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The development of mathematical skills in early childhood relies on number sense, the foundational ability to discriminate among
quantities. Number sense in early childhood is predictive of academic and professional success, and deficits in number sense are
thought to underlie lifelong impairments in mathematical abilities. Despite its importance, the brain circuit mechanisms that support
number sense learning remain poorly understood. Here, we designed a theoretically motivated training program to determine brain
circuit mechanisms underlying foundational number sense learning in female and male elementary school-age children (7–10 years).
Our 4 week integrative number sense training program gradually strengthened the understanding of the relations between symbolic
(Arabic numerals) and nonsymbolic (sets of items) representations of quantity. We found that our number sense training program
improved symbolic quantity discrimination ability in children across a wide range of math abilities including children with learning
difficulties. Crucially, the strength of pretraining functional connectivity between the hippocampus and intraparietal sulcus, brain
regions implicated in associative learning and quantity discrimination, respectively, predicted individual differences in number sense
learning across typically developing children and children with learning difficulties. Reverse meta-analysis of interregional coactivations
across 14,371 fMRI studies and 89 cognitive functions confirmed a reliable role for hippocampal–intraparietal sulcus circuits in learn-
ing. Our study identifies a canonical hippocampal–parietal circuit for learning that plays a foundational role in children’s cognitive
skill acquisition. Findings provide important insights into neurobiological circuit markers of individual differences in children’s learn-
ing and delineate a robust target for effective cognitive interventions.
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Significance Statement

Mathematical skill development relies on number sense, the ability to discriminate among quantities. Here, we develop a the-
oretically motivated training program and investigate brain circuits that predict number sense learning in children during a
period important for acquisition of foundational cognitive skills. Our integrated number sense training program was effective
in children across a wide a range of math abilities, including children with learning difficulties. We identify hippocampal–
parietal circuits that predict individual differences in learning gains. Our study identifies a brain circuit critical for the acquisition of
foundational cognitive skills, which will be useful for developing effective interventions to remediate learning disabilities.
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Introduction
Number sense, the ability to discriminate quantities, is predictive
of academic achievement and professional success (National
Mathematics Advisory Panel, 2008; Jordan et al., 2009). In partic-
ular, weaknesses in mapping symbolic numbers (e.g., the symbol
2) to their magnitude representations (e.g., two objects) in early
childhood are associated with difficulties in subsequent mathe-
matical skill acquisition (Rousselle and Noël, 2007; De Smedt
and Gilmore, 2011). Knowledge about the neural mechanisms
that support number sense acquisition in children can provide
important insights into neurobiological markers of individual
differences in learning and inform more effective interventions.
Here, we develop a theoretically motivated training protocol to
address a critical gap in our understanding of the acquisition of
foundational skills and the brain circuits that predict learning in
early elementary school children.

Recent studies have begun to uncover a crucial role for the
hippocampal memory system in mathematical skill acquisi-
tion (Menon and Chang, 2021; Supekar et al., 2021). Most pre-
vious studies of mathematical cognition have focused on
cortical regions, most notably the posterior parietal cortex;
consequently, the role of medial temporal lobe regions in
mathematical cognition and learning has received less atten-
tion because of this corticocentric focus. Notably, in a study
on arithmetic fact learning (e.g., 3 1 5 = 8), hippocampal
functional connectivity with multiple cortical regions pre-
dicted individual differences in performance gains in children

(Supekar et al., 2013). Furthermore, the strength of this associ-
ation with learning was stronger than the connectivity of the
intraparietal sulcus (IPS), a brain region consistently impli-
cated in representation of numerical quantities across sym-
bolic and nonsymbolic formats (Butterworth and Walsh,
2011; Piazza and Eger, 2016). These findings provide support
for theoretical models that suggest that hippocampal circuitry
is critical during early stages of math skill acquisition (Menon,
2016; Menon and Chang, 2021). Here, we test the hypothesis
that brain circuits linking the hippocampus, a brain region
crucial for binding new information (Eichenbaum, 2004;
Olsen et al., 2012; Zeithamova and Bowman, 2020), with pari-
etal cortical areas important for representation of numerial
quantity supports foundational number sense learning.

We developed a number sense training protocol that empha-
sized strengthening children’s understanding of the relations
between symbolic and nonsymbolic representations of quantity
(Fig. 1A,B). To probe learning during an important period for
building foundational cognitive skills, we recruited 96 children,
7–10 years old, with a broad range of math abilities. Functional,
diffusion, and structural MRI scans acquired before training and
training-related changes in performance on symbolic quantity
discrimination were used to determine integrity of brain circuits
associated with learning in response to number sense training
(Fig. 1C–E). Our first goal was to determine whether number sense
training is effective in children, including typically developing (TD)
children and those with mathematical learning difficulties (MLD).

Figure 1. Overview of study design, sample training materials, and schematic illustration of analysis approach. A, The study involved the following sessions: pretraining demographic and
neuropsychological (NP) assessments; pretraining (time 1) cognitive assessments and brain imaging, including task-related and resting-state fMRI, diffusion MRI (dMRI) using a high angular re-
solution diffusion imaging sequence, and high-resolution structural MRI (sMRI); number sense training (in the training group; see below, Materials and Methods) or no contact (in the control
group); and post-training (time 2) brain imaging and cognitive assessments identical to pretraining. Children in the training group engaged in progressive learning activities across 4 weeks to
strengthen their understanding of the relations between symbolic and nonsymbolic representations of quantity. B, Across 4 weeks of one-on-one tutoring sessions, children in the training
group completed a variety of activities with a tutor (see below, Materials and Methods). C, Children’s number sense learning was measured by changes in efficiency in symbolic quantity dis-
crimination task from time 1 to time 2 in response to 4 weeks of number sense training (or no contact). D, Using Time 1 resting-state fMRI data, hippocampal seed-to-whole-brain connectivity
analysis was performed to assess intrinsic functional connectivity of the hippocampus predictive of number sense learning. A conjunction analysis was performed between left and right hippo-
campal functional connectivity patterns to identify overlapping target regions associated with learning. ROI-based analysis was used to examine the association between functional connectivity
and learning in training and control groups. E, Using high angular resolution diffusion imaging data, probabilistic tractography was performed using ROIs identified from functional connectivity
(FC) analysis. Structural connectivity strengths between the ROIs were estimated for each subject to test the associations with number sense learning. ROI-based analysis was performed to
examine the relation between structural connectivity and learning in training and control groups.
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Our second goal was to identify functional brain circuits that predict
children’s gains in number sense following training. We used task-
independent, resting-state functional MRI tomeasure intrinsic func-
tional connectivity, which is thought to reflect integrity of functional
circuitry (Greicius et al., 2003) and is considered to be a relatively
stable measure compared with task-dependent fMRI. Our third
goal was to determine, as an adjunct to intrinsic functional con-
nectivity measures, whether number sense training gains are pre-
dicted by white matter pathways linking the hippocampus with
the parietal cortex. We used an advanced high angular resolution
diffusion imaging (HARDI) protocol, which examines complex
fiber tracts (Tuch et al., 2002) to enable high-quality reconstruc-
tions of white matter pathways. The final goal of our study was
to expand on findings from our training study to investigate the
broader role of hippocampal–parietal circuits in learning across
a large set of fMRI studies using reverse meta-analysis (see below,
Materials and Methods). We examined coactivations of hippo-
campus and parietal cortex across 14,371 published fMRI studies
in relation to 89 cognitive functions to determine whether hippo-
campal–parietal functional circuits identified in the present study
constitute a canonical circuit for learning.

Materials and Methods
Participants
A total of 96 children in second and third grades (age, mean = 8.19,
SD = 0.63, 54 females) recruited with flyers sent to schools and posted at
libraries and community centers in the San Francisco Bay Area partici-
pated in the study. All participants were right-handed and did not report
any current neurologic or psychiatric illness. Among them, 66 children
(age, mean = 8.15, SD = 0.65, 35 females) participated in the training
program and 30 children (age, mean = 8.27, SD = 0.61, 19 females)
served as no-contact controls. MLD in children was identified using
normed-based cutoff criteria applied to math fluency, similar to those in
previously published studies (Iuculano et al., 2015; Rosenberg-Lee et al.,
2015; Jolles et al., 2016). Children who scored at or below 90 (25th per-
centile or below) on the Math Fluency subtest of the Woodcock–
Johnson Third Edition (WJ-III; Woodcock et al., 2001) were included in
the MLD group (mean = 85.61, SD = 3.97), and children who scored
above 90 were included in the TD group (mean = 103.65, SD = 9.09). No
participant was excluded because of MLD or TD status.

All study protocols were approved by the Stanford University School
of Medicine Institutional Review Board, and informed consent was
obtained from the parents of the children. Children received $50 for
completing each MRI scanning session, $50 for completing a neuropsy-
chological assessment battery, and $50 for participating in the training
program. Twenty-seven children were excluded from resting-state fMRI
analysis because of no structural MRI data acquired (n = 3), poor struc-
tural MRI image quality (n = 6), missing behavioral data from fMRI task
(n = 2), or inadequate whole-brain coverage or excessive head move-
ment (n = 16; see below, fMRI preprocessing) in the scanner. For diffu-
sion MRI analysis, 13 children were additionally excluded because of
incomplete diffusion MRI data acquisition (n = 1), poor diffusion MRI
data quality (n = 10), or identification as extreme outliers in structural
connectivity measures (n = 2). The final resting-state fMRI analysis sam-
ple included 52 children (18 children with MLD, 34 TD children) and 17
children in the training and control group, respectively; the diffusion
MRI analysis sample included 43 children (15 children with MLD, 28
TD children) and 13 children in the training and control group,
respectively.

Experimental design and statistical analyses
The current study examined the brain circuit mechanisms that predict
the acquisition of foundational cognitive skills, following integrative num-
ber sense training. The overall study design is summarized in Figure 1A.
Children completed MRI scanning session and cognitive assessments
before and after training (in the training group) or no contact (in the con-
trol group). The no-contact control group participated in all aspects of the

study except for training to control for normal business-as-usual schooling
(Fuchs et al., 2009) and determine the specificity of brain circuits that pre-
dict gains in intervention.

Children in the training group completed a 4 week number sense
training program (3d/week, for;60min/d), which focused on strength-
ening of children’s understanding of the relations between symbolic and
nonsymbolic representations of quantities ranging from 1 to 9. The first
week of training began with a review of counting principles, followed by
practice in enumeration and comparisons between nonsymbolic quanti-
ties (sets of items or dot arrays) in the second week; comparisons
between nonsymbolic and symbolic (Arabic numbers) quantities in the
third week; and finally, comparisons between symbolic quantities in the
fourth week. Training with nonsymbolic numbers included in weeks 2
and 3 was used to scaffold children’s learning of symbolic numbers
through mapping nonsymbolic quantities to verbal (number words) or
visual (Arabic numerals) symbolic numbers. This was followed by train-
ing with symbolic numbers, without the use of nonsymbolic numbers, in
the final week. Response to training was examined using a symbolic
quantity discrimination task acquired before and after training.

For statistical analyses of behavioral data, two-sample t tests, x 2 tests,
and multivariate (M)ANOVA were performed for comparisons between
groups of age, gender, or neuropsychological assessments. A repeated-
measures ANOVA with time as a within-subject factor and group as a
between-subject factor was conducted to assess the effects of training on
symbolic quantity discrimination task performance. Follow-up paired t
tests examined changes in task performance (learning gains) in each
group. In addition, two sample t tests assessed differences in learning
gains and pretraining and post-training differences in task performance
between groups. Spearman correlations were used for analysis on rela-
tions between behavioral measures and brain–behavior relations to min-
imize influence of potential outliers. In addition to frequentist statistics
(e.g., p values), Bayes factor (BF) was used to assess presence or absence
of evidence forH1 orHo (Keysers et al., 2020). BF values.3 provide evi-
dence for H1. BF values between 0.33 and 3 provide absence of evidence.
BF values below 0.33 provide evidence of absence (evidence forHo).

Details on statistical analyses of brain imaging data are described
below in Intrinsic functional connectivity analysis, Structural connectiv-
ity analysis, and Cross-validation analysis. For the procedures for identi-
fying cognitive functions associated with interregional coactivations
reported in fMRI studies, see below, Reverse meta-analysis.

Training sessions
Across 4 weeks, children in the training group completed a variety of
activities with a tutor (Fig. 1B; Table 1). Generally, in each training ses-
sion, children received a lesson on counting or comparisons, played
computerized and interactive games, and completed review worksheets
(counting or comparisons). Quantities from 1 to 9 were used in all activ-
ities. On successful completion of each activity, children added to a
sticker sheet.

Lessons. In tutoring sessions in week 1, the tutor provided a lesson
on counting by reviewing counting principles with examples of correct
and incorrect counting of erasers; after the lesson, children viewed a
video of a sock puppet counting and were asked to determine whether
the sock puppet counted correctly. In tutoring sessions from weeks 2–4,
children were asked to count out loud from 1 to 9 and were reminded
that each number they counted going up was bigger than the number
before it. Then, in weeks 2 and 3 children completed the Math Circles
exercise, where they enumerated the number of erasers in each of two
Math Circles on the table and determined which number was bigger
than the other. In week 2, lesson on nonsymbolic quantities, the tutor
put two sets of erasers of different quantities in the two Math Circles
(one quantity in each Math Circle). In week 3, lesson on nonsymbolic
and symbolic quantities, the tutor put a card showing a number (Arabic
numeral) and a set of erasers of quantities different from the number on
the card in the two Math Circles. In week 4, lesson on symbolic quanti-
ties, the tutor administered a number-ordering version of the exercise
Beat Your Score (Chang et al., 2019), where the child was asked to order
four decks of cards with quantities in nonsymbolic (array of dots), mixed
(symbolic and nonsymbolic), or symbolic (Arabic numeral) format
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more quickly each time they ordered the cards. For each deck of cards,
children completed the ordering of cards three times after the tutor shuf-
fled the cards, with the goal of beating their previous time taken to order
the cards on the third time for at least three decks of cards.

Games. In week 1, children played the computerized Restaurant
Game (Blair, 2013a,b), in which they enumerated the number of dishes
to cook for the presented number of animals. From weeks 2 to 4, chil-
dren played an adapted version of the computerized game Number Race
(Wilson et al., 2006), which was structured to align with the progression
of training activities (comparison between nonsymbolic quantities in
week 2, symbolic and nonsymbolic quantities in week 3, and symbolic
quantities in week 4) and did not include arithmetic training. Children
also played Math War (Iuculano et al., 2015), an interactive game with
the tutor in which they determined the larger quantity between two sets
of dot arrays (week 2), between one set of dot arrays and a number
(week 3), and between two numbers (week 4). In each Math War game,
the child and the tutor each had a deck of cards from which they drew
one card at a time. The child first wrote down the number on their card
and the number on the tutor’s card and then marked the larger number.
The game continued until the child and tutor drew all their cards.
Finally, children played Comparing Speed with the tutor, where the child
and the tutor identified cards with quantities one value above or below
the quantities on the cards on the table. The cards had quantities in non-
symbolic (week 2), symbolic and nonsymbolic (week 3), or symbolic
(week 4) format. In each Comparing Speed game, the tutor first put four
cards on the table with quantities of 4, 5, 6, and 7. Then the child and
tutor each took five cards from two decks of cards, one for the child,
another for the tutor. The child and the tutor placed their cards on top

of any of four cards on the table when their cards had quantities one
value above or below the quantities on the cards on the table. The child
and the tutor drew more cards from their decks, keeping up to five cards
in their hands. The game continued until the child finished placing their
deck of cards and won the game.

Review worksheets. The review worksheets consisted of counting the
number of animals (week 1) or identifying the larger quantity between
two nonsymbolic (week 2), symbolic and nonsymbolic (week 3), or sym-
bolic (week 4) quantities. Children circled, matched, or wrote the num-
ber of animals (week 1) or circled the larger quantity (weeks 2–4) on the
worksheet. Accuracy was emphasized in the worksheets from weeks 1 to
3; the worksheet included 42 trials in week 1, 24 trials in week 2, and 48
trials in week 3. In week 4, children were given 1 min to complete 24
symbolic number comparison trials on the worksheet.

Symbolic quantity discrimination task
Before and after training (or no contact), children performed one run of
the symbolic quantity discrimination task in the MRI scanner in which
they had to determine which of two symbolic numbers presented on the
screen was larger (Fig. 2A). A total of 64 trials including comparison of
pairs of quantities 1 through 9 (excluding 5) were presented in each run.
Participants were instructed to press a left button if the left side had a
larger quantity and the right button otherwise. Half of the trials had a
near distance (1 unit) between the two quantities (e.g., 7:6), and the
remaining trials had a far distance (5 units) between the two quantities
(e.g., 3:8). Numerical magnitude was matched between the two distance
conditions with an equal distribution of big (sum of pair of quantities
.10) and little (sum of pair of quantities ,10) conditions. Our main

Figure 2. Symbolic quantity discrimination task design and behavioral results. A, Before and after training (or no contact), children completed one run of symbolic quantity discrimination
task in the fMRI scanner. Participants first saw a fixation cross, followed by horizontal presentation of two quantities in Arabic numbers. Participants were instructed to press the left button if
the left side had a larger quantity and the right button if the right side had a larger quantity. After the button press, a blank screen was presented to fill up the response phase, followed by a
jittered intertrial interval. The duration of each phase is shown in milliseconds. B, Four weeks of training improved performance on symbolic quantity discrimination task in both training groups
of TD children and children with MLD but not in the no-contact control group. **p, 0.01, ***p, 0.001.

Table 1. Training activities in each session (three sessions/week)

Lessons Games Review

Week 1 � Counting
� Video of a sock puppet counting

� Restaurant Game (Blair, 2013a,b) � Counting

Week 2 � Comparison
� Math Circles

� Number Race (Wilson et al., 2006)
� Math War (Iuculano et al., 2015)
� Comparing Speed

� Comparison between nonsymbolic quantities

Week 3 � Comparison
� Math Circles

� Number Race (Wilson et al., 2006)
� Math War (Iuculano et al., 2015)
� Comparing Speed

� Comparison between nonsymbolic and symbolic quantities

Week 4 � Comparison
� Beat Your Score (Chang et al., 2019)

� Number Race (Wilson et al., 2006)
� Math War (Iuculano et al., 2015)
� Comparing Speed

�Comparison between symbolic quantities
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outcome measure, number sense learning, was assessed by gains in per-
formance efficiency in the symbolic quantity discrimination task. This
was measured by the difference in symbolic quantity discrimination task
efficiency (Townsend and Ashby, 1978), obtained by accuracy divided
by reaction time, from pretraining to post-training, with higher scores
representing greater efficiency gains.

MRI data acquisition
Images were acquired on a 3T Signa scanner (General Electric) using a
custom-built head coil at the Stanford University Richard M. Lucas
Center for Imaging. Head movement was minimized during the scan by
cushions placed around the participant’s head. A total of 31 axial slices
(4.0 mm thickness, 0.5 mm skip) parallel to the anterior commissure–
posterior commissure line and covering the whole brain were imaged
using a T2* weighted gradient echo spiral in-out pulse sequence (Glover
and Lai, 1998) with the following parameters: TR = 2 s, TE = 30 ms, flip
angle = 80°, 1 interleave. The field of view was 22 cm, and the matrix size
was 64� 64, providing an in-plane spatial resolution of 3.4375 mm. The
total length of the run was 6min and 10 s. To reduce blurring and signal
loss from field inhomogeneity, an automated high-order shimming
method based on spiral acquisitions was used before acquiring func-
tional MRI scans (Kim et al., 2002). High-resolution T1-weighted 3D
MRI sequences were acquired to facilitate anatomic coregistration of
fMRI maps, with the following parameters: spin quantum number = 400
ms, TR = 5.9ms; TE = minimum; flip angle = 11°; field of view = 240
mm; matrix size = 256� 192; 170 axial slices (1.0 mm thickness).

A state-of-the-art diffusion-weighted single-shot spin-echo, echo pla-
nar imaging HARDI pulse sequence was used for more precise examina-
tion of white matter fibers, including crossing fibers (Tuch et al., 2002),
with the following parameters: TR = 5.3 s; TE = minimum; flip angle =
90°; field of view = 260 mm; matrix size = 128 � 128; and 50 axial slices
(2.9 mm thickness, no spacing). The high b value (2500 s/mm2) was
obtained by applying gradients along 150 different diffusion directions.

fMRI preprocessing
Resting-state functional MRI data were analyzed using SPM12 (http://
www.fil.ion.ucl.ac.uk/spm/). The first five volumes were not analyzed to
allow for T1 equilibration. A linear shim correction was applied separately
for each slice during reconstruction (Glover and Lai, 1998). Images were
realigned to the first scan to correct for motion and slice acquisition tim-
ing, coregistered to each individual’s structural T1 images, spatially trans-
formed to standard stereotaxic space based on the Montreal Neurologic
Institute (MNI) coordinate system, resampled every 2 mm using sinc
interpolation, and smoothed with a 6 mm full-width half-maximum
Gaussian kernel to decrease spatial noise before statistical analysis. A
bandpass filter (0.00–0.1Hz) was applied to the smoothed data to remove
high-frequency artifacts. Translational movement in millimeters (x, y, z)
and rotational motion in degrees (pitch, roll, yaw) were calculated based
on the SPM12 parameters for motion correction of the functional images
of each subject. We excluded participants with movement larger than 10
mm in any of the x, y, z directions. Mean scan-to-scan displacement of
movement did not exceed 0.5 mm for all participants.

Intrinsic functional connectivity analysis
Intrinsic functional connectivity analysis was conducted using resting-state
fMRI to investigate specific functional circuits that relate to change in sym-
bolic quantity discrimination task performance with training. Regions of
interest (ROIs) for functional connectivity were selected from Brainnetome
(Fan et al., 2016) parcellations of the left and right hippocampus (rostral
and caudal subdivisions combined). Seed-to-whole-brain functional con-
nectivity for each ROI was estimated by extracting eigenvalues of time se-
ries of all voxels within the ROI, regressing out the global mean signal,
white matter signal, cerebrospinal fluid signal, and six motion parameters.
A bandpass filter (0.008–0.1Hz) was applied to reduce high-frequency
noise. Functional connectivity maps were then submitted to a second-level
analysis to examine whether the connectivity of these regions at the voxel-
by-voxel level is predictive of learning (pretraining to post-training effi-
ciency in symbolic quantity discrimination task).

Pretraining performance on symbolic quantity discrimination was
regressed out to control for regression to the mean, a known phenom-
enon in intervention studies (Barnett et al., 2004), and to obtain more
precise estimates of intervention effects (Pocock et al., 2002; Thompson
et al., 2015). This analysis approach allowed us to minimize the potential
influence of pretraining performance on learning. In the current study,
the association between change in performance and pretraining per-
formance on symbolic quantity discrimination was significant in the
training (r = �0.50, p , 0.001) but not in the control (r = �0.18, p =
0.49) group, which indicates that the degree to which pretraining per-
formance influences changes in performance varied between groups.

Significant clusters were identified using a height threshold of p, 0.005
with multiple comparisons correction at p , 0.05 after gray matter mask-
ing. This statistical threshold was chosen to balance between type I and type
II errors in the current study, considering that larger sample sizes are typi-
cally needed to detect effects with a more stringent threshold (Carter et al.,
2016). The cluster threshold was determined based on Monte Carlo simula-
tions (Forman et al., 1995; https://afni.nimh.nih.gov/pub/dist/doc/manual/
AlphaSim.pdf; Nichols and Hayasaka, 2003) implemented in custom
MATLAB scripts, similar to previous studies (Cho et al., 2011; Rosenberg-
Lee et al., 2011; Cho et al., 2012; Iuculano et al., 2014; Qin et al., 2014;
Iuculano et al., 2015; Rosenberg-Lee et al., 2018). Ten thousand iterations of
random 3D images, with the same resolution and dimensions as the fMRI
data, were generated. The resulting images were masked for gray matter
and then smoothed with the same 6 mm FWHM Gaussian kernel used to
smooth the fMRI data. The maximum cluster size was then computed for
each iteration, and the probability distribution was estimated across the
10,000 iterations. Based on this procedure, 67 voxels corresponding to p ,
0.05 were used for the cluster threshold. Anatomical locations of brain
regions were identified by Automated Anatomical Labeling (Tzourio-
Mazoyer et al., 2002), Harvard-Oxford (Desikan et al., 2006), and Juelich
histologic (Eickhoff et al., 2005) atlases.

Follow-up ROI-based analyses were performed to visualize the results,
ensure that the results were not driven by outliers, and confirm differen-
ces in correlation between brain and behavioral measures across groups.
ROIs were defined as 6 mm spheres centered at the peak of the left IPS
identified from hippocampal connectivity patterns in the training group
and its contralateral region for the right IPS. Similar to the whole-brain
analysis (see above), pretraining symbolic quantity discrimination task
efficiency was regressed out from symbolic quantity discrimination task
efficiency gains and connectivity estimates in each group.

Structural connectivity analysis
Diffusion images were preprocessed to correct artifact issues frommove-
ment and eddy currents using Functional MRI of the Brain Software
Library (FSL) 5.0.11 (Andersson and Sotiropoulos, 2016). Then, proba-
bilistic tractography to estimate structural connectivity between the left
and right hippocampus and the left and right IPS ROIs was performed
in native volume space using the FSL probtrackX (http://fsl.fmrib.ox.ac.
uk/fsl/fslwiki/; Behrens et al., 2007). The hippocampus ROIs were from
Brainnetome (Fan et al., 2016) parcellations (rostral and caudal subdivi-
sions combined), and the IPS ROIs were from Brainnetome (Fan et al.,
2016) parcellations that overlapped with target ROIs identified from
intrinsic functional connectivity analysis [superior parietal lobule (lateral
area 5) and inferior parietal lobule (rostrodorsal area 40) subdivisions
combined; left IPS] and the contralateral regions (right IPS). These ROIs
were warped to each subject’s diffusion space, which was achieved by
registering the B0 image of each subject’s diffusion MRI image to MNI
space using Advanced Normalization Tools (Avants et al., 2006). ROIs
were then dilated 3 mm into the white matter to avoid biases generated
by superficial white matter tracts (Thomas et al., 2014). Structural con-
nectivity between two ROIs, A and B, was computed by the probability
that diffusion images provide evidence that a white matter connection
exists between these ROIs. This was calculated by the ratio between the
number of tracts with origin in A or B reaching the other region and the
total number of tracts seeded on A or B. Tracts were only considered if
they stayed within the white matter and had a minimum length of 5 mm
between the ROIs. Finally, these measures were corrected for distance
bias using the approach proposed by Donahue et al. (2016). To estimate
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structural connectivity between the ROIs, 5000 tracts were seeded at
each ROI for each individual, based on a preliminary analysis that deter-
mined the number of seeds needed to stabilize the connectivity measure.
We computed structural connectivity strength between each pair of
ROIs per subject. ROI-based analyses were then performed to assess the
relation between hippocampal–parietal structural connectivity and
learning, using similar procedures described in intrinsic functional con-
nectivity analysis.

Cross-validation analysis
A machine-learning approach with balanced fourfold cross-validation com-
bined with linear regression (https://github.com/poldrack/regressioncv;
Cohen et al., 2010; Supekar et al., 2013) was conducted to investigate the
robustness of brain-based predictors of individual differences in number
sense learning gains. Learning gain as a dependent variable and the brain-
based predictor (connectivity) as an independent variable were treated as
inputs to a linear regression algorithm; r(predicted, observed), a measure of
how well the independent variable predicts the dependent variable, was first
estimated using a balanced fourfold cross-validation procedure. Participants
were assigned to one of four folds. A linear regression model was built using
three folds, leaving out the fourth, and this model was then used to predict
the data in the left-out fold. This procedure was repeated four times to com-
pute a final r(predicted, observed) representing the correlation between the
data predicted by the regression model and the observed data. Finally, the
statistical significance of the model was assessed using a nonparametric test-
ing approach. The empirical null distribution of r(predicted, observed) was
estimated by generating 1000 surrogate datasets under the null hypothesis
that there is no association between changes in numerical skills and brain-
based predictor.

Reverse meta-analysis
To examine the role of the hippocampal–parietal functional circuits, we
conducted a novel reverse meta-analysis of inter-regional coactivation of
the hippocampus and the parietal cortex, using regions identified in the
present study, reported across 14,371 published fMRI studies up until
July 2018 from the Neurosynth (Yarkoni et al., 2011) database and 89
cognitive atlas terms (CogAt; Poldrack et al., 2011; see Fig. 7A). The hip-
pocampal ROIs were from Brainnetome (Fan et al., 2016) parcellations
(rostral and caudal subdivisions combined), and the parietal ROIs were
from Brainnetome (Fan et al., 2016) parcellations that overlapped with
target ROIs identified from intrinsic functional connectivity analysis
[superior parietal lobule (lateral area 5) and inferior parietal lobule (ros-
trodorsal area 40) subdivisions combined; left IPS] and the contralateral
regions (right IPS).

Our reverse meta-analysis estimated the probability that a term
related to a cognitive function was mentioned in an fMRI study, pro-
vided that activations in both the hippocampus and parietal cortex were
also reported. For instance, we estimated the probability as follows for
any given study: P (term “learning” is mentioned | activations are
reported in the left hippocampus and in the left parietal cortex).

This probability was estimated across different domains and contexts
in the neuroimaging literature. We performed this analysis on ipsilateral
and contralateral hippocampal–parietal circuits on both hemispheres (i.e.,
left hippocampus–left IPS, right hippocampus–left IPS, left hippocampus–
right IPS, right hippocampus–right IPS). To estimate these probabilities,
we programmed this hypothesis in the probabilistic logic language
Neurolang (https://neurolang.github.io; Iovene and Wassermann,
2020) using the full Neurosynth (Yarkoni et al., 2011) open access
database, version 0.7.

To estimate reverse meta-analysis probabilities, we followed the fol-
lowing steps. First, we encoded the probability of a term being present in
a study by thresholding the term frequency (TF)–inverse document fre-
quency (IDF) value of the term being present at 10�3, in agreement with
Neurosynth implementation (Yarkoni et al., 2011). Second, we consid-
ered the probability of a region being reported in a given study as
directly proportional to the number of activations within the regions
being present in the study for which we resampled the activation foci to
4 mm3 voxels in MNI152 space. Third, terms were filtered using the
CogAt (Poldrack et al., 2011) ontology to ensure that only those relating

to cognitive processes (see Fig. 7B, 89 terms) were taken into account.
To assess the stability of our estimations, we computed the confidence
interval of our reverse meta-analysis probability estimations, and we split
the 14,371 studies in 20 equal folds, maximizing the measurements for
estimation. Finally, the top 5% probable terms were considered to be suf-
ficient evidence for associations with analyzed circuits.

Our analysis resulted in the selection of 25 of 356 associations (four
circuits, 89 terms), which was above the 95th percentile of probable term
mentions for studies where hippocampal–parietal circuits were reported.
For these top 5% terms, the maximum probability was estimated, across
all splits, at 0.346 0.011 for the term memory being mentioned in stud-
ies where left hippocampus and right IPS activations are simultaneously
reported, and the minimum was estimated at 0.106 0.005 for mention-
ing the term recognition in studies where left hippocampus and left IPS
activations are simultaneously reported. Hence, the SD for all top 5%
probabilities, is an order of magnitude smaller than the estimated proba-
bility, pointing out to a high confidence in our estimation.

Results
Comparison of neuropsychological measures between groups
A total of 96 children in second and third grades (age, mean =
8.19, SD = 0.63, 54 females) participated in number sense train-
ing or served as no-contact controls (Fig. 1). Sixty-nine of these
children had high-quality behavioral and fMRI data (see above,
Materials and Methods). We used two-sample t tests, x 2 tests,
and MANOVA to compare age, gender, or neuropsychological
assessments between the training and control groups.

Children in the training and control groups did not signif-
icantly differ in age (t(67) = 0.66, p = 0.51, Cohen’s d = 0.18,
BF = 0.33) and gender (x 2

1 = 0.41, p = 0.52, w = 0.08, BF =
0.38; Table 2). A MANOVA between training and control
groups on multiple neuropsychological assessments, includ-
ing the Wechsler Abbreviated Scale of Intelligence (WASI;
Wechsler, 1999; Full-Scale, Verbal, and Performance IQ)
and WJ-III (Math Fluency, Calculation, Applied Problems,
Letter-Word Identification, and Word Attack) subtests
(F(8,60) = 0.56, p = 0.807) showed no significant difference
between groups. Two-sample t tests confirmed that children
in the training and control groups did not significantly differ
in WASI (|t|values , 0.55, p values . 0.58, |Cohen’s d| ,
0.16, BF values , 0.33) and WJ-III subtests (t values , 1.31,
p values. 0.19, Cohen’s d, 0.37, BF values, 0.57; Table 2).

TD children and children with MLD in the training group
were well matched in age (t(50) = 1.47, p = 0.15, Cohen’s d = 0.43,
BF = 0.69) and gender (x 2

1 = 0.01, p = 0.93, w = 0.01, BF = 0.34;
Table 3). A MANOVA revealed a significant difference between
TD and MLD groups on combined neuropsychological assess-
ments (F(8,43) = 8.09, p , 0.001). TD children and children with
MLD in the training group were well matched on IQ measures
(|t|values, 1.22, p values. 0.23, |Cohen’s d|, 0.36, BF values,
0.53; Table 3). As expected, children with MLD performed signifi-
cantly worse than TD children on all WJ-III math subtests (|t|values
. 3.17, p values , 0.003, |Cohen’s d| . 0.92, BF values . 14.57).
Children with MLD also performed poorly on WJ-III reading subt-
ests, compared with TD children (|t|values. 2.01, p values, 0.05,
|Cohen’s d| . 0.58), although there was insufficient evidence for
group difference (0.33, BF values, 3).

In summary, children included in training and control groups
were well matched in terms of age, gender, and IQ, as well as
other standardized measures of math and reading abilities. TD
children and children with MLD in the training group were
matched in age, gender, and IQ. Compared with TD children,
children with MLD performed poorly on both math and reading
assessments, consistent with observations that comorbidity is
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one of the characteristics of MLD (Kaufmann and von Aster, 2012;
Landerl et al., 2013). Nonetheless, strong evidence (BF values. 10)
for group differences in math ability and insufficient evi-
dence (0.33 , BF values , 3) for group differences in read-
ing ability indicate specific impairments in math skills in
children with MLD. As shown in Tables 4 and 5, these results
are similar for the sample included in diffusion MRI data
analysis (a subset of resting-state fMRI data analysis sample).
In subsequent behavioral data analyses, we use the sample
from resting-state fMRI data analysis.

Changes in performance on symbolic quantity
discrimination in response to 4 weeks of number sense
training
To assess children’s behavioral performance on the symbolic
quantity discrimination task (Fig. 2A), we measured efficiency
(Townsend and Ashby, 1978), derived from dividing accuracy by
reaction time, to control for variations in speed accuracy trade-off
and to reduce the number of statistical tests required. Higher effi-
ciency scores indicated better performance. A repeated-measures

ANOVA on efficiency with time (pre/post) as a within-subject fac-
tor and group (training/control) as a between-subject factor was
conducted to assess the effects of training on symbolic quantity
discrimination task performance. Follow-up paired t tests exam-
ined changes in task performance (learning gains) in each group
and two sample t tests assessed differences in learning gains and
pretraining and post-training differences in task performance
between groups.

A repeated-measures ANOVA on symbolic quantity discrim-
ination task efficiency revealed a main effect of time (F(1,67) =
29.37, p , 0.001, h p

2 = 0.30) and an interaction between time
and group (F(1,67) = 8.31, p = 0.005, h p

2 = 0.11). There was no
significant main effect of group (F(1,67) = 0.21, p = 0.65, h p

2 ,
0.01). Training significantly improved symbolic quantity dis-
crimination task efficiency in the training group (t(51) = 6.28, p,
0.001, Cohen’s d = 0.87, BF. 100), but not in the control group
(t(16) = 0.17, p = 0.86, Cohen’s d = 0.04, BF = 0.25, Fig. 2B). Both
TD children (t(33) = 5.47, p, 0.001, Cohen’s d = 0.94, BF. 100)
and children with MLD (t(17) = 3.16, p = 0.006, Cohen’s d = 0.74,
BF = 8.43) improved with large individual differences in both
groups (coefficient of variation: TD children, 1.06; children with

Table 2. Resting-state fMRI data analysis sample

Training Control
x 2 Test or two-sample t test

Mean (SD) Mean (SD)
x 2

1 or
t(67) p

w or
Cohen’s d BF

Female to
male ratio

27:25 11:6 0.41 0.523 0.08 0.38

Age 8.21 (0.61) 8.32 (0.56) 0.66 0.513 0.18 0.33
WASI
Verbal IQ 109.25 (12.81) 107.35 (11.59) �0.54 0.590 �0.15 0.32
Performance IQ 105.44 (14.73) 105.53 (11.41) 0.02 0.982 0.01 0.28
Full-scale IQ 108.04 (12.78) 107.29 (10.02) �0.22 0.828 �0.06 0.29

WJ-III
Math fluency 97.40 (11.56) 101.41 (9.08) 1.30 0.198 0.36 0.56
Calculation 104.90 (14.44) 106.88 (11.87) 0.51 0.611 0.14 0.31
Applied problems 104.42 (13.15) 106.59 (10.88) 0.61 0.542 0.17 0.33
Letter-word
identification

109.35 (9.40) 112.00 (8.84) 1.02 0.309 0.29 0.43

Word Attack 106.73 (9.42) 107.41 (6.98) 0.27 0.785 0.08 0.29

Time 1 demographics and neuropsychological measures of 4 week number sense training (training) and no-
contact control (control) groups.

Table 3. Resting state fMRI data analysis sample

TD_Training MLD_Training
x 2 Test or two-sample t test

Mean (SD) Mean (SD)
x 2

1 or
t(50) p

w or
Cohen’s d BF

Female to
male ratio

17:17 10:8 0.01 0.929 0.01 0.34

Age 8.12 (0.57) 8.38 (0.68) 1.47 0.148 0.43 0.69
WASI
Verbal IQ 109.85 (12.23) 108.11 (14.14) �0.46 0.646 �0.13 0.32
Performance IQ 107.24 (13.62) 102.06 (16.50) �1.21 0.231 �0.35 0.52
Full-scale IQ 109.44 (11.70) 105.39 (14.59) �1.09 0.281 �0.32 0.47

WJ-III
Math fluency 103.65 (9.09) 85.61 (3.97) �8.00 ,0.001 �2.33 .100
Calculation 109.18 (14.46) 96.83 (10.70) �3.18 0.002 �0.93 14.58
Applied problems 109.06 (10.08) 95.67 (14.04) �3.97 ,0.001 �1.16 105.31
Letter-word
identification

111.21 (9.00) 105.83 (9.38) �2.02 0.049 �0.59 1.47

Word Attack 108.88 (9.62) 102.67 (7.73) �2.36 0.022 �0.69 2.65

Time 1 demographics neuropsychological measures of TD children and children with MLD in the training
group (TD_training and MLD_training).

Table 4. Diffusion MRI data analysis sample

Training Control
x 2 Test or two-sample t test

Mean (SD) Mean (SD)
x 2

1 or
t(54) p

w or
Cohen’s d BF

Female to
male ratio

22:21 7:6 ,0.01 .0.999 ,0.01 0.28

Age 8.21 (0.64) 8.39 (0.56) 0.92 0.360 0.29 0.43
WASI
Verbal IQ 109.35 (12.85) 109.15 (12.12) �0.05 0.962 �0.02 0.31
Performance IQ 103.95 (14.05) 106.23 (11.48) 0.53 0.597 0.17 0.35
Full-scale IQ 107.30 (12.82) 108.54 (10.37) 0.32 0.752 0.10 0.32

WJ-III
Math fluency 97.67 (11.66) 101.77 (8.76) 1.17 0.248 0.37 0.53
Calculation 105.26 (13.41) 107.77 (12.09) 0.61 0.548 0.19 0.36
Applied problems 103.88 (12.08) 109.85 (10.16) 1.61 0.113 0.51 0.86
Letter-word
identification

108.93 (9.13) 111.00 (8.42) 0.73 0.469 0.23 0.38

Word attack 106.58 (9.65) 106.38 (6.32) �0.07 0.945 �0.02 0.31

Time 1 demographics and neuropsychological measures of 4 week number sense training (training) and no-
contact control (control) groups.

Table 5. Diffusion MRI data analysis sample

TD_Training MLD_Training
x 2 Test or two-sample t test

Mean (SD) Mean (SD)
x 2

1 or
t(41) p

w or
Cohen’s d BF

Female to
male ratio

15:13 7:8 0.01 0.911 0.02 0.38

Age 8.15 (0.61) 8.33 (0.70) 0.91 0.370 0.29 0.43
WASI
Verbal IQ 109.00 (12.11) 110.00 (14.55) 0.24 0.811 0.08 0.32
Performance IQ 105.86 (13.69) 100.40 (14.51) �1.22 0.229 �0.39 0.56
Full-scale IQ 108.25 (11.98) 105.53 (14.54) �0.66 0.514 �0.21 0.37

WJ-III
Math fluency 103.86 (9.56) 86.13 (3.50) �6.90 ,0.001 �2.21 .100
Calculation 108.71 (14.11) 98.80 (9.30) �2.44 0.019 �0.78 3.05
Applied problems 108.46 (10.05) 95.33 (11.09) �3.94 ,0.001 �1.26 81.81
Letter-word
identification

110.82 (8.82) 105.40 (8.93) �1.91 0.063 �0.61 1.29

Word attack 108.86 (10.38) 102.33 (6.47) �2.21 0.033 �0.71 2.03

Time 1 demographics and neuropsychological measures of TD children and children with MLD in the training
group (TD_training and MLD_training).
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MLD, 1.34). In addition, learning gains—changes (pretraining to
post-training) in symbolic quantity discrimination task efficiency—
were not significantly different between the two training groups
(two-sample t test, t(50) = �0.26, p = 0.80, Cohen’s d = �0.08, BF =
0.30). These results demonstrate that 4 weeks of number sense
training improved symbolic quantity discrimination ability in both
TD children and children withMLD.

Surprisingly, our sample of children with MLD did not per-
form poorly on symbolic quantity discrimination compared with
TD children either before (t(50) = �0.71, p = 0.48, Cohen’s d =
�0.21, BF = 0.36) or after (t(50) = �1.01, p = 0.32, Cohen’s d =
�0.30, BF = 0.44) training, with comparable variability between
groups across time (coefficient of variation range: TD children,
0.23–0.31; children with MLD, 0.26–0.35; test of variance: F

values , 1.14, p values . 0.73). Post hoc analysis revealed that
children’s performance on all measures of WJ-III math subtests
were not significantly correlated with symbolic quantity discrim-
ination before training in either group (r values, 0.21, p values
. 0.42, BF values , 0.65). These results suggest that there is a
large variability in these children’s ability to perform on basic nu-
merical tasks and that mathematical difficulties may be present
even in the absence of number sense deficits.

Association between intrinsic functional connectivity of the
hippocampus and training-induced number sense learning
To test our central hypothesis that hippocampal functional cir-
cuits underpin number sense learning, we performed seed-to-
whole-brain functional connectivity analyses using the left and

Figure 3. Hippocampal functional connectivity predicts number sense training gains. A, B, Functional connectivity before training of the left and right hippocampal ROIs, selected from
Brainnetome (Fan et al., 2016) parcellations, with the left IPS positively (red) predicted learning (efficiency gains in symbolic quantity discrimination) in the training group. Hippocampal con-
nectivity with the left cuneus was negatively (blue) correlated with learning. C, Conjunction analysis of functional connectivity patterns revealed the left IPS and the left cuneus to be an over-
lapping target region across the left and right hippocampal seed-to-whole-brain connectivity positively (red) and negatively (blue) associated with learning, respectively, in the training group.
D, In TD children in the training group, hippocampal functional connectivity with the left IPS was positively associated with learning (red) and that with the left cuneus was negatively associ-
ated with learning (blue). In children with MLD in the training group, conjunction analysis did not yield any overlapping target region across the left and right hippocampal seed-to-whole-brain
functional connectivity associated with learning. L, Left; R, right.
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right hippocampal ROIs derived from the Brainnetome (Fan et
al., 2016). We first examined hippocampal connectivity patterns
associated with number sense learning in the training group as a
whole, and then followed up with analysis on TD children and
children with MLD. Our analyses of associations between hippo-
campal connectivity and number sense learning controlled for
pretraining symbolic quantity discrimination ability (see above,
Materials and Methods).

Training group
Functional connectivity of the left and right hippocampal ROIs
with the left IPS before training was positively correlated with
number sense learning in the training group (height threshold,
p, 0.005; cluster extent threshold, p, 0.05; Fig. 3A,B; Tables 6,
7). Similar results were observed at a more stringent height
threshold (p , 0.001, uncorrected). A conjunction analysis of
connectivity patterns across the left and right hippocampal ROIs
confirmed a single overlapping target region in the left IPS, as
identified by the Juelich Histologic Atlas, positively associated

with number sense learning (Fig. 3C). The left cuneus was identi-
fied as an overlapping target region negatively associated with
number sense learning. Follow-up ROI-based correlation analy-
ses were conducted in the training and control groups, using the
functional connectivity between both the left and right hippo-
campal regions and the left IPS region identified in the training
group. Similar to results from whole-brain regression analysis,
hippocampal functional connectivity with the left IPS predicted
number sense learning in the training group (left hippocampus:
r = 0.42, p = 0.002, BF = 18.10; right hippocampus: r = 0.41, p =
0.003, BF = 9.93; Fig. 4A,B; Table 8). This association was not
significant in the control group (left hippocampus: r = �0.20,
p = 0.45, BF = 0.56; right hippocampus: r = �0.14, p = 0.59,
BF = 0.53). A balanced fourfold cross-validation combined with
linear regression (see above, Materials and Methods) further vali-
dated the robustness of findings in the training group. Functional
connectivity of the left hippocampus (r(pred,actual) = 0.33, p =
0.002) and the right hippocampus (r(pred,actual) = 0.32, p =
0.002) with the left IPS was predictive of gains in symbolic quan-
tity discrimination task efficiency following training. This relation-
ship was not significant in the control group for both the left and
right hippocampal ROIs (p values. 0.50).

Direct comparisons of correlation coefficients between train-
ing and control groups revealed a significant difference in the
relationship between functional connectivity with the left IPS
and learning for the left (Z = 2.15, p = 0.02) and the right (Z =
1.90, p = 0.03) hippocampus. Additional correlational analyses
were conducted to examine the specificity of left-lateralized IPS
functional connectivity patterns associated with learning. Here,
the functional connectivity of the left and the right hippocampus
with the right IPS (a contralateral region of the left IPS identified
in the whole training group) did not significantly relate to num-
ber sense learning in the training or control group (r values ,
0.16, p values. 0.28, BF values, 0.56; Table 8).

Additional analysis confirmed that IPS regions identified
from the current study overlap with the left IPS region identified
from Neurosynth-based meta-analysis, using the term “arithme-
tic” as defined in a previous study (Supekar et al., 2021; Fig. 5A,
B), which indicates that the IPS region identified from our
whole-brain analysis converges with the region previously shown
to be involved in math cognition. Finally, when using the IPS
region identified from Neurosynth-based meta-analysis, the
association between hippocampal–left IPS circuits and learning
in response to number sense training remained significant (left
hippocampus–left IPS: r = 0.35, p = 0.011; right hippocampus–
left IPS: r = 0.30, p = 0.03; Fig. 5C,D).

Together, these results demonstrate that bilateral hippocam-
pal functional connectivity with a common target in the left IPS
is predictive of learning in response to a 4 week number sense
training.

TD and MLD groups
We next examined whether hippocampal functional circuits pre-
dict number sense learning similarly or differently between chil-
dren with and without MLD. We first separately conducted
seed-to-whole-brain connectivity analyses for the left and right
hippocampus in TD children and children with MLD. In TD
children, functional connectivity of the left and right hippocam-
pal ROIs with the left IPS predicted number sense learning
(Tables 6, 7), similar to the results in the whole training group.
In a conjunction analysis of the connectivity patterns across the
left and right hippocampal ROIs, TD children showed the
left IPS as an overlapping region positively associated with

Table 6. Brain regions showing positive and negative relations between func-
tional connectivity with the left hippocampus and symbolic quantity discrimi-
nation efficiency gain in response to 4 week number sense training

Region Number of voxels Peak intensity
MNI coordinates
x, y, z (mm)

Positive relation
Training
L, IPS/SMG/SPL 83 3.49 �48, �42, 54

Training, TD children
L, IPS/SPL/SMG 69 4.59 �24, �48, 42
L, MFG/PCG/SFG 68 4.18 �22, 12, 50

Training, children with MLD (none)
Negative relation
Training
L, CUN/PCUN 112 3.48 �10, �64, 26

Training, TD children
L SOG/CUN/PCUN 243 4.46 �22, �62, 24

Training, children with MLD (none)

CUN, Cuneus; MFG, middle frontal gyrus; PCG, precentral gyrus; PCUN, precuneus; SFG, superior frontal gyrus;
SMG, supramarginal gyrus; SOG, superior occipital gyrus; SPL, superior parietal lobule; L, left; R, right.

Table 7. Brain regions showing positive and negative relations between func-
tional connectivity with the right hippocampus and symbolic quantity discrimi-
nation efficiency gain in response to 4 week number sense training

Region Number of voxels Peak intensity
MNI coordinates
x, y, z (mm)

Positive relation
Training
L, IPS/SPL/SMG 156 3.33 �34, �40, 50

Training, TD children
L IPS/SPL/SMG 75 4.20 �24, �48, 44

Training, children with MLD (none)
Negative relation
Training
L, CUN/PCUN 140 3.92 �12, �62, 28

Training, TD children
L, PCUN/PCC 86 4.69 �4, �50, 10
L, SOG/CUN/PCUN 138 3.95 �22, �62, 24
R, SMG/AG/IPS 219 3.71 38, �52, 28
L, AG/LOC 147 3.44 �40, �76, 44

Training, children with MLD
R, CUN/LOC/OP 314 7.56 14, �90, 30

AG, Angular gyrus; CUN, cuneus; LOC, lateral occipital cortex; OP, occipital pole; PCUN, precuneus; SMG,
supramarginal gyrus; SOG, superior occipital gyrus; SPL, superior parietal lobule; L, left; R, right.
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learning and the left cuneus as an overlapping region nega-
tively associated with learning (Fig. 3D), again replicating the
results of the whole training group. In contrast to the distinc-
tive pattern observed with the TD group, whose functional
connectivity between hippocampal regions and the left IPS
was positively associated with learning, children with MLD
showed no brain regions as targets from hippocampus to
whole-brain connectivity positively associated with number
sense learning, for either left or right hippocampal ROIs
(Tables 6, 7). For the right hippocampus, its connectivity with
the right cuneus was negatively associated with learning in
children with MLD, a similar pattern observed in TD children,
although in the contralateral side of the cuneus. Considering
the possibility that hippocampal–left IPS circuits were not

detected at the whole-brain level because of
a more heterogeneous sample in the MLD
group, we next performed ROI-based cor-
relation analyses for both groups.

Using the left IPS region identified in
the whole training group as the target ROI,
we found that hippocampal functional
connectivity with the left IPS is positively
associated with number sense learning in
the TD group (left hippocampus: r = 0.43,
p = 0.01, BF = 3.98; right hippocampus:
r = 0.38, p = 0.03, BF = 4.58; Table 9) as
well as in children with MLD (left hippo-
campus: r = 0.52, p = 0.03, BF = 2.20; right
hippocampus: r = 0.52, p = 0.03, BF =
0.93). In a cross-validation analysis (see
above, Materials and Methods), functional
connectivity of the left (r(pred,actual) =
0.26, p = 0.02) and right hippocampus (r
(pred,actual) = 0.37, p = 0.006) with the
left IPS was predictive of learning in TD
children. In children with MLD, the rela-
tionship between functional connectivity
and learning did not reach statistical signifi-
cance at p, 0.05 in the left (r(pred,actual) =
22, p = 0.06) and right (r(pred,actual) = 0.10,
p = 0.15) hippocampus.

Direct comparisons of correlation coef-
ficients between TD and MLD groups

revealed no significant difference in the relationship between
hippocampal functional connectivity with the left IPS and
learning gains (left hippocampus: Z = 0.37, p = 0.36; right hip-
pocampus: Z = 0.56, p = 0.29). Finally, similar to the results
from the whole training group, functional connectivity of the
left and right hippocampus with the right IPS did not signifi-
cantly relate to learning in TD children or children with MLD
(r values, 0.33, p values. 0.19, BF values, 0.55; Table 9).

To further address whether the relation between hippocam-
pal–parietal functional connectivity and number sense learning
varies as a function of individual differences in math ability, we
additionally used a dimensional approach. In a multiple regression
model, number sense learning (gains in symbolic quantity discrim-
ination task efficiency) was entered as a dependent variable, hippo-
campal–parietal connectivity (left hippocampus to left IPS or right
hippocampus to left IPS link), math ability (WJ-III Math Fluency),
and interaction between hippocampal–parietal connectivity and
math ability were entered as independent variables, and the pre-
training symbolic number comparison efficiency was entered as a
covariate. We found a significant main effect of hippocampal–pari-
etal connectivity (left hippocampus to left IPS: b = 0.36, SE = 0.12,
t = 3.13, p = 0.003; right hippocampus to left IPS: b = 0.32, SE =
0.12, t = 2.57, p = 0.01) but no significant main effect of math abil-
ity or interaction between hippocampal–parietal connectivity and
math ability (t values , 0.81, p values . 0.42) on number sense
learning.

In summary, in TD children, both left and right hippocampal
functional connectivity with the left IPS predicted training-
induced number sense learning, similar to that in the whole
training group. Although hippocampal–left IPS circuits were not
detected at the whole-brain level, children with MLD showed
hippocampal–left IPS functional connectivity associated with
number sense learning in ROI-based analysis, which was rela-
tively weaker but not significantly different from that in TD

Table 8. Correlations between functional and structural connectivity and sym-
bolic quantity discrimination efficiency gain in 4 week number sense training
(training) and no-contact control (control) groups

Training (N = 52†; 43‡) Control (N = 17†, 13‡)

r p BF r p BF

Functional connectivity
L HIPP–L IPS 0.42** 0.002 18.10 �0.20 0.445 0.57
R HIPP–L IPS 0.41** 0.003 9.93 �0.14 0.589 0.53
L HIPP–R IPS �0.10 0.500 0.33 �0.14 0.586 0.54
R HIPP–R IPS 0.15 0.289 0.34 �0.10 0.708 0.55

Structural connectivity
L HIPP–L IPS �0.04 0.821 0.39 0.16 0.603 0.57
R HIPP–L IPS �0.20 0.190 0.61 �0.08 0.803 0.75
L HIPP–R IPS �0.12 0.448 0.54 0.08 0.803 0.59
R HIPP–R IPS �0.03 0.865 0.38 �0.25 0.415 1.10

†Number of participants included in functional connectivity analysis.
‡Number of participants included in structural connectivity analysis.
**p , 0.01.
Boldface BF values (.3) provide evidence for H1. BF values between 0.33 and 3 provide absence of evidence
(i.e., insufficient evidence for either H1 or Ho; Keysers et al., 2020). HIPP, Hippocampus; L, left; R, right.

Figure 4. Hippocampal–parietal functional circuits predict number sense training gains. A, B, Scatter plots of the relation-
ship between functional connectivity (FC) of the left (A) and right (B) hippocampus with the left IPS and changes in efficiency
in symbolic quantity discrimination (efficiency gain) in children who received training (Training) and no-contact control group
(Control). Greater FC with the left IPS predicts efficiency gain in the Training group (all r values . 0.40, all p values ,
0.004), but not in the Control group (all |r | values, 0.21, all p values. 0.44). Target (IPS) regions of interest were iden-
tified using a 6 mm sphere centered on the peak voxel to estimate FC. L, Left, R, right.
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children. Finally, additional analysis using
math ability as a continuous variable con-
firmed that the relation between hippocam-
pal–parietal connectivity and learning did not
significantly vary between individuals with
different levels of math ability.

Association between hippocampal–parietal
white matter pathways and training-
induced number sense learning
To determine whether structural integrity
plays a similar role in learning as functional
circuitry, we examined the relation between
pretraining hippocampal–parietal white mat-
ter connectivity and number sense learning.
Using probabilistic tractography of HARDI
data, we identified long-range anatomic con-
nections between the hippocampus and IPS,
identified from functional connectivity analy-
sis, averaged across all children (Fig. 6; see
above, Materials and Methods) and assessed
the relation between hippocampal–parietal
structural connectivity and number sense
learning. In contrast to the functional connec-
tivity results, however, we did not observe evidence
for structural connectivity of the hippocam-
pus with IPS associated with training-related
gains in symbolic quantity discrimination
task (|r | values , 0.21, p values . 0.18, BF
values , 0.62; Table 8). Further, there were
no significant associations between structural
connectivity between hippocampus and IPS
and number sense learning in TD children
and children with MLD (|r | values , 0.39,
p values. 0.16, BF values, 1.34; Table 9).

To further address the potential contribu-
tion of structural connectivity measures to
learning, we conducted multiple regression
analysis to determine whether functional and
structural connectivity measures together pre-
dicted number sense learning better than
each measure alone. Specifically, we examined
whether the full model (Model 4) including all hippocampal–IPS
functional and structural connectivity measures as predictors,
compared with including functional or structural connectivity
measures alone (Models 2 and 3, respectively), better predict
number sense learning (Table 10). Here, we found that the full
model (Model 4) explained most variance in number sense learn-
ing (adjusted R2 = 0.54, F(9,33) = 6.55, p , 0.001), significantly
better than the model including structural connectivity measures
alone (Model 3; DR2 = 0.33, p , 0.001, BF . 100). Critically,
there was insufficient evidence (0.33 , BF , 3) that the full
model including both functional and structural connectivity
measures (Model 4) explain additional variance in learning,
compared with the model including functional connectivity
measures alone (Model 2; DR2 = 0.14, p = 0.026, BF = 2.26).
Thus, we did not observe evidence that structural connectivity
measures jointly predict number sense learning over and above
functional connectivity measures.

Together, these results suggest that the integrity of white mat-
ter pathways between the hippocampus and IPS in early child-
hood is not predictive of number sense learning in the
current study. In addition, we observed evidence for joint

Figure 5. Hippocampal connectivity with a left IPS region, identified using Neurosynth-based meta-analysis, predicts
number sense training gains. A, B, Left IPS regions (white circle) overlap across (A) left and (B) right hippocampal con-
nectivity patterns identified in the current study and the IPS region identified from Neurosynth-based meta-analysis. C,
D, Scatter plots of the relationship between functional connectivity (FC) of the (A) left and (B) right hippocampal with
the left IPS region identified from Neurosynth-based meta-analysis. FC between the hippocampus and left IPS correlates
with changes in efficiency in symbolic quantity discrimination (efficiency gain) following number sense training (all r
values . 0.29, all p values , 0.04). The IPS region of interest was identified using a 6 mm sphere centered on the
peak voxel to estimate FC. L, Left, R, right.

Table 9. Correlations between functional and structural connectivity and sym-
bolic quantity discrimination efficiency gain in TD children and children with
MLD in the training group (TD_Training and MLD_Training)

TD_Training
(N = 34†, 28‡)

MLD_Training
(N = 18†, 15‡)

r p BF r p BF

Functional connectivity
L HIPP–L IPS 0.43* 0.012 3.98 0.52* 0.026 2.20
R HIPP–L IPS 0.38* 0.025 4.58 0.52* 0.027 0.93
L HIPP–R IPS �0.16 0.358 0.44 ,0.01 0.997 0.50
R HIPP–R IPS 0.03 0.855 0.39 0.32 0.197 0.54

Structural connectivity
L HIPP–L IPS �0.07 0.734 0.42 �0.11 0.694 0.59
R HIPP–L IPS �0.23 0.238 1.33 �0.25 0.362 0.54
L HIPP–R IPS �0.05 0.806 0.43 �0.38 0.164 0.91
R HIPP–R IPS 0.03 0.897 0.41 �0.24 0.398 0.57

†Number of participants included in functional connectivity analysis.
‡Number of participants included in structural connectivity analysis.
*p ,0.05.
Boldface BF values (.3) provide evidence for H1. BF values between 0.33 and 3 provide absence of evidence
(i.e., insufficient evidence for either H1 or Ho; Keysers et al., 2020). HIPP, Hippocampus; L, left; R, right.
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associations between hippocampal–IPS functional circuits
and number sense learning, independent of the underlying
structural connectivity.

Reverse meta-analysis of associations between hippocampal–
parietal circuits and cognitive functions
To further determine the functional role of hippocampal–
IPS circuits identified in the current study, we conducted a
reverse meta-analysis across 14,371 published fMRI studies
up until July 2018 from the Neurosynth (Yarkoni et al.,
2011) database in relation to 89 CogAt terms (Poldrack et
al., 2011). To perform reverse meta-analysis relating a cog-
nitive function with a specific circuit, we computed the
probability that a term associated with a cognitive function
is mentioned in a study, given that the study jointly reports
activations in the left or right hippocampus and left or right
IPS. We considered sufficient evidence for an association if
its probability is among the 5% most probable term associa-
tions for all analyzed circuits (see above, Materials and
Methods). This meta-analysis tool allowed us to synthesize
a wealth of findings from previous research and generalize
the findings of hippocampal–parietal circuits across various
tasks and analysis approaches (Müller et al., 2018).

Our results from reverse meta-analysis show that coactiva-
tions of both the left and right hippocampus and IPS are signifi-
cantly associated with the term learning as well as related terms,
encoding, memory, and retrieval (Fig. 7). The term recognition
was associated with coactivations of the left hippocampus and
left IPS and those of bilateral hippocampus and right IPS. Two
terms, attention and working memory, were associated with
coactivations of the right hippocampus and bilateral IPS. The
term emotion was associated with coactivations of the right
hippocampus and right IPS. Finally, the term perception was
associated with coactivations of the left hippocampus and left
IPS. Notably, no other cognitive atlas terms were significantly
associated with hippocampal–parietal functional circuits. These
meta-analytic findings from a large set of fMRI studies expand
on findings from our training study and provide converging evi-
dence for a strong association between hippocampal–parietal
functional circuitry and learning and related functions.

Discussion
The current study examined brain circuit mechanisms of learn-
ing in response to an integrative number sense training during
an important developmental period for foundational cognitive
skill acquisition. Our results reveal that number sense training
significantly improves symbolic quantity discrimination ability
in both TD children and children with MLD, and that hippo-
campal–left IPS functional circuits predict number sense training
gains. Our findings provide important insights into brain-based
biomarkers for early identification of individual differences in ac-
quisition of number sense and inform interventions targeting
individual needs (Hale et al., 2010).

We found that our integrative number sense training was
effective across children with a wide range of abilities. Our results
build on previous training studies that enhance understanding of
numerical magnitudes in children (Wilson et al., 2006; Kucian et
al., 2011; Dyson et al., 2013). Our study maximized effectiveness
of training by uniquely combining computerized games with
tutoring activities using physical manipulatives and provides
new insights into the development of effective hybrid interven-
tions across children with different backgrounds. More generally,
individualized training programs designed to enhance integra-
tion of symbolic and nonsymbolic representations of quantity
may have the potential to build strong foundations for mathe-
matical learning across all children.

It is noteworthy that before training, we did not observe poor
number sense in our sample of children with MLD who

Figure 6. Hippocampal–parietal white matter tracts in children. White matter tracts (depicted in orange) are identified between the hippocampus (purple) and IPS (light green), averaged
across all children using probabilistic tractography of high angular resolution diffusion imaging data. IPS ROIs were selected from Brainnetome (Fan et al., 2016) parcellations that overlapped
with target ROIs identified in functional connectivity analysis (left IPS) and contralateral regions (right IPS) to estimate hippocampal–parietal structural connectivity. L, Left; R, right.

Table 10. Model comparison between multiple regression analysis including
functional and/or structural connectivity measures as predictors of symbolic
quantity discrimination efficiency gain in the training group (N = 43)

Model fit
Adjusted
R2 F df p

Model 1: Baseline (1 1 Control) 0.25 14.73*** 1, 41 ,0.001
Model 2: (Baseline 1 FC) 0.44 7.50*** 5, 37 ,0.001
Model 3: (Baseline 1 SC) 0.22 3.33* 5, 37 0.014
Model 4: (Baseline 1 FC 1 SC) 0.54 6.55*** 9, 33 ,0.001

Model comparison D R2 F df p BF

Model 2 (Model 1 1 FC) vs Model 1
(Baseline)

0.24 4.45** 4 0.005 7.33

Model 3 (Model 1 1 SC) vs Model 1 0.05 0.62 4 0.65 0.05
Model 4 (Model 2 1 SC) vs Model 2 0.14 3.17* 4 0.026 2.26
Model 4 (Model 3 1 FC) vs Model 3 0.33 7.61*** 4 ,0.001 .100

Control, Time 1 symbolic quantity discrimination task efficiency; functional connectivity, estimates of ipsilat-
eral and contralateral functional connectivity between left and right hippocampus and left and right intra-
parietal sulcus; structural connectivity, estimates of ipsilateral and contralateral structural connectivity
between hippocampus and intraparietal sulcus. FC, functional connectivity; SC, structural connectivity. *p ,
0.05, **p , 0.01, ***p , 0.001. Boldface BF (.3) provides evidence for H1. BF values between 0.33 and
3 provide absence of evidence (i.e., insufficient evidence for either H1 or Ho). BF values below 0.33 provide
evidence of absence (evidence for Ho; Keysers et al., 2020).
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performed significantly worse than TD children on assessments
of arithmetic problem solving and mathematical reasoning, simi-
lar to the previous observation that difficulties in math problem
solving may be present even in the absence of number sense defi-
cits (Peters et al., 2020). As MLD is considered a heterogeneous
disorder with multiple cognitive deficits (Fias et al., 2013;
Kaufmann et al., 2013), further studies that employ assessments
in various cognitive domains may help determine multidimen-
sional neurocognitive deficits in MLD. In addition, development
of classification of subtypes of MLD will be an important avenue
for future research.

Our next goal was to investigate whether the integrity of hip-
pocampal–parietal circuits predicts individual differences in
number sense training gains in children. We identified an intrin-
sic functional circuit that links the hippocampus, a hub for learn-
ing and memory, with a parietal region consistently implicated
in numerical quantity representation, which predicts number
sense learning. Our finding converges on previous studies dem-
onstrating the key functional role of the hippocampus in the de-
velopment of arithmetic skills in children (Menon, 2016; Menon
and Chang, 2021) and learning and memory more broadly
(Zeithamova and Bowman, 2020). Notably, this contribution
occurred even though our number sense training did not require

rote memorization of facts and is consistent with emerging evi-
dence for a role of the hippocampus in binding cognitive repre-
sentations (Degonda et al., 2005; Olsen et al., 2012).

Our finding is also consistent with previous evidence indicat-
ing the role of IPS in representation of quantities (Cohen Kadosh
et al., 2007; Piazza and Eger, 2016). Remarkably, functional con-
nectivity of the left and right hippocampus identified a single
region in the left IPS that predicted learning. Previous studies
have found that compared with its right hemisphere homolog,
the left IPS is particularly important for symbolic number proc-
essing (Ansari, 2007; Piazza et al., 2007; Bugden et al., 2012;
Sokolowski et al., 2017) and that with age and increased profi-
ciency in numerical skills, there is an increase in left IPS activity
(Rivera et al., 2005; Ansari, 2008; Emerson and Cantlon, 2015;
Bugden et al., 2016). In this context, it is possible that our finding
of left-lateralized IPS response may be reflective of increased pro-
ficiency for symbolic numbers.

In addition to the left IPS as a converging target region for
the left and right hippocampal functional circuits positively asso-
ciated with number sense learning, the left cuneus, implicated
in low-level visual processing (Vanni et al., 2001), was identified
as a target region negatively associated with number sense train-
ing gains. This finding suggests that children’s number sense

Figure 7. Reverse meta-analysis of 14,371 fMRI studies and cognitive functions reveals a significant association between hippocampal–parietal functional circuits and learning. A, A reverse
meta-analysis was performed to map hippocampal–parietal functional circuits identified in the current study to cognitive functions (see above, Materials and Methods). B, The top 5% cognitive
functions that are mentioned in published articles where coactivations of the left or right hippocampus (HIPP) and the left or right IPS are reported. L, Left; R, right.
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learning likely relies on enhanced semantic representation of
quantity, rather than visual perception of numbers. In fact,
greater hippocampal functional connectivity with a visual region
(cuneus) predicted poor learning. No other brain regions were
identified as overlapping target regions across the left and right
hippocampal functional connectivity associated with learning.
Together, our findings demonstrate a key role for hippocampal–
parietal circuits in children’s number sense learning.

Our whole-brain analysis of subgroups of children revealed
that TD children recapitulate the hippocampal–left IPS
functional circuit-related learning as seen in the combined
group. Although no significant target regions were detected
in hippocampal connectivity positively associated with
learning in children with MLD, possibly because of modest
sample size in this group, additional analysis confirmed
that the association between hippocampal–left IPS circuits
and learning was similar in the TD and MLD groups, con-
sistent with our observation of comparable training gains in
the two groups. Thus, our findings identify hippocampal–
left IPS functional circuit as a novel locus of learning that
supports acquisition of fundamental building blocks of nu-
merical proficiency across all children, including those with
learning disabilities. Future studies with a larger sample of
children with MLD may further clarify heterogeneous pro-
files of learning-related hippocampal circuits.

Probabilistic tractography of HARDI data revealed the pres-
ence of long-range anatomic connections between the hippo-
campus and the parietal cortex in 7- to 10-year-old children,
replicating observations in younger children (Ngo et al., 2017).
In contrast to findings from functional circuit analysis, however,
structural connectivity between the hippocampus and IPS did
not relate to individual differences in learning. In addition,
although hippocampal–parietal functional connectivity measures
jointly predicted learning over and above measures of structural
integrity, we did not find evidence that structural connectivity
measures jointly predict learning over and above functional
connectivity measures. Thus, although hippocampal–parietal
white matter tracts appear to be formed by early childhood, pre-
cisely how they contribute to number sense learning remains
unresolved. Crucially, our study provides evidence for emergent
functional properties of hippocampal–parietal circuits as signifi-
cant and independent neural predictors of number sense
learning, which may inform early identification of individual
differences in response to intervention. Future studies using
larger datasets with an active control group may help identify
generalizable predictive features of learning and further deter-
mine specific mechanisms underlying acquisition of founda-
tional cognitive skills.

Finally, our findings converge on results from a reverse meta-
analysis in which we examined the role of hippocampal–parietal
functional links identified in the present study. Across 14,371
fMRI studies and 89 cognitive atlas terms, our analysis revealed a
significant association between bilateral hippocampal–IPS func-
tional circuits and the term learning, along with related terms
memory, encoding, and retrieval. Interactions between the
hippocampus and neocortex are known to be crucial for
memory formation (McClelland et al., 1995; Tse et al., 2007),
and hippocampal connectivity with parietal and frontal cort-
ical regions have been shown to be associated with longitudi-
nal gains in memory retrieval fluency in children (Qin et al.,
2014). Together, our findings identify specific hippocampal–
neocortical functional circuitries that may contribute to
learning and memory consolidation.

Although involvement of the hippocampus in learning and
memory is well known, the specific role of hippocampal–IPS
functional circuits has been less clear as research on the role of
parietal cortex in memory has emphasized its angular gyrus sub-
division in episodic memory (Sestieri et al., 2017). The angular
gyrus, as part of the default mode network, is crucial for generat-
ing integrated representation of information retrieved from epi-
sodic memory (Binder and Desai, 2011). In contrast, the IPS, as
part of the dorsal attention network, is crucial for representing
and manipulating visuospatial perceptual information (Uddin et
al., 2010). Consistent with this view, we found that IPS-relevant
terms, specifically perception, attention, and working memory,
are associated with hippocampus–IPS circuits. In the context of
number sense learning, we propose that these functions, together
with learning and memory, support the formation of semantic
associations between quantities presented in nonsymbolic and
symbolic formats. Thus, findings from a reverse meta-analysis of
a large corpus of fMRI studies and our training study suggest
that hippocampal–IPS circuits constitute a distinct canonical cir-
cuit for integrating and manipulating mnemonic and visuospa-
tial information that plays a foundational role in children’s
cognitive skill acquisition. More broadly, interventions designed
to engage these brain circuits, such as integrative number sense
training in the current study, may effectively promote learning
across various cognitive domains.

In summary, the current study demonstrates that core learn-
ing and memory functional circuits anchored in the hippocam-
pus play an important role in learning number sense, a
fundamental building block of mathematical skill acquisition.
Notably, the left IPS, implicated in numerical proficiency, was a
convergence zone for the left and right hippocampal functional
circuits that predict individual differences in number sense
learning. Our study provides foundational knowledge about
brain circuit mechanisms that propel learning in all children
and delineates a robust target for effective interventions and
monitoring response to cognitive training.
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