdxi

+hCFT
00 (x)drdt+ 1

r2h
CFT
00 (x)dt2 − r2hCFT

µν (x)dxµdxν
]

(3.18a)

Aseed = −
√

3Q
r2 dt+

[√
3Q

2r2 hCFT
00 (x)dt+

√
3Q
r2 vi(x)dxi + aCFT

µ (x)dxµ
]

(3.18b)

The seed metric and gauge field (3.18) reproduce the correct perturbations of boundary
theory, but do not satisfy the Einstein-Maxwell equations eqs. (3.4). In order to satisfy (3.4)
we write the total the bulk configuration as

ds2 = (ds2)seed + (ds2)corr, (3.19a)

A = Aseed +Acorr, (3.19b)

where scorr and Acorr do not alter the boundary behaviour but ensure that eqs. (3.4) are
satisfied. We choose the “background field” gauge for the correction metric:

grr = 0, grµ ∼ uµ,
(
g(0)

)−1

MN
gMN

corr = 0, (3.20)

and the axial gauge for the gauge field Ar = 0. With this choice of the gauges, the most
general form of the correction metric and gauge field is

ds2
corr = −3hdrdt+ k

r2dt
2 + r2hdx2

i + 2r2jidtdx
i + r2πijdx

idxj (3.21a)

Acorr = c dt+ ai dx
i (3.21b)

where k, h etc. are functions of radial coordinates and boundary perturbations. The
tensor πij is symmetric and traceless. Since the seed metric should change the boundary
perturbations the functions in the decomposition eq. (3.21a) must satisfy:

πij = o(r0), ji = o(r0), h = o(r0), k = o(r4), c = o(r0), ai = o(r0). (3.22)
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The remaining boundary conditions for the functions in eq. (3.21a) are provided by
the Landau frame conditions and the requirement of regularity at the black hole horizon.

Substituting (3.8) for the expectation value of the parity-odd component of the bound-
ary current, we obtain

16πG5 J
odd
i = 2a(2̄)

i , (3.23)

where (2̄) denotes the 1/r2 term in large r expansion. While exact form of stress-energy
tensor of the correction metric (3.21a) is presented in appendix A.

We find the stress-energy tensor and current density of the fluid at rest by substituting
the unperturbed solution (3.11) in eqs. (3.6) and (3.8), respectively. It is the equilibrium
stress-energy tensor and current (2.1) with

ε = 3p = 3M
16πG5

, n =
√

3Q
8πG5

. (3.24)

4 Perturbative solution of Einstein equations

In this section, we solve Einstein’s equations for the correction metric and gauge field and,
using the solution, calculate the transport coefficients presented in section 2. The equations
satisfied by gcorr and Acorr are the linearized versions of eqs. (3.4). It is a set of fifteen
equations which can be divided into ten dynamical equations and four constraint equations
(one dynamical equation is not independent), for more details see e.g. [57]. The solution is
uniquely determined by the dynamical equations and the Landau frame conditions while
the constraint equations are the Navier-Stokes equations of the fluid dynamics that ensure
the conservation of the boundary energy-momentum tensor.

We will be working in Fourier space and for that purpose we define

gMN (~x, r) =
∫
eikix

i
gMN (~k, r)d3k, Aµ(x, r) =

∫
eikix

i
Aµ(~k, r)d3k,

vµ(~x) =
∫
eikix

i
vµ(~k)d3k. (4.1)

We decompose the correction metric and gauge potential into irreducible representa-
tions of SO(2) rotations around ~k [51]. The irreducible representations are indexed by
helicity and the possible values are 0,±1,±2 and will be listed below. Without loss of
generality we choose ~k = (0, 0, k3). As the equations for different helicities do not mix we
study each mode separately. In the remainder of the work, will be working with dimension-
less quantities and the physical units can be restored by multiplying by the proper power
of πT . We are interested in the transport coefficients up to the linear order in µ

T and,
therefore, we expand Q = µ√

3 +O(µ2) and look for the solutions of Einstein’s equations up
to the linear order in Q.

The rest of the section is structured as follows. In subsections 4.1, 4.2 and 4.3 we find
the solutions of the equations of motion for helicity 0,±1,±2 modes respectively up to
third order in momentum while in subsection 4.4 we calculate the boundary current and
energy-momentum tensor.
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4.1 Helicity 0 modes

This sector is comprised of 6 modes:

k , h , π33 = − (π11 + π22) , j3 c, a3. (4.2)

The corresponding equations of motion are independent of the anomaly coefficients
and, consequently, there are no parity odd contributions to the transport coefficients from
these modes.

4.2 Helicity ±1 modes

The helicity ±1 modes are:

j±1 = (j1 ± i j2) , π±1 = (π13 ± iπ23) , a±1 = (a1 ± ia2). (4.3)

Similarly, we introduce

jCFT
±1 = hCFT

01 ± ihCFT
02 , πCFT

±1 = hCFT
13 ± ihCFT

23 , v±1 = v1 ± iv2 (4.4)

The dynamical equations of this sector are

• M1 ± iM2:

− 1
r

(
r3f(r)a′±1

)′
+
(
k2

3
r2 ∓

16κ̄Qk3
r4

)
a±1 + 2

√
3Q
r

j′±1 ±
24λ̄k3

(
5Q2 − 2r2) j′±1
r5 +

+
k3v±1

(√
3k3Q

)
r4 ∓ k3v±1

48
r12

[
15λ̄Q4 +Q2

(
κ̄r6 − 16λ̄r2

)
+ 4λ̄r4

]
+

+
(
k2

3
r2 ∓

16κ̄Qk3
r4

)
aCFT
±1 = 0 (4.5a)

• Et1 ± iEt2:

− f(r)
2r

(
r5j′±1

)′
+ k2

3
2 j±1 −

√
3Q
r

f(r)a′±1 ∓
4
√

3λ̄k3
3Q

r4 j±1∓

∓ 4λ̄k3
r6 f(r)

[
3
(
2r2 − 5Q2

)
ra′±1 + 12a±1

(
5Q2 − r2

)
+
√

3Qr5 (rj′′±1 + j′±1
)]
∓

∓ 4
√

3k3λ̄Q

r10

[
k2

3(−Q2 + r2) + 2r2(63Q2 − 20r2)f(r)
]
v±1 + Q2 − r2

2r6 k2
3v±1+

k2
3

2 j
CFT
±1 ∓ 4

√
3λ̄k3

3Q

r4 jCFT
±1 ∓ 48λ̄k3

r6 f(r)
(
5Q2 − r2

)
aCFT
±1 = 0 (4.5b)

• E13 ± iE23:

− 1
2r
(
r5f(r)π′±1

)′
+ ik3r

2

2 j′±1 + 3ik3r

2 j±1 +
(

3ik3r

2 ∓ 4
√

3λ̄Qik2
3

r3

)
jCFT
±1 ±

± 4
√

3λ̄k3Q

r3

[
ik3

(
rj′± − j±1

)
− r2 (rf(r)π′±1

)′]− 3
2 ik3rv±1 = 0, (4.5c)

and there is a single constraint equation:
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• r2f(r) (Er1 ± iEr2) + (Et1 ± iEt2):

k3j±1 + if(r)r2π′±1 + k3j
CFT
±1 − k3v±1 = 0. (4.5d)

It is straightforward to check that eq. (4.5c) follows from eqs. (4.5b) and (4.5d). Now
we solve these equations peturbatively in Q and k3 up to the linear order in Q and third
order in k3. Since we are only working to the linear order in Q we can set f(r) = 1 − 1

r4

and, consequently, rH = 1 in (4.15). We represent the functions as series

j±1(r) =
∞∑
n=0

j
(n,0)
±1 (r)kn3 +Q

∞∑
n=0

j
(n,1)
±1 (r)kn3 , (4.6a)

a±1(r) =
∞∑
n=0

a
(n,0)
±1 (r)kn3 +Q

∞∑
n=0

a
(n,1)
±1 (r)kn3 , (4.6b)

π±1(r) =
∞∑
n=0

π
(n,0)
±1 +Q

∞∑
n=0

π
(n,1)
±1 . (4.6c)

We substitute the expansions for j and a into (4.5a), (4.5b) and solve them order by
order. After that π±1 can be found from eq. (4.5d).

Below we list the solutions for the first few orders:

• Zeroth order
j

(0,0)
±1 (r) = 0 a

(0,0)
±1 (r) = 0 (4.7)

• Zeroth order in Q and first order in k

j
(1,0)
±1 = ±8 aCFT

±1 λ̄
1
r6 a

(1,0)
±1 = ±8 v±1λ̄

[
1
r4 + 2 log

(
1 + r2

r2

)]
(4.8)

• First order in Q and first order in k

j
(1,1)
±1 = ±v±1

4
√

3 λ̄
r8

[
3− r4 + 2r6 + 2r4(r4 − 1) log

(
r2

1 + r2

)]
(4.9a)

a
(1,1)
±1 = ∓aCFT

±1
4
√

3
r4

[
λ̄+ r4(κ̄− 2λ̄) ln

(
r2

r2 + 1

)]
(4.9b)

• Zeroth order in Q and second order in k

j
(2,0)
±1 = v±1

1
240r10

[
−30r8−1024λ̄2

(
5r4

(
6r4−3r2+2

)
−9
)]

+v±1
5

80r6

[
−2r2 coth−1

(
r2
)

+2048λ̄2
(
r6+1

)
log
(
r2+1
r2

)
+r6 log

(
r2+1
r2−1

)]

+jCFT
±1

1
16r4

[
−2r2+

(
r4−1

)
log
(
r2−1
r2+1

)]
(4.10a)

a
(2,0)
±1 =−aCFT

±1
1
16

[
4Li2

(
r−2

)
−Li2

(
r−4

)
+4log(r) log

(
r2+1
r2−1

)]

−aCFT
±1 48λ̄2 3r4+1

r6 (4.10b)
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• First order in Q and second order in k
In this and higher orders the expressions for the solutions become too cumbersome
and we provide only their asymptotic behavior at r →∞

j
(2,1)
±1 −−−→

r→∞
0 (4.11a)

a
(2,1)
±1 −−−→

r→∞
1

8r2 j
CFT
±1
√

3 (4.11b)

• Zeroth order in Q and third order in k

j
(3,0)
±1 −−−→

r→∞
0 (4.12a)

a
(3,0)
±1 −−−→

r→∞
± 2λ̄
r2 (log(2)− 1) jCFT

±1 ∓ 1
3r2 λ̄v±1

[
π2 − 6 log(2) + 6336λ̄2

]
(4.12b)

• First order in Q and third order in k

j
(3,1)
±1 −−−→

r→∞
0 (4.13a)

a
(3,1)
±1 −−−→

r→∞
±
√

3
r2 Qa

CFT
±1

[(
π2 + 2

)
2 λ̄− κ̄π

2

6 + 672κ̄λ̄2 − 3936λ̄3
]

(4.13b)

We did not present the solutions for π±1 as they do not contribute to either the
boundary energy momentum tensor or current.

4.3 Helicity ±2 modes

This sector contains two independent modes with opposite helicities

π±2 = (π11 − π22 ± 2iπ12) (4.14)

each governed by a single equation (E11 − E22 ± 2iE12) = 0:

− 1
2r
(
r5f(r)π′±2

)′
+ k2

3
2 π±2 ±

8
√

3λ̄k3Q

r4

[
r3 (π′±2rf(r)

)′ − k2
3π±2

]
+

+
[
k2

3
2 ±

8
√

3λ̄k3
3Q

r4

]
πCFT
±2 = 0. (4.15)

Analogously to the previous subsection, we solve the equations order by order in k3
and Q. We expand π±2 in series

π±2(r) =
∞∑
n=0

π
(n)
±2 k

n
3 , (4.16)

Here we list the solutions at each order:

• Zero and first orders in k

π
(0)
±2(r) = O(Q2), π

(1)
±2 = O(Q2) (4.17)
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• Second order in k
π

(2)
±2(r) = 1

4π
CFT
±2 log

(
r2

r2 + 1

)
+O(Q2) (4.18)

• Third order in k3

π
(3)
±2 = ±πCFT

±2
4
√

3λ̄Q
r4

[
4r2 + 4r4 log

(
r2

r2 + 1

)
− 1

]
+O(Q2). (4.19)

4.4 Holographic constitutive relations

In this subsection we use eqs. (A.3) and (3.23) to evaluate the boundary expectation values
that correspond to the solution obtained above.

Substituting the solutions of the helicity ±1 sector obtained in eq. (3.23) of subsec-
tion 4.2 , we derive the total odd current:

±8πG5J
(odd)
±1 =

= 4
√

3Q(κ̄− 2λ̄)k3a
CFT
±1 +

√
3Qk3

3a
CFT
±1

[(
π2 + 2

)
2 λ̄− κ̄π

2

6 − 672κ̄λ̄2 + 3936λ̄3
]

+ 16k3v±1λ̄−
1
3k

3
3λ̄v±1

[
π2 − 6 log(2) + 6336λ̄2

]
+ 2λ̄k3

3j
CFT
±1 (ln 2− 1) +O(k4

3), (4.20)

where we have introduced J±1 = J1 ± iJ2.
As was discussed in subsection 4.1, there are no odd contribution to the current from

helicity 0 sector and the Landau frame conditions require T±1 = 0.
Defining T±2 = T11 − T22 ± 2iT02, for the odd repsonse in the helicity ±2 sector we

obtain
4πG5T

(odd)
±2 = ±4

√
3k3

3Qλ̄π
CFT
±2 +O(k4

3). (4.21)

In order to match these results with the transport coefficients defined in eqs. (2.4), we
linearize the covariant expressions in eq. (2.4). The first non-trivial term is:

εµνρσuν∇ρRσαuα = −1
2ε

ijk
(
∂2∂jh

CFT
0k − ∂t∂j∂lhCFT

lk

)
+O(h2), (4.22)

where we used uµ = δµ0 +O(hCFT).
The other non-trivial term is

∆α<µεν>ρσβuρ∇σRαβ = −1
4ε

ilm
(
∂l∂

α∂αh
CFT
mj − ∂l∂j∂αhCFT

mα

)
+ (i↔ j) +O(h2). (4.23)

With the help of (4.22) and (4.23) we rewrite the general expressions of eq. (2.4) in Fourier
space with ~k = (0, 0, k3):

νodd
±1 = −ξV · k3v±1 − ξB · k3a±1 − χV ·

1
2k

3
3 j

CFT
±1 (4.24a)

τodd
±2 = −χT · k3

3π
CFT
±2 . (4.24b)

These equations allow one to easily relate the expressions eqs. (4.20), (4.21) to the
transport coefficients in eqs. (2.6).
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5 Discussion

In this work, we have studied the implications a gravitational anomaly has on the transport
in a holographic model. This approach had the advantage of having the anomaly coefficients
as free parameters of the model and, thus, allowed us to establish a more direct relation
between the anomalies and transport coefficients. Having extended the linearized treatment
of the holographic model with a gravitational anomaly in the fluid/gravity regime described
in [45] to include external gauge fields, we have determined all parity-odd responses up to
the third order in gradients.

We have reproduced the CME and CVE as well as their previously known gradient
correction due to the gauge anomaly [49]. Additionally, we showed that impact of the
gravitational anomaly on transport goes beyond the T 2 term in the CVE. We observed
an energy-momentum response to the gravitational field that was discussed earlier but not
in a holographic setup. Its dependence on the strength of the gravitational anomaly is
consistent with its value reported for free fermions [46] and the one derived from CFT
considerations [37] and suggests its universal relation to the anomaly. Finally, we found
gradient corrections to the CME and CVE coming from the gravitational anomaly with
the correction to the CME being particularly interesting as it shows that the gravitational
anomaly can be probed through purely electromagnetic responses. Although not uncom-
mon in holographic calculations, these corrections contain factors of log(2) [44, 45] that
could not arise from manipulations of the anomaly polynomial that were used in [37] to
derive the chiral gravitational effect. This fact indicates that the relation of these correc-
tions to the gravitational anomaly might be subtle and studying their sensitivity to higher
derivative terms could provide a clearer picture.

The approach developed in this work can be used to study the effects of the gravita-
tional anomaly to higher orders in gradients and to analyse the potential instabilities due
to the gravitational chiral effects. It would also be interesting to see whether the mem-
brane paradigm could be extended to include a gravitational background, thus, proving
the universality of some of the transport effect derived in the this work [58, 59].
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A Boundary stress-energy tensor

Here we derive a convenient representation of eq. (3.6) in terms of the metric perturbations.
This representation will be used in section 4.4 to determine the boundary expectation
values of the curretns and stress-nergy tensor after find the solutions to the Einstein-
Maxwell equations.
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First, we define r-dependent stress energy tensor T̂ (r, x) as

T̂µν(x, r) = 2r2
(
Kµν −Kγµν − 3γµν −

1
2Ĝµν

)
+ 2λ̄ε(µαβρFαβRρν). (A.1)

With that (A.1) looks like

Tµν(x) = 1
16πG5

lim
r→∞

[
T̂µν(x, r) + T ct

µν(x, r) log
( 1
r2

)]
(A.2)

Expressing eq. (3.6) in terms of metric eq. (3.21a) and linearizing in the perturbation
amplitude, one obtains the following explicit expression for the r-depenedent stress-energy
tensor [45]:

T̂00 = 3− 3hCFT
00 +

[1
2r

2∂i∂jh
CFT
ij − 1

2r
2∂2hCFT

kk − r2∂2h+ 1
2r

2∂i∂jπij − 9r4h+

+ 3k − 2r3∂u+ 2r3∂kh
CFT
0k − r3∂th

CFT
kk + 2r3∂j − 3r3∂th− 3r5∂rh

]
. (A.3a)

T̂0i = −4ui + hCFT
0i +

[1
2r

3∂ih
CFT
00 + 1

r
∂ik − r5∂rji − r3∂tui −

3
2r

3∂ih

−1
2r

2∂2hCFT
0i + 1

2r
2∂i∂kh

CFT
0k + 1

2r
2∂t∂kh

CFT
ik − 1

2r
2∂t∂ih

CFT
kk − 1

2r
2∂2ji+

+1
2r

2∂i∂j + 1
2r

2∂t∂kπik − r2∂t∂ih

]
(A.3b)

T̂ij = δij + hCFT
ij + δij

[
−1

2r
2∂2hCFT

00 + 1
2r

2∂2hCFT
kk − 1

2r
2∂k∂lh

CFT
kl + r2∂t∂kh

CFT
0k −

−1
2r

2∂2
t h

CFT
kk + 1

2r
2∂2h− 1

2r2∂
2k − r2

2 ∂k∂lπkl + r2∂t∂j−

−r2∂2
t h+ 9r4h+ k + 2r3∂u− 2r3∂kh

CFT
0k + r3∂th

CFT
kk − 2r3∂j − r3∂th

+1
r
∂tk + 2r5∂rh− r∂rk

]
+
[1

2r
2∂i∂jh

CFT
00 − 1

2r
2∂2hCFT

ij − 1
2r

2∂i∂jh
CFT
kk +

+1
2r

2
(
∂i∂kh

CFT
jk + ∂j∂kh

CFT
ik

)
− 1

2r
2∂t

(
∂ih

CFT
0j + ∂jh

CFT
0i

)
+ 1

2r
2∂2
vh

CFT
ij −

−1
2r

2∂i∂jh+ 1
2r2∂i∂jk −

1
2r

2∂2πij + 1
2r

2 (∂i∂kπjk + ∂j∂kπik)

−1
2r

2∂t (∂ijj + ∂jji) + 1
2r

2∂2
t πij − r3 (∂iuj + ∂jui) + r3

(
∂ih

CFT
0j + ∂jh

CFT
0i

)
−r3∂th

CFT
ij + r3 (∂ijj + ∂jji)− r3∂tπij − r5∂rπij

]
, (A.3c)

where we neglected the terms vanishing at the boundary.
Eqs. (A.3) can be considerably simplified if we restrict ourselves to the only relevant

for us helicity ±1 and ±2 sectors.
Going to the Fourier space, for helicity ±1 perturbations we have:

T̂00(k) = 3 (A.4a)

T̂01(k) = −4u1 + hCFT
01 − r5∂rj1 + 1

2r
2k2hCFT

01 + 1
2r

2k2j1 (A.4b)

T̂13(k) = hCFT
13 − r3iku1 + r3ikhCFT

01 + r3ikj1 − r5∂rπ13 (A.4c)
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Expressions for T23(k) and T02(k) are the same as those for T13 and T02, correspond-
ingly, provided we exchange the indices 1↔ 2.

Similarly, for helicity ±2 perturbations the stress-energy tensor is

T̂00(k) = 3, (A.5a)

T̄0i(k) = −4ui, (A.5b)

T̂ij(k) = δij + hij + 1
2r

2k2hij + 1
2r

2k2πij − r5∂rπij . (A.5c)

Eqs. (A.4), (A.5) are valid to all orders in k, but only to the first order in perturbations.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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