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Nitrogen (N) is a key plant micronutrient applied in fertilizers 
to increase crop yield1. However, N applications to agricul-
tural soils have become the largest anthropogenic source of 

nitrous oxide (N2O) emissions globally, regionally and at the coun-
try scale2,3. Reducing agricultural N2O emissions is thus conducive 
to achieving low warming targets4 and preventing stratospheric 
ozone depletion5, if the high-level crop yield achieved in recent 
decades is maintained to ensure future food security6. Yet the mag-
nitude and pattern of the achievable N2O mitigation potential that 
would not compromise crop yield remain poorly known. This is a 
barrier for nations and international organizations in developing 
and implementing effective N2O mitigation programmes.

The mitigation potential of direct soil emissions of N2O depends 
on the extent and location of N input reductions and the local values 
of direct emission factors (EFs, defined as the percentage of applied 
N emitted directly as N2O-N). Although many estimates exist of the 
N input reductions necessary to stay within planetary boundaries7–9, 
a global, spatially explicit quantification of EFs that considers the 
combined effects of environmental and management-related vari-
ables (for example, climate, soil, fertilization, irrigation and tillage) 

is lacking10–12. The key reason for this is that most field observa-
tions do not report the full diversity of EFs across soil–crop systems. 
Data-deficient countries thus apply Tier 1 default EF values from 
the Intergovernmental Panel on Climate Change (IPCC) guide-
lines13 when reporting their greenhouse gas emissions to the United 
Nations Climate Convention. Such EFs are spatially and temporally 
constant, while recent studies have updated EFs by integrating the 
nonlinear response of N2O emissions to agricultural management 
practices such as N application rate14,15 or other management-related 
variables16. However, the paucity of globally representative observa-
tion data used for modelling EFs would result in inaccurate extrap-
olation when expanded to global predictions17. Moreover, these 
estimates do not account for finer-scale variation due to local envi-
ronmental and management-related conditions.

Here, we take one step forwards by using a data-driven approach 
connecting crop-specific EF variations to climate, soil, fertilization, 
irrigation and tillage, on the basis of an extensive compilation of 
1,507 chamber-based field observations of EFs spanning 234 sites 
and 31 countries from 1980 to 2018 (Supplementary Fig. 1 and 
Supplementary Data 1). With this dataset, we address three key 
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questions. First, what is the heterogeneity of EFs across global crop-
land? Second, how strongly do different drivers influence variations 
in EFs at global and regional scales? Third, how much global mitiga-
tion could be achieved while maintaining crop yield? We focus on 
croplands encompassing arable land and permanent crops, which 
dominate global fertilizer N applications (>95%)18.

Our analysis expands on previous research in at least three aspects. 
First, we used a twofold to fourfold larger observation dataset of EFs 
than refs. 15,19,20 (Supplementary Text 1 and Supplementary Table 1), 
with driver values in field sites spanning >80% of the full covariate 
space across global cropland (Supplementary Fig. 2). We also mapped 

crop-specific EFs at five-arcminute spatial resolution using linear 
mixed-effects (LME) models constrained by the global observation 
dataset, avoiding assumptions associated with the representation 
of complex N2O production processes as in process-based models3. 
Finally, we identified the global hotspots of cropland N2O mitigation 
potential by crossing information on EFs and N input reduction data. 
Our results are timely given the current growth of N2O emissions 
exceeding the highest projected emission scenario3, and they bring a 
paradigm shift from asking, ‘How much of global emissions can we 
mitigate?’ to the more policy-relevant question of ‘Where are the best 
opportunities to mitigate emissions most effectively?’.

Results and discussion
Pattern of crop-specific EFs. The global EF was estimated at 1.02% 
with a 95% confidence interval (CI) from 0.32% to 2.54% for maize 
due to the uncertainties stemming from sampling, modelling and 
input data, 0.58% (0.10–1.60%) for wheat, 0.52% (0.15–1.31%) 
for rice, and 1.20% (0.31–2.29%) for other crops. These EF means 
and CIs are in broad agreement with IPCC Tier 1 default values13 
(Supplementary Table 2), except for wheat, where our estimation is 
significantly smaller.

The spatial heterogeneity of N2O EFs was striking regardless of 
crop type (Fig. 1) and despite the largest uncertainty of EFs being 
found in high-latitude areas for maize and in the tropics for wheat 
and rice (Supplementary Fig. 3). Areas with either high or low 
EFs are found on all continents, with EFs ranging from 0.08% to 
3.77% for maize across the globe, 0.03–2.42% for wheat, 0.03–1.90% 
for rice and 0.01–3.12% for other crops. Areas with high EF val-
ues where observations were numerous were well captured by our 
global prediction maps (Fig. 1). Areas with larger EFs where few 
observations existed, including northern Europe, Central America, 
Southeast Asia and northern parts of South America, were also 
well constrained because of the high interpolation capability of our 
models (Supplementary Fig. 2).
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Fig. 1 | Spatial patterns of N2O EFs for direct soil emissions. a, Maize. b, 
Wheat. c, Rice. d, Other crops. EFs are predicted with LME models, with 
the model uncertainty as illustrated in Supplementary Fig. 3. Values are 
shown only where the proportion of harvested area within the grid cell is 
greater than 0.5%. The map was generated in MATLAB R2020a (MATLAB 
and Statistics Toolbox Release R2020a, the MathWorks). The base map of 
the country boundaries was from the Global Administrative Areas dataset 
(https://gadm.org/download_world.html).

Other crops
(n = 425)

Rice
(n = 284)

Wheat
(n = 313)

Maize
(n = 454)

Bulk
 d

en
sit

y

Clay
 co

nt
en

t
SOC pH

Pre
cip

ita
tio

n

Tem
pe

ra
tu

re

Hum
idi

ty 
ind

ex

Fer
tili

ze
r r

at
e

Fer
tili

ze
r t

yp
e

Fer
tili

ze
r f

re
qu

en
cy

Fer
tili

ze
r p

lac
em

en
t

Irr
iga

tio
n

Tilla
ge

Relative
importance

0.01

0.25

0.50

1.00

Fig. 2 | Relative importance by variable in shaping EF patterns. The rows 
show the results for each crop. The columns represent the variables that 
are included in the multi-model inference. In each row, the circle size of the 
variable groups is proportional to the relative change in importance. The 
circle size should be compared only within a row. The asterisks indicate the 
statistical significance of the effect (*P < 0.05; ** P < 0.01; ***P < 0.001). 
The symbols + and − indicate positive and negative effects of the variables 
on N2O EFs, respectively. Each management-related variable from fertilizer 
rate to tillage indicates the effect relative to zero N application, urea type, 
multiple applications, deep placement, rainfed (or intermittently flooding 
for rice) or no-till, respectively. No statistical significance or symbols 
are labelled for ‘fertilizer type’, as there is a combination of effects from 
multiple fertilizer types.
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One advantage of our models is that they show more contrast-
ing patterns of EFs than the IPCC default values13, which differ 
only for wet climate or intermittently flooded rice (Supplementary  

Fig. 4 and Supplementary Text 2). Recent N-rate-dependent mod-
els15 produced EF maps with smaller areas of high EF values, yet with 
a trend of exponentially increasing emissions as N application rate 
increased that is consistent with our LME models (Supplementary 
Fig. 5). Management-dependent models16, considering all variables 
related to fertilization, irrigation and tillage rather than environ-
mental variables, show the lowest spatial contrasts in EFs, possibly 
because the effect of N application rates on EFs is offset by other 
management practices.

Drivers of spatial variation in EFs. We performed multi-model 
inference21 to disentangle the relative importance of the drivers that 
shape EF patterns globally. For all crops, climatic and edaphic vari-
ables were the most important drivers, while management-related 
variables were less important at this scale of analysis (Fig. 2). The 
link between EFs and environmental variables was consistent with 
factors known to affect metabolic activities of N-related microbial  
communities and N2O production in soils22. Large-scale 
molecular-level investigations reveal that the geographic distribu-
tions of nitrifiers and denitrifiers were significantly explained by cli-
matic and edaphic variables23, controlling N and carbon substrates, 
oxygen availability, enzymatic activity and metabolic energy sources. 
Partial correlation analyses between the predicted EFs and drivers 
using 3.75° moving windows further confirmed such findings at 
the regional scale (Fig. 3), despite a progressively smaller effect of 
environmental variables and a larger effect of management-related 
variables when zooming in the moving windows from 3.75° to 0.75° 
(Supplementary Fig. 6).

For maize, the spatial variation in EFs was positively associ-
ated with soil organic carbon (SOC) in 35% of harvested areas, 
mainly in the northern latitudes (>45° N, Fig. 3a). This result is in 
line with the importance of labile carbon substrates for denitrifica-
tion through mineralization24. EFs in an additional 16% and 19% 
of harvested areas were positively related to humidity index and 
irrigation fraction, respectively (Fig. 3a). This result is consistent 
with regional-scale studies25,26 and manipulation experiments27 for 
maize. Higher humidity and more irrigation increase soil mois-
ture (Supplementary Fig. 7), which limits oxygen availability for 
soil microbes and promotes denitrification22,26. This denitrifica-
tion regime may be dominated by N2O production, as maize soils 
rarely reach the soil moisture optimum for N2O emissions during 
the growing season25.

For wheat, the EFs over most (74%) of the harvested area are 
also correlated with SOC (Fig. 3b), with a few areas where humid-
ity index (3%) and soil pH (11%) are important. Similar results 
were found for rice. The spatial variability of rice EFs is associated 
positively with SOC in nearly two-thirds of harvested areas and 
with clay content in another 21%, mainly in northeastern China 
and South Asia (Fig. 3c). Increasing clay content in rice fields 
results in higher porosity and lower water-filled pore space at the 
same volumetric water content28, with soil N being more likely to 
be reduced to N2O under anaerobic conditions29. Other crops are 
planted across all continents, and their EFs are associated posi-
tively with SOC in 35% of harvested areas, mainly in Europe and 
the tropics (Fig. 3d). We also found a positive correlation between 
EF and N application rate, mainly in highly fertilized areas such as 
those growing fruits and vegetables, and between EF and irrigation 
fraction in water-stressed areas, underscoring the importance of 
agricultural management practices in shaping N2O emissions from 
other crops.

We expected that N application rate would be the most impor-
tant driver of EF variations as previously emphasized15, but this was 
not the case. Field observations that had three or more N levels 
(n = 1,115) indicate that the N application rate certainly contributed 
to higher EFs for major crop and fertilizer types, but it promoted 
EF values only by 2−7% at under-fertilized sites (for example, 
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Fig. 3 | Distribution of dominant drivers regulating variation in N2O EFs. a, 
Maize. b, Wheat. c, Rice. d, Other crops. The dominant driver is defined as 
the factor with the largest absolute value of the partial correlation coefficient 
(r) in each grid cell, where r between EFs and predictors is done for 3.75°-by-
3.75° moving windows. Significant correlations (P < 0.05) are shown. The 
inset pie plots represent the ratio (%) of harvested areas for which EF 
variation is regulated by the dominant drivers. The map was generated in 
MATLAB R2020a (MATLAB and Statistics Toolbox Release R2020a, the 
MathWorks). The base map of the country boundaries was from the Global 
Administrative Areas dataset (https://gadm.org/download_world.html).
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sub-Saharan Africa) and by 9–24% at over-fertilized sites (for exam-
ple, North China Plain) (Supplementary Text 3 and Supplementary 
Fig. 8). This result also suggests that N application rate has a lim-
ited contribution in shaping EFs globally. Similar results were found 
for other agricultural management practices, mainly due to three 
causes. First, the importance of drivers changes at different spatial 
scales. Climatic or edaphic variables drive patterns at global and 
regional scales, but locally, management-related variables tend to be 
more important. For example, irrigation became the key driver in 
shaping EFs for maize and other crops when moving windows were 
shrunk to 0.75° (Supplementary Fig. 6). One or more management 
practices may thus be the most important drivers of EF within each 
study site, rather than across them all. Second, across larger scales, 
environmental variability could influence the farmers’ choices of 
management practices to maintain crop yields30, which indirectly 
affects local EFs. Third, according to paired differences analyses31–33, 
fertilization, irrigation and tillage practices show diverse effects on 
EFs, but their combination may offset the effects of each other and 
thereby weaken their power in shaping EFs. Being able to account 
for this scaling-up effect with appropriate methods may further alter 
the perceived importance of agricultural management practices.

Mitigation potential. Combining spatially explicit EFs with N input 
reduction data allows us to refine N2O mitigation potential in global 
cropland. To do so, we developed gridded maps of decreased N input 
by capping N surplus at a level that maintains crop yield and stays 
within the proposed planetary boundary. Here, N surplus is defined 
as N input minus N output in crop yield9. This level was defined 
using data from 361 field trials globally as 48 kg N ha−1 for maize, 
37 kg N ha−1 for wheat, 44 kg N ha−1 for rice and 79 kg N ha−1 for 
other crops, after which crop yields tend to plateau (Supplementary 
Fig. 9a). Additional evidence, which is from a national campaign 
in China with 20.9 million farmers using integrated soil–crop sys-
tem management34, confirmed that crop yield can be increased by 
~11% compared with conventional practices even when lowering 
N surplus to the detected levels (Supplementary Fig. 9b). This sce-
nario decreased the global cropland N surplus from the current 
74 to 40 Tg N yr−1, representing a more ambitious boundary than 
previous estimates9,35,36 (47–52 Tg N yr−1, Supplementary Fig. 9c). 
Global mitigation potential from cropland N reduction was then 
estimated as 0.30 (0.23–1.44) Tg N2O-N yr−1, which accounted for 
30% (17–53%) of global direct emissions of N2O from cropland and 
was equivalent to the sum of direct soil emissions from China and 

the United States combined (Table 1). Non-staple crops contributed 
63% of the overall mitigation potential, followed by maize (17%), 
rice (11%) and wheat (9%), primarily due to lower N use efficiency 
and higher EF values compared with staple crops.

The N2O mitigation potentials were unevenly distributed across 
croplands (Supplementary Fig. 10). We ranked local mitigation 
potentials from largest to smallest and calculated the cumulative 
mitigation potential for a given fraction of harvested area (Fig. 
4). We found that 20% of the global harvested area for each crop 
accounts for 50% (47–64%) of the N2O mitigation potential for 
maize, 54% (46–64%) for wheat, 43% (36–76%) for rice, 69% (55–
82%) for other crops and 65% (49–70%) on average for all crops 
together. The largest mitigation potentials were found in croplands 
in the humid subtropical (that is, Cfa and Cwa in the Köppen cli-
mate classification), temperate oceanic (Aw) and tropical savan-
nah (wet) climate zones (Cfb), and across gleysol and acrisol soils 
(Supplementary Fig. 10). The top ten countries together accounted 
for 68% of the global mitigation potential (Table 1). The countries 
with the largest mitigation potential were generally those with the 
highest emissions. Mexico and Pakistan, however, have moderate 
N2O emissions but a higher rank for mitigation because of their 
high EFs and N surplus. Conversely, Canada, Indonesia and France 
have large emissions but relatively low mitigation potentials because 
of their relatively modest N surplus.

Interestingly, hotspots of N2O mitigation potential do not overlap 
completely with the croplands where N input should be decreased 
(Supplementary Fig. 11), suggesting that mitigation potential may 
have a Pareto optimum between high-N-surplus and high-EF 
regions. For comparison, we quantified mitigation potentials with the 
same approach but using IPCC Tier 1 defaults13, N-rate-dependent 
EFs15 and management-dependent EFs16 (Supplementary Text 2) to 
identify the areas contributing to the same global mitigation poten-
tial as our spatially explicit EFs. We find that the best opportunities 
for mitigation were either overlooked or misjudged broadly by these 
traditional models (Supplementary Figs. 12–14). Together, these 
findings suggest that national or regional policy could be improved 
by using the developed EF maps to better target the local environ-
mental conditions that are critical to assess mitigation potential 
more accurately and thus drive effective actions.

Limitation of this study and perspective for future work. Our 
estimates of global cropland N2O mitigation potential are prob-
ably conservative. One reason for this is that the LME models 

Table 1 | Global direct N2O emissions and mitigation potentials in cropland (the top ten countries were ranked by mitigation 
potential)

Country Emission Mitigation

Quantity (Gg N2O-N yr−1) Proportion (%) Quantity (Gg N2O-N yr−1) Proportion (%)

China 209.3 20.9 95.2 31.3

United States 100.0 10.0 27.7 9.1

India 81.6 8.2 20.8 6.8

Brazil 45.3 4.5 14.8 4.9

Mexico 28.7 2.9 12.1 4.0

Germany 30.6 3.1 9.5 3.1

Pakistan 18.4 1.8 8.4 2.7

Indonesia 32.0 3.2 6.7 2.2

France 31.1 3.1 6.2 2.0

Bangladesh 15.3 1.5 6.2 2.0

Top ten countries 592.3 59.2 207.4 68.2

All countries 1,000.5 100 304.3 100
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underpredict the measured values of EFs by 13–27% on average 
(Supplementary Fig. 15), resulting in lower values than previ-
ous ones from atmospheric inversion37 and process-based model 
ensembles3. Furthermore, we focused only on growing-season EFs, 
as 89% of the field observations compiled in this study did not cover 
the fallow period. In a sensitivity analysis, we assessed the effect 
of underrepresented sampling period on the mitigation potential 
(Supplementary Text 4) and found that neglecting the fallow period 
had little influence on the pattern of mitigation potentials, but 
regionally underestimated its magnitude by 30% or more, for wheat 
in temperate regions (which has a long fallow period when spring 
thawing occurs38) and for rice in the tropics (for which soil moisture 
declines after harvesting, and N2O emissions can be stimulated39). 
Finally, we only considered the mitigation potential of direct soil 
emissions induced by the reduction in N inputs on cropland. In fact, 
reducing N inputs is also beneficial in mitigating indirect soil emis-
sions from downwind and downstream ecosystems because of less 
ammonia volatilization and nitrate runoff and leaching.

Our estimates are subject to several sources of uncertainties. The 
key reason is that microscale variables were less recorded and their 
effect on local EFs were not fully quantified due to limited under-
standing of the mechanisms of microbial N2O production40. This 
is indicated by the result that random effects in the LME models 
explained more variance in EFs than the fixed effects did (47–74% 
versus 19–35%, Supplementary Table 3) and contributed most of 
the estimation uncertainty (Supplementary Fig. 16). Further uncer-
tainty is related to sampling. We acknowledge that the sampling fre-
quency and replication at most sites were too limited to capture the 
high spatio-temporal variability of N2O flux, and that the history of 
control sites is incomplete so that we could not exclude observation 
data with large legacy fluxes at the control sites. Fortunately, our 
global compilation of paired control–treatment data used to model 
EFs may help minimize this bias (Supplementary Text 4). In addi-
tion, some global datasets of agricultural management practices 
have omissions, particularly for fertilization type, timing and place-
ment, enlarging the uncertainty interval of mitigation potentials 
(Supplementary Text 4).

Additional research that should be prioritized to reduce the 
uncertainty of mitigation potential is listed as follows. First, 
high-frequency, year-round observations of direct and indirect N2O 
emissions would substantially improve our approach. Second, more 
detailed records on the status of control sites are needed for filter-
ing observation data to avoid bias in the quantification of EFs. This 
additional information should include the year when each control 
site was first fertilized before the experiment and its level of soil 
residual N. Third, resolving and measuring microscale biophysi-
cal characteristics is a promising route to quantify their roles in 
explaining cross-site variation in N2O emissions. In addition to the 
collection of subnational statistics, more efforts should be made to 
improve the accuracy of management datasets by taking advantage 
of high-resolution satellite data and large-scale machine learning 
(for example, see ref. 41).

Overall, our global, five-minute-resolution maps of N2O EFs 
and analysis of mitigation potentials provide information for 
guiding field observation network design, refining national emis-
sion inventories and further targeting actions towards mitigation 
priority areas. Achieving global N2O mitigation in cropland will 
be challenging for a variety of reasons, including the difficulty of 
implementing precise agricultural management technologies across 
millions of hectares and verifying their effectiveness42. Measures 
in addition to N input reduction are therefore needed to increase 
mitigation potentials. Possible options include the application of 
so-called enhanced fertilizers (for example, nitrification inhibitor) 
to lower EFs43, the introduction of high-yield cultivars to improve 
N use efficiency44 and spatial reallocation of N resources adapted 
to local conditions that favour crop production while inhibiting 
N2O emissions45. It is also critical to optimize measures designed 
to mitigate N2O emissions while avoiding other N losses (for exam-
ple, NH3 volatilization46, N runoff and leaching47) and to achieve a 
complete closure of the N budgets of agricultural soils48. The suc-
cess of N2O mitigation depends not only on strong multi-national 
collaborations, investment incentives, schemes for providing miti-
gation revenues to farmers, but also on overcoming technical and 
socio-economic barriers49.

Methods
Observation dataset. We compiled a global observation dataset of cropland N2O 
emissions from the literature and online data repositories (Supplementary Table 
4), including 4,924 emission flux and 2,698 EF records from chamber-based 
field experiments for global croplands. We then excluded records that (1) lacked 
replicates or zero-N control, (2) used enhanced fertilizers either treated with 
inhibitors or coated, or (3) were sampled with a frequency of less than one flux 
measurement per week or for a duration of less than one crop growing season. 
We also excluded records for which information on management practices was 
neither derived from published statements nor supplemented by contacting the 
authors. This yielded a dataset of 1,507 EF values from 249 experiments that span 
31 countries and 234 sites (Supplementary Text 1). The full dataset can be split into 
four subsets by crop—that is, 458 measurements for maize, 313 for wheat, 284 for 
rice and 452 for the other crops.

For each record, six categories of information were collected. First, N2O 
emissions included the observed direct N2O flux under different N levels. The 
EF (the percentage of N applied) was calculated for a non-zero N application rate 
(Nij) as EFij = (Eij − E0j)/Nij, where i is the index of N-input levels, j is the index of 
crop type, Eij (kg N2O-N ha−1) is the direct N2O flux due to the application of N 
inputs (that is, synthetic fertilizer, manure, crop residues or their combinations) 
and other unquantified sources (for example, atmospheric deposition or soil 
residual N), and E0 is the direct N2O flux at a zero-N control site due to other 
unquantified sources. Second, crop types considered in the database included 
wheat, maize, rice and other crops. Third, climatic variables included mean daily 
air temperature, cumulative precipitation and humidity index (that is, the ratio of 
precipitation to evapotranspiration) within the measurement period. Fourth, soil 
variables included bulk density, soil pH, soil clay content and SOC content. Fifth, 
management-related variables included fertilization (that is, N application rate, 
type, frequency and placement), irrigation fraction (that is, rainfed or irrigated 
for upland crops, and continuously or intermittently flooded for rice) and tillage 
fraction (that is, no-till or till). Sixth, experimental parameters included location 
(that is, latitude and longitude), sampling frequency (that is, times per week), 
duration (that is, days from starting to ending dates) and replications (that is, the 
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standard deviation of EF derived from replicates). The definition and unit of each 
variable can be found in Supplementary Table 5.

For each of the four crop types, we used the method of van den Hoogen 
et al.50 to investigate how well our newly compiled dataset spread throughout 
the full multivariate covariate space (all environmental and management-related 
variables) of the global layers. Interpolation percentage is defined by estimating 
how adequately our dataset captured the multivariate covariate space of the global 
layers. Additional comparisons indicate that the interpolation capability of our 
global dataset was higher than that in previous studies15,19,20, regardless of crop 
group (Supplementary Fig. 2).

LME modelling. We prefer the LME model to the random forest (RF) for 
predicting EFs for four main reasons. First, we aimed to generate an interpretable 
model of EFs in response to environmental and management-related variables. 
This would enable data-deficient countries to move away from the IPCC Tier 
1 default values towards refining their national greenhouse gas inventories. 
Second, we needed to investigate the overall uncertainties around the estimates 
and predictions of EFs and mitigation potentials. Third, the performance of the 
LME model evaluated with block-cross-validation of EFs was comparable to that 
of the RF, regardless of crop type (Supplementary Table 6). Last, to confirm that 
our predictions were robust against the model algorithm used, the RF model was 
also used to estimate global cropland N2O EFs and mitigation potentials. The 
results indicate no perceivable differences in magnitude or pattern between the 
predictions from LME and RF models (Supplementary Figs. 17 and 18). The details 
of the model setup and validation are provided below.

We used the observation data to determine whether it was necessary to model 
EFs by crop type. A non-parametric Wilcoxon test indicated significant differences 
among crops (P < 0.05, Supplementary Fig. 19). Including crop type in the LME 
model resulted in better model performance than excluding it (Supplementary 
Table 7). However, a single LME model cannot quantify the inter-crop differences 
in the sensitivity of EFs to predictors revealed by partial correlation analysis 
(Supplementary Fig. 20). We therefore constructed LME models separately for 
maize, wheat and rice as the staple crops globally, while grouping other crops 
together due to the lack of sufficiently available observations for each of them.

For each crop type, we checked whether one or two random-effects terms 
(such as site identity) were required. An analysis of variance test indicated 
that models with random effects outperformed those with fixed effects only 
(Supplementary Table 8). Including random-effects terms also made the coverage 
probability of prediction interval (90–95%) very close to the theoretical value of 
95% (Supplementary Table 9), suggesting that random-effects terms are important 
for quantifying prediction intervals of EFs and mitigation potential. Although 
models including two random effects in the intercept and slope outperformed 
those including one random effect in the intercept only for rice and other crops 
(Supplementary Table 9), it is also meaningful to include two random effects for 
each crop to account for random variability of EFs as previously recognized14.

We screened continuous variables to avoid collinearity between them. Prior 
to variable selection, the outliers of EFs were filtered on the basis of the Z-score 
outlier test (4 measurements for maize and 27 measurements for other crops). 
We took the natural logarithmic transformation of EF due to its skewness to fit 
the LME model, and we centred and scaled the continuous variables (that is, 
climatic and edaphic variables and N application rate) to have a mean of zero and 
a variance of 1.0. We considered three forms (linear, logarithmic and exponential) 
of continuous variables to allow for a nonlinear effect of predictors on EFs, as is 
commonly found in field studies15,26. We also considered two-way interactions 
within soil and climate themes as well as between soil, climate and N application 
rate. For each iteration of variable selection, observation uncertainty due to 
inter-site differences in sampling frequency and replication was used to weight the 
LME models. The number of variables was reduced until all remaining variables 
had a variance inflation factor <10. To avoid over-fitting, backward variable 
selection using the Akaike information criterion (AIC) was implemented with the 
R package lme451 (v.1.1-21). Eventually, the LME model for each crop retained 
most of the continuous variables and all categorical variables as fixed-effects terms, 
including bulk density; clay content; SOC; soil pH; precipitation; temperature; 
humidity index; fertilizer application rate, type, frequency and placement; 
irrigation fraction; tillage fraction; and sampling duration, but interactions were 
removed (Supplementary Table 5). The model also included site identity in the 
intercept and the slope of N rate as random-effects terms.

Finally, additional analyses were conducted to evaluate the robustness and 
predictability of each of the four LME models. First, leave-one-out cross-validation 
was performed by separating training and testing sets on the basis of site blocks. 
The bulk of the data were trained, and a holdout site was used to test the model. 
The root mean squared error (RMSE) was calculated for all predicted data and for 
terciles of the observations after the leave-one-out cross-validation. Second, RF 
models were fitted by including all the same predictors as in the LME models to 
assess the robustness of our findings. Last, the influences of filling the edaphic and 
climatic variables from CRU TS v.4.03 (https://doi.org/10.5285/10d3e3640f004c
578403419aac167d82) and HWSD v.1.2 (http://dare.iiasa.ac.at/44/2/HWSD.zip) 
were tested. LME models were produced again using edaphic and climatic variables 
totally extracted from global datasets. The same variable selection procedure was 

applied as described above, and the alternative model was identified for each of 
the four crops. The results from leave-one-out cross-validation suggest that model 
performance was insensitive to the data source for climatic or edaphic variables 
and robust against the algorithm used (LME versus RF), regardless of crop type 
(Supplementary Table 6).

Global predictions. The global patterns of crop-specific N2O EFs in 2000 were 
predicted using the LME models by crop at five-arcminute spatial resolution. 
The input data included the global gridded dataset of climate, soil, fertilization, 
irrigation and tillage for 26 crop types (Supplementary Table 10). Note that the 
LME model for other crops was used for all crop types except the three staple 
crops. Climate data over the growing season for a given crop type were acquired 
from CRU TS v.4.03 (0.5° resolution), where the growing season in each grid 
cell was identified as the period between the planting and harvesting dates 
obtained from Sacks et al.52. Soil data were acquired directly from the HWSD v.1.2 
(30-arcsecond resolution). Both climate and soil properties were re-gridded at a 
resolution of 5′ × 5′, while the remaining datasets were specifically developed for 
this study.

Fertilization. We provided a global gridded, crop-specific fertilization dataset 
including the rate, type, frequency and placement of N inputs in 2000. First, we 
collected synthetic fertilizers from 15,790 global administrative units (that is, 
14,855 counties, 740 provinces or states, and 195 countries). We downloaded 
the five-arcminute gridded data on manure applied to croplands from Zhang 
et al.53 and the national data on crop residues from the Food and Agriculture 
Organization (FAO)54 and then resampled them into 15,790 administrative units. 
We then allocated these N inputs into 26 crops for each administrative unit,  
on the basis of the previously developed proportions of fertilizer uses by crop 
from EarthStat45. Synthetic fertilizers were further disaggregated into four 
products (urea, ammonium nitrate, calcium ammonium nitrate and other 
fertilizers) on the basis of the provincial or state-level statistics for the United 
States55, China56 and India57 and IFASTAT’s country-level statistics58 for the  
other countries. N application rates by crop and fertilizer were then disaggregated 
into grid maps at five-arcminute spatial resolution following the global harvested 
area distributions59 within each of the administrative units. The maximum  
N application rate was set at 1,000 kg N ha–1. We next determined the frequency 
(one or multiple times) of fertilizer applications on the basis of field surveys 
and previous literature (Supplementary Table 11). Finally, we quantified the 
fraction of different placement methods in each grid cell depending on fertilizer 
type, tillage practice, crop type and growing period46. Manure and crop residues 
that are usually applied before sowing or transplanting and afterwards were 
incorporated linearly in response to tillage fraction (or 100% for non-tillage). 
Anhydrous ammonia and N solutions, which are commonly injected, were placed 
deep or totally incorporated into soils. The rest of the synthetic fertilizers were 
usually incorporated for vegetables and fruits due to their higher economic 
return and planting density, but were applied by broadcasting techniques during 
topdressing for other crops if applicable.

Tillage. We downloaded the global gridded crop-specific non-tillage dataset 
(5′ × 5′) from Porwollik et al60. We then compared the crop-specific non-tillage 
area with the publicly accessible data from Canada, Brazil, Australia, China and 
the United States (Supplementary Fig. 21), representing the top and low adopters 
of non-tillage practices in the world. This dataset reproduced well the crop-specific 
proportion of non-tillage area at the national scale (slope = 0.76, RMSE = 0.06), but 
at the subnational scale, it tended to concentrate non-tillage area in a few regions 
instead of a more homogenous spread as reported (slope = 0.54, RMSE = 0.19).

Irrigation. The MIRCA2000 dataset61 provides both irrigated and rainfed areas by 
crop at five-arcminute spatial resolution. This dataset maximizes consistency with 
the cropland data and draws from FAO’s AQUASTAT database, though it may 
underestimate irrigated areas by 18% compared with the satellite-based approach62. 
We calculated the fractions of irrigated cropland area separately for 26 crop types. 
We further divided irrigated rice into continuously and intermittently flooded 
systems. For the top 12 rice production countries except China, country-scale data 
were acquired from ALGAS reports63 and local statistics. For China, the provincial 
data were compiled from Zhang et al.64, according to the proportion of year-round 
waterlogged rice paddies in hilly regions. For the rest of the world, the data were 
determined by Carlson et al.65. Rainfed rice can be classified into shallow (<30 cm 
water depth), intermediate (30–100 cm) and deepwater (>100 cm). The shallow 
type is drought-prone or both drought- and submergence-prone, and generally 
it is equivalent to the intermittently flooded system, while the intermediate and 
deepwater types are equivalent to the continuously flooded system65.

Relative importance. We performed multi-model inference21 based on the AIC 
to estimate which predictor variables were the most important in driving patterns 
of cropland N2O EFs at the global scale. This method surpasses the single best 
AIC model, which may miss important variables, and accounts for uncertainty 
not only in the parameter estimates but also in the model. We first generated a full 
submodel set from the global model using the dredge function implemented in 
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the R package MuMIn66 based on the LME model. We obtained a set of top models 
using a cut-off of cumulative weight (cumsum(weight) ≤ 0.9999) and used the 
model.avg function to estimate model parameters on the basis of the top models. 
We then calculated the relative importance of individual variables by summing the 
Akaike weights across all models that contained the candidate variable. It should 
be noted that this analysis was for growing-season EFs. To assess the robustness of 
our results, a similar analysis was done for whole-year EFs on the basis of a limited 
subset of the observation dataset (n = 168, Supplementary Text 4).

In addition, we performed a partial correlation analysis67 between EFs and 
variables to identify the dominant driver of variation in EFs at the regional scale. 
This analysis was carried out with 3.75°-by-3.75° moving windows. The resolution 
of the data was 5′ by 5′—that is, the surrounding 2,025 pixels were used for each 
5′ pixel. We first calculated the coefficient and significance of partial correlation 
in each pixel, and we then identified the dominant driver with the largest absolute 
value of the correlation coefficient. To assess the robustness of this finding, a 
similar analysis was done with moving windows at higher spatial resolutions—that 
is, 0.75° by 0.75°, 1.75° by 1.75° and 2.75° by 2.75°.

Mitigation potential assessments. We estimated the global crop-specific N2O 
mitigation potential from the decrease in N application rate (Nrate) by capping N 
surplus to the limit (NL) without compromising crop yield or breaching the bounds 
for acceptable air and water quality. To do so, we accessed a publicly available CGIAR 
dashboard68 to extract the global observations of N yield and N surplus along with 
Nrate gradients. This yielded a dataset of 144 records for maize, 34 records for wheat, 
57 records for rice and 126 records for other crops. We then used linear-to-plateau 
models to detect the value of NL by crop (mean and 95% CI) above which crop 
yields show stagnation (significance level, P < 0.05). The models were developed by 
implementation in the R package easyreg69. To test the feasibility of achieving the 
detected levels of N surplus while not compromising crop yield at the regional scale, 
we provided evidence from China’s national campaign in 2005–2015 that encouraged 
20.9 million farmers to adopt integrated soil–crop system management technologies 
for greater crop yield and reduced environmental pollution34. We finally calculated 
the reduced N surplus summed from global cropland to test whether it stays within 
the planetary boundary as previously estimated9,35,36.

Note that our objective is to assess the mitigation potential for direct N2O 
emissions, not to optimize mitigation measures considering technical barriers and 
marginal abatement costs. First, we estimated the global cropland N surplus (Nsur) 
by grid cell and crop type as the sum of N inputs (fertilizers, manure, biological 
fixation and atmospheric depositions) minus N outputs (Nyield). Gridded data on 
biologically fixed N and Nyield were calculated on the basis of the crop yield data 
from the EarthStat databases (5′ × 5′) and the crop-specific parameters (N fixation 
rate and N content by crop) from a previous study9. Atmospheric N deposition 
rates were extracted from the IGAC/SPARC Chemistry-Climate Model Initiative 
(0.5° × 0.5°) over global croplands3. Second, we estimated the decreased N 
application rate everywhere if applicable by subtracting the difference between Nsur 
and the detected level—that is, Nrate − ΔNsur, where ΔNsur = Nsur − NL (Supplementary 
Fig. 22). Finally, we used the four LME models to re-estimate crop-specific EFs 
using the decreased N application rate and thereby estimated the direct cropland 
N2O emissions and mitigation potentials by crop type.

Uncertainty estimation. A Monte Carlo simulation was used to estimate the 
overall uncertainty for predicting EFs and mitigation potentials. To generate 
a proper prediction interval, our estimates accounted for three sources of 
uncertainty: the fixed coefficients, the random coefficients and the input data. The 
uncertainty of EFs taken from sampling frequency and replication was reflected 
by the first source of variation, while the uncertainty of EFs from unquantified 
sources was reflected by the other two sources. Each crop-specific LME model was 
run by randomly generating the fixed and random coefficients from their fitted 
multivariate normal distributions and the climate and soil variables, N application 
rate, fraction of fertilizer types, fraction of fertilizer placement, tillage fraction 
and irrigated fraction following independent normal distributions with the same 
mean as our dataset and a standard deviation of the absolute difference between 
the dataset used in this study and other global datasets (Supplementary Table 12). 
Fertilizer frequency (one or more times) was also randomly selected following the 
Bernoulli (two-point) distribution. We then calculated the predicted values from 
the LME models through 1,000 iterations so that the mean and 2.5% and 97.5% 
quantiles could be constructed with the 95% prediction interval. We also broke 
down the uncertainty of EFs and mitigation potential per source of uncertainty, 
suggesting that the uncertainty of estimation stemmed mainly from the random 
coefficients (Supplementary Fig. 16).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The global cropland N2O emission observation datasets compiled for this study 
are available in Supplementary Data 1. The global input datasets of fertilization, 
irrigation and tillage practices developed for this study are available at https://doi.
org/10.6084/m9.figshare.14842965. The model outputs, including global gridded 

maps of N2O EFs and mitigation potential (including means and 95% CIs), are 
available at https://doi.org/10.6084/m9.figshare.14844069. The climate data are 
available at https://crudata.uea.ac.uk/cru/data/hrg/. The soil data are available at 
https://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/. 
The harvested area and crop yield data are available at http://www.earthstat.org/
harvested-area-yield-175-crops/. Source data are provided with this paper.

Code availability
The computer code for statistics, global prediction and uncertainty estimation is 
available at https://doi.org/10.6084/m9.figshare.16353480.
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Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals For laboratory animals, report species, strain, sex and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species, sex and age where possible. Describe how animals were 
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released, 
say where and when) OR state that the study did not involve wild animals.

Field-collected samples For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature, 
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance 
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants
Policy information about studies involving human research participants

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, gender, genotypic 
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study 
design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and 
how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.

Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.

Outcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern
Policy information about dual use research of concern

Hazards
Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented 
in the manuscript, pose a threat to:

No Yes
Public health

National security

Crops and/or livestock

Ecosystems

Any other significant area

Experiments of concern
Does the work involve any of these experiments of concern:

No Yes
Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents

Enhance the virulence of a pathogen or render a nonpathogen virulent

Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

Any other potentially harmful combination of experiments and agents

ChIP-seq

Data deposition
Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

For "Initial submission" or "Revised version" documents, provide reviewer access links.  For your "Final submission" document, 
provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session 
(e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 
enable peer review.  Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and 
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Sequencing depth whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot 
number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files 
used.

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community 
repository, provide accession details.

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a 
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the 
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell 
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial 
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used 
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across 
subjects).

Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, 
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI Used Not used
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Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, 
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for 
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. 
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and 
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and 
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether 
ANOVA or factorial designs were used.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation, 
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, 
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, 
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation 
metrics.

View publication statsView publication stats

https://www.researchgate.net/publication/355474280

	Global mapping of crop-specific emission factors highlights hotspots of nitrous oxide mitigation

	Results and discussion

	Pattern of crop-specific EFs. 
	Drivers of spatial variation in EFs. 
	Mitigation potential. 
	Limitation of this study and perspective for future work. 

	Methods

	Observation dataset
	LME modelling
	Global predictions
	Fertilization
	Tillage
	Irrigation

	Relative importance
	Mitigation potential assessments
	Uncertainty estimation
	Reporting Summary

	Acknowledgements

	Fig. 1 Spatial patterns of N2O EFs for direct soil emissions.
	Fig. 2 Relative importance by variable in shaping EF patterns.
	Fig. 3 Distribution of dominant drivers regulating variation in N2O EFs.
	Fig. 4 Global cropland N2O mitigation potentials by crop.
	Table 1 Global direct N2O emissions and mitigation potentials in cropland (the top ten countries were ranked by mitigation potential).




