
Journal of Hydrology 601 (2021) 126633

Available online 10 July 2021
0022-1694/© 2021 Elsevier B.V. All rights reserved.

Research papers 

Contrasting stream water temperature responses to global change in the 
Mid-Atlantic Region of the United States: A process-based modeling study 

Yuanzhi Yao a, Hanqin Tian a,*, Latif Kalin a, Shufen Pan a, Marjorie A.M. Friedrichs b, 
Jing Wang a,c, Ya Li a,d,e 

a International Center for Climate and Global Change Research, School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL 36832, USA 
b Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA, USA 
c State key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China 
d Research Center for Eco-Research Center for Eco-Environmental Science, Chinese Academy of Science, Beijing 100085, China 
e University of Chinese Academy of Sciences, Beijing 10049, China   

A R T I C L E  I N F O   

This manuscript was handled by Marco Borga, 
Editor-in-Chief  

Keywords: 
Dynamic Land Ecosystem Model (DLEM) 
Global change 
Mid-Atlantic Region 
Stream order 
Water temperature 

A B S T R A C T   

The accurate estimation of stream water temperature is essential for understanding environmental controls on 
the structure and functioning of aquatic ecosystems. Few studies have coupled soil and stream water tempera
tures to capture the synergy of thermal balances between terrestrial and riverine systems. As a result, little is 
known about how multiple environmental stresses have affected water temperature, particularly for different 
orders of streams. Here we incorporated a new water transport scheme into the Dynamic Land Ecosystem Model 
(DLEM) to predict water temperature in 1st order and higher-order streams (>1st order). Driven by a 4-km geo- 
referenced dataset of multiple environmental factors, our new water temperature model was utilized to predict 
the spatiotemporal variations of water temperature in the U.S. Mid-Atlantic Region during 1900–2015. Results 
revealed that water temperature during 1970–2015 increased significantly (p < 0.05), and the rate of increase of 
the 1st order streams 0.32 ◦C∙decade−1 is higher than that of higher-order streams 0.28 ◦C ∙ decade −1. The 
buffering effect of groundwater on water temperature in 1st order streams diminished under the context of 
climate warming. Factorial analysis showed that climate change and variability explain most of the changes 
(~80%) in stream water temperature since 1900. Land-use conversions (mostly from cropland to forest), CO2 
fertilization, and land nitrogen management collectively explained a greater percent of change in water tem
perature in 1st order streams (24%) than higher-order streams (9%), implying that 1st order streams are 
particularly vulnerable to human activities.   

1. Introduction 

Stream water temperature is a fundamental physical variable 
reflecting the balance of thermal energy in aquatic systems (Chapra, 
2008). It has been well documented that stream water temperature can 
substantially affect the solubility of oxygen and other gases (Sander, 
2015), govern the decomposition or mineralization rate of organic 
matter (Pastor et al., 2003), and regulate the fate of nitrogen (Harrison 
et al., 2009) and phosphorus (McQueen and Lean, 1987). Water tem
perature also moderates the metabolic rate of microorganisms (Clair
eaux et al., 2000) and can shape the spatial distribution of habitats 
supporting aquatic species (Isaak et al., 2010). Given its importance to 
aquatic biogeochemistry and biodiversity, significant efforts have been 

devoted to monitoring and estimation of water temperature (Van Vliet 
et al., 2013). 

Although ubiquitous water discharge monitoring sites have been 
established worldwide, water temperature observations are still lacking 
(Wanders et al., 2019). A modeling approach is needed to construct the 
spatial and temporal patterns of stream water temperature across large 
regions. Empirical relationships, derived from the regression analysis of 
observed water temperature and air temperature, are commonly 
deployed in water quality models due to their relative simplicity (Leach 
and Moore, 2019). Such relationships can provide reliable estimates of 
water temperature for regional studies because the regression parame
ters can be calibrated to match the data. As a result, the performance of 
an empirically based model strongly depends on the amount and quality 
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of data from the study region. If the environmental conditions change, 
the skill of these models in predicting water temperature may drop 
(Arismendi et al., 2014). The reason for this is that empirical relation
ships cannot represent the mechanisms of how environmental factors 
contribute to changes in stream water temperature. This inherent 
weakness has hampered their application in long-term studies where 
land use and land management change over time. 

Stream water temperature is highly sensitive to climate change and 
anthropogenic disturbances. For instance, water temperature has been 
increasing in streams draining to the Chesapeake Bay, USA, which aligns 
with the increase in air temperature in the region (Rice and Jastram, 
2015). Land management, such as forest clear-cutting, can also signifi
cantly impact water temperature (Chen et al., 2016; Brown and Krygier, 
1970). Management of water resources, such as dam construction or 
reservoir operations, can cool or warm water temperature under 
different environmental conditions due to the changes in water surface 
area and the thermal energy leaking from the bottom of the reservoirs 
(Chen & Fang, 2015b). 

In recent years an improved understanding of the energy balance in 
streams has been obtained through field studies, which has subsequently 
promoted the development of physically-based approaches that incor
porate climate and hydraulic variables into the energy balance equa
tions. These models have found applications at the basin level (Wu et al., 
2012), regional level (Buccola et al., 2016; Isaak et al., 2017), conti
nental level (Li et al., 2015b), and global level (Van Vliet et al., 2013; 
Wanders et al., 2019). Physically-based models can capture the changes 
in environmental conditions and provide reliable results for historical 
data reconstruction (Wanders et al., 2019) and future projections 
(Ficklin et al., 2014; Wu et al., 2012). However, physically-based models 
still need certain assumptions to simplify the processes that are not 
understood well or are too complex. Therefore, empirical equations are 
commonly incorporated into physically-based models to estimate water 
temperature of 1st order streams, often as a boundary condition (Haag 
and Luce, 2008; Van Vliet et al., 2012). 

To the best of our knowledge, few studies presented the spatial dis
tribution of stream temperature in headwaters over a large region. The 
headwater zone, known as the terrestrial-aquatic interface, has been 
recognized as a hotspot for greenhouse gas (GHG) emissions (Butman 
and Raymond, 2011) and has therefore prompted significant interest 
from both field research and modeling communities. For example, a 
recent study has suggested that headwater streams can be important 
refuges for cold-water species under the risk of changing climate (Isaak 
et al., 2016). Although this study suggested that headwater zones can 
buffer the impact of climate (small headwater streams have cooler water 
temperature in summer and warmer water temperature in winter than 
higher-order streams), they are particularly vulnerable to climate 
change and human activities, especially when environmental change 
reaches a tipping point (Nepstad et al., 2008). Over the past century, 
headwater zones have been heavily impacted by human and/or natural 
disturbances (Isaak et al., 2010; Cover et al., 2010). For example, some 
studies have found ~5 ◦C increase in water temperature of headwater 
streams after fire disturbances, suggesting a strong synergy between 
land surface processes and water temperature (Isaak et al., 2010; Koontz 
et al., 2018). 

In this study, we coupled a new water transport scheme, called Model 
for Scale Adaptive River Transport (MOSART)  (Li et al., 2013; Li et al., 
2015b) with our land ecosystem model (Dynamic Land Ecosystem 
Model, DLEM) (Tian et al., 2015). We incorporated a physically-based 
water temperature model into DLEM. We linked a simplified ground
water process to the stream water as a boundary condition and improved 
the model representation of the groundwater-fed, sub-grid routing 
thermal energy exchanges within the 1st order streams. The objectives 
of this study are to (1) evaluate the spatial and temporal patterns of 
water temperature of head water streams and higher-order (>1st order) 
streams from 1900 to 2015 across the Mid-Atlantic region (including the 
Chesapeake Bay and Delaware Bay Watersheds), and (2) isolate the 

contribution of environmental factors to stream water temperature 
across this region. 

2. Methods 

2.1. The Dynamic land Ecosystem model (DLEM) 

The terrestrial processes were simulated by the Dynamic Land 
Ecosystem Model 2.0 (DLEM 2.0) (Fig. 1a), which couples the major 
terrestrial water cycle (Liu et al., 2013; Pan et al., 2015) with carbon
–nitrogen coupled vegetation dynamics (Tian et al., 2012; Chen et al., 
2013) to explicitly estimate plant growth, soil biogeochemistry, the 
associated water fluxes, and greenhouse gas emissions in terrestrial 
ecosystems driven by the climate forcing and the anthropogenic dis
turbances. The model has been successfully applied at relatively coarse 
resolutions such as 0.5 degrees (global level) or five arc-minutes 
(regional level) (Tian et al., 2015). In order to extend its range to 
higher resolutions, sub-grid processes were introduced into the terres
trial simulations by adapting a cohort unit. The land-use cohort divides 
each grid cell into five types of normalized vegetation coverage, 
including the fraction of cropland, four primary natural vegetation 
covers, and six non-vegetation types, including urban impervious sur
face, glacier, lake, stream, ocean water, and bare-ground. DLEM has 
been previously improved to represent the riverine transport and thus is 
well suited for quantifying the lateral or vertical fluxes of water, carbon 
(Tian et al., 2015) and nitrogen (Yao et al., 2020) from land to the 
oceans (Fig. 1a). 

A scale adaptive water transport scheme, MOSART model (Li et al., 
2013) was incorporated into the DLEM aquatic module (Yao et al., 
2020). The new scheme separates the water transport process within a 
grid unit into hillslope routing, subnetwork routing, and main channel 
routing (Fig. 1b). Hillslope routing is the water routing process that 
aggregates surface runoff and sends it to subnetworks. Groundwater 
pool receives water from subsurface runoff (shallow groundwater flow) 
and contributes to subnetworks with outflow rates derived from a fixed 
residence time, which is empirically set to 2 days (Liu et al., 2013). The 
subnetwork routing represents the hydrologic processes involving 1st 
order streams that receive water from overland flow and groundwater 
pool and then discharge to the main channel. Both hillslope and sub
network routings are sub-grid routing processes within a grid cell. The 
main channel routing represents the routing process of higher-order 
streams (2nd and higher-order streams in a 4-km resolution grid cell for 
this study) receiving flow from subnetworks and upstream grid cells and 
flowing to a downstream grid cell. 

The DLEM model uses the kinematic wave method for flow routing in 
channels (Chow, 1964), which requires several hydrography variables 
(e.g., flow direction, channel length, and channel slope) and geomor
phological parameters (e.g., channel width and channel depth). All this 
information was derived from the hydro1K and NHDplus hydrography 
datasets (Li et al., 2015a; Yao et al., 2021). 

In the water temperature module of DLEM, we simulated the thermal 
energy dynamics of 1st order (subnetworks in the water transport 
scheme) and higher-order streams (main channel flow in the water 
transport scheme) separately. Thus, we need to estimate the water sur
face area of both types of streams. We obtained the surface area data 
from remote sensing products for the higher-order streams, and quan
tified the water surface area (As) of 1st order streams (at which scale 
remotely-sensed products are not available or reliable) through an 
empirical relationship proposed by Allen et al., 2018: 

As =

{
ARS,water , remotely − sensed d ata

W × L, 1st order streams (1)  

W = Q
3

5r+3 × (0.5A0.42)
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⎛
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614−5
3
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where ARS,waterdenotes the surface area obtained from remote sensing 
data (m2); W and L represent the channel width and river length of the 
rivers in the given pixel (m), respectively; A is the drainage area (here 
we define it as the area of one grid cell) (ha), S is bed slope, Q is water 
discharge (m3∙s−1); r represents the shape parameter (=1.5 following 
Allen et al., 2018), and k is a bed roughness length scale: 

k = (8.1g0.5n)
6 (3) 

in which n is the Manning’s roughness coefficient (assumed to be 
0.04 s∙m−1/3), and g is the gravitational acceleration (m∙s−2). 

2.2. Soil temperature module in DLEM 

The thermal energy exchange and moisture movement between the 
soil layers in DLEM were borrowed from the Community Land Model 
(Bonan et al., 2013). The soil column in DLEM was divided into 10 
layers, and the thickness of each layer was defined as 0.05 m, 0.05 m, 
0.1 m, 0.2 m, 0.2 m, 0.3 m, 0.3 m, 0.5 m, 0.8 m, and 1.0 m respectively. 
We did not explicitly quantify the temperature of the vegetation canopy 
and the heat fluxes between the canopy and the soil surface. Thus, we 
quantify the surface soil temperature by using a semi-empirical method 
as the upper boundary condition of the soil layers, which considers the 

Fig. 1. The general framework of the DLEM Terrestrial/Aquatic Interface Model. (a). The concept model of DLEM. (b). The concept model of MOSART.  
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effect of Leaf Area Index (LAI) and litter on soil temperature (Kang et al., 
2000):  

where A is the 11-day mean daily air temperature (⁰C), Tj and Tj−1 are 
the soil surface temperatures (⁰C) of the current and the previous days, 
respectively, ks is thermal diffusivity (which is set at 0.004 cm2s−1), z is 
the thickness of the top soil layer (cm), LAI is leaf area index, Litter is the 
LAI equivalent of ground litter, and kt is a calibration parameter 
(dimensionless). 

2.3. Water temperature module 

We developed a riverine water temperature model within the scale 
adaptive water transport module and fully coupled it with the soil water 
temperature model of DLEM (Fig. 2). 

The energy balance within a stream segment is given by: 

ΔT
Δt

=
Ha+

(
1 − Cef

)
As × (Hs + Hl + He + Hc + Hh)

Cw × M
(5)  

where Cw represents the specific heat of water (=4186 J/kg ◦C), M is the 
total mass of water stored in the channel (kg), and it is calculated as 
(density)*(volume). Volume is calculated from daily average discharge 
at the reach, i.e. (Qin + Qout)/2*86400, where Qin and Qout are average 
daily inflow to and outflow from the reach, respectively, in cms. Cef is the 
ratio of water surface area shaded by plant canopies), Ha (W) is the sum 
of lateral heat fluxes, including thermal inputs from upstream grid cells, 
local subnetworks, and downstream thermal energy loss. Note that T is 
in 0C, and t is in s. In this model, we simulated the lateral heat transport 
within subnetworks as (Ha = Ha,sub): 

Ha,sub = ρwCw ×
(
Qhil

(
Tw,hil − Tw,sub

)
+ Qg(Tw,g − Tw,sub)

)
(6)  

where ρw represents the water density (kg m−3), Qhil and Qgrepresent the 
surface runoff from hillslope and subsurface flow (shallow groundwater) 

(m3∙s−1), respectively. Tw,hil, Tw,g and Tw,sub represent the water tem
perature of hillslope flow, groundwater, and subnetworks, respectively. 
We assume that the water temperature of the hillslope flow is equal to 
the surface soil temperature. Tw,g is defined as the average soil temper
ature from the surface to a given depth (Dw,g). 

Note that, as a simplification, all the water and heat fluxes from the 
hillslopes and groundwater pool contribute directly to the first-order 
streams in the model, i.e., higher-order streams do not receive water 
or heat flux from hillslopes. This has a minimal effect on results because 
the total drainage area of hillslopes directly contributing to higher-order 
streams is a small fraction of the total watershed area (Figure S1). 

The lateral heat flux to the main channel(Ha = Ha,main) is given by: 

Ha,main = ρwCw ×

(
∑Nup

i
Qup,i

(
Tw,up,i − Tw,main

)
+ Qsub(Tw,sub − Tw,main)

)

(7)  

where Qup,i is the inflow from up-stream grid cells, Tw,main and Tw,up,i are 
the water temperature of upstream inflow and main channel flow, 
respectively. Nup is the number of upstream grid cells. 

Hs in Eq. (5) is the net shortwave radiation (Wm−2) which is set as 
97% of the incoming shortwave radiation (Hs−in) (Wu et al., 2012), Hl is 
the net long-wave radiation which is calculated as the difference be
tween incoming longwave radiation (Hlw−in) of atmosphere and long
wave energy emitted from a water body (Hlw) (Thornton and Running, 
1999). Hs−in and Hlw−in were obtained from climate data. Hlw is given as: 

Hlw = 0.97 × σ × (Tw + 273.15)
4 (8) 

where σis the Stefan-Boltzmann constant (5.67 × 10−8W m−2K−4). 
Hc represents the riverbed-water specific conductive heat exchange flux 
(Wm−2), set to 5% of the net solar radiative flux (Wu et al., 2012). He is 

Fig. 2. The framework of DLEM coupled with the water temperature model. Note: F represents heat fluxes, and λ is thermal conductivity.  

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Tj − Tj−1 =
[
A − Tj−1

]
exp

[

− z
(

π
ks*86400

)0.5
]

exp[ − kt × (LAI + Litter) ], when A > Tj−1

Tj − Tj−1 =
[
A − Tj−1

]
exp

[

− z
(

π
ks*86400

)0.5
]

exp[ − kt × (LAI) ], when A < Tj−1

(4)   

Y. Yao et al.                                                                                                                                                                                                                                     



Journal of Hydrology 601 (2021) 126633

5

the specific latent flux (Wm−2) estimated as 

He = − ρw × E × λe/(86.40 × 106) (9) 

Here, E represents the evaporation rate of water (mm d−1),λe denotes 
the latent heat flux through vaporization (J kg−1). The evaporation rate 
is estimated as 

E = Kl × (esat − e) (10) 

with esat denoting the saturation vapor pressure (hPa), and e repre
senting the actual vapor pressure (hPa). We quantify Kl from 

Kl = 0.211 + 0.103 × Vwind × Fwind (11) 

where Vwind is the wind speed at 3-meters above the ground/water 
surface (m∙s−1), Fwind is a dimensionless factor, which is set at 0.8 (Haag 
and Luce, 2008). λeis given as 

λe = 2499.64 − 2.51 × Tw (12) 

Hh is the sensible heat fluxes (Wm−2), and can be calculated as (Haag 
and Luce, 2008) 

Hh = − γ1 ×
P

1013
× Kl × λe ×

Tw − Tair

86.40 × 106 × ρw (13)  

where γ1 represents the psychrometric constant at the standard air 
pressure, which is set at 0.655 (hPa/℃), Pdenotes the actual air pressure 
(hPa). 

3. Model inputs and simulation experiments 

3.1. Study area and model driving forces 

The model described above was applied to the Chesapeake Bay 
Watershed and Delaware River Basin (Fig. 3), both of which are located 
within the Mid-Atlantic region of the northeast U.S. This is the most 
urbanized region of the country and sustains more than 25.5 million 
people. The region covers more than 166,103 square kilometers of land 
surface and has experienced substantial land conversion due to refor
estation over the past century (Hassett et al., 2005). 

In this study, we developed a 4-km resolution dataset of this region as 
model input to run the DLEM model with climate, land conversion, and 
land management driving forces from 1900 to 2015. A potential vege
tation map was reconstructed for the mid-Atlantic region by combining 
land-use data obtained from the National Land Cover Database (NLCD, 
Jin et al., 2013) (https://www.mrlc.gov/), the North American Land 
Change Monitoring System (www.cec.org/naatlas), and the Global C4 
vegetation map (Still et al., 2003). We used the county-level inventory 
data of cropland area and urban area to prescribe the land-use change of 
natural vegetation (Waisanen and Bliss, 2002). A flowchart describing 
the generation of the historical land use/land cover is shown in Sup
plementary Fig. 2. As shown in Fig. 4, cropland area decreased by 57.3% 
(Fig. 4d) during the past 100 years. This is primarily due to the 9.1% 
increase in forest area and the 507.5% increase in urban areas. Most of 
the urban expansion occurred surrounding the megacities, including 
Washington DC, Baltimore, and Philadelphia (Fig. 4c). 

We obtained historical climate variables from the Parameter- 
elevation Relationships on Independent Slopes Model (PRISM) climate 

Fig. 3. The major plant function types, land use/land cover and topographic surface in the Mid-Atlantic region.  

Y. Yao et al.                                                                                                                                                                                                                                     

https://www.mrlc.gov/


Journal of Hydrology 601 (2021) 126633

6

dataset (available at: http://www.prism.oregonstate.edu/), including 
daily minimum, mean and maximum temperature, as well as precipi
tation at 4-km spatial resolution. The mean annual precipitation was 
1080.0 ± 131.7 mm yr−1, and the annual mean temperature was 11.6 ±
0.2  ◦C during 1900–2015, respectively. Both precipitation and air 
temperature show significant increasing trends (p < 0.05, in Mann- 
kendall test) from 1960 to 2015 with the rates of 3.3 mm∙yr−1 and 
0.017 ◦C∙decade−1, respectively. 

The DLEM nitrogen inputs include atmospheric nitrogen deposition, 
nitrogen fertilizer use, and manure nitrogen production. We combined 
global nitrogen deposition and Chesapeake Bay Program’s data to 
reconstruct a long-term product (Pan et al., 2021). Crop-specific nitro
gen fertilizer use from 1961 to 2008 was obtained from the National 
Agricultural Statistics Service (https://quickstats.nass.usda.gov/). 
Manure nitrogen production data was derived from the USDA county- 
level livestock population data (Yang et al., 2016). 

3.2. Simulation experiments 

Before running the simulations for the period 1900–2015 at a daily 
time step, we first set up an equilibrium run for all the grid units. The 
simulation was forced by the land use data of the year 1900, and the 30- 
year mean (1900–1929) climate data to represent the pre-industrial 
environmental conditions. Other driving forces, including atmospheric 
CO2 concentration, land use change, and nitrogen inputs, were kept at 
the pre-industrial levels (1900), to exclude human disturbance. The 
equilibrium run was terminated when carbon, nitrogen, and water pools 
reached a steady state (Thornton and Rosenbloom, 2005). After the 
equilibrium run was completed, we conducted a 30-year spin-up run 
with randomly selected climate variables from 1900 to 1929. The spin- 
up run functions as a buffer to smooth the carbon and nitrogen fluxes 
between the equilibrium run and the year-to-year transient run (Tian 
et al., 2012). Finally, we conducted a transient run for which all the 
driving forces change over time from year 1900 to 2015. 

We defined three free parameters, including the ones associated with 
the water surface area (Cef in Eq. (5)) and groundwater inputs (kt in Eq. 

Fig. 4. The spatio-temporal pattern of land conversion and long-term climate change over the Mid-Atlantic region from 1900 to 2015. (a) Temporal pattern of net 
land-use change from 1900 to 2015, (b) temporal pattern of annual mean precipitation and air temperature from 1900 to 2015, (c) changes in impervious surface, (d) 
changes in cropland (Note: slightly means up to 10%, medium means up to 30% and strongly means up to 50%), (e) changes in annual total precipitation, and (f) 
changes in annual mean air temperature. 

Table 1 
The experimental design for attributing changes in water temperature to natural and anthropogenic factors including precipitation, temperature, climate, atmospheric 
carbon dioxide (CO2), land-use and nitrogen inputs (including N deposition, N fertilizer, and N manure).  

Simulations Precipitation Temperature Climate CO2 Land-use N-inputs 

S1 1900–2015 1900–2015 1900–2015 1900–2015 1900–2015 1900–2015 
S2 1900–2015 1900–2015 1900–2015 1900–2015 1900–2015 1900 
S3 1900–2015 1900–2015 1900–2015 1900–2015 1900 1900–2015 
S4 1900–2015 1900–2015 1900–2015 1900 1900–2015 1900–2015 
S5 1900–2015 1900–2015 1900 1900–2015 1900–2015 1900–2015 
S6 1900–2015 1900 1900–2015 1900–2015 1900–2015 1900–2015 
S7 1900 1900–2015 1900–2015 1900–2015 1900–2015 1900–2015 

* Climate means the joint effect of precipitation, temperature, relative humidity, shortwave radiation and longwave radiation varying over time. 
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(4) and Dw,g for ground water temperature in equation (6)). We first 
calibrated kt (set as 0.5) and Dw,g (set as 0.5 m) to match the simulated 
water temperature of headwater streams to observed water temperature. 
We then calibrated Cef (ranges from 0.7 − 0.9) of different stream orders 
to match with the associated observations (Supplementary Table 1). 

The simulation with all the driving forces changing over time is 
recognized as the reference simulation (S 1 in Table 1). We conducted a 
factorial analysis to assess the contribution of environmental factors to 
the changes in water temperature. We set up five simulations with each 
of the environmental factors held constant at year 1900 level (S 2–7 in 
Table 1), and the contribution of each environmental factor was calcu
lated by comparing the simulated water temperature of each run with 
the reference simulation. Here, climate effect refers to the joint effect of 
precipitation, temperature, relative humidity, shortwave radiation, and 
longwave radiation varying over time. We also examined the effects 
induced by precipitation and air temperature alone by comparing S 6 
and 7 to S 1. For consistency and ease of comparison, all simulations 
used identical model parameter values, i.e., those calibrated for S 1. 

4. Results 

4.1. Model performance 

To assess the performance of the stream water temperature model, 
we compared our model simulation results against the daily water 
temperature measurements at various sites collected by the United 
States Geological Survey (USGS) (U.S. Geological Survey, 2001). The 
sites are well distributed in the sub-basins across the region (Fig. 3, 

Table 2). We calculated Root-Mean-Square Deviation (RMSD), Nash- 
Sutcliffe model efficiency coefficient (NSE) (Nash and Sutcliffe, 1970), 
and Coefficient of Determination (R2) to assess the performance of the 
DLEM water temperature model in predicting the daily average water 
temperature (Table 2, Supplementary Fig. 3). Overall, the modeled 
water temperatures agree well with the observations. The average R2, 
NSE, and RMSD values are 0.87, 0.7 and 3.4 ◦C, respectively (Table 2). 

4.2. Spatial and temporal patterns of water temperature 

To assess the spatial variation of stream water temperature, we 
looked at the annual mean water temperatures averaged for the 
2006–2015 period. Annual average water temperatures generally vary 
with latitude, with most of the streams in the south having higher annual 
mean water temperatures (16 ◦C − 20 ◦C) than those in the north (8 ◦C −
14 ◦C) (Fig. 5). Topography also plays a role in shaping the spatial 
pattern of water temperature. As can be seen in Fig. 5, the streams in the 
Appalachian mountain region have consistently lower temperatures 
(4 ◦C–12 ◦C) than the streams in the coastal plain (12 ◦C–20 ◦C), both for 
1st order streams and higher-order streams. (Fig. 5). 

We analyzed the spatial and temporal pattern of water temperature 
within the higher-order streams (higher than 1st stream order, Fig. 5a) 
and 1st order streams (Fig. 5b) separately across the study region. In 
general, the annual mean water temperatures in the 1st order streams 
are slightly cooler than the annual mean water temperatures of the 
higher-order streams. About 68% of the higher-order streams had 
annual mean water temperature above 12 ◦C. On the contrary, around 
57% of the first-order streams had annual mean water temperature 
below 12 ◦C. 

In the megacities (Fig. 3, Fig. 4c), such as Washington DC, Baltimore, 
and Philadelphia, the annual mean water temperature reached 
18 ◦C–20 ◦C in 1st order streams (Fig. 5b), but stream water temperature 
dropped quickly to 12 ◦C–14 ◦C at higher-order streams (Fig. 5a). In the 
southeastern part of the study region, the annual mean water tempera
ture of 1st order streams is mostly around 12 ◦C – 14 ◦C, with the water 
temperature of the higher-order streams reaching 16 ◦C–20 ◦C. 

4.3. Long-term changes in stream water temperature 

Mean annual water temperature of 1st and higher-order streams 
were calculated by taking arithmetic averages of each stream segment. 
Note that each cell contains a 1st order stream and a higher-order 
stream. The mean annual water temperature in higher-order streams 
increased significantly (p < 0.05 in Mann-Kendall test) from 1900 to 
2015, at a rate of 0.047 ◦C∙decade−1. The warming rate was much 
higher in recent years (1970–2015) at 0.28 ◦C∙decade−1 (Fig. 6c). The 
water temperature in 1st order streams also increased significantly (p <
0.05 in Mann-kendall test) during 1900–2015 with a rate of 
0.065 ◦C∙decade−1; and the rate reached 0.32 ◦C∙decade−1 from 1970 to 
2015 (Fig. 6c). We conducted Student’s t-test to compare the average 
stream temperature of 1st-order and higher-order streams for the period 
1900–2015, and found a significant difference (p < 0.01) (Fig. 6c). 

We also estimated flow-weighted average water temperature of 1st 
order and higher-order streams (Supplementary Fig. 4). We found that 
the increasing trend of water temperature within 1st order streams using 
the flow-weighted average method (0.31 ◦C∙decade−1) is comparable to 
that of the arithmetic average method (0.32 ◦C∙decade−1). However, the 
increasing trend in temperature in higher-order streams based on the 
flow-weighted average (0.22 ◦C∙decade−1) is much lower than the one 
based on the arithmetic average (0.28 ◦C∙decade−1). For the remainder 
of the paper, average temperature refers to the arithmetic average. 

To check whether these increases are statistically significant, we 
applied the Mann-Kendall trend test and Theil Sen linear regression to 
the 116 years of water temperature data at each grid cell (Fig. 6a, b). 
About 52% of all the stream segments showed warming trend from 1900 
to 2015 (p < 0.05) regardless of whether they were first or higher-order 

Table 2 
Daily performance of the physically-based model at selected USGS sites.  

USGS site No. Start year End year R2 NSE RMSD (0C)  
1st order streams    

01493112 2012 2015  0.90  0.36  4.0 
01537524 2001 2002  0.93  0.80  2.1 
01549100 1973 1977  0.86  0.77  2.8 
01568700 1974 1976  0.77  0.60  3.6 
01575730 1978 1979  0.81  0.76  2.9 
01548303 2012 2015  0.88  0.74  2.8 
01645704 2007 2014  0.95  0.82  2.9 
01645762 2007 2017  0.95  0.82  2.9 
01650800 2012 2013  0.88  0.58  5.1 
01651800 2012 2013  0.87  0.80  1.6 
01654500 2013 2015  0.94  0.84  3.0 
01656903 2007 2015  0.82  0.67  3.9 
02011490 1984 1995  0.89  0.70  3.5 
163626650 2007 2009  0.87  0.79  2.6 
165389205 2011 2014  0.95  0.96  2.9  

Higher-order streams 
01428750 1989 2004  0.82  0.77  3.2 
01460300 1998 1999  0.90  0.77  3.9 
01463500 1980 2015  0.91  0.90  2.0 
01490120 2006 2009  0.85  0.76  4.4 
01516500 1958 1959  0.88  0.81  4.9 
01547700 1956 1966  0.79  0.48  5.3 
01549300 1973 1977  0.86  0.81  2.7 
01559795 1993 2000  0.87  0.75  2.4 
01564997 1994 1995  0.85  0.70  2.5 
01568750 1974 1976  0.77  0.69  3.3 
01571820 1996 2007  0.76  0.43  4.2 
01573695 2012 2015  0.91  0.83  3.4 
01575741 1978 1979  0.82  0.73  4.3 
01575746 1978 1979  0.78  0.70  4.1 
01610400 2002 2003  0.86  0.69  3.5 
01613900 2007 2008  0.64  0.33  5.6 
01614830 2006 2009  0.91  0.54  3.7 
01621050 2002 2004  0.88  0.48  4.6 
01630700 2006 2009  0.92  0.81  2.9 
01649190 2007 2014  0.88  0.77  3.5 
01673638 2007 2009  0.88  0.68  3.2 
02037500 1950 1956  0.78  0.81  5.1  
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streams (Fig. 6d). The increasing trend of water temperatures in 5th or 
6th order streams (Figs. 3, 6a) is not statistically significant (p > 0.05), 
and the associated trend is less than 0.02 ◦C∙decade−1 from 1900 to 
2015. In the inland portions of the study region, stream water temper
atures remained relatively stable, with most of the grid cells having 
statistically insignificant trends (p > 0.05) over the past 116 years 
(Fig. 6c). However, many 1st order streams showed a century-long 
increasing trend. Only a few points had a statistically significant (p <
0.05 in Mann-kendall test) decreasing trend of water temperature in 
both higher-order streams and 1st order streams. The stream water 
temperature of the northern regions had very small increasing or 
decreasing trends (mostly p > 0.05), with the rate ranging from 
−0.001 ◦C∙decade−1 to 0.02C∙decade−1. Surprisingly, many of the 
streams in the southern portion of the study region where the annual 
average stream temperature is highest (Fig. 6) have a slightly decreasing 
water temperature, around −0.05 ◦C∙decade−1. 

4.4. Attributing the contribution of environmental factors to changes in 
stream water temperature 

The factorial analysis showed that climate factors, i.e., temperature 
and precipitation, explain about 80% of the changes in stream water 
temperatures across the mid-Atlantic from 1900 to 2015 (Figs. 7 and 8). 
In the 1970s, the climate impact on water temperature in higher-order 
streams and 1st order streams diminished to 30% and 4.4%, respec
tively (Figs. 7 and 8), primarily due to the similarity of the climate be
tween the 1900s and 1970s. The decadal mean air temperature of the 
1900s (10.44 ◦C) was very close to that of the 1970s (10.53 ◦C) (Fig. 4). 
Land-use conversion accounts for 37% and 61% of the changes in water 
temperature in higher-order streams and 1st order streams, respectively, 
during the 1970s (Figs. 7 and 8). Nitrogen inputs and increases in at
mospheric CO2 contribute more than 30% of the increase in water 

temperature in higher-order streams and 1st order streams in the 1970s. 
After the 1970s, the contribution of land-use, CO2, and N inputs to the 
changes in water temperature of higher-order streams dropped to 
~10%, but they still account for ~20% of the changes in 1st order 
stream water temperature (Fig. 7). 

4.5. Sensitivity of stream water temperature in response to the 
groundwater input 

Our model assumes that the temperature of the seepage from 
groundwater is equal to the mean soil temperature of a defined depth 
(Dw,g = 0.5 m). To examine the sensitivity of groundwater input 
parameter on modeled stream water temperature, we run the model Dw,g 
given as 0.1, 0.5, 1 and 2 m, respectively. We then plotted the simulated 
daily water temperature at two USGS sites of the Delaware River: 
#01428750 (3rd order) and #01460300 (5th order) (Fig. 9) from 2000 
to 2001. This sensitivity analysis suggests that water temperature 
continuously drops with increased Dw,g, and a noticeable time lag was 
detected at both sites when Dw,g changed from 0.1 m to 2 m, especially 
for the Delaware River sites located at higher-order streams. We 
compared the model performances for different Dw,g values. The per
formances were similar for Dw,g = 0.1 m and 0.5 m (R2 = 0.77, NSE =
0.71, RMSD = 3.9 for 0.1 m; R2 = 0.76, NSE = 0.7, RMSD = 4.0 for 0.5 
m). The model performance decreased significantly once Dw,g became 
larger than 0.5 m (R2 = 0.7, NSE = 0.64, RMSD = 4.4 for Dw,g = 1m; R2 

= 0.58, NSE = 0.53, RMSD = 5.0 for Dw,g = 2m). 

5. Discussion 

5.1. The impact of climate on the stream water temperature 

Air temperature is the dominant driver of the increase and variability 

Fig. 5. Spatial pattern of annual average water temperature averaged for the period 2006–2015 for (a) higher-order streams (b) and 1st order streams.  
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in stream water temperature. The spatial pattern of the warming trend of 
water temperature (Fig. 6d) follows that of air temperature (Fig. 4f), 
with both water and air temperatures increasing in coastal regions and 
decreasing in the mountain regions. Air temperature primarily in
fluences water temperature in two pathways: (1) thermal energy is 

exchanged between the air and water interface (Arismendi et al., 2014), 
and (2) rising air temperature influences land surface temperature and 
indirectly impacts the temperature of shallow groundwater and the 
adjacent 1st order streams (Kurylyk et al., 2015; Menberg et al., 2014). 

Using data from 129 USGS sites, Rice and Jastram (2015) found that 

Fig. 6. Changes (1900–2015) in mean annual 
water temperature within (a) higher-order 
streams, (b) 1st order streams, and (c) across the 
Mid-Atlantic region. (d) Significance of long-term 
changes in water temperature of 1st order 
streams and higher-order streams (p < 0.05 in 
Man-Kendal trend test). Note: The trends in (c) are 
the rates of increase of arithmetic-averaged air 
temperature (trend 1), water temperatures in 
higher-order streams (trend 2) and water temper
ature in 1st order streams (trend 3) from 1960 to 
2015.   

Fig. 7. Contribution of environmental factors to the changes in water temperature in (a) higher-order streams and (b) 1st order streams.  
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since the 1970s, stream water temperatures and air temperature across 
the Chesapeake Bay Watershed are increasing at statistically significant 
(p < 0.05 in Mann-kendall test) rates, at 0.28 ◦C∙decade−1 and 
0.23 ◦C∙decade−1, respectively. Since most of the observation sites in 
Rice and Jastram’s (2015) study were located in higher-order streams, 
the magnitude of the increasing trend in their study is consistent with 
the DLEM estimated rate of increase (0.28 ◦C∙decade−1) of water tem
perature in higher-order streams from 1970 to 2015 across the whole 
Mid-Atlantic region; however, DLEM-based results suggest a higher rate 
of increase of water temperature (0.32 ◦C∙decade−1) in 1st order 

streams. 
Overall, the contribution of air temperature to the changes in water 

temperature in higher-order streams is consistent with that of 1st order 
streams in our factorial analysis (Fig. 8a). Thus, the higher rate of in
crease of water temperature in 1st order streams must come from other 
environmental factors. Precipitation is another dominant climate vari
able that significantly influences stream water temperature. A higher 
precipitation rate would enlarge the water surface area in the headwater 
zone, which accelerates the thermal energy exchange between air and 
water (equation (5)). On the other hand, the increase in precipitation 
results in cooling of groundwater discharge in summer and warming in 
winter (Briggs et al., 2018), which substantially buffers the seasonal 
variations of water temperature in both 1st order and higher-order 
streams (Burns et al., 2017; Snyder et al., 2015). Additionally, 
increased precipitation cools the land surface even though evaporative 
energy release also contributes to the changes in water temperature 
(Trenberth and Shea, 2005). 

Our factorial experiments suggest that the contribution of precipi
tation to 1st order stream temperature is more significant than that for 
higher-order streams (Fig. 8b). We only considered the contribution of 
the absolute value of air temperature and precipitation because of the 
variations in climate conditions that do not account for the long-term 
changes. That is because the increased precipitation substantially 
increased groundwater discharge. The 1st order streams, which have 
considerable groundwater and surface water exchanges, show less sea
sonal variation than the main river channels. Thus, 1st order streams are 
conventionally thought of as a refugia for species, in relation to climate 
change, due to the cooling effect of groundwater discharge during the 
summer season (Ficklin et al., 2014; Isaak et al., 2016; Snyder et al., 
2015) 

A recent study found that the thermal energy of water seepage from 
shallow groundwater increased significantly with the rising land-surface 
temperature in the Blue Ridge Mountains of the U.S. (Briggs et al., 
2018). The refugia of cold water species would disappear soon due to 
global warming (Leach and Moore, 2019). Similarly, we found a faster 
rate of increase of temperature in groundwater-fed 1st order streams 
across the Mid-Atlantic region (Fig. 6c). Leach and Moore (2019) also 
reached a similar conclusion at the catchment level using a process- 
based study. 

5.2. Land conversion effects on water temperature 

Land-use change shows a tremendous impact on water temperature 
in higher-order streams and 1st order streams. As predicted by DLEM, 
water temperature in urban streams reached 18 ◦C–20 ◦C in 2015, which 
is higher than the water temperature of the sub-urban regions (Fig. 5b). 
Simulation results suggest that water temperature in 1st order streams is 
susceptible to urbanization. However, the effect of land-use change on 
water temperatures quickly dampened while water flows into 2nd or 
higher-order streams (Fig. 5a) because the contribution of advective 
heat fluxes on water temperature was significantly enhanced due to the 

Fig. 8. Changes in water temperature of 1st order streams and higher-order 
streams across the Mid-Atlantic region in response to (a) air temperature, (b) 
precipitation, and (c) land-use conversion. 

Fig. 9. Simulated water temperature at the outlet of the (a) Delaware River, and (b) Susquehanna river in response to various options for setting the groundwater 
boundary conditions. 
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increased water surface area. 
The study region experienced a significant re-forestation from 

cropland and de-forestation due to urbanization during the last century 
(Fig. 4a), which contributed to the substantial changes in water tem
perature. That is because we considered the effects of plant LAI on soil 
surface temperature (equation (5)), which could have cascading effects 
on the water temperature in 1st order streams and higher-order streams. 
Forests have higher LAI than that of cropland and urban impervious 
surface, and this shading effect of forest canopy results in cooler waters 
in the mountain region (Fig. 5). On the other hand, the changes in 
vegetation types resulted in different ground litter depth and surface 
albedo, which are directly linked to the soil evaporative energy release. 
We found that water temperature in areas dominated by forests or 
grassland is much lower than in urban areas due to the higher evapo
transpiration rates, which has been implicitly represented in DLEM 
(Fig. 5). Additionally, we found a significant warmer water temperature 
in 1st order streams adjacent to the megacities (Fig. 6 a, b). These stream 
temperature surges directly link to the loss of biomass cover and a 
warmer air temperature (urban heat island) due to rapid urbanization, 
which is also supported by the catchment scale modeling and field 
observation studies (LeBlanc et al., 1997; Nelson et al., 2009; Nelson and 
Palmer, 2007). 

5.3. Effect of groundwater on water temperature 

Earth system models and hydrological models do not explicitly 
simulate the lateral transport of groundwater from the soil root zone to 
the tributary streams. Thus, simplification is needed in the definition of 
the 1st order stream temperatures or seepage groundwater temperature. 
Most of the previous modeling studies used empirical models to repre
sent the water temperature of the headwater zone. The empirically- 
based headwater temperature estimates were used as boundary condi
tions to force the water temperature models (Brown, 1969; Van Vliet 
et al., 2013; Van Vliet et al., 2012; Van Wijk and De Vries, 1963; 
Wanders et al., 2019; Wu et al., 2012). Thus, the sensitivity of water 
temperature in response to the boundary condition has not been thor
oughly investigated. Especially for the large rivers (4th and higher), 
climatic and hydraulics variables including surface area, air tempera
ture, and radiation were conventionally considered as the dominant 
drivers (Li et al., 2015b; Wu et al., 2012). Therefore, proper represen
tation of the temperature of the seepage from groundwater is of great 
importance during the coupling of the land model with riverine trans
port. Li et al. (2015a) suggested that the boundary condition of the 
groundwater seepage temperature is from the water table to the bottom 
of the root zone (5 m depth in the Community Land Model (Oleson et al., 
2010)), which is much deeper than that in this study. Coupling of surface 
and ground water processes will be needed in the future for improved 
water temperature estimates in streams, as the depth of the water table 
may be very different in different topographies and climates. 

5.4. Comparison to other models 

The DLEM water temperature module has a comparable performance 
to other representative models conducted at different scales (Ficklin 
et al., 2012; Van Vliet et al., 2012; Wu et al., 2012; Yearsley, 2012). The 
average NSE of the previous studies varies from 0.50 to 0.70, which is 
slightly lower than the values in this study. The ranges of R2 and RMSD 
in previous studies are about 0.8–0.9 and 2.0–4.0, respectively, which 
are in agreement with our results. However, improving the prediction of 
stream water temperature was not the primary goal of this study. This is 
the first study, to our knowledge, that fully coupled a terrestrial 
ecosystem model with a physically-based water temperature model. 

Empirically-based models, which commonly use air temperature as 
the sole variable to predict the water temperature, can achieve a better 
accuracy over process-based models because their simple structures 
allow adequate parameterization (Brown, 1969; Chen and Fang, 2015b; 

Mohseni et al., 1998; Segura et al., 2014; Wehrly et al., 2009). However, 
there is a growing debate on if air temperature could be used as the sole 
indicator of water temperature (Arismendi et al., 2014); the reliability of 
empirical equations would be substantially hampered by the changes in 
hydrological conditions or land use/cover (Arismendi et al., 2014). Our 
study showed that the rate of increase of water temperature in 1st order 
streams is higher than that of air temperature (Fig. 6 c), which cannot be 
captured by empirical models. This, and other findings imply that 
empirical equations may not be reliable for long-term predictions due to 
the lack of mechanistic representation, which is also supported by a 
catchment level study within the Columbia river basin (Leach and 
Moore, 2019). 

5.5. Uncertainties and future work 

Although this model is process-based, we still used several semi- 
empirical equations to represent the physical processes. For instance, 
we conducted a semi-empirical based method to estimate the water 
surface area (Allen et al., 2018). Additionally, the model parameters 
may have significant uncertainties, which have not been investigated in 
this study. 

Human activities, such as water extraction, or point source dis
charges, were not considered in the model. Water extraction from 
groundwater and stream water are ubiquitous agricultural activities, 
significantly affecting soil evaporation, groundwater outflow, and even 
soil properties (Keery et al., 2007). In this study, we investigated the 
effect of changes in CO2 and nitrogen inputs on stream water tempera
ture (primarily through the effect of plant growth). Although these 
human-induced factors individually only provide minor contributions to 
the increase of water temperature and the impact of the CO2 fertilization 
effect is still being debated, the combination of those effects is consid
erable. Moreover, a noticeable increasing trend of these human-induced 
effects was found in 1st order streams, which local studies also support. 
(Terrer et al., 2016). Furthermore, hot water releases from industry, 
considered as thermal pollutants, can strongly affect the health of 
aquatic ecosystems (Webb et al., 2008). Unfortunately, it is not yet 
possible to incorporate this effect into the model due to the lack of 
century-long data. Although we do not have large lakes and reservoirs in 
our study area, future studies in different regions may have to consider 
the impact of dams and lakes. The cooling effect of dams has been well 
documented in observations and modeling studies (Chen and Fang, 
2015a; King et al., 1998). However, the warming effect of dams is a 
debated topic too (He et al., 2020; Kędra and Wiejaczka, 2018). 

6. Conclusions 

In this study, we investigated changes in stream water temperature 
by developing a water temperature module within the DLEM modeling 
framework. By linking the thermal energy balance of land and aquatic 
systems together, this framework can address how land processes will 
likely affect water discharge and water temperature in the future. Here 
we applied and evaluated this model to the mid-Atlantic region of the U. 
S., filling a fundamental knowledge gap relating the impacts of climate 
and human disturbances on the water temperature of 1st and higher- 
order streams. We found that although climate variability is the domi
nant factor in regulating stream water temperature, other environ
mental factors, including land-use conversions, increased atmospheric 
CO2, and nitrogen management efforts also play active roles in this 
problem, especially for 1st order streams. The rate of water temperature 
increase in 1st order streams is faster than that of higher-order streams, 
suggesting a hidden risk for local freshwater biodiversity. 

Future research will explore how changes in stream water temper
atures will likely impact aquatic biogeochemistry in these systems. Since 
the study region does not have large lakes and reservoirs, the missing 
component to represent the dam and lake routing and stratification 
would not influence the reliability of the model. With the improved 

Y. Yao et al.                                                                                                                                                                                                                                     



Journal of Hydrology 601 (2021) 126633

12

technology and increased availability of data, remote sensing-based 
methods are also prompting a new direction for estimating stream 
water temperature (Martí-Cardona et al., 2019). Better data-model in
tegrations in the future will likely enhance model capability in pre
dicting 1st order stream and higher-order stream water temperature and 
the associated biogeochemical cycles. 
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