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FourPhonon is a computational package that can calculate four-phonon scattering rates in crystals. It 
is built within ShengBTE framework, which is a well-recognized lattice thermal conductivity solver 
based on Boltzmann transport equation. An adaptive energy broadening scheme is implemented for 
the calculation of four-phonon scattering rates. In analogy with thirdorder.py in ShengBTE, we 
also provide a separate python script, Fourthorder.py, to calculate fourth-order interatomic force 
constants. The extension module preserves all the nice features of the well-recognized lattice thermal 
conductivity solver ShengBTE, including good parallelism and straightforward workflow. In this paper, 
we discuss the general theory, program design, and example calculations on Si, BAs and LiCoO2.
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Additional comments including restrictions and unusual features: For a productive run, one needs to use High 
Performance Computing facilities and it takes several hours to several days to finish calculations
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1. Introduction

Phonons, quantum mechanical description of atomic vibrations in crystals, are the main heat carriers in most insulators, semiconductors 
and some semimetals. Phonon properties and lattice thermal conductivity are largely determined by phonon-phonon interactions. Starting 
from 1929 [1] when Peierls proposed the first formulation to calculate thermal conductivity using Boltzmann transport equation (BTE), 
subsequent models [2–5] with fewer fitting parameters have emerged owing to the advancement of both theory and computational 
power. About a decade ago, Broido et al. [6] combined first-principles calculations and phonon Boltzmann transport equation, and enabled 
first-principles prediction of thermal conductivity. This method has gained great success in predicting thermal properties, and not until 
recently the common practice was to consider phonon-phonon interactions up to the lowest order, i.e., three-phonon scattering [7–11]. 

✩ The review of this paper was arranged by Prof. W. Martin.
✩✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect .com /
science /journal /00104655).
* Corresponding author.

E-mail address: ruan@purdue.edu (X. Ruan).
https://doi.org/10.1016/j.cpc.2021.108179
0010-4655/© 2021 Published by Elsevier B.V.

https://doi.org/10.1016/j.cpc.2021.108179
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2021.108179&domain=pdf
https://doi.org/10.17632/jjcwt5436h.1
https://github.com/FourPhonon
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:ruan@purdue.edu
https://doi.org/10.1016/j.cpc.2021.108179


Z. Han, X. Yang, W. Li et al. Computer Physics Communications 270 (2022) 108179
Fig. 1. Modified workflow of ShengBTE + FourPhonon. Orange parts represent added modules by FourPhonon. (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)

Among various computational tools for calculating the lattice thermal conductivity, ShengBTE [12] is a well-developed and mostly used 
software package.

Phonon-phonon interactions stem from the intrinsic lattice anharmonicity of materials. While three-phonon scattering was assumed 
to be adequate in describing anharmonicity [6–8], Feng and Ruan developed a rigorous four-phonon scattering formalism in 2016 [13], 
and revealed that higher-order anharmonicity can play a significant role. In 2017, Feng, Lindsay, and Ruan predicted that four-phonon 
scattering is surprisingly strong in BAs [14], a material predicted to possess higher thermal conductivity than diamond by three-phonon 
scattering theory [8]. In 2018, three independent experiments [15–17] confirmed the significance of four-phonon scattering in BAs. Sub-
sequent studies pursuing four-phonon effect have proved its importance in a broader range of systems [18–23], including insulators, 
semiconductors and semimetals with topics covering thermal conductivity predictions, radiative properties, and phonon linewidths. Future 
research into material properties at high temperatures, optical phonon energy decay, infrared properties or other interesting topics may 
require to include four-phonon scattering as well. A detailed discussion can be found in Ref. [24]. Despite the evident importance of 
four-phonon scattering calculations, they have remained largely inaccessible to the thermal transport community due to the complex form 
and large computational load. To the best of our knowledge, there is not an open-source software available yet to perform four-phonon 
calculations and the newly developed tool presented in this paper should be beneficial.

Here, we present a computational package for four-phonon scattering calculations, FourPhonon. We develop this tool as an extension 
module to ShengBTE, which has good extensibility. With a subroutine Fourthorder.py to calculate fourth-order interatomic force 
constants (IFCs) through first principles, FourPhonon is capable of computing four-phonon phase space, scattering rates from both 
normal and Umklapp processes, and lattice thermal conductivity. Its operation is fully compatible with the current ShengBTE package.

The remainder of this paper is organized as follows. Section 2 presents the theoretical background and computational details of the 
FourPhonon package. In Section 3, we show three case studies on representative materials: Si, BAs and LiCoO2. We also document the 
input and output files of our software in Appendix A.

2. Methodology and computational details

2.1. ShengBTE + FourPhonon workflow

FourPhonon is built within ShengBTE framework and its execution is fully compatible with ShengBTE. Before explaining 
FourPhonon, we briefly review the basic ShengBTE workflow [12]. It uses second-order and third-order force constants as inputs, 
retrieves phonon properties from harmonic calculations, estimates the available three-phonon scattering phase space, and then calculates 
the three-phonon scattering rates and lattice thermal conductivity. Besides the 2nd- and 3rd-order force constants files, users need to 
provide another input file, named CONTROL, which contains all the user-specified settings and parameters, including crystal structural 
information, temperature, q-mesh, broadening factor, etc. On the basis of this workflow, FourPhonon requires an additional input file 
with fourth-order force constants. Flag is also added to the CONTROL file to enable FourPhonon utilities, namely four_phonon. When 
combined with other inherent flags or settings, users can perform various tasks, gaining insight into four-phonon scattering. We now 
illustrate the modified workflow in more details. A workflow chart is presented in Fig. 1.

Due to the great computational cost of four-phonon scattering in most materials, one may need to estimate first how significant four-
phonon scattering is compared to three-phonon scattering in a certain system. One can use the available three-phonon and four-phonon 
phase spaces as a criterion. To calculate these values, users can turn on the flags onlyharmonic and four_phonon, which will count 
the number of four-phonon scattering processes so that one can have a quick estimation of the computational demand when going 
forward.

Another particular problem is that one may need to determine whether to solve the BTE exactly with an iterative scheme beyond 
single mode relaxation time approximation (SMRTA, or RTA) to get converged thermal conductivity. Some theoretical works have indi-
cated that this is closely related to the relative strength of phonon normal/Umklapp processes [18,25]. Since the iterative scheme would 
require huge computational resources (both processors and memory), users can first perform calculations in SMRTA scheme by turning on 
four_phonon flag and disable convergence flag. SMRTA calculations usually take much less time to finish than iterative scheme and 
would output scattering rates from normal/Umklapp scattering events separately. If Umklapp processes are dominant, then the accuracy in 
thermal conductivity may be acceptable without further utilizing iterative scheme. If normal processes are relatively strong, one can apply 
the iterative scheme to BTE up to three-phonon scattering by turning on convergence flag, with four-phonon scattering rates treated 
at the RTA level. Presently, this package is not able to involve the four-phonon scattering phase space in the iteration scheme due to the 
exceptionally high memory demands. Further optimization could be made to include this functionality in the future.
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2.2. Implemented four-phonon formalism

The linearized phonon Boltzmann transport equation with three-phonon scattering has been extensively studied in the literature, and 
the formalism on four-phonon scattering has also been well documented in several preceding papers [13,14,18]. Here, we only introduce 
a unified formalism implemented in our program and make all the corresponding notations consistent with the one used in ShengBTE
[12]. At steady state, the rate of change of phonon distribution function due to diffusion and scattering should be balanced out for a 
certain phonon mode λ:

∂nλ

∂t
= ∂nλ

∂t

∣∣∣∣
diff

+ ∂nλ

∂t

∣∣∣∣
scatt

≡ 0. (1)

Using the relaxation time approximation, the scattering term is expressed as:

∂nλ

∂t

∣∣∣∣
scatt

= nλ − n0λ
τλ

, (2)

where n0λ and τλ are the equilibrium Bose-Einstein distribution and the relaxation time for phonon mode λ. The diffusion term is ∂nλ

∂t

∣∣∣
diff

=
− ∂nλ

∂T ∇T · vλ with vλ being the group velocity. It is convenient to write the equation in terms of the deviation from n0λ as nλ = n0λ − Fλ ·
∂nλ

∂T ∇T − ..., and only keep the linear terms with Fλ in the scattering term.
Then, for a certain mode λ, the linearized BTE [5] is expressed as:

Fλ = τ 0
λ (vλ + �λ), (3)

where τ 0
λ is the relaxation time for mode λ under SMRTA. �λ works for iterative scheme and is a quantity showing the phonon population 

deviation from SMRTA scheme. With the inclusion of four-phonon scattering, �λ and τ 0
λ (0 represents zeroth-order in iterations) are 
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where N is the total grid of q points. ξλλ′ = ωλ′/ωλ′′ . The superscripts (±) or (±±) represent the three-phonon (3ph) and four-phonon 
(4ph) processes, namely q′′ = q ±q′ +Q and q′′′ = q ±q′ ±q′′ +Q, respectively. Q is a reciprocal lattice vector with Q = 0 implying normal 
process. Note that Eq. (4) is the full expression for three- and four-phonon iterative scheme, whereas the current version of FourPhonon 
does not support such functionality and excludes the four-phonon terms in Eq. (4). �(iso) is the isotope scattering rates. Other � with 
superscripts denote the scattering rates for 3ph and 4ph processes, and are computed by scattering probability matrices [13,26]:
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where Eq. (6) is for three-phonon processes and Eq. (7) for four-phonon processes, with n0λ being the phonon Bose-Einstein distribution 
at equilibrium, ωλ being the phonon frequency for a certain mode λ. Conservation of energy is enforced by the Dirac delta function δ. In 
Eq. (6) and (7), the matrix elements V are given by the Fourier transformation of force constants, or transition probability matrices:

V (±)

λλ′λ′′ =
∑
i jk

∑
αβγ


αβγ
i jk

eλ
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where i, j, k, l denote the atomic indices and α, β, γ , θ denote the Cartesian dimensions x, y, or z. αβγ
i jk and αβγ θ

i jkl are the third-order 
and fourth-order force constants, respectively. eλ

α(i) is the eigenvector component for a mode. r j is the position vector of the unit cell 
where j-th atom lies, and M j is its mass.

The remaining formulae including the isotope scattering and the expression of thermal conductivity are the same as ShengBTE, so 
are not elaborated in this paper.

2.3. Fourth-order force constants

The potential energy of crystals can be written as a Taylor expansion with respect to the atomic displacement based on perturbation 
theory [26]
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∑
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l + ...,

(10)

where rαi is the displacement of atom i along the α(x, y, z) direction, E0 is the potential energy when r = 0, and the coefficients  in 
the n-th order term are the corresponding n-th order interatomic force constants (IFCs). Given by the translational symmetry, fourth-order 
IFCs depend only on the relative coordinates of atom quartette (i, j, k, l) rather than the absolute coordinates of the four atoms. The IFCs 
are usually determined by either a finite-difference scheme on the atomic forces [12] or fitting the atomic displacement-force relations 
[27].

In Fourthorder.py we employ a real-space finite-difference method to calculate the fourth-order IFCs:
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,

(11)

where h is a small displacement from the equilibrium position, and F θ
l is the θ component of the force on the l-th atom. The default value 

of h is 0.04 times the Bohr radius, which can be changed by editing the header of the Fourthorder.py script. Each element of αβγ θ

i jkl

requires eight DFT calculations with different supercell configurations, and there are 81n4N3 elements a supercell with N unit cells with 
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n basis atoms per unit cell. A typical fourth-order IFCs calculation requires supercells containing more than 100 atoms, meaning that tens 
of thousands of single DFT simulation would be needed. Since directly performing these calculations is impractical for most computing 
infrastructures, it is crucial to make use of the symmetry analysis to reduce the computational cost.

We begin by populating the force constant matrices with transposition symmetries, and in the case of fourth-order IFCs this permuta-
tion of indices can have 24 sets of equality constraints


αβγ θ

i jkl = 
αβθγ
i jlk = ... (12)

Then, we apply a space group symmetry operation 
∑

α Tα′αRα
i + bα′ = Rα′

Tb(i)
to the tensor, where T and b represent the point-group and 

translation operators respectively, and Tb(i) specifies the atom to which the i-th atom is mapped under the corresponding operation. The 
fourth-order IFC tensor must satisfy the following relation:


α′β ′γ ′θ ′
Tb(i);Tb( j);Tb(k);Tb(l) =

∑
αβγ θ

Tα′αTβ ′βTγ ′γ Tθ ′θαβγ θ

i jkl . (13)

Each symmetry operation enables to map the four atom indices i, j, k, l into themselves or to a different set. The first class of operations 
enforces m constraints on the set of 81 fourth-order IFCs related to an atomic quartette, and each constraint can be described by a linear 
equation. Using Gaussian elimination, the m linear equations can be transformed into the following form:⎛

⎜⎜⎜⎜⎜⎝

1 0 ∗ 0 0 ...

0 1 ∗ 0 0 ...

0 0 0 1 0 ...

0 0 0 0 1 ...
...

...
...

...
...

...

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

x1
x2
x3
...

x81

⎞
⎟⎟⎟⎟⎟⎠ = 0, (14)

where asterisks in the columns stand for arbitrary numbers, corresponding to the independent elements among the set of 81 IFCs. The 
remaining force constants are linear combinations of them. Likewise with thirdorder.py, Fourthorder.py relies on the spglib 
library for detecting all kinds of crystal symmetries.

The fourth-order IFC tensor also obeys the acoustic sum rules (ASRs)∑
l


αβγ θ

i jkl = 0. (15)

Considering transposition symmetries mentioned above, Eq. (15) must also be valid if the summation is performed over i, j, or k.
Whether these sums are exactly zero has a significant effect on the calculated phonon scattering rates at low frequencies near the �

point. Numerical uncertainties usually lead to small violations in ASRs, leading to significant deviations in calculated scattering rates. To 
tackle this problem, we adopt the same method with thirdorder.py [12], namely adding a small compensation to each independent 
non-zero IFC, where the compensation is chosen by minimizing the sum of squares of these compensations by introducing a Lagrange 
multiplier.

It should also be noted that the fourth-order IFCs convergence with respect to the cutoff interatomic distance has to be checked 
manually, by examining either the force constants directly or the calculated thermal conductivity values. The computational cost increases 
significantly with increasing cutoff interatomic distance. Fortunately, it has been found [14,21,28–30] that, for many three-dimensional 
crystals, including up to the second-nearest neighbors in the fourth-order IFCs can give satisfactorily converged values of scattering rates 
and lattice thermal conductivity.

We note that the calculation of fourth-order IFCs is still computationally expensive using the above finite differences scheme. More 
efficient techniques are available, such as compressive sensing lattice dynamics (CSLD) [31] and a similar approach called hiPhive [32], for 
which open source codes have been developed. It is claimed that these methods can speed up the calculation while preserving accuracy to 
obtain reasonable results [33]. Other developments include using the moment tensor potential (MTP) to generate force constants [34,35]. 
These advancements can potentially benefit our users as one can use force constants from other software or methods. More tests can be 
done to check the applicability and accuracy of these methods on a wide range of materials.

2.4. Adaptive broadening for energy conservation

The delta function δ for energy conservation is approximated by using the adaptive Gaussian broadening method [36,37]. The ex-
pression for four-phonon processes is similar to three-phonon case. Energy spacing level is described by taking the derivative of energy 
difference respect to the third phonon involved ∂�ω

∂q′′ . This adaptive broadening then needs the group velocity of a certain mode vλ and 
the spacing of sampling q points |�q′′|. The formula is expressed as:

δ(ωλ ± ωλ′ ± ωλ′′ − ωλ′′′) ≈ 1√
πσ

e
− (�ω)2

σ2 , (16)

while the parameter σ for different processes is calculated as:

σ = |vλ′′ − vλ′′′ ||�q′′| (17)

The detailed derivations for this formula can be found in Appendix B. Similar to ShengBTE, users of this program can always adopt 
a smaller scalebroad to reduce the computational cost by including fewer four-phonon processes, and it can often give reasonable 
results. Our implementation also addresses a technical problem. When σ evaluated is very small, the calculated scattering rates may be 
some abnormally high values. This numerical error is corrected by setting the δ function as 1.
5
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Fig. 2. Thermal conductivity of Si at 1000 K and 300 K calculated by ShengBTE with FourPhonon using first principles. The plot shows the convergence curve with respect 
of the q-points mesh. The value of scalebroad is taken as 0.1. Experimental data are represented by red straight lines for 1000 K (dot line [39], dash line [40]), and orange 
straight lines for 300 K (dot dash line [41], solid line [42], dash line [40], dot line [39]). The star in the right panel represents a recent theoretical work considering both 
four-phonon scattering and phonon renormalization [38]. They have used an extrapolation scheme for four-phonon scattering such that denser mesh is extrapolated with 
the scattering rates at mesh N = 12.

Fig. 3. Phonon scattering rates of Si at 1000 K (left: three-phonon, right: four-phonon). The value of scalebroad is taken as 0.1. The inset is log-scale in scattering rates. In 
both figures, solid circles indicate phonon Umklapp process while hollow ones represent normal process.

3. Examples

3.1. Si

Being the most commonly used semiconductor, silicon has been extensively studied as a benchmark material for theoretical predictions. 
We use silicon to illustrate the common practice for calculating thermal conductivity with four-phonon scattering.

Force constants are all calculated by first principles and are consistent with a previous study [14]. Using a 6 × 6 × 6 supercell, we have 
considered up to the fifth-nearest neighboring atoms in the third-order IFCs and second-nearest neighboring atoms in the fourth-order 
IFCs. Calculation of these IFCs is nearly a standard process and is well documented in some helpful tutorials [11]. In the calculation of all 
three examples, we have turned on the iterative flag for three-phonon scattering.

Regarding the convergence with respect to the q-points, our tests on silicon show that (see Fig. 2) the inclusion of four-phonon scat-
tering would only require a 17 × 17 × 17 q-points grid to produce converged thermal conductivity values. In contrast, three-phonon 
scattering typically requires a 25 × 25 × 25 q-points grid to converge. This is beneficial given the fact that the calculation of four-phonon 
scattering is very expensive. At 300 K, our results fall slightly lower than some experiments. This could be potentially remedied by con-
sidering phonon renormalization effect in the calculation. A recent study incorporating these effects reported room temperature thermal 
conductivity around 140 W/m·K [38], which is within the range of experimental uncertainty.

Details on phonon-phonon interactions in Si at 1000 K are shown in Fig. 3. Consistent with the literature [14], normal three-phonon 
processes do not overwhelm Umklapp processes. And in the four-phonon scattering, Umklapp process is dominant. Thus, applying only 
RTA scheme to Si is acceptable in calculating thermal conductivity.
6
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Fig. 4. Phase space available of BAs (left) and Si (right) at 300 K. The value of scalebroad is taken as 0.1 and data is presented in log-scale. In both figures, blue circles 
represent the phase space for three-phonon scattering events (P3), and orange circles represent the phase space for four-phonon scattering events (P4).

Fig. 5. Phonon scattering rates of BAs at 300 K (left) and 1000 K (right). The value of scalebroad is taken as 0.1. The inset is log-scale in scattering rates. One can observe 
from the logarithm scale that when frequency approaches zero, the scattering rate also goes down to zero, or lim

ω→0
τ−1 = 0.

3.2. BAs

Four-phonon effect is known to be important in boron arsenide (BAs), a zinc-blende structure material promising for thermal manage-
ment applications. When determining the intrinsic thermal transport process, four-phonon scattering is even stronger than three-phonon 
scattering. It was found that the higher-order anharmonicity would result in a substantial reduction of thermal conductivity [14], and 
subsequent experimental studies [15–17] have validated the predicted thermal conductivity values. Therefore, we use BAs as an example 
material to further illustrate FourPhonon workflow in calculating thermal conductivity.

The sets of IFCs are obtained from first principles on a 4 × 4 × 4 supercell. Following parameters used in the literature, we firstly 
perform calculations on a 16 ×16 ×16 q-points grid with scalebroad=0.1 at 300 K. For illustrating purpose, we assume that at this stage 
users have no knowledge on how important four-phonon effect is in BAs. Instead of directly calculating scattering rates with potentially 
very high cost, one can first look at the weighted phase space as defined in Ref. [43]. This is done by turning on onlyharmonic and 
four_phonon flags in the CONTROL file. Phase space calculation is less expensive to perform since it does not involve anharmonic IFCs. 
The results are shown in Fig. 4. We also plot the results of Si for comparison. It is found that phase space of four-phonon scattering is 
quite large in BAs, especially in optical branches. In contrast, in Si, four-phonon phase space is generally smaller than three-phonon phase 
space. This is consistent with the fact that four-phonon scattering is not significant in silicon at room temperature and only has minor 
effect on its thermal conductivity [14]. Thus, the calculation of phase space can provide a preliminary estimation if four-phonon scattering 
needs to be considered for thermal transport study or not.

Fig. 5 presents the phonon scattering rates in BAs at 300 K and 1000 K. The four-phonon scattering rates can be comparable to or 
even larger than three-phonon ones even at room temperature. The scattering rates calculation takes about 1680 CPU hours for a single 
temperature point. For the benefit of our users, the actual computational costs of tasks performed in this paper are summarized in 
Appendix C.
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Fig. 6. Thermal conductivity of naturally occurring BAs. The value of scalebroad is taken as 0.1. Red symbols are from three experimental works. Red triangle and red square 
are from Ref. [16], red circles Ref. [15], red stars Ref. [17].

Thermal conductivity is then obtained by exactly solving BTE in an iterative scheme involving three-phonon interactions. To ensure 
the accuracy of scalebroad, we also perform calculations on the same mesh with scalebroad=1. The thermal conductivity values 
in W/m·K are 1221.9 (scalebroad=1) vs. 1266.9 (scalebroad=0.1), and the relative difference is within 4%. Considering the fact 
that four-phonon scattering calculations are very expensive at a larger broadening factor, we set scalebroad=0.1 in calculations at 
all temperature points. Note that room temperature thermal conductivity predicted in Ref. [16] using fully iterative solution of BTE and 
tetrahedron scheme is 1260 W/m·K, which is very close to our result. This confirms that in BAs Umklapp process is still dominant in 
four-phonon scattering [14].

After performing calculations from 200 K to 1000 K, we get the temperature-dependent thermal conductivity, as shown in Fig. 6. 
Consistent with results in Fig. 5, larger reductions are observed for higher temperatures when considering four-phonon scattering. Our 
results are in good agreement with experimental data.

3.3. LiCoO 2

LiCoO2 is a representative material of layered lithium transition-metal oxides (LixTMO2). This family of materials store lithium ions 
in between the TMO2 layers, and have significant applications in rechargeable batteries due to their superior electrical and mechanical 
properties. However, their thermal transport properties seem to be hindering the improvement of device performance [30,44]. As revealed 
by Feng et al. [30], the theoretical upper limit of LiCoO2’s lattice thermal conductivity would be lowered 2-6 times when including 
higher-order lattice anharmonicity. Compared to the preceding examples, lithium transition-metal oxides have more complex structures 
and involve four atoms in the unit cell. In this part, we intend to calculate the thermal transport properties of LiCoO2 using our new 
computational tool, and decompose the scattering rates into different scattering channels (i.e., recombination, redistribution and splitting 
processes).

A 3 × 3 × 3 supercell is employed to obtain IFCs by first principles (for detailed information see Ref. [30]) and the Brillouin zone is 
discretized by 10 × 10 × 10 q-points grid. For this material with complex lattice structures, we only use scalebroad=0.01 to perform 
four-phonon calculations, and the available four-phonon processes are already around 1010.

Results of phonon scattering rates are shown in Fig. 7. Even at room temperature, four-phonon scattering rates of LiCoO2 are generally 
comparable to three-phonon scattering rates over the entire frequency range. Different from BAs, four-phonon scattering rates are not 
that significant in optical phonon branches. Decomposing the four-phonon interactions further into different scattering channels provides 
us with more information. One can observe that redistribution process (λ + λ′ → λ′′ + λ′′′) contributes the most and Umklapp process 
dominates this specific scattering channel.

We then calculate the in-plane (κ‖) and through-plane (κ⊥) thermal conductivity and compare their values with the literature. Such 
information is available in a file named BTE.kappa_tensor. At 300 K, our calculations yield 9.35 W/m·K for κ‖ and 1.39 W/m·K for 
κ⊥ , which agree reasonably well with Ref. [30] that gives 9.7 W/m·K and 1.4 W/m·K, respectively.

4. Conclusion

The recent introduction and implementation of Feng and Ruan’s four-phonon calculation framework has led the community to revise 
the understanding of thermal transport theory. This motivated us to develop a computational package, FourPhonon, that can make this 
calculation accessible to the thermal science community and enable researchers to explore four-phonon effects in a broader range of 
topics. This new program is developed under a well-perceived phonon calculation platform ShengBTE. Our main contribution is:

• Provide the first open-source tool to perform four-phonon scattering calculations, while preserve nice features of ShengBTE platform;
8
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Fig. 7. Phonon scattering rates of LiCoO2 at 300 K. In both figures, scalebroad = 0.01 and y-axis is presented in logarithm scale. Figure (a) shows the comparative strength 
of three- and four-phonon scattering rates. Captions in (b) represent scattering rates from three scattering channels: recombination (λ + λ′ + λ′′ → λ′′′), redistribution 
(λ + λ′ → λ′′ + λ′′′) and splitting (λ → λ′ + λ′′ + λ′′′).

• Extend the adaptive broadening scheme to four-phonon scattering cases, provide a script for fourth-order force constants calculations 
that utilizes both the point-group and translational symmetries.

Examples on silicon, BAs and LiCoO2 cover common materials, typical materials known for significant four-phonon effects, and newly 
reported complex systems. These examples show different aspects of our new program and some technical features like convergence with 
respect to broadening factor and q-points grid, scattering contributions from Umklapp and normal processes or from different scattering 
channels.

Our program is currently able to perform four-phonon calculations under Single Mode Relaxation Time Approximation and iterate 
with three-phonon scattering rates. We look forward to providing the community with a version capable of fully four-phonon iterative 
calculations when the memory issue is resolved.
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Appendix A. Input and output files of FourPhonon

Apart from the input files required by ShengBTE, FourPhonon takes an additional force constants file, namely FORCE_CONSTANTS_
4TH. This file can be generated using our script Fourthorder.py. Consistent with ShengBTE, our program takes no command-line 
arguments and users only need to prepare a CONTROL file that contains all the settings on crystal structures, energy broadening factor, 
and q-points grid. To enable the four-phonon calculations, users should set four_phonon=.TRUE. in this file. After the computations, 
we will have these output files besides normal outputs from ShengBTE:

BTE.Numprocess_4ph: number of allowed four-phonon scattering processes for each mode.
BTE.P4: phase space available for four-phonon scatterings.
BTE.WP4: weighted phase space available for four-phonon processes.
BTE.w_4ph: four-phonon scattering rates under RTA.
BTE.w_4ph_Umklapp: four-phonon scattering rates from Umklapp processes under RTA.
BTE.w_4ph_normal: four-phonon scattering rates from normal processes under RTA.

Appendix B. Derivation of adaptive broadening formulas

For a certain phonon mode (q, ω), the other three phonons involved are located q′, q′′, q′′′ in k-space and their corresponding fre-
quencies are ω′, ω′′, ω′′′ . The fourth phonon (q′′′, ω′′′) is dependent on the choice of the second and the third phonon while the second 
phonon (q′, ω′) and the third phonon (q′′, ω′′) are independent from each other. Energy spacing level can be expressed for different 
scattering processes and then take the derivative:
9
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For recombination (++) process, �ω = −ω′ − ω′′ + ω′′′ and q + q′ + q′′ = q′′′ , we have

∂�ω

∂q′′ = −∂ω′′

∂q′′ + ∂ω′′′

∂q′′′
∂q′′′

∂q′′ = −vλ′′ + vλ′′′ (B.1)

for redistribution (+ -) process, �ω = −ω′ + ω′′ + ω′′′ and q + q′ − q′′ = q′′′ , we have

∂�ω

∂q′′ = ∂ω′′

∂q′′ + ∂ω′′′

∂q′′′
∂q′′′

∂q′′ = vλ′′ + vλ′′′(−1) (B.2)

for splitting (- -) process, �ω = ω′ + ω′′ + ω′′′ and q − q′ − q′′ = q′′′ , we have

∂�ω

∂q′′ = ∂ω′′

∂q′′ + ∂ω′′′

∂q′′′
∂q′′′

∂q′′ = vλ′′ + vλ′′′(−1) (B.3)

energy broadening factor σ = | ∂�ω
∂q′′ ||�q′′| then yields

σ =

⎧⎪⎨
⎪⎩

| − vλ′′ + vλ′′′ ||�q′′|, for recombination (++) process

|vλ′′ − vλ′′′ ||�q′′|, for redistribution (+ -) process

|vλ′′ − vλ′′′ ||�q′′|, for splitting (- -) process.

(B.4)

Since we are taking the absolute value, the final formula for all the processes is then

σ = |vλ′′ − vλ′′′ ||�q′′| (B.5)

Appendix C. Computational costs of FourPhonon

All calculations are done at the Rosen Center for Advanced Computing (RCAC) at Purdue University. The cluster is equipped with Sky 
Lake CPUs that have a clock frequency of 2.60 GHz. Here we report the computational costs in terms of CPU hours which include a single 
temperature point calculation using FourPhonon to calculate scattering rates and thermal conductivity. The data are presented below in 
Tables C.1, C.2 and C.3 (σ is the broadening factor):

Table C.1
CPU hours spent in the calculations on Si.
Mesh size 
(N × N × N)

Broadening factor

σ = 0.1 σ = 1

10 24 192
16 990 6912
18 4992 16896

Table C.2
CPU hours spent in the calculations on BAs.
Mesh size 
(N × N × N)

Broadening factor

σ = 0.1 σ = 1

16 1680 7488

Table C.3
CPU hours spent in the calculations on LiCoO2.

Mesh size 
(N × N × N)

Broadening factor

σ = 0.01 σ = 0.1

10 360 2800
11 864 6408
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