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ABSTRACT: Semiconductor nanocrystals are promising candi-
dates for generating chemical feedstocks through photocatalysis.
Understanding the role of ligands used to prepare colloidal
nanocrystals in catalysis is challenging due to the complexity and
heterogeneity of nanocrystal surfaces. We use in situ single-
molecule fluorescence imaging to map the spatial distribution of
active regions along individual tungsten oxide nanowires before
and after functionalizing them with ascorbic acid. Rather than
blocking active sites, we observed a significant enhancement in
activity for photocatalytic water oxidation after treatment with
ascorbic acid. While the initial nanowires contain inactive regions
dispersed along their length, the functionalized nanowires show
high uniformity in their photocatalytic activity. Spatial colocaliza-
tion of the active regions with their surface chemical properties shows that oxidation of ascorbic acid during photocatalysis generates
new oxygen vacancies along the nanowire surface. We demonstrate that controlling surface−ligand redox chemistry during
photocatalysis can enhance the active site concentration on nanocrystal catalysts.
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Colloidal semiconductor nanocrystals are actively being
studied as photocatalysts for fuel production and

environmental remediation.1−20 The small dimensions of
nanocrystals efficiently suppress the bulk recombination of
photoexcited charge carriers due to the short diffusion
distances required to reach the surface.10,21−23 However, the
fate of photoexcited charges once they reach the surface, that
is, whether they recombine or are extracted to initiate useful
redox reactions, is highly sensitive to the structure of the
surface. Organic ligands that bind to atoms on the nanocrystal
surface are commonly used to control the size and shape of
colloidal metal and semiconductor nanocrystals.4,24−27 Re-
sidual ligands that block access to the particle surface can
poison the nanocatalyst.1−4,28 However, recent studies have
shown that organic ligands can tune the activity and selectivity
of nanocatalysts by regulating competitive adsorption of
substrate molecules and inhibitors to surface sites, changing
the electronic structure at the surface, and/or acting as redox
shuttles to facilitate interfacial charge transfer.4−6,28−42

Although controlling surface−ligand interactions is critical in
the design of nanocatalysts, conventional measurements of
catalytic activity only provide ensemble-averaged structure−
activity trends. The complexity of nanocrystal surfaces makes it

challenging to determine the local environment of active sites
and the role of ligands in controlling catalytic activity.
Single-molecule localization microscopy can overcome the

limitations of ensemble-averaging to identify both inter- and
intraparticle heterogeneity in the reactivity of nanostructured
catalysts.43−66 This super-resolution optical technique uses
fluorogenic probes that are chemically activated into their
fluorescence state to monitor catalytic turnover events in situ at
the single-molecule and single-particle scales. However, a
limitation of single-molecule imaging is that the fluorogenic
probes used to visualize reaction events do not directly report
on the chemical properties that lead to nanoscale variations in
activity. To overcome this limitation, we have used the spatial
colocalization of two complementary fluorogenic probes to
elucidate the nature of active sites in semiconductor photo-
catalysts.61,62 We previously applied this technique to tungsten
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oxide, W18O49, nanowires which is a promising photocatalyst
for water oxidation,10,14−20 to show that the nanowires possess
nanoscale segments of active regions separated by inactive
regions along their lengths.62 Through the colocalization of
two independent fluorogenic probes, one activated by hydroxyl
radicals (•OH) and the other activated by surface Lewis acidic
sites (i.e., tungsten ions exposed by oxygen vacancies), we
revealed that clusters of oxygen vacancies are distributed
nonuniformly along the W18O49 nanowires and serve as active
sites for the photocatalytic generation of •OH radicals. Thus, it
is the regions containing low concentrations of oxygen
vacancies in each nanowire that limit the photocatalytic
activity of this material.
Here, we use in situ single-molecule imaging to elucidate the

activity change mediated by surface functionalization of a metal
oxide photocatalyst. We compare the spatial distribution of
active regions in W18O49 nanowires before and after
functionalizing them with ascorbic acid, which is a common
ligand used in nanoparticle synthesis.27,67,68 Rather than block
the surface of the nanowires, we find that ascorbic acid is
oxidized in situ during photocatalysis to generate new active
sites (i.e., oxygen vacancies). Unlike the as-synthesized W18O49
nanowires, single-molecule imaging shows a highly uniform
distribution of active regions in the functionalized nanowires,
which enhances their photocatalytic activity at both the
ensemble level (oxygen evolution rates of 100 μmol/h for
the functionalized nanowires versus 54 μmol/h for the as-
synthesized ones) and single-molecule level (per nanowire rate
constants of 442 μm−1·min−1 for the functionalized nanowires
vs 248 μm−1·min−1 for the as-synthesized ones).
Tungsten oxide nanowires were synthesized via a hydro-

thermal method as described previously.62 The nanowires
possess the monoclinic W18O49 phase as evidenced by X-ray
diffraction (Figure S1). They have an average diameter of 11 ±
3 nm (average ± first standard deviation), lengths of several
microns, and grow along the [010] direction (Figure 1a and
Figure S2). X-ray photoelectron spectra (XPS) show that
tungsten ions in the nanowires possess a mixture of the +6, + 5,
and +4 oxidation states (Figure 1c).14,19,20,69 The lower
oxidation states of tungsten are charge compensated by oxygen
vacancies. XPS in the region for O 1s electrons show a peak
corresponding to oxygen within the tungsten oxide nanowires
along with a shoulder peak at higher binding energy (Figure
S3). This shoulder peak is typically attributed to oxygen-
containing species that bind to metal ions exposed by surface
oxygen vacancies.17,19,69 Further evidence of oxygen vacancies
comes from the absorption spectrum of the nanowires (Figure
S4). Absorption at wavelengths below 450 nm corresponds to
band gap absorption, while a broad feature starting at 600 nm
and going into the near-infrared results from free-carrier
absorption due to the mixture of oxidation states for tungsten
and surface oxygen vacancies.14,15,17,19,20 Oxidation of the
W18O49 nanowires to fill the oxygen vacancies removes the
free-carrier absorption (Figure S4) and leads to tungsten ions
in predominantly the +6 oxidation state as evidenced by
XPS.14,62

We next functionalized the as-synthesized W18O49 nanowires
with ascorbic acid (see Section 4 of the Supporting
Information for details). Infrared (IR) spectra of the
functionalized nanowires show characteristic peaks corre-
sponding to ascorbic acid between 1000 and 1800 cm−1 as
well as metal−oxygen stretches between 500 and 1000 cm−1

(see Figure 1b and Figure S5). XPS did not show a significant

change in the distribution of oxidation states for tungsten after
functionalizing the nanowires with ascorbic acid (Figure 1c).
Additional characterization of the surface charge and
concentration of acid sites on the nanowires before and after
functionalization (Table S2 and Sections 11 and 12) and
discussion of the binding of ascorbic acid (Section 20) are
provided in the Supporting Information.
Ensemble measurements showed that functionalization with

ascorbic acid enhances the activity of the W18O49 nanowires for
photocatalytic water oxidation. The as-synthesized nanowires
exhibited an O2 evolution rate of 54 μmol/h (Figure 1d).
Because of binding of ascorbic acid to the surface of the
nanowires, we initially expected a drop in photocatalytic
activity after surface functionalization, as we previously
observed for W18O49 nanowires coated with polyvinylpyrroli-
done.62 Surprisingly, the O2 evolution rate for the ascorbic
acid-functionalized W18O49 nanowires increased to 100 μmol/
h (Figure 1d). Hydroxyl radical generation was quantified
using fluorescence spectroscopy through the photocatalytic
conversion of coumarin to 7-hydroxycoumarin (Figure S7).70

The ascorbic acid-functionalized W18O49 nanowires also
exhibited a higher production rate for •OH radicals, which is
an intermediate in the photocatalytic oxidation of H2O to O2.
On the other hand, oxidized nanowires in which oxygen
vacancies were removed showed a significant drop in their
production rate for O2 (9 μmol/h, Figure 1d), consistent with
prior work showing that oxygen vacancies increase the
photocatalytic activity of metal oxide semiconduc-
tors.14−16,19,20,62,71 Thus, we sought to understand how
ascorbic acid-functionalization changes the concentration and

Figure 1. (a) Transmission electron microscopy image of the as-
synthesized W18O49 nanowires. (b) Infrared absorbance spectrum of
neat ascorbic acid (dotted, red trace) and a difference spectrum of the
infrared absorbance of ascorbic acid-functionalized W18O49 nanowires
and the as-synthesized nanowires (solid, black trace). (c) XPS in the
binding energy region for W 4f electrons of the as-synthesized W18O49
nanowires (a, black trace) and ascorbic acid-functionalized W18O49
nanowires before (b, dark-yellow trace) and after (c, red-brown trace)
5 min of laser irradiation. The dashed red, blue, and green lines for
each spectrum show its deconvolution into contributions from W6+,
W5+, and W4+, respectively. (d) Ensemble production rates for
photocatalytic oxygen evolution using the as-synthesized nanowires
(blue, left bar), ascorbic acid-functionalized nanowires (red, middle
bar), and oxidized nanowires (black, right bar).
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distribution of oxygen vacancies along the surface of the
nanowires.
We used total internal reflection fluorescence (TIRF)

microscopy to perform in situ imaging of catalytic reactions
on the surface of the nanowires at the single-molecule level
(see Supporting Information Sections 15 and 16 for details).
We used 3′-(p-aminophenyl) fluorescein (APF) as a
fluorogenic probe to detect the photocatalytic generation of
•OH radicals (Figure 2a and Figure S9).72 A solution
containing APF and potassium iodate as a sacrificial oxidant
was dropped onto a microscope coverslip with deposited
nanowires. A 405 nm laser was used to excite the W18O49
nanowires, and a 488 nm laser was used to excite the
fluorescent product (i.e., fluorescein). Only probe molecules
activated at the catalyst surface produce sharp intensity bursts
using TIRF imaging, while freely diffusing fluorescent
molecules in solution lead to a weak fluorescent background.
The turn-off of each fluorescence intensity burst is due to the
desorption of the activated probe from the catalyst sur-
face.46−49,54−56,61−63 No fluorescence bursts were detected
without the 405 nm laser. The localization precision of
fluorescence bursts is 26 nm for APF (Figure S10). We fitted
the point spread functions of all detected bursts over 2500
frames (i.e., 2.05 min using a 50 ms exposure time, see
Supporting Information Sections 17 and 18 for details) (Figure
2b,d) and constructed activity maps for the photocatalytic
•OH generation along individual nanowires (Figure 2c,e).
Representative activity maps of •OH generation for an as-

synthesized nanowire and an ascorbic acid-functionalized
nanowire are shown in Figure 2c,e. The activity maps plot
the number of reaction events detected within 120 × 120 nm
bins. Isolated active regions are observed for the as-synthesized
nanowires as we previously reported62 (see Figure 2c and
Figure S14 for activity maps of the as-synthesized nanowires).
Notably, the activity maps were completely altered after
functionalization with ascorbic acid. Instead of isolated active
regions, the functionalized nanowire shown in Figure 2e is
active for •OH generation along its entire length. This change
in activity was observed for all 20 nanowires imaged after
functionalization (see Figure S15 additional activity maps of
functionalized nanowires). The photon numbers and the on-
times of fluorescence bursts do not change significantly after
functionalization (see Figures S10−S13), indicating the
activation of the nanowires is not an imaging artifact.
Furthermore, adding a solution containing APF and ascorbic
acid to a bare coverslip did not produce fluorescence bursts.
To further investigate the chemical properties of active

regions along the nanowire surface, we sequentially imaged the
same W18O49 nanowires using the two different probe
molecules, APF for the photocatalytic generation of •OH
and furfuryl alcohol (FA) to image the distribution of Lewis
acid sites (Figure 3). By spatially correlating the activity for
these two independent reactions,62 we establish a link between
the photocatalytically active regions along a nanowire and its
spatial distribution of oxygen vacancies. While both Bronsted
and Lewis acids can catalyze the condensation of FA to form
highly fluorescent oligomers (Figure S16),43,44,62 surface
hydroxyl groups (i.e., Bronsted acid sites) of tungsten oxide
are deprotonated when imaging activation of FA at pH 7.4
(supported by the negative zeta potential measured for the
nanowires, see Table S2).73 Therefore, we attribute the
activation of this probe to tungsten ions exposed by oxygen
vacancies, which act as Lewis acid sites. When imaging the

distribution of acid sites with FA, only a 561 nm laser (with a
photon energy lower than the band gap of tungsten oxide) was
used to excite the fluorescent oligomers. The localization
precision of the fluorescence bursts is 24 nm for FA (Figure
S11).
We used a coordinate-based colocalization (CBC) algorithm

to quantify the degree of spatial colocalization between
fluorescence bursts from each of the two probe mole-

Figure 2. Single-molecule imaging of photocatalytic •OH generation
on individual W18O49 nanowires. (a) Oxidation of APF by
photocatalytically generated •OH radicals forms the highly
fluorescent fluorescein. (b,d) Diffraction-limited fluorescence images
of (b) a representative, as-synthesized nanowire and (d) an ascorbic
acid-functionalized nanowire. (c,e) Super-resolution activity maps of
the same (c) as-synthesized nanowire and (e) ascorbic acid-
functionalized nanowire. Color scale: number of fluorescence bursts
detected per bin (120 × 120 nm2). Scale bars: 1 μm.
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cules.61,62,74 Each fluorescence burst in the two data sets is
assigned a CBC score: +1 for a high degree of colocalization
between the two probes and −1 if only one of the probes was
detected in a specific region. (Details of the CBC algorithm
and the procedure used to register the data sets obtained using
the two fluorogenic probes are provided in Supporting
Information Section 19.) Figure 3 shows representative CBC
analysis on different W18O49 nanowires before and after
ascorbic acid- functionalization. Orange regions in the
colocalization maps in panels e, f, g, and h of Figure 3
represent areas of the nanowires that are active for both the
photocatalytic generation of •OH and the acid-catalyzed
condensation of FA. As we have previously reported for as-
synthesized W18O49 nanowires,62 the activity maps for both
•OH generation and FA condensation show isolated active
regions separated by inactive segments along the nanowire
(Figure 3a,b). CBC analysis (Figure 3e,f,i) reveals that the
same nanoscale regions are active for both reactions. As oxygen
vacancies can catalyze these two independent transformations,
their high degree of spatial correlation indicates that the
distribution of oxygen vacancies is nonuniform along the
nanowires and that regions with a high concentration of
vacancies serve as the active sites for photocatalysis. We also
observed a high degree of colocalization for the ascorbic acid-
functionalized nanowires, as quantified by CBC analysis

(Figure 3j). However, the functionalized nanowires no longer
possessed inactive regions and displayed activity for both •OH
generation (Figure 3c,g) and FA condensation (Figure 3d,h)
along their entire length. The changes in super-resolution
activity maps indicate that both the concentration of oxygen
vacancies had increased, and their distribution had become
more uniform along the functionalized nanowires (see Figures
S14 and S15 for additional examples of colocalization analysis
for both the as-synthesized and functionalized nanowires).
Furthermore, while we observed a significant increase in the
number of active regions, these regions possessed a similar
distribution of specific activities (i.e., the number of
fluorescence bursts detected per μm·min) compared to the
initial nanowires (Figure S22). These results suggest that
oxygen vacancies are introduced in regions that were initially
inactive due to a low concentration of this defect.
We next characterized the compositional changes that occur

in the ascorbic acid-functionalized nanowires during photo-
catalysis. Vibrational modes corresponding to ascorbic acid in
the IR spectrum of the functionalized nanowires disappeared
after irradiation (Figure S6). The functionalized nanowires
exhibited an increase in absorption at near-infrared wave-
lengths after irradiation, consistent with an increase in the
concentration of oxygen vacancies (Figure S4). For nanowires
suspended in a solution of ascorbic acid and irradiated with a

Figure 3. Spatial colocalization of photocatalytic •OH generation and Lewis acid sites for both a representative, as-synthesized W18O49 nanowire
and an ascorbic acid-functionalized nanowire. Super-resolution activity maps of the two nanowires using (a,c) APF to detect •OH radicals and
(b,d) furfuryl alcohol (FA) to identify Lewis acid sites via the condensation of FA. Color scale: number of fluorescence bursts detected per bin (120
× 120 nm2). Coordinate-based colocalization (CBC) maps for fluorescence bursts using (e,g) APF and (f,h) FA. Color scale: median colocalization
score in each bin ranging from −1 for anticorrelated to +1 for perfectly correlated. Scale bars: 1 μm. (i,j) Distribution of CBC scores for APF (red)
and FA (blue) bursts showing a high degree of spatial correlation for the two reactions in both nanowires.

Nano Letters pubs.acs.org/NanoLett Letter

https://doi.org/10.1021/acs.nanolett.2c00674
Nano Lett. 2022, 22, 4694−4701

4697

https://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.2c00674/suppl_file/nl2c00674_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.2c00674/suppl_file/nl2c00674_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.2c00674/suppl_file/nl2c00674_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.2c00674/suppl_file/nl2c00674_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.2c00674/suppl_file/nl2c00674_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.2c00674/suppl_file/nl2c00674_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.2c00674/suppl_file/nl2c00674_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.2c00674?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.2c00674?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.2c00674?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.2c00674?fig=fig3&ref=pdf
pubs.acs.org/NanoLett?ref=pdf
https://doi.org/10.1021/acs.nanolett.2c00674?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


xenon lamp, nuclear magnetic resonance (NMR) spectra
showed a progressive decrease in the concentration of ascorbic
acid with irradiation time (Figure S17). These observations
indicate the removal of adsorbed ascorbic acid during
photocatalysis. Films of functionalized W18O49 nanowires
were also irradiated simultaneously with 405 and 488 nm
lasers under the same conditions used for single-molecule
imaging (see Section 8 of the Supporting Information for
details). A decrease in the relative contribution of W6+ in the
W 4f core level was observed only after irradiation (Figure 1c),
indicating a reduction in the oxidation state of tungsten ions.
Simultaneously, the shoulder peak in the O 1s spectrum
increased after irradiation, consistent with the creation of new
oxygen vacancies in the functionalized sample (Figure S3). In
comparison, the as-synthesized nanowires do not undergo
significant changes as evidenced by XPS when irradiated under
the same conditions.62 To confirm that photogenerated oxygen
vacancies are indeed necessary to enhance the photocatalytic
activity of the nanowires, we also performed single-molecule
imaging of oxidized W18O49 nanowires with and without
ascorbic acid. While no activity was detected on the bare
oxidized nanowires (that contain a very low concentration of
oxygen vacancies), we observed moderate activity for •OH
generation after the oxidized nanowires were functionalized
with ascorbic acid (see discussion below, Table S3, and Figures
S18 and S19). These control experiments solidify the role of
ascorbic acid in activating the nanowires by increasing the
concentration of oxygen vacancies in situ during photocatalysis.
To quantify the enhancement in photocatalytic activity after

ascorbic acid functionalization, we measured the concentration
dependence of APF conversion at the single-molecule level
(Figure 4). A series of different concentrations of APF (5−60

nM) was used to image the activity for •OH generation. The
conversion rate of the surface-adsorbed probe into its activated
form can be approximated as first order with its bulk
concentration [APF] when the •OH concentration is much
higher than [APF] and assuming that [•OH] remains constant
during the reaction (due to the high concentrations of
photoexcited carriers and H2O).47,49 This concentration
dependence is often described by the Langmuir−Hinshelwood

model in which the adsorption of APF is fast relative to its
oxidation to fluorescein46,47,49,54,56

v
K

K

APF

1 APF
eff ad

ad

γ
=

[ ]
+ [ ] (1)

where v is the specific activity of detected product molecules
for individual nanowires, Kad is the equilibrium constant for
adsorption of APF on the surface of a W18O49 nanowire, and
γeff is the effective per-nanowire rate constant for •OH
generation under the assumptions described above. For each
concentration of APF, an average specific activity was
determined by imaging 20 different nanowires. Figure 4
shows that for both the as-synthesized and ascorbic acid-
functionalized W18O49 nanowires, v first increases and then
saturates as [APF] increases, supporting the Langmuir−
Hinshelwood model. We fitted the concentration dependence
of v to eq 1. The rate constant for •OH generation, γeff,
increased from 248 ± 19 μm−1·min−1 (standard error) for the
as-synthesized nanowires to 442 ± 42 μm−1·min−1 for the
ascorbic acid-functionalized nanowires. Oxidized nanowires
were completely inactive, but they could be reactivated
through functionalization to produce a γeff of 107 ± 13
μm−1·min−1 (Figure S18). While the values of γeff were
sensitive to these surface treatments, the values of Kad were
similar before (0.049 ± 0.008 nM−1) and after functionaliza-
tion (0.048 ± 0.012 nM−1) (see Table S3 for the reaction
constants after different surface treatments).
We next analyzed the on-times for fluorescence bursts, τon,

which characterize the time each activated probe (i.e.,
fluorescein) remains adsorbed on the nanowire surface (Figure
S20). As we did not observe a significant concentration
dependence for τon, we assign the interparticle-averaged value
of the inverse on-time, ⟨τon

−1⟩, to the rate constant for self-
dissociation of fluorescein from the nanowire, kd.

46,47,54,63

Similar to Kad, the value of kd did not change significantly after
functionalization (both at 0.048 ms−1, Table S3). The
consistency of Kad and kd for both samples indicates a similar
chemical environment for the active regions of the nanowire
surface. Therefore, we attribute the increase in γeff to more
active sites generated along the functionalized nanowires
during photocatalysis.
On the basis of the increase in photocatalytic activity, along

with the different spatial distributions of active sites imaged at
the single-particle level, we propose that the ascorbic acid
ligands play the following role during photocatalysis. As a
sacrificial reductant, surface-adsorbed ascorbic acid molecules
can be oxidized by photogenerated holes in the valence band
of the W18O49 nanowires.

75,76 The remaining photogenerated
electrons in the conduction band then reduce tungsten ions
exposed at the surface of the nanowires. This redox process
requires the creation of new oxygen vacancies to maintain
charge balance, which serve as new active sites for photo-
catalytic •OH generation. As the ligands decompose during
the reaction (based on IR and NMR spectra, see Figures S6
and S17), they no longer block access to the surface of the
nanowires. This mechanism explains the significant boost of
the photocatalytic activity as well as the high degree of
colocalization between APF and FA activity maps. We
hypothesized other electron-donating ligands could activate
the W18O49 nanowires.77,78 Indeed, we observed that citrate-
functionalized W18O49 nanowires also produce the same

Figure 4. Concentration dependence of the specific activity for
photocatalytic •OH generation at the single-molecule level for the
initial nanowires (trace b, black squares) and ascorbic acid-
functionalized nanowires (trace a, red triangles). The solid lines are
fits to the Langmuir−Hinshelwood model (eq 1). Each data point
represents the average of 20 nanowires, and the error bars show the
standard deviation in specific activity for the 20 nanowires.
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changes in single-molecule activity maps as observed for
ascorbic acid (Figure S19, Figure S21, and Table S3).
In summary, using in situ, single-molecule fluorescence

microscopy in combination with ensemble surface character-
ization, we developed new insights into the role of surface-
adsorbed organic ligands during semiconductor photocatalysis.
Reductive ligands, such as ascorbic acid, generate new oxygen
vacancies in a metal oxide semiconductor during photocatalysis
and activate the catalyst for oxidation. While sterically bulky
organic ligands are often needed to maintain colloidal stability,
they can also block access to the nanocrystal surface. We show
that redox-active ligands can generate new active sites in situ on
the nanocrystal surface during photocatalysis. Therefore, mixed
monolayers that combine inert, long-chain surfactants with
redox-active ligands that boost activity may provide a strategy
to both maintain colloidal stability during photocatalysis and
create a high number of actives sites.
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