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Quantification of microtubule stutters: dynamic 
instability behaviors that are strongly associated 
with catastrophe

ABSTRACT  Microtubules (MTs) are cytoskeletal fibers that undergo dynamic instability (DI), 
a remarkable process involving phases of growth and shortening separated by stochastic 
transitions called catastrophe and rescue. Dissecting DI mechanism(s) requires first character-
izing and quantifying these dynamics, a subjective process that often ignores complexity in 
MT behavior. We present a Statistical Tool for Automated Dynamic Instability Analysis 
(STADIA) that identifies and quantifies not only growth and shortening, but also a category 
of intermediate behaviors that we term “stutters.” During stutters, the rate of MT length 
change tends to be smaller in magnitude than during typical growth or shortening phases. 
Quantifying stutters and other behaviors with STADIA demonstrates that stutters precede 
most catastrophes in our in vitro experiments and dimer-scale MT simulations, suggesting 
that stutters are mechanistically involved in catastrophes. Related to this idea, we show that 
the anticatastrophe factor CLASP2γ works by promoting the return of stuttering MTs to 
growth. STADIA enables more comprehensive and data-driven analysis of MT dynamics 
compared with previous methods. The treatment of stutters as distinct and quantifiable DI 
behaviors provides new opportunities for analyzing mechanisms of MT dynamics and their 
regulation by binding proteins.

1. INTRODUCTION
Microtubules (MTs) are protein-based biological polymers that have 
a central role in fundamental eukaryotic processes including cellular 
organization, chromosome separation during cell division, and in-
tracellular transport (Goodson and Jonasson, 2018). Crucial to the 
function of MTs in these processes is a well-known behavior termed 
dynamic instability (DI), where the polymers switch stochastically 
between periods of growth and shortening as seen in traditional 
MT length-history plots (Figure 1, A and B) (Mitchison and Kirschner, 
1984; Desai and Mitchison, 1997). Accurate quantification of MT DI 
behavior is essential for understanding its significance and mecha-
nism and also for investigating the activities of DI-regulating 
proteins and pharmaceutical agents (e.g., chemotherapy drugs, 
fungicides).
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1.1. Traditional DI measurements
Traditionally, MTs have been treated as two-state polymers; that is, 
MTs have been considered to be either growing or shortening, with 
abrupt, instantaneous transitions called catastrophes and rescues 
between these two phases (Figure 1, A, B, and D). In this framework, 
MT behavior is characterized by four quantities called DI parameters 
(Walker et al., 1988):

•	 Vgrowth—velocity of growth, commonly measured as the mean of 
the growth rates as averaged over the set of growth phases

FIGURE 1:  Qualitative examples of MT behaviors that do not fit the two-state (growth-
shortening) framework. (A) An illustration of the classically recognized two-state representation 
of dynamic instability (DI), in which behavior is classified as either growth or shortening phases, 
with instantaneous transitions known as catastrophe and rescue events. (B, D) Zoomed-out 
length-history plots of simulation data (B, dimer-scale 13-protofilament model, temporal 
resolution of ~1650 dimer-scale events per second per MT, Materials and Methods Section 5.2) 
and experimental data (D, temporal resolution of 2 frames per second, note that 
depolymerizations were not tracked in their entirety in these experiments, Materials and 
Methods Section 5.1). Black rectangles in B and D indicate the zoomed-in portions shown in C 
and E, respectively. (C, E) Closer inspection of transitions shows ambiguous behavior that 
cannot clearly be categorized as either growth or shortening.

•	 Vshort—velocity of shortening, com-
monly measured as the mean of the 
shortening rates as averaged over the 
set of shortening phases

•	 Fcat—frequency of catastrophe, com-
monly measured as the number of catas-
trophes (transitions from growth to 
shortening) per time in growth

•	 Fres—frequency of rescue, commonly 
measured as the number of rescues 
(transitions from shortening to growth) 
per time in shortening

The specific procedures for measuring 
these DI parameters have varied among re-
search groups, but methods typically begin 
with the user specifying the minimal values 
(i.e., thresholds) of length change, time du-
ration, and/or velocity required for recog-
nizing phases of growth and shortening; 
sometimes pauses are also allowed, as 
discussed more below in Section 1.2. Then 
the length-history plot is partitioned into 
growth and shortening segments (Figures 
1A and 2, A and B). The endpoints of the 
segments are assumed to correspond to 
the events of catastrophe and rescue, and 
the slopes of the segments provide the 
growth or shortening velocities. In other 
words, the velocity of an individual growth 
or shortening phase is typically determined 
as the slope of a line drawn between the 
points of catastrophe and rescue (e.g., 
Zanic, 2016).

1.2. Limitations of common methods 
for quantifying dynamic instability
While determination of DI parameters as 
described above is a standard way to quan-
tify MT behavior (see, e.g., Portran et  al., 
2017; Zwetsloot et al., 2018; Kapoor et al., 
2019, for recent examples), there are as-
pects of MT behavior that are not captured 
using this approach. First, it has long been 
recognized that both growth and shorten-
ing rates are variable. This variability occurs 
both with and without MT binding proteins 
(MTBPs), and it is observed both within and 
between individual growth phases and simi-
larly for shortening phases (e.g., Gilder-
sleeve et  al., 1992; Pedigo and Williams, 
2002; Schek et  al., 2007; Lawrence et  al., 

2018). Spectral analysis of such variability in growth and shortening 
rates has suggested that the two-state (growth and shortening) 
model approximation agrees well with experimentally observed MT 
behavior when frequencies in the length-history data are analyzed at 
timescales longer than ∼1 min but underestimates the observed 
variability at timescales shorter than ∼1 min (Odde et  al., 1996). 
These observations raise the concern that DI analysis methods that 
categorize an entire period between nucleation (or rescue) and ca-
tastrophe as a single growth or shortening phase could cause func-
tionally significant details of MT behavior to be missed.



Volume 33  March 1, 2022	 STADIA quantifies MT stutters  |  3 

Second, pauses, attenuation phases, and other intermediate 
states have been observed in experiments and proposed in mod-
els, but the way these behaviors have been identified and defined 
has varied. Pauses are commonly observed in vivo (e.g., Sammak 
and Borisy, 1988; Schulze and Kirschner, 1988; Waterman-Storer 
and Salmon, 1997; Gierke et al., 2010; Kamath et al., 2010; Apple-
gate et al., 2011). Pauses have also been observed in vitro in the 
presence of MTBPs (e.g., Moriwaki and Goshima, 2016), cell ex-
tracts (e.g., Keller et al., 2008), and drugs (e.g., Toso et al., 1993), 

and occasionally for purified tubulin (e.g., Walker et  al., 1988). 
Recognition of states other than growth and shortening has led 
various authors to consider theoretical three- or four-state models 
in which the additional states are pauses or an intermediate state 
(Odde et  al., 1995; Tran et  al., 1997; Jánosi et  al., 2002; Maly, 
2002; Keller et al., 2008; Smal et al., 2010; Blackwell et al., 2017). 
Thus, it is clear that many researchers are interested in methods for 
identifying states beyond growth and shortening in data and the 
inclusion of such states in the development of theory. However, 

FIGURE 2:  Comparison of classical DI analysis method and STADIA. Classical DI analysis method (A, B): Major peaks 
and valleys (blue triangles) are first identified (A), and these are defined as catastrophes and rescues (or nucleation 
events), respectively. Each period from a nucleation event or rescue to a catastrophe is defined as a growth phase, and 
each period from a catastrophe to a complete depolymerization or rescue is defined to be a shortening phase (B). Then, 
Vgrowth and Vshort are calculated from the slopes of straight line segments plotted between the transitions (B, orange 
lines) or alternatively, from regression lines fitted to the data points in each period. Fcat and Fres are calculated from the 
number of catastrophes or rescues divided by the total time in growth or shortening, respectively. STADIA (C–J): An 
initial approximation of inputted length-history data is produced by connecting major peaks and valleys with line 
segments (C, similar to classical methods). STADIA then iteratively adds segment endpoints to improve the 
approximation (D, this iterative process is regulated by user-defined parameters Maximum Error Tolerance and 
Minimum Segment Duration). The time duration, height change, and slope (velocity) of each line segment are measured 
(D) and visualized as a point in 3-dimensional space (E). The orange circles in (E, F) denote the approximate location of 
the data point corresponding the example line segment in (D). The line segments are grouped into “clusters” (see 
Figure 3), as indicated by the colors in the plots (F, G, J; key in left column of H). The clusters are named and grouped 
into larger behavior classes based on their average features (e.g., average slope) (H). STADIA then identifies multiple 
types of transitions (I), allowing the calculation of various metrics including (and expanding beyond) the traditional 
Vgrowth, Vshort, Fcat, and Fres. In (G, J), the white lines represent the raw length-history data, and the black lines represent 
the line segment approximation. Results Section 2.2 contains a more thorough overview of STADIA’s analysis procedure, 
and full details are provided in Materials and Methods Sections 5.4–5.6.
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there is not a general consensus on how these states should be 
defined.

In particular, as noted in Section 1.1, identification of growth, 
shortening, and pause phases in length-history data frequently re-
lies on fixed thresholds for velocity, length change, and/or time du-
ration. For example, it has been common to require a length-change 
threshold of at least 0.5 microns to recognize a growth or shortening 
phase, but the exact way in which this threshold was applied to data 
has varied among research groups (e.g., compare Sammak and 
Borisy, 1988; Dhamodharan and Wadsworth, 1995; Rusan et  al., 
2001; Kamath et al., 2010; and Fees et al., 2017). Others have used 
combinations of thresholds on the speed of length change (e.g., in 
pixels per frame or microns per minute), length change itself, and/or 
number of data points involved (e.g., compare Panda et al., 1996; 
Gierke et al., 2010; Kiris et al., 2010; Matov et al., 2010; Yenjerla 
et al., 2010; Mahrooghy et al., 2015; and Moriwaki and Goshima, 
2016). It is important to be aware that thresholds have differed be-
tween analyses, because it is well-established (but perhaps not 
widely recognized) that thresholds can have dramatic effects on 
measurements of MT dynamics (e.g., Odde et  al.,1996; Gierke 
et al., 2010; Matov et al., 2010; Smal et al., 2010; Prahl et al., 2014; 
Guo et al., 2018).

Finally, recent improvements in imaging technology have en-
abled acquisition of MT DI data with both high temporal and high 
spatial resolution, which allows for the possibility of analyzing 
length-history data at finer scales (e.g., Maurer et  al., 2014; An-
drecka et al., 2016; Mickolajczyk et al., 2019). These data have veri-
fied the intrinsic variability of MT behavior. They have also demon-
strated that both growth and shortening phases can include 
significant time periods (e.g., a few seconds in duration or longer) 
during which the growth or shortening velocity slows significantly 
(Figure 1, C and E; see also Maurer et al., 2014; Duellberg et al., 
2016a,b; Rickman et al., 2017). These slowdown periods likely over-
lap with pauses discussed above, though it is important to note that 
“bona fide” pauses are often considered to be time periods “during 
which no polymerization or depolymerization occurs” (Gierke et al., 
2010) and so are separable from periods of slowed growth or short-
ening, at least in principle.

Significantly, these slowdown periods can also occur in associa-
tion with catastrophe (Maurer et  al., 2014; Duellberg et  al., 
2016a,b; see also predictions based on simulations in Margolin 
et al., 2012), making it difficult to determine with reasonable preci-
sion where transitions between phases begin and end. To illustrate 
this problem, consider the zoomed-out length-history plots that 
are typically used for DI analysis (Figure 1, B and D). Examination 
of these plots can make the task of determining when transitions 
occur look trivial. However, the zoomed-in views made possible by 
high-resolution data acquisition (Figure 1, C and E) demonstrate 
the difficulty of identifying the points of transition and/or catego-
rizing DI behaviors.

Thus, many researchers have recognized that MT DI behavior is 
more complex than a simple two-state system of growth and short-
ening with abrupt transitions. The four traditional DI parameters 
(Vgrowth, Vshort, Fcat, and Fres) would be sufficient to quantify such a 
two-state system but are not sufficient to quantify all aspects of ob-
served MT DI as discussed above. One previous approach to deal-
ing with the existence of slowdown periods has been to exclude 
them from quantification of DI parameters, because including these 
slowdown periods in either growth or shortening phases would re-
duce the magnitude of measured values of Vgrowth and Vshort (e.g., 
Rickman et al., 2017). However, entirely excluding these behaviors 
from analysis could result in the loss of information critical for under-

standing the mechanisms of phase transitions or their regulation by 
MTBPs. Furthermore, although previous publications have quanti-
fied some aspects of the slowdown periods (e.g., time durations 
[Maurer et al., 2014]), none of these to our knowledge have pre-
sented a set of velocities and transition frequencies that expands 
beyond the traditional four DI parameters. Capturing and quantify-
ing behaviors in addition to growth and shortening would be a key 
step toward further dissecting the recognized variations in growth 
and shortening rates, improving the precision of DI metrics, and 
elucidating mechanisms of DI.

To study MT dynamics more comprehensively than is possible 
with standard DI approaches, we developed the Statistical Tool for 
Automated Dynamic Instability Analysis (STADIA), an automated 
tool that uses established statistical methods to characterize and 
quantify MT behavior without prior assumptions about the number 
or characteristics of the behaviors detected. As shown in the Results 
below, STADIA can be used with both simulation- and experiment-
generated data, and it is compatible with a wide range of data ac-
quisition rates.

1.3. Summary of conclusions
Applying STADIA to in silico and in vitro MT length-history data 
demonstrated the prevalence of a category of intermediate behav-
iors that we propose calling “stutters.” Stutters share similar charac-
teristics with each other and are distinguishable from typical growth 
and shortening. The primary distinguishing factor is that during stut-
ters the overall rate of change in MT length is markedly smaller in 
magnitude compared with the velocities of classically recognized 
growth and shortening phases. Stutters are also distinguishable 
from pauses in that during true pauses “no polymerization or depo-
lymerization occurs” (Gierke et al., 2010). In contrast, during stutters 
dimer-scale dynamics continue, and during most stutters measur-
able length changes do occur although at slower velocities than 
during typical growth and shortening. Stutters, as recognized and 
quantified by STADIA, overlap with previously observed behaviors 
such as precatastrophe slowdowns (e.g., Maurer et al., 2014) and 
events that have been called “pauses” despite length changes oc-
curring (e.g., Kamath et al., 2010; Matov et al., 2010; Guo et al., 
2018). The relationship of our results to previous work is further cov-
ered in Discussion Section 3.3.

Analysis of length-history data using STADIA leads to two major 
observations regarding the relationship between stutters and 
catastrophes:

•	 Stutters precede most catastrophes in our in vitro control and in 
silico data sets.

•	 The MT stabilizing protein CLASP2γ reduces catastrophe in vitro 
by increasing the fraction of stutters that return to growth rather 
than entering shortening phases. Specifically, CLASP2γ reduces 
the frequency of growth-to-stutter-to-shortening (which we term 
transitional catastrophe) and increases the frequency of growth-
to-stutter-to-growth (which we term interrupted growth).

These results indicate that STADIA is able to recognize and 
quantify behaviors that are missed by classical methods of analyzing 
MT length-history data. Furthermore, these results suggest that 
stutters play a mechanistically significant role in the process of catas-
trophe. We conclude that identification of stutters as distinct from 
growth, shortening, or pause warrants their future inclusion in DI 
analyses and serves as a necessary step forward in gaining a better 
understanding of MTs, their dynamics, and their regulation by 
MTBPs.
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2. RESULTS
For ease of navigation and to allow readers to focus on the informa-
tion that is most relevant to them, we have divided the Results below 
into six sections. Section 2.1 introduces the in vitro and in silico data 
sets used in this work. Section 2.2 provides a general overview of our 
new tool, STADIA. Sections 2.3, 2.4, and 2.5 present the results of 
using STADIA to analyze our data sets. More specifically, in Section 
2.3, we use STADIA to identify and characterize MT behaviors, 
including a category of intermediate behaviors that we term 
“stutters.” In Section 2.4, we use STADIA to quantify characteristics 
of the behaviors identified in Section 2.3. This quantification includes 
studying the relationship between stutters and phase transitions, 
which shows that stutters are strongly associated with catastrophe. In 
Section 2.5, we further test the functional significance of stutters in 
catastrophe and demonstrate the utility of STADIA in studying 
MTBPs. More specifically, we use STADIA to analyze the dynamics of 
in vitro MTs growing in the presence of the anticatastrophe factor 
CLASP2γ, thus examining for the first time its effect on stutters. In 
Section 2.6, we test the effects of varying the values of STADIA’s in-
put parameters and demonstrate the robustness of the conclusions 
drawn in Sections 2.3–2.5.

2.1. Data sets used in this work: in vitro and in silico
In the analysis below (Sections 2.3–2.6), we used STADIA to analyze 
length-history data sourced from both laboratory experiments (in 
vitro) and computational simulations (in silico). We provide a brief 
overview of the data sets here, with additional information in 
Materials and Methods Sections 5.1 and 5.2.

We analyzed two in vitro data sets: a control with purified tubulin 
+ EB1 and a treatment data set with purified tubulin + EB1 + 
CLASP2γ. The data sets were obtained using total internal reflection 
fluorescence (TIRF) microscopy with images taken at 2 frames per 
second (fps). A subset of the experimental data used here was previ-
ously analyzed using other methods (in Lawrence et al., 2018). The 
in vitro data sets enabled us to test STADIA on data from physical 
experiments and to test STADIA’s utility in analyzing the effects of a 
MTBP on DI behavior.

The in silico data set was obtained using our dimer-scale 13-pro-
tofilament (PF) kinetic Monte Carlo model of MT dynamics (Margo-
lin et  al., 2012). The model simulates attachment/detachment of 
tubulin dimers to/from PFs, formation/breaking of lateral bonds be-
tween dimers in neighboring PFs, and hydrolysis converting GTP-
bound dimers to GDP-bound dimers. The values of kinetic rate con-
stants governing these biochemical events are input by the user. 
The observed DI behavior is an emergent property that arises as a 
consequence of the dimer-scale events. The input parameters for 
the model were tuned based on experimental measurements from 
Walker et al. (1988). The MT length-history data outputted by the 
simulation have spatial resolution at the scale of individual tubulin 
dimers (8 nm in length) and temporal resolution at the scale of the 
biochemical events described above (>1000 events per second per 
MT for the parameters used here).

Including the in silico data in our analysis is useful for several 
reasons. First, our in silico data allow us to test STADIA on a data set 
that has quantitatively different DI behavior as compared with the in 
vitro data sets. Note that the in silico data are not intended to repli-
cate any numerical values from the in vitro data sets used here. 
Rather, using STADIA on quantitatively different data sets provides a 
test of the generality of the qualitative conclusions that we draw. 
Further, the detection of stutters in the in silico data demonstrates 
that stutters can arise as an emergent property of the dimer-scale 
biochemical events described above. Additionally, because the in 

silico data are recorded at the scale of the addition and loss of indi-
vidual tubulin dimers, the in silico data have higher resolution than 
is currently possible in in vitro experiments. Therefore, comparison 
of the in silico and in vitro data sets demonstrates that STADIA is 
able to process data from a wide range of spatial and temporal reso-
lutions. Relatedly, the high temporal resolution makes the in silico 
data set ideal for testing the robustness of STADIA to changes in 
data acquisition rates, because the full-resolution in silico data can 
be compared with data with imposed slower acquisition rates 
(Section 2.6).

2.2. STADIA: a novel tool for characterizing and quantifying 
MT dynamics
2.2.1. Goals of STADIA.  To meet the goal of identifying, 
categorizing, and quantifying the range of MT behaviors in length-
history data more precisely than with previous methods, we created 
STADIA. Specific aims for the development of STADIA were that it 
have the following attributes: 1) Automated to create a consistent 
and reproducible method with minimal user input; 2) Impartial such 
that it does not presuppose that MT dynamics are restricted to two 
states (i.e., limited to growth and shortening); 3) Adaptive to handle 
data from systems with qualitatively and quantitively different DI 
behaviors (e.g., different types of tubulin and/or the presence of 
MTBPs); 4) Compatible with classical DI analysis, enabling 
comparison to and continuity with previous work; 5) Capable of 
analyzing data from a range of spatial and temporal resolutions 
(e.g., from computational simulations or laboratory experiments). 
The features of STADIA that collectively satisfy these goals are 
described in the remainder of Section 2.2.

2.2.2. Brief summary of STADIA.  STADIA’s analysis procedure con-
sists of three major stages: segmentation, classification, and phase 
and transition analysis. In the segmentation stage, STADIA approxi-
mates inputted length-history data with a series of straight-line seg-
ments that are connected to each other at their endpoints (Figure 2, 
C and D) and then measures characteristics of each line segment 
(Figure 2D). In the classification stage, STADIA uses the characteris-
tics of the line segments from the segmentation stage (Figure 2, E 
and F) to identify how many distinguishable DI behaviors exist in the 
set of line segments and then groups line segments into named DI 
behaviors (Figure 2H). For visualization purposes, color labels cor-
responding to the named behaviors from the classification stage are 
applied to each line segment in the length-history approximation 
(Figure 2G). In the phase and transition analysis stage, STADIA mea-
sures aggregate phase metrics (e.g., total time in growth) as well as 
the frequencies of various transitions beyond typical catastrophe 
and rescue (Figure 2I). These three stages are summarized here in 
Sections 2.2.3–2.2.5, with more details provided in Materials and 
Methods Section 5.5. Limitations of STADIA and guidance for users 
are also discussed in Materials and Methods Section 5.6.

2.2.3. Segmentation stage.  The first step in the segmentation 
stage is to generate an initial approximation of inputted length-his-
tory data by identifying major peaks and valleys (Figure 2C), similar 
to more classical DI analysis methods (Figure 2, A and B). However, 
unlike classical methods, STADIA does not go directly from this step 
to calculating DI parameters. Instead, to improve the initial linear 
approximation, STADIA implements an iterative process to add new 
segment endpoints, which mark where the MT velocity changes as 
shown in Figure 2D. The user regulates how closely the segments 
approximate the raw data through the values of two input parame-
ters: 1) the maximum error allowed between the line segments and 
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the raw length-history data at each timepoint; 2) the minimum time 
duration for any line segment. Together these two parameters en-
able the user to avoid overfitting or underfitting the data relative to 
the scale of the dynamics the user wishes to study. As demonstrated 
in Section 2.6, proper tuning of these parameters enables STADIA 
to be compatible with data sets that have a wide range of temporal 
resolutions.

Note that the segmentation process imposes no restrictions on 
the slope of the segments and makes no assumptions about the 
number or type of behaviors present. These attributes are in con-
trast to the more traditional DI analysis methods described above, 
which use thresholds (e.g., on length change or velocity) to seek out 
segments corresponding to predefined behaviors (e.g., growth, 
shortening, pauses).

Effectively, the approximation produced by the segmentation 
stage of STADIA resembles the raw data more closely (Figure 2D) 
than does the approximation from classical methods (Figure 2, 
A–C). In particular, there are two fundamental differences be-
tween the segmentations resulting from classical methods and 
Stage 1 of STADIA. First, an individual segment of growth or 
shortening as identified by classical methods (Figure 2, A and B) 
may be identified as multiple segments of various slopes in the 
STADIA analysis (Figure 2D). Second, STADIA’s refined approxi-
mation identifies segments of shallower slope that are not sepa-
rated out from longer growth and shortening segments in classi-
cal methods.

2.2.4. Classification stage.  This stage identifies the number of be-
havior types observed in the output from the segmentation stage 
and bins similar segments into behavior classes. To do this, STADIA 
measures three key features of each line segment (namely length 
change, time duration, and velocity; Figure 2D) and then plots a 
data point corresponding to each line segment in three-dimensional 
(3-D) space (Figure 2E). Line segments that share similar values of 
the three features (i.e., data points that are near each other in the 
3-D space) are grouped into “clusters.” STADIA uses established 
statistical methods (Box 1) to determine the optimal number of dis-
tinguishable clusters and to assign each line segment to a cluster 
(Figures 2F and 3). Note that this clustering step avoids assuming 
that any cluster corresponds to a predetermined DI phase/behavior.

After the line segments are assigned to clusters, the average fea-
tures (e.g., average slope) of the segments in each cluster are used 
to assign each cluster to a named DI behavior (Figure 3G). Clusters 
containing segments with similar slopes are “bundled” into DI 
phase/behavior classes (Figure 2H). In particular, clusters of shallow-
slope segments are bundled into “stutters,” clusters of steep posi-
tive slope segments are bundled into “growth,” and clusters of 
steep negative slope segments are bundled into “shortening.”

2.2.5. Phase and transition analysis stage.  For each cluster identi-
fied in the classification stage, STADIA calculates the following met-
rics: total number of segments (counts obtained from the piecewise 
linear approximation) in each cluster, percent time spent in each 

FIGURE 3:  Overview of the clustering process in the Classification Stage of STADIA. As shown in Figure 2C–D, STADIA 
begins by approximating inputted length-history data with a series of line segments. For each line segment, three 
features are measured: time duration, height change, and slope (Figure 2D). Using these three features, a data point 
corresponding to each line segment is plotted in 3-dimensional space (A, replotted from Figure 2E). The orange circles in 
(A, C, E, F) denote the approximate location of the data point corresponding the example line segment in Figure 2D. 
Then, line segments that share similar values of time duration, length change, and slope (i.e., data points that are near 
each other in the 3-dimensional space) are grouped together into “clusters”. As initial preparation for this grouping 
process, segments with slopes that are very near zero are identified by user-defined thresholds and assigned to one 
group (called “flat stutters”; see Section 5.5.2.1 for more information). In the next step of the process, applied separately 
to the remaining positive and negative slope segments (B,C), STADIA uses established statistical methods (described in 
Box 1 and Materials and Methods Sections 5.4.3 and 5.5.2.2) to determine the number of distinguishable clusters and 
then to assign each line segment to a cluster (D, E). After the segments are grouped into clusters, the average features 
(e.g., average slope) of the segments in each cluster are used to label each cluster with a named DI behavior (G).
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Box 1:
For interested readers, Box 1 summarizes how established statis-
tical methods are used in the clustering step of STADIA’s Classi-
fication Stage (more details in Materials and Methods Sections 
5.4.3 and 5.5.2.2).

We first note that STADIA can be run in two modes: Diagnos-
tic Mode (used to inform the number of distinguishable clusters 
in the data set), and Automated Mode (used for performing full 
DI analysis after Diagnostic Mode work is complete). Automated 
Mode performs all three stages: segmentation, classification, 
and phase and transition analysis (Figure 2, C–I; workflow dia-
gram in Supplemental Figure S1.1). Diagnostic Mode stops after 
a modified version of the classification stage.

The clustering process, applied separately to the positive 
slope segments and the negative slope segments, uses an es-
tablished algorithm called k-means clustering (Macqueen, 1967; 
Lloyd, 1982). K-means groups together data points that share 
similar characteristics, that is, data points that are near each 
other in a relevant feature space (in our case, the log-transformed 
and standardized 3-D space defined by segment time duration, 
height change, and slope [Figure 3, B–E]).

The k-means algorithm requires that the number of clusters, 
k, be provided in advance. The value of k is informed by running 
STADIA in Diagnostic Mode. When run in Diagnostic Mode, 
STADIA repeats the k-means clustering process with the value of 
k set equal to each integer from 1 to 12. For each of these k-
values, STADIA calculates a measurement called the gap statis-
tic, which quantifies how well the data can be separated into k 
many clusters (Tibshirani et al., 2001). Analysis of the gap statistic 
data from Diagnostic Mode as well as visual examination of the 
clusters plotted in the feature space (Supplemental Figures S1.4 
and S1.5) informs the choice of the optimal k-value, which the 
user then inputs into Automated Mode.

cluster, percent height change corresponding to each cluster and 
average velocity of each cluster. These metrics can also be calcu-
lated for each of the larger bundled phase/behavior classes (i.e., 
growth, shortening, stutters.

Next, STADIA examines the chronological occurrences of the 
phases in the length-history data to identify all examples of transi-
tions to/from growth and shortening, with or without stutters. Spe-
cifically, STADIA automatically categorizes the following types of 
phase transitions (Figure 2, I and J):

•	 “Abrupt Catastrophe”: growth ➔ shortening directly

•	 “Abrupt Rescue”: shortening ➔ growth directly

•	 “Transitional Catastrophe”: growth ➔ stutter ➔ shortening

•	 “Transitional Rescue”: shortening ➔ stutter ➔ growth

•	 “Interrupted Growth”: growth ➔ stutter ➔ growth

•	 “Interrupted Shortening”: shortening ➔ growth ➔ shortening

Similar chronological orderings of phases have previously been 
considered with pauses in experiments performed in the presence 
of cell extracts (Keller et al., 2008).

After identifying all occurrences of the above transitions, STADIA 
calculates the frequency of each type of transition (see Materials and 
Methods Section 5.5.3 for formulas). For continuity with previous 
methods, the traditional transition frequencies can be calculated: 
the total catastrophe frequency, Fcat, is the sum of the frequencies of 
abrupt and transitional catastrophes, and the total rescue frequency, 

Fres, is the sum of the frequencies of abrupt and transitional 
rescues.

The STADIA process as outlined here enables extraction of tradi-
tional DI parameters as well as information about more complex 
behaviors and transitions. STADIA thus characterizes and quantifies 
MT dynamics without predefined assumptions about the number of 
behaviors or their defining attributes.

2.3. MT behaviors identified and characterized using 
STADIA
2.3.1. STADIA identifies multiple types of behavior within the 
groups of positive and negative slope segments.  If MT growth 
and shortening each corresponded to one behavior (with variation), 
one would expect that the positive slope line segments from the 
approximation of the length-history plot would all fall into one 
cluster (i.e., one group of line segments); similarly, all the negative 
slope segments would be expected to fall into one cluster.

Contrary to these expectations, STADIA identified three clusters 
within the positive slope segment data of each data set (i.e., the in 
silico data set and the in vitro control and CLASP2γ data sets; Supple-
mental Figure S1.4). Examination of the characteristics of the three 
clusters shows that they can be described as follows (Figure 4, A–C, 
and Supplemental Figures S1.4, B, D, F, and H, and S1.8, A and B):

•	 segments with steep slopes and long time durations (positive 
slope cluster 1);

•	 segments with steep slopes and short time durations (positive 
slope cluster 2);

•	 segments with shallow slopes and short time durations (positive 
slope cluster 3).

Similarly, when analyzing the negative slope segments from the 
in silico data, STADIA identified three clusters (Supplemental Figure 
S1.5, A–D), which have the following characteristics (Figure 4, D and 
F, and Supplemental Figures S1.5, B and D, and S1.8, C and D):

•	 segments with shallow slopes and short time durations (negative 
slope cluster 1);

•	 segments with steep slopes and short time durations (negative 
slope cluster 2);

•	 segments with steep slopes and long time durations (negative 
slope cluster 3).

For technical reasons, the in vitro data sets contain the begin-
nings of shortening phases (Figure 1D), but not full depolymeriza-
tions of MTs to near-zero length as were present in the simulation 
data set (Figure 1B). Consistent with this information, STADIA’s 
analysis of the in vitro negative slope segments (Figure 4E) did not 
find a cluster of long-time-duration segments (i.e., no cluster anal-
ogous to negative slope cluster 3 in the in silico data in Figure 4D). 
Nonetheless, STADIA did find evidence for two distinguishable 
clusters of short-duration negative-slope segments in the in vitro 
data: negative slope cluster 1 with shallow slope segments, and 
negative slope cluster 2 with steep slope segments (Figure 4, E 
and F, and Supplemental Figures S1.5, E–H, and S1.8, C and D). 
For illustration purposes, a “ghost” region was added to Figure 
4E, where we expect the missing third negative slope cluster 
would reside if full depolymerization events had been captured in 
the experiments.

In summary, our simulations and experiments lead to a similar 
conclusion: the data argue against the idea that MT DI can be char-
acterized as a two-state process consisting of only growth and 
shortening with instantaneous transitions. Instead, the results 
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provide evidence for considering more complexity, including multi-
ple types of behavior within both the positive and negative slope 
segments.

In the next two sections (Sections 2.3.2 and 2.3.3), we examine the 
average characteristics of the length-history segments in each cluster 
to determine how these clusters might correspond to recognizably 
different DI behaviors.

2.3.2. Growth and shortening phases consistent with classical DI 
analysis are among the multiple types of behavior identified by 
STADIA.  Examining the average characteristics of the segments in 
each cluster (Figure 4, Supplemental Figure S1.8, and Table 1) 
shows that, for both the in silico and in vitro data, some of the clus-
ters correspond to the well-recognized growth and shortening 
phases of DI. More specifically, two of the positive segment clusters 

FIGURE 4:  Results of STADIA’s Classification analysis of in silico and in vitro datasets. (A, B, D, E) Color-coded clustering 
results for the in silico data (A, D) and in vitro control data (B, E); the clustering results for the in vitro CLASP2γ dataset are 
in Supplemental Figures S1.4 H, S1.5 H. Each data point in these plots corresponds to one line segment from the 
length-history approximations (see Figures 2D–F, 3). The scales of each axis reflect log-transformation and standardization 
of the data (see Figure 3). (C, F) Box plots of growth rates (C) and shortening rates (F) (i.e., segment slopes) for segment 
clusters as indicated. Outliers were excluded from the box plots (but not from the cluster plots) using the default definition 
in MATLAB (i.e., any value more than 1.5 times the interquartile range away from the bottom or top of the box is 
considered an outlier). (G, H) MT length-history plots with each segment labeled according to its assigned cluster. Zoomed-
in portions of previously ambiguous length-history data are now clearly labeled (compare to Figure 1B–E). (I) Clusters with 
similar average slopes (panels C, F) bundled (grouped together) into larger behavior classes (see also Supplemental Figure 
S1.8). Notes: The raw length-history data have temporal resolution of ~1650 events per second per MT in silico and 2 
frames per second in vitro. Materials and Methods Section 5.4.3 and Supplemental Figures S1.4, S1.5 provide justification 
for identifying three clusters each of positive and negative slope segments in most of our datasets (two clusters were used 
for the in vitro negative slope segments because complete depolymerizations to the seeds were not captured).
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(positive slope clusters 1 and 2 from Figure 4, A and B) have slopes 
(rates of length change) similar to growth rates reported in classical 
DI analysis (compare STADIA results in Figure 4C and Table 1 to 
classical analysis results in Table 1). Similarly, negative slope cluster 
2 (in silico and in vitro, Figure 4, D and E) and negative slope cluster 
3 (in silico, Figure 4D) have slopes similar to shortening rates re-
ported in classical DI analysis (compare Figure 4F and Table 1). 
Based on this information, STADIA classifies length-history segments 
as “growth” if they belong to one of the clusters with a steep posi-
tive slope (positive slope cluster 1 or 2 in Figure 4, C and I) and as 

“shortening” if they belong to a cluster with a steep negative slope 
(negative slope cluster 2 or 3 in Figure 4, F and I).

The two clusters of steep positive slope segments (and of steep 
negative slope segments for the in silico data) differ primarily by 
time duration, so we refer to them as “brief” or “sustained” (Figure 
4I and Supplemental Figure S1.8, B, D, and E). It is also notable that 
the brief growth/shortening clusters have greater variation in slope 
than the sustained growth/shortening clusters (Figure 4, C and F, 
and Supplemental Figure S1.8, A and C), which suggests that the 
most rapid velocities are not sustainable over long periods of time. 

TABLE 1:  Comparison of DI measurements from classical two-state analysis, STADIA two-state analysis (i.e., STADIA with k = 1), and STADIA 
analysis with full classification. Top row of each subtable: classical two-state analysis method (Materials and Methods Section 5.3) performed by 
identifying only major peaks and valleys (Figure 2 A–B). Second row of each subtable: STADIA analysis with classification limited to two states: 
only growth and shortening. Third row of each subtable: STADIA analysis with classification limited to growth, shortening, and flat stutters. 
Bottom row of each subtable: STADIA analysis using full results of the classification stage (Figure 4; Results Section 2.3). All STADIA analyses 
used the fine-grained length-history approximation generated by the segmentation stage of STADIA (Figure 2D) but differed in the settings for 
the classification stage. These data show that there is general, but not exact, agreement between the analysis methods as applied to each 
dataset. Vgrowth and Vshort measurements are listed as mean ± standard deviation over the set of all segments identified in each type of behavior. 
See Supplemental Figure S1.9 for the number of segments in each cluster from the STADIA full analysis. See Materials and Methods Sections 
5.1.4 and 5.2.2 for the number of MTs and total observation times in each dataset.  
†,‡: Because depolymerizations in the in vitro datasets were not captured in their entirety (see examples in Figure 1D), rescue frequencies are 
not reported (†), and negative slope segments were separated into only two clusters, yielding only two Vshort measurements in the full STADIA 
analysis (‡), instead of three as seen with the in silico data.
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These observations may be evidence of different behaviors of ta-
pered or split tips relative to the rest of the MT (e.g., as observed by 
Coombes et al., 2013; Doodhi et al., 2016; and Aher et al., 2018); 
such structures might be able to extend or retract faster than the 
bulk MT lattice in the absence of lateral bonds. Future work is 
needed to investigate whether the differences between brief and 
sustained growth (or shortening) relate to tip structure.

2.3.3. STADIA detects and characterizes “stutters”: a category 
of dynamic behaviors distinct from growth, shortening, and 
pause.  Examination of Figure 4, A–F, shows that, in addition to clus-
ters of segments with slopes that correspond to rates of length 
change seen in classical growth or shortening behaviors, STADIA 
also identifies clusters of segments with much shallower slopes (pos-
itive slope cluster 3 and negative slope cluster 1 in Figure 4, A–F; 
Table 1). Moreover, the segments in these shallow-slope clusters 
have time durations shorter than typical segments classified as sus-
tained growth and sustained shortening, though typically longer 
than those classified as brief growth and brief shortening segments 
(Supplemental Figure S1.8). We term these clusters of shallow-slope 
segments “stutters” to convey the idea that these sections of 
length-history data exhibit high-frequency, low-amplitude fluctua-
tions throughout which the overall rate of MT length change is slow 
from a macro-level perspective. Within the category called “stut-
ters,” we name the clusters based on their slopes (Figure 4I): “up 
stutters” (positive slope cluster 3), “down stutters” (negative slope 
cluster 1), and “flat stutters” (relatively rare near-zero slope seg-
ments identified before analyzing the positive and negative slope 
segments as described in the Figure 3G legend and Section 5.5.2.1).

In summary, stutters are a category of intermediate behaviors 
that share similar characteristics with each other and are distinguish-
able from typical growth and shortening. Distinguishing the various 
behaviors described above involved the use of segment slope, time 
duration, and height change, as explained in Materials and Methods 
Section 5.5. For any one of these three features individually, there is 
overlap between different clusters identified in the data (Figure 4, 
A–F, and Supplemental Figures S1.3 and S1.8). Of the three seg-
ment features, slope is the primary feature distinguishing stutters 
from typical growth and shortening (Figure 4C and F, and Supple-
mental Figure S1.8, A and C). In other words, the rate of change in 
MT length tends to be slower during stutters than during growth 
and shortening. In regard to time durations, up and down stutters, 
respectively, have similar or somewhat longer time durations than 
brief growth and shortening segments, but shorter time durations 
than sustained growth and shortening segments (Supplemental 
Figure S1.8, B and D).

2.3.4. Stutters overlap with previously observed slowdown peri-
ods but are distinguishable from pauses.  Note that most stutters 
are distinguishable from previously identified “pauses” during 
which the MT neither grows nor shortens detectably (e.g., Gierke 
et al., 2010; Yenjerla et al., 2010). In contrast to pauses, MT lengths 
do indeed change measurably during most periods identified as 
stutters (for examples, see insets in Figure 4, G and H), with a net 
rate of change that is small but nonzero (Figure 4, C and F). In addi-
tion, it is notable that events categorized as pauses are typically 
described as being rare (<1% of total experiment time duration) in 
the absence of MT stabilizing proteins (e.g., Walker et  al., 1988; 
Moriwaki and Goshima, 2016). In contrast, stutters are relatively 
common, as discussed more below (Section 2.4.3 and Supplemen-
tal Figure S1.9). These observations support the conclusion that 
most stutters are different from events previously classified as 

pauses, though there is likely some overlap, particularly between 
the relatively rare flat stutters (Supplemental Figure S1.9) and cases 
where pauses were allowed to be short in duration (e.g., Walker 
et al., 1988; Guo et al., 2018). Stutters as described above likely do 
encompass the periods of slowed growth or shortening previously 
noted (but not quantified or characterized in detail) in recent DI 
data of in vitro MTs acquired at high spatiotemporal resolution (e.g., 
Maurer et al., 2014; Duellberg et al., 2016a,b; Rickman et al., 2017; 
see also Margolin et al., 2012). In contrast to this previous work, 
here we have quantified spontaneously occurring stutters and ex-
amined their relationship to other DI behaviors.

2.3.5. Negative control: two-state growth-shortening model.  As 
a negative control to verify that the observation of stutters is not an 
artifact of STADIA’s analysis process, we ran STADIA on length-his-
tory simulation data from a model designed to have only two states: 
growth and shortening. As would be expected, STADIA analysis of 
the length-history data from the two-state model did not identify 
behaviors comparable to the stutters detected in our main data sets 
(i.e., the dimer-scale simulation data and the in vitro data). For a 
description of the two-state simulations and the analysis results, 
please see Supplemental Material Section S4, “Negative Control: 
Simulations of a Two-State (Growth-Shortening) Model,” and Sup-
plemental Figures S4.1, S4.2, and S4.3.

2.4. Quantification of MT dynamics using STADIA
2.4.1. Comparison of the traditional DI parameters as measured 
by STADIA versus a classical DI analysis method.  For each of the 
three data sets, Table 1 contains a comparison of results obtained 
using STADIA with three different sets of conditions in the 
classification stage to results from a classical DI analysis method 
(top row of each subtable; the classical analysis procedure is 
described in Materials and Methods Section 5.3). In the first set of 
STADIA conditions (second row), meant to approximate classical DI 
analysis, we restricted the classification stage of STADIA to 
recognizing only growth and shortening, that is, all positive slope 
segments were classified as growth and all negative slope segments 
were classified as shortening. In the next set of conditions (third 
row), we allowed STADIA to separate out near-zero slope segments 
as flat stutters but constrained the classification of the remaining 
positive and negative slope segments to one cluster each of growth 
and shortening. The final STADIA analysis (bottom row) utilized all 
clusters identified in the classification results in Section 2.3.

Within each data set in Table 1, the measured values of the stan-
dard DI parameters (Vgrowth, Vshort, Fcat, and Fres) are similar across 
the different analysis approaches. The differences in measured val-
ues between the classical analysis and STADIA constrained to only 
growth and shortening occur because of differences in the segmen-
tation. More specifically, the line-segment approximation produced 
by the segmentation stage of STADIA (Figure 2D) resembles the raw 
length-history data more closely than does the approximation from 
the classical method (Figure 2, A–C). Thus, STADIA can produce 
measurements of the traditional DI parameters but does so by using 
a finer linear approximation of the length-history data than the 
classical analysis, resulting in differences in the measured values of 
the DI parameters (Table 1).

2.4.2. Quantification of velocities and transition frequencies 
beyond the traditional DI parameters.  While STADIA can provide 
measurements of the four traditional DI parameters that are similar 
to the measurements obtained from classical approaches, the 
multiple clusters (i.e., multiple types of behaviors) detected in the 
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full classification results (Section 2.3) indicate that the traditional DI 
parameters alone are inadequate to capture the full range of MT 
dynamics. Expanding beyond the traditional Vgrowth and Vshort, the 
full STADIA analysis provides quantification of the intrinsic variability 
in growth and shortening rates by separately measuring the veloci-
ties for each cluster (Table 1, bottom row of each subtable). Expand-
ing beyond the traditional Fcat and Fres, STADIA measures the fre-
quencies of additional types of phase transitions (Figure 2I; 
Supplemental Figure S1.10).

2.4.3. MTs spend a significant fraction of time in stutters.  We 
begin to investigate the significance of stutters by first examining 
the fraction of time that MTs spend in stutters. As one might expect, 
both in silico MTs and physical MTs spend the majority of their time 
in growth phases. However, in both the simulations and experi-
ments, MTs spend a substantial amount of time in behaviors catego-
rized as stutters. Notably, in our in silico data sets, the MTs spent 
more time in stutters (8%) than in shortening (6%) (Figure 5A; Sup-
plemental Figure S1.9). The in vitro MTs spent a substantial amount 
of the time in stutters (Supplemental Figure S1.9), but direct com-
parison to time spent in shortening phases is not conclusive be-
cause depolymerizations were not fully captured. These observa-
tions indicate that stutters contribute appreciably to MT behavior as 
assessed in length-history plots.

2.4.4. Catastrophes are usually preceded by stutters in silico and 
in vitro.  To investigate the functional significance of stutters, we 
used STADIA to examine how transitions between phases occur. 
More specifically, STADIA considers all possible transitions into and 
out of growth or shortening, with or without stutters (see Figure 2I 
for schematic, Figure 5, D–I, for in silico examples, Figure 6 for in 
vitro examples with corresponding kymographs, Figure 7, D–I, 
for additional in vitro examples, and Supplemental Figure S1.10 for 
frequencies).

Notably, in both the simulation data and the experimental control 
data, the majority of catastrophes involved a stutter between the 
growth and shortening phases (i.e., they were transitional catastro-
phes). In particular, 78% of the catastrophes in the simulation data 
were transitional (Figure 5B). A related observation in the simulation 
data is that almost half (44%) of stutters that occurred after a growth 
segment ended in catastrophe as opposed to returning to growth 
(i.e., they occurred as part of a transitional catastrophe as opposed 
to interrupted growth; Figure 5C). A similar but more dramatic as-
sociation between stutters and catastrophe was observed in the in 
vitro control data: 86% of catastrophes involved a stutter (Figure 7A), 
and 75% of stutters from growth ended in a catastrophe (Figure 7B).

In contrast to catastrophes, rescues as observed in the in silico 
data set rarely occurred with stutters. More specifically, only 5% of in 
silico rescues were transitional (i.e., few rescues involved a stutter) 
(Figure 5B), and only 8% of stutters that occurred during shortening 
resulted in a rescue (Figure 5C). Because we do not have sufficient 
data for rescues in vitro, we cannot make strong conclusions on the 
correlation between stutters and rescue in physical MTs. However, 
these results do suggest that catastrophe and rescue are not simply 
the mechanistic opposites of each other.

2.5. Dissecting the effects of a MT binding protein: 
CLASP2γ reduces the frequency of catastrophe by 
increasing the prevalence of interrupted growth
To further test STADIA’s utility in analyzing DI and to examine both 
the prevalence and the significance of stutters, we compared the 
control in vitro data set to the in vitro data set with the MTBP 

CLASP2γ, which has been previously characterized as an anticatas-
trophe factor (Aher et al., 2018; Lawrence and Zanic, 2019). CLASP2 
proteins are of interest to the biomedical community because they 
have been implicated in functions as diverse as kinetochore attach-
ment (Girão et  al., 2020), nervous system development (Dillon 
et al., 2017), and the insulin response (Kruse et al., 2017).

Recall that the clustering results, including detection of stutters, 
are similar for the control and CLASP2γ data sets (Supplemental 
Figures S1.4 and S1.5). However, dramatic differences in the transi-
tion frequencies between the CLASP2γ data and control in vitro data 
were observed when these data were examined quantitatively by 
STADIA.

First, the overall frequency of catastrophe in the presence of 
CLASP2γ was significantly reduced (Figure 7C and Supplemental 
Figure S1.10). This observation itself is not surprising, given that 
previous work has shown that CLASP2γ reduces the frequency of 
catastrophe (e.g., Sousa et al., 2007; Aher et al., 2018; Lawrence 
et al., 2018; Majumdar et al., 2018). However, STADIA provides 
additional insight by distinguishing transitional catastrophes 
(growth-stutter-shortening) from abrupt catastrophes (growth-
shortening). In particular, our results demonstrate that the reduc-
tion in overall catastrophe frequency was due to a large decrease 
in transitional catastrophe frequency, while the abrupt catastrophe 
frequency actually increased somewhat (Figure 7A and Supple-
mental Figure S1.10).

Second, CLASP2γ slightly reduced the frequency of growth-to-
stutter occurrences (i.e., FTransCat + FIntGrowth; Figure 7C) but not 
enough to account for the large decrease in transitional catastrophe 
frequency.

Third, and most striking, CLASP2γ increased the frequency of 
interrupted growth (growth-stutter-growth) (Supplemental Figure 
S1.10). More specifically, among transitions that began as growth-
to-stutter, CLASP2γ increased the proportion of transitions that re-
sulted in interrupted growth (growth-stutter-growth) and decreased 
the proportion of transitions that proceeded to transitional catastro-
phes (growth-stutter-shortening) (Figure 7B). This change in propor-
tions is the factor that accounts for most of the decrease in transi-
tional catastrophe frequency.

Taken together, these data demonstrate that STADIA analysis 
provides information about CLASP2γ function not supplied by tra-
ditional analysis and indicate that CLASP2γ suppresses catastrophe 
at least in part by enabling stuttering MTs to reenter growth (i.e., 
CLASP2γ tends to convert would-be transitional catastrophes into 
interrupted growths). This idea is supported by recent reports that 
MTs can withstand greater growth rate variability without undergo-
ing catastrophe in the presence of CLASP2γ (Lawrence et al., 2018; 
Lawrence and Zanic, 2019) and that CLASP2γ can protect against 
catastrophe in the presence of lagging PFs (Aher et al., 2018).

2.6. Robustness of conclusions over varied values of input 
parameters and data acquisition rates
Note that this section assumes that readers are familiar with STA-
DIA’s analysis procedure as described in Section 2.2 and Box 1.

The results in the preceding sections led to the following main 
conclusions: 1) stutters (previously observed but not quantified in 
detail) are distinguishable from typical growth and shortening 
(Section 2.3); 2) stutters are strongly associated with spontaneously 
occurring catastrophes, both in silico and in vitro (Section 2.4.4); 
3) the anticatastrophe factor CLASP2γ reduces catastrophe by in-
creasing the fraction of stuttering microtubules that return to growth 
rather than entering shortening phases (Section 2.5). An important 
remaining question is whether these conclusions are robust to 
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variations in the STADIA input parameters. To address this question, 
we performed sensitivity analyses, which are summarized here, with 
full details provided in Supplemental Material Sections S2 and S3.

2.6.1. STADIA input parameter sensitivity analysis.  To test the ef-
fects of STADIA’s input parameters, we analyzed all three data sets 
(i.e., in silico as well as in vitro with and without CLASP2γ), using a 

range of values for each of the key user-defined segmentation 
parameters in STADIA, namely the Minimum Segment Duration and 
the Maximum Error Tolerance. Directly, the values of these parame-
ters determine how closely the segmentation stage’s continuous 
piecewise linear approximation matches the raw length-history 
data inputted into STADIA. Indirectly, these parameters have 
downstream effects on the results of the classification stage and the 

FIGURE 5:  Results of STADIA’s Phase and Transition Analysis of the dimer-scale in silico data. (A) Percent time spent in 
each class of phases/behaviors (top) and percent height (MT length) change occurring during each class of phases/
behaviors (bottom). These data show that a large majority of time is spent in growth. Notably, the in silico MTs spend 
more time in stutters than in shortening, emphasizing the importance of studying stutter behaviors. Most height change 
occurs during growth and shortening phases, as expected. (B) Percentages of catastrophes (top) and rescues (bottom) 
that are transitional or abrupt (see Figure 2I and Section 2.2.5 for transition definitions). These data show that most 
catastrophes are transitional, whereas rescues are overwhelmingly abrupt. (C) Examination of stutter fate. These data 
show that when growth-to-stutter occurs (top), interrupted growth is slightly more likely than transitional catastrophe. 
However, when shortening-to-stutter occurs (bottom), interrupted shortening is much more likely than transitional 
rescue. (D–H) Examples of abrupt/transitional catastrophes (D, F), abrupt/transitional rescues (E, G), and interrupted 
growth/shortening (H, I). As noted earlier, the in silico dataset has temporal resolution of approximately 1650 events per 
second per MT (see Materials and Methods Section 5.2 for more information). 
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FIGURE 6:  Alignment of STADIA length-history plots (top of each panel) and their corresponding kymographs (bottom 
of each panel) from the in vitro control dataset (with STADIA colors as in Figure 4 and scale bars as indicated). 
(A, B) Examples of abrupt catastrophes, where a growth phase (green) is followed directly by a shortening phase (red). 
(C, D) Examples of transitional catastrophes, where one or more types of stutter (blue, purple) occurs between a growth 
phase (green) and a shortening phase (red). Note also the numerous stutters (blue, purple) that interrupt growth phases 
(green). These length histories include examples of all three types of stutters that we distinguish based on slope: up 
stutters (light blue), flat stutters (dark blue), and down stutters (purple). The kymographs and the length-history traces 
inputted into STADIA were generated from the in vitro imaging data (2 fps) as described in Materials and Methods 
Section 5.1. The movies corresponding to each kymograph are provided as Supplemental Materials. Note that the 
movies are presented at 3.5 × real time (i.e., 3.5 × the time labeled on the kymographs and length-history plots).
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phase and transition analysis stage (for overview of STADIA stages, 
see Section 2.2, Figure 2, and Supplemental Figure S1.1). The re-
sults of the sensitivity analysis show how changes to the above input 
parameters impact STADIA outputs (e.g., number of behaviors de-
tected, classification of segments as illustrated by labeled length-
history plots, transition frequencies).

Briefly, results of this analysis (Supplemental Material Section S2) 
indicate that the three main conclusions enumerated above are in-
deed robust as long as the user-defined parameters are kept within 
ranges relevant to the scale of the dynamics being studied. In the 
first part of the sensitivity analysis, we examined how changing the 

user-defined parameters affects the number of behaviors detected 
(as determined by the number of clusters, i.e., k-values as described 
in Box 1 and Materials and Methods Sections 5.4.3 and 5.5.2.2). The 
results show that to detect stutter clusters, one must use spatial and 
temporal parameters that are sufficiently fine to distinguish the mul-
tiple behaviors detected (see the classification results in Sections 
2.3.1–2.3.3) but not so fine that the analysis is affected by experi-
mental noise or MT length fluctuations below the scale of the dy-
namics being studied. For our in silico data set, ideal ranges for 
these parameters were empirically determined to be from 15 to 25 
dimer lengths (i.e., 120–200 nm) for the Maximum Error Tolerance 

FIGURE 7:  Results of STADIA’s transition analysis of in vitro data (2 fps): Effect of CLASP2γ on the nature of 
catastrophes and the fate of stuttering MTs. See Section 2.2.5 for transition definitions. (A) The majority of catastrophes 
for in vitro MTs without CLASP2γ are transitional (top). However, introduction of CLASP2γ increases the fraction of 
catastrophes that are abrupt (bottom). (B) Most growth-to-stutter occurrences for the in vitro MTs without CLASP2γ 
(top) result in catastrophe. Addition of CLASP2γ (bottom) decreases the probability that a growth-to-stutter occurrence 
will proceed to shortening and increases the probability of returning to growth. (C) CLASP2γ decreases the overall 
frequency of catastrophe without greatly reducing the frequency of stutter-to-growth occurrences. Taken together 
(A–C), these data indicate that CLASP2γ reduces catastrophes by promoting growth following stutters. More 
specifically, transitions that would have been transitional catastrophes without CLASP2γ tend to become interrupted 
growths with CLASP2γ. (D–I) Examples of transitions as observed for the in vitro MTs both without CLASP2γ (top) and 
with CLASP2γ (bottom). 
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and 2 s or less for the Minimum Segment Duration (Supplemental 
Figures S2.1, S2.3, S2.5, and S2.7). For our in vitro control data set, 
ideal ranges were determined to be from 15 to 20 dimer lengths 
(120–160 nm) for the Maximum Error Tolerance and 1 s or less for 
the Minimum Segment Duration (Supplemental Figures S2.2, S2.4, 
S2.6, and S2.8). Note that while these ranges meet strict standards 
for detecting all of the behaviors studied, the analysis can tolerate a 
wider range of parameter values and still detect multiple types of 
behaviors including stutters within the positive and negative slope 
segments, thus demonstrating further robustness (see Supplemen-
tal Section S2).

In the next part of the sensitivity analysis, we examined the tran-
sition frequencies measured from running STADIA with varied val-
ues of the Minimum Segment Duration and the Maximum Error Tol-
erance while using the number of behaviors detected in the full 
classification results in Sections 2.3.1–2.3.3 (i.e., the analysis used 
the k-values selected in Materials and Methods Section 5.4.3). For 
the in silico data, both the values of the frequencies of abrupt and 
transitional catastrophe and the ratio between them are relatively 
insensitive to changes in the Maximum Error Tolerance in the range 
of 10–40 dimer lengths (i.e., 80–320 nm) (Supplemental Figure 
S2.9). Moreover, the conclusion that most catastrophes are transi-
tional is robust for Minimum Segment Duration values of 1 s or less. 
However, for Minimum Segment Duration values of 1.5 s or greater, 
abrupt catastrophes become more common (Supplemental Figure 
S2.9), likely due to fewer stutters being detected and therefore 
fewer catastrophes being recognized as transitional. This observa-
tion is illustrated in examples of the labeled length-history plots 
(Supplemental Figure S2.7). Notably, the overall catastrophe fre-
quency (the sum of abrupt and transitional) is less sensitive to 
changes in Minimum Segment Duration and Maximum Error Toler-
ance than are the abrupt and transitional catastrophe frequencies. 
The situation is similar, though somewhat noisier, for the in vitro data 
(Supplemental Figures S2.8, S2.10, and S2.11).

Significantly, the conclusion that CLASP2γ reduces catastrophe 
by promoting the growth of stuttering MTs is robust to changes 
across wide ranges of both Minimum Segment Duration and Maxi-
mum Error Tolerance (Supplemental Figures S2.10, S2.11, and 
S2.12). More specifically, for almost all parameter combinations 
tested, the presence of CLASP2γ decreased the frequency of 
transitional catastrophe and increased the frequency of interrupted 
growth relative to the in vitro control, even as the values of the fre-
quencies themselves changed with varying the segmentation pa-
rameters (Supplemental Figures S2.10, B and C, S2.11, B and C, and 
S2.12, C–H). These results are particularly relevant to demonstrating 
STADIA’s usefulness in studying the effects of MTBPs.

2.6.2. Data acquisition rate sensitivity analysis.  To test the effect of 
varying the acquisition rate of length-history data inputted into STA-
DIA, we took the original full-resolution in silico data set and resam-
pled the length-history data at varied fixed data acquisition time 
steps (Supplemental Material Section S3). Examining a wide range of 
data acquisition rates is feasible because the in silico data set records 
every dimer-scale biochemical event (bond formation/breaking, hy-
drolysis; on the scale of >1000 data points per second per MT; see 
Materials and Methods Section 5.2). For comparison, frame rates in 
physical experiments vary from more than 100 fps (e.g., Mickolajczyk 
et al., 2019) to fewer than 0.3 fps (e.g., Gierke et al., 2010).

The resulting analysis (Supplemental Figures S3.1–S3.9) shows 
that the conclusion that “up stutters” exist is robust for data acquisi-
tion time steps up to 3 s, and similarly for “down stutters” at data 
acquisition time steps up to 1 s, assuming reasonable choices for 

Maximum Error Tolerance and Minimum Segment Duration (see Sec-
tion 2.6.1). However, even when stutters are detected as distinct clus-
ters, the number of stutter segments detected generally decreases 
for larger data acquisition time steps (i.e., slower data acquisition 
rates). This observation is not surprising because some stutters, par-
ticularly down stutters for the in silico data, have time durations on 
the order of 1 s or less (Supplemental Figure S1.8), and with frame 
rates slower than 1 s, such stutters would be undetectable.

Note that the in vitro data set was obtained using a frame rate of 
2 fps, which was determined to be near the slower end of the range 
of acceptable data acquisition rates for some of the conclusions. As 
continued technological improvements allow physical experiments 
to have faster frame rates, in vitro data may tolerate a wider range 
of STADIA parameters (similar to the in silico data set). Significantly, 
short data acquisition time steps do not introduce problems (in-
deed, they are ideal, as seen with the full-resolution in silico data set) 
because the Maximum Error Tolerance and Minimum Segment Du-
ration parameters prevent the segmentation (i.e., the continuous 
piecewise linear approximation) of MT length-history data from con-
taining arbitrarily short segments.

3. DISCUSSION
Here we have presented STADIA, a data-driven, automated tool for 
performing DI analysis using length-history data as input. Using 
STADIA, we have quantified stutters and their associated transitions 
(Figures 4–7, Table 1, and Supplemental Figures S1.8–S1.10). Stut-
ters are a set of dynamic behaviors that can be distinguished from 
typical growth or shortening; the primary differentiating factor is 
that stutters on average have slower rates of MT length change 
(Section 2.3). Stutters are also distinguishable from pauses in that a 
pause is typically described as a period of time when the MT neither 
grows nor shortens. Our analysis shows that stutters (i.e., slowdown 
periods, previously observed but not quantified in detail) are 
strongly associated with spontaneously occurring catastrophes, 
both in silico and in vitro (Section 2.4.4). Our STADIA analysis also 
indicates that the anticatastrophe factor CLASP2γ reduces catastro-
phe by increasing the fraction of stutters that return to growth rather 
than entering shortening phases (Section 2.5).

Importantly, we have shown that these results are robust across a 
range of STADIA parameter values (Section 2.6.1) and are compati-
ble with data acquired across a range of temporal resolutions 
(Section 2.6.2). More specifically, as shown by the temporal resolu-
tion sensitivity analysis and the fact that our full-resolution simula-
tion data set includes every subunit attachment and detachment 
event, STADIA is compatible with data acquired at temporal resolu-
tions ranging from those produced by iSCAT (which can be as high 
as 1000 fps) to those used in TIRF experiments (e.g., 2 fps). This 
sensitivity analysis further shows that STADIA can also be used with 
data at lower temporal resolutions, but the ability to quantify stut-
ters is reduced.

3.1. Mechanisms of stutters and implications for the process 
of catastrophe
What causes stutters, especially those that disrupt growth, and why 
are they associated with catastrophe? A fundamental component to 
answering this question comes from recognizing that when transi-
tioning from growth to stutter, there is a net decrease in the number 
of subunits (tubulin dimers) that are incorporated into the MT per 
unit time. This net decrease could occur because new subunits at-
tach to the tip less frequently than during normal growth, or be-
cause bound subunits leave the tip more frequently than during 
growth, or a combination of these two.
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While simple stochastic fluctuations in subunit arrival or depar-
ture could potentially contribute to stutters, examination of length-
history plots (Figures 4–7) suggests that the stochastic fluctuations, 
which occur throughout growth, shortening and stutter segments, 
are too short in duration to account for the sustained decrease in 
growth rate that occurs when going from growth to stutter. Alterna-
tively, changes in rates of attachment and detachment could also 
result from changes in tip structure. However, one could argue that 
the rate of subunit attachment should not vary with tip structure: 
assuming that longitudinal bonds form first, there are always 13 
landing sites for new subunits (Castle and Odde, 2013). Therefore, 
we suggest that stutters following growth segments likely result 
from a situation where an unusually large fraction of incoming sub-
units detach from the tip structure without being fully incorporated 
into the lattice (e.g., because tip taper or other structural features 
like the presence of GDP-tubulin make it difficult for lateral bonds 
to form). In other words, we suggest that stutters occur when the 
structure of the tip is such that the subunit detachment rate is un-
usually high compared with the average detachment rate during 
growth.

This reasoning provides a potential explanation for the correla-
tion between stutters and catastrophe: if the fraction of incoming 
subunits incorporated into the lattice is smaller than during normal 
growth periods, the stabilizing cap of GTP-tubulin at the MT end will 
become smaller, the likelihood of exposing GDP-tubulin subunits 
will increase, and the possibility of complete cap loss (catastrophe) 
will rise. At present, these ideas are speculation, but future work 
may be able to shed light on these hypotheses (see also related 
discussions in VanBuren et  al., 2005; Howard and Hyman, 2009; 
Gardner et al., 2011; Margolin et al., 2012; Coombes et al., 2013; 
Zakharov et al., 2015; and McIntosh et al., 2018).

Furthermore, the mechanisms could vary for different types of 
stutters. As demonstrated in the results, STADIA distinguishes up, 
down, and flat stutters and distinguishes stutters that occur as part 
of interrupted growth, interrupted shortening, transitional catastro-
phe, and transitional rescue. Thus, as a tool for comprehensively 
identifying multiple types of stutters, STADIA lays the groundwork 
for future mechanistic studies.

3.2. Comparison of the in silico and in vitro results
The behaviors observed in the dimer-scale simulation data and the 
experimental data are qualitatively similar. In particular, both types 
of data support the prevalence of stutters throughout length histo-
ries and the role of stutters in catastrophes. The differences in the 
particular numerical values of measured quantities are not surpris-
ing, because the simulation parameters were tuned in Margolin 
et al. (2012) based on an experimental data set (Walker et al., 1988) 
different from the experimental data sets used here (a subset of 
which was used in Lawrence et al., 2018). The qualitative similarities 
between the results from the different data sets provide evidence 
that the observed trends are not specific to one experimental prep-
aration or one type of tubulin (e.g., 10 µM pure porcine tubulin in 
Walker et al., 1988, vs. 12 µM bovine tubulin with EB1 and with or 
without CLASP2γ here and in Lawrence et al., 2018). Furthermore, 
comparison with the negative control (two-state growth-shortening 
model; Supplemental Material Section S4) demonstrates that the 
existence of stutters in the dimer-scale simulations and the in vitro 
data is not manufactured by STADIA.

3.3. Relationship to previous work
3.3.1. Distinguishing stutters and previously identified pauses.  
Pauses have most frequently been observed in vivo (see citations in 

the Introduction) and are likely caused by MTBPs (Moriwaki and 
Goshima, 2016) and other factors external to the MTs themselves 
(e.g., reaching the cell edge [Rusan et al., 2001; Komarova et al., 
2002]). Furthermore, in vitro pauses in the absence of drugs or 
MTBPs are rare (Walker et al., 1988). In contrast, the observation 
that stutters are prevalent in both our in silico and in vitro data sets 
suggests that stutters are an intrinsic component of DI itself.

Gierke et al. (2010) have described “bona fide pauses” as phases 
“during which no polymerization or depolymerization occurs.” Due 
to physical detection limits, true pauses would be indistinguishable 
from periods of very slow polymerization or depolymerization that 
do not meet the detection threshold (Gierke et al., 2010). Particu-
larly in older data sets with large thresholds (e.g., a length-change 
threshold of 0.5 microns), some stutters may have been considered 
pauses while others may not have been separated out from larger 
growth or shortening phases at all. With newer imaging technology, 
data can be obtained at higher temporal and spatial resolution (e.g., 
Maurer et al., 2014; Duellberg et al., 2016a,b; Rickman et al., 2017; 
Guo et al., 2018; Mickolajczyk et al., 2019), which can enable the 
distinction of stutters and pauses.

For most stutters, a measurable net length change does occur 
over the course of the stutter segment: up and down stutters occur 
much more often than flat stutters. Using this information about 
stutters from our results and definitions of pauses already existing in 
the literature, we propose the following operational criteria for dis-
tinguishing pauses and stutters: pauses are periods during which no 
detectable length change occurs, whereas stutters are periods dur-
ing which the MT structure changes but with slower net rates of 
length change than typical growth and shortening phases. In data 
sets that contain both stutters and pauses, the current version of 
STADIA would classify “bona fide pauses” as flat stutters. Future 
work is needed to determine whether it would be meaningful to 
apply criteria to distinguish flat stutters, which generally have very 
short time durations, from pauses.

3.3.2. Previously observed behaviors that are similar to particu-
lar types of stutters.  Maurer et al. (2014) observed short episodes 
of pause or slow growth before catastrophes in experiments with 
EB1. These precatastrophe slowdowns are analogous to transitional 
catastrophes in our terminology. Pauses or slowdowns before catas-
trophe have also been observed in cases where the catastrophe is 
induced by outside factors such as mechanical force (Janson and 
Dogterom, 2004) or reduction in tubulin concentration (Duellberg 
et  al., 2016a,b), similar to predictions based on simulations in 
Margolin et al. (2012). In contrast, the catastrophes in our data sets 
occur spontaneously as part of DI; in the in vitro data sets, EB1 and 
CLASP2γ affect the frequency of catastrophe, but the catastrophes 
still occur stochastically over time, as opposed to being induced by 
an experimenter at a particular moment.

The episodes of slow growth in Rickman et al. (2017) bear some 
similarity to stutters interrupting growth as identified by STADIA. 
However, the slow growth episodes of Rickman et al. occurred rarely 
(two to five occurrences; ∼0.26% to ∼6.1% of the time analyzed, 
depending on tubulin concentration). These episodes appear to 
correspond to the most extreme of our stutters, meaning the stut-
ters with the longest time durations or with the most variability in 
length during the stutter.

Based on analysis of variability in growth rates in experimental 
data, Odde et al. (1996) proposed a model with multiple substates 
of growth and “near catastrophes,” which are similar to stutters inter-
rupting growth. They suggested that the largest of the “near catas-
trophes” may correspond to previously observed pauses and that 
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the smaller “near catastrophes” would not be easily detected by eye 
(the time between data points in their analysis was ∼3 s).

Building beyond this previous work, STADIA provides a compre-
hensive method for detecting and quantifying multiple types of stut-
ters and distinguishing phase transitions that include stutters from 
those that do not.

3.3.3. Differences between STADIA and previous segmentation/
classification methods.  Although STADIA identifies DI phases at a 
finer scale than many existing DI analysis methods, it differs from 
methods that simply consider individual displacements between 
frames and label them as growth, shortening, or pause using thresh-
olds on the length change (e.g., Komarova et al., 2002; Guo et al., 
2018). In contrast to such methods, STADIA identifies larger-scale 
segments during which a MT exhibits a consistent behavior.

Similar to STADIA, many existing time-series analysis methods 
that have been used in other applications (e.g., identifying runs and 
pauses in the transport of organelles along MTs by motor proteins 
[Zaliapin et  al., 2005]) involve a segmentation step (e.g., Zaliapin 
et al., 2003) that is often followed by a classification step (e.g., Fu, 
2011). To our knowledge, such methods have not been previously 
applied to MT DI data. In contrast, many DI analysis methods es-
sentially perform classification before segmentation, by setting 
thresholds for classifying growth, shortening, and possibly pause or 
slowdown periods, and then applying the thresholds to identify seg-
ments in the data (e.g., Dhamodharan and Wadsworth, 1995; Kiris 
et al., 2010; Fees et al., 2017). Additionally, unlike existing methods 
that use predefined thresholds on segment features (length change, 
time duration, and/or slope), STADIA uses a data-driven approach 
to identify emergent clusters in the segment feature data (e.g., stut-
ters have shallow slopes, but shallow is relative to the slopes of 
other segments in a given data set).

3.3.4. Differences between STADIA and previous phase tran
sition analysis.  In regard to phase transition analysis, several previ-
ous articles grouped their pauses with growth when defining catas-
trophe and rescue; by their definitions, a catastrophe is a transition 
from growth or pause to shortening, and a rescue is a transition from 
shortening to growth or pause (Dhamodharan et al., 1995; Dham-
odharan and Wadsworth, 1995; Panda et  al., 1996; Rusan et  al., 
2001; Kamath et al., 2010; Kiris et al., 2010; Yenjerla et al., 2010; 
Moriwaki and Goshima, 2016). By these definitions or analogous 
definitions with stutter in place of pause, an episode of interrupted 
shortening would be labeled as a rescue followed by a catastrophe, 
whereas an interrupted growth would not be distinguished from un-
interrupted growth.

STADIA improves upon typical transition analysis by considering 
all possible transitions between growth, shortening, and stutters 
(similar to the transitions among growth, shortening, and pause that 
were considered in Keller et  al., 2008). Such transition analysis 
enables more in-depth investigation of the mechanisms of DI and 
DI-regulating proteins. For example, the observation that CLASP2γ 
tends to convert would-be transitional catastrophes into interrupted 
growths would not have been possible without a method that is 
able to identify transitional catastrophes and interrupted growths.

4. CONCLUSIONS
Our work has four major conclusions: 1) STADIA can quantify and 
examine “stutters,” a previously observed category of behaviors 
during which MTs undergo slow rates of overall length change com-
pared with growth or shortening phases; 2) stutters are strongly as-
sociated with catastrophe in dimer-scale in silico and TIRF-imaged in 

vitro data; 3) the anticatastrophe factor CLASP2γ reduces catastro-
phe by increasing the fraction of stutters that return to growth rather 
than enter shortening phases; 4) STADIA provides an improved ana-
lytical tool for quantification of MT behavior, as exemplified by the 
first three points. Our results concerning the detection of stutters 
differ from those of previous work in that STADIA comprehensively 
and systematically identifies all types of stutters (up stutter, flat stut-
ter, down stutter) across length-history data and considers all possi-
ble transitions among growth, shortening, and stutters. We suggest 
that quantification of stutters in future DI analysis through STADIA or 
similar tools will enable improved analysis of MT dynamics that is 
more complete, precise, and reproducible. The clearer picture that 
results from this analysis will facilitate investigation of the mecha-
nisms of catastrophe and rescue as well as the activities of the 
MTBPs that regulate these transitions.

5. MATERIALS AND METHODS
The methods are presented in the following order: Sections 5.1 and 
5.2, respectively, describe the acquisition of the in vitro and in silico 
data sets. Section 5.3 summarizes our classical DI analysis method, 
used for comparison with STADIA. Section 5.4 outlines our use of STA-
DIA to analyze the data sets in this article. Section 5.5 describes STA-
DIA’s analysis procedure in more detail than the overview in Results 
Section 2.2. Section 5.6 provides guidance for users of STADIA.

5.1. Data acquisition: in vitro microtubule experiments
The in vitro MT data were obtained from two sets of conditions: a 
control group (tubulin + EB1) and a group with the MTBP CLASP2γ 
(tubulin + EB1 + CLASP2γ). A subset of these data was previously 
published in Lawrence et al. (2018).

5.1.1. Protein preparation.  His-CLASP2γ and His-EB1 were puri-
fied as previously described (Zanic et  al., 2013; Lawrence et  al., 
2018). Bovine brain tubulin was purified using the high-molarity 
method (Castoldi and Popov, 2003). Tubulin was labeled with 
TAMRA and Alexa Fluor 488 (Invitrogen) according to the standard 
protocols, as previously described (Hyman et al., 1991).

5.1.2. TIRF microscopy.  Imaging was performed using a Nikon 
Eclipse Ti microscope with a 100×/1.49 n.a. TIRF objective; an 
Andor Neo sCMOS (complementary-metal–oxide–semiconduc-
tor) camera; 488- and 561- solid-state lasers (Nikon Lu-NA); a Fin-
ger Lakes Instruments HS-625 high-speed emission filter wheel; 
and standard filter sets. An objective heater was used to maintain 
the sample at 35°C. Microscope chambers were constructed as 
previously described (Gell et al., 2010). In brief, 22 × 22 mm and 
18 × 18 mm silanized coverslips were separated by strips of 
Parafilm to create a narrow channel for the exchange of solution 
(Gell et  al., 2010). Images were acquired using NIS-Elements 
(Nikon).

5.1.3. Dynamic MT assay.  GMPCPP-stabilized MTs were prepared 
according to standard protocols (Hyman et  al., 1992; Gell et  al., 
2010). Dynamic MT extensions were polymerized from surface-im-
mobilized GMPCPP-stabilized templates as described previously 
(Gell et al., 2010). The imaging buffer consisted of BRB80 supple-
mented with 40 mM glucose, 40 µg/ml glucose oxidase, 16 µg/ml 
catalase, 0.5 mg/ml casein, 100 mM KCl, 10 mM dithiothreitol, and 
0.1% methylcellulose. Purified proteins and 1 mM GTP were added 
to the imaging buffer, and the solution was introduced into the im-
aging chamber. Dynamic MTs were grown with 12 µM Alexa 488–la-
beled tubulin and 200 nM EB1 with or without 400 nM CLASP2γ 
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and imaged at 2 fps using TIRF microscopy as described above 
(pixel size of 70 nm). Alexa 488–labeled tubulin was used at a ratio 
of 23% of the total tubulin.

5.1.4. In vitro MT length-history data.  Length-history data for in 
vitro MTs were obtained from 30-min experiments using both a 
control group and a group with the stabilizing MTBP, CLASP2γ. 
Kymographs of dynamic microtubules (examples in Figure 6) were 
generated using the KymographClear macro for ImageJ, and the 
dynamic MT tip positions as a function of time were determined in 
KymographClear, using a thresholding-based, edge-detection 
method that can trace the microtubule tip position in kymographs 
with subpixel accuracy (Mangeol et al., 2016). Note that long short-
ening phases were not well-captured by this process for technical 
reasons including photobleaching. Therefore, the position-time 
data from a given MT were broken into samples that typically con-
sisted of a growth phase followed by an initial depolymerization and 
then termination of that observation (e.g., Figure 1D).

The control group data set was acquired from 68 MT seeds, from 
which 776 individual traces were observed. The group with CLASP2γ 
was acquired from 29 MT seeds, from which 85 individual traces 
were observed. The control group and the group with CLASP2γ 
yielded total time durations of more than 21 h and 3.5 h, respec-
tively. The in vitro MT lengths were measured in nanometers and 
then divided by 8 nm per dimer length to convert to units of dimer 
lengths.

5.2. Data acquisition: in silico microtubule experiments
This section outlines the details regarding the acquisition of the di-
mer-scale simulation MT data, analyzed in the Results and in Sup-
plemental Sections S1, S2, and S3, including information about 
both the model and the parameters used.

5.2.1. The computational model: stochastic model for simulating 
13-protofilament MTs.  The computational MT model used in this 
paper to generate the in silico length-history data is an updated ver-
sion of the detailed, stochastic 13-PF MT model published in Mar-
golin et al. (2012) and utilized in Margolin et al., 2011; Gupta et al., 
2013; Li et al., 2014; Duan et al., 2017; Mauro et al., 2019; Jonasson 
et al., 2020). The model tracks the state of individual subunits (rep-
resenting tubulin dimers bound to either GTP or GDP) in the entire 
13-PF MT structure. The events that occur in the model are attach-
ment/detachment of subunits to/from a PF, formation/breaking of 
lateral bonds between subunits in neighboring PFs, and hydrolysis 
of GTP subunits to GDP subunits. The values of the biochemical 
kinetic rate constants for each type of event are user inputs and 
depend on the state (GTP-bound or GDP-bound) of the subunits 
involved in the event. To carry out the simulation, the event that oc-
curs at each step and the times between events are sampled using 
the Gillespie algorithm (Gillespie, 1976, 1977), which is a kinetic 
Monte Carlo algorithm. At each event, the simulation outputs the 
time of the event and the length of the MT. The DI behavior, includ-
ing stutters, and the values of DI parameters are emergent proper-
ties that arise as a consequence of the subunit-scale events. This 
feature is in contrast to two-state growth-shortening DI models, 
where the four traditional DI parameters are inputs (e.g., negative 
control in Supplemental Section S4; Verde et al., 1992; Dogterom 
and Leibler, 1993).

A key difference between the previous versions of our 13-PF MT 
computational model and the current implementation is strict ad-
herence to the assumption that only one of the many possible bio-
chemical events occurs at a time. The previous detailed-level 13-PF 

MT model approximated hydrolysis events by allowing several sub-
units to hydrolyze simultaneously after one of the other four reaction 
events (lateral bonding/breaking or subunit gain/loss) has occurred. 
Individual hydrolysis events are now considered as a possible event 
in the same way that the other events are handled. This modification 
resulted in very little change in macro-level behavior of in silico MTs, 
but the ability to output dedicated observations of each dimer-level 
event provides a more accurate representation of MT biochemistry. 
The overall result of the simulation is in silico MTs that exhibit macro-
level DI behaviors in agreement with those observed previously 
(Margolin et al., 2012).

5.2.2. Simulation setup and parameters.  The dimer-scale kinetic 
parameters used in this study to simulate a 13-PF MT using the 
model described above were tuned in Margolin et al. (2012) based 
on in vitro DI measurements from Walker et al. (1988); a detailed list 
of parameters can be found in Supplemental Table S1.2. For the 
purposes of this analysis, a single MT was simulated at a constant 
[free tubulin] of 10 μM for 10 h of simulation time. For the kinetic 
parameters and tubulin concentration used here, approximately 
1650 subunit-scale reaction events occurred per second on average 
over the course of the simulation.

To generate the length-history data passed into STADIA, we 
used either the max PF length (i.e., the length of the longest of the 
13 PFs) or the mean PF length (i.e., the mean of the 13-PF lengths) 
as the length of the MT. Comparisons of results using the mean or 
max PF length are shown in Supplemental Figures S1.4, S1.5, S1.6, 
S1.9, and S1.10. The clustering profiles in Supplemental Figure S1.4 
show better agreement with the in vitro data used here when using 
the max PF length instead of the mean PF length. Thus, all the in 
silico results are presented for the max PF length unless otherwise 
indicated. Each dimer has a length of 8 nm. The max and mean PF 
lengths are both reported in units of dimer lengths; this is not the 
same as the number of dimers in the MT, which would be 13 times 
the mean PF length.

5.3. Classical DI analysis
For purposes of comparison to STADIA, we used our implementa-
tion of classical DI analysis, a custom program written in MATLAB 
and described in the Supplemental Methods of Jonasson et  al. 
(2020). Briefly, this method segments growth and shortening phases 
by first identifying major peaks and valleys in the length-history 
data using the MATLAB function “findpeaks.” Then the ascent to 
each major peak is classified as a growth segment, and the descent 
from the peak is classified as a shortening segment. Each major 
peak is classified as a catastrophe, where the end of growth and the 
start of shortening are identified as occurring at the same time 
point. A major valley is classified as a rescue only if the MT length at 
the time of the major valley is greater than or equal to a user-de-
fined value called the “minimum rescue length,” in which case the 
end of shortening and the start of growth are identified as the same 
point. For a major valley that occurs below the minimum rescue 
length, the end of shortening can be identified as an earlier point in 
time than the start of growth, in which case the time between these 
points would correspond to a nucleation period near the MT seed 
(see Supplemental Methods of Jonasson et al., 2020, for additional 
details).

For the classical DI analysis in this paper, the minimum promi-
nence for major peaks (i.e., minimum height change between a ma-
jor peak and the nearest major valley) in the classical method was 
set equal to the same value that we used for the Maximum Error 
Tolerance in STADIA (Supplemental Table S1.1). The minimum peak 
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height and the minimum rescue length in the classical method were 
each set equal to the sum of the values of the Nucleation Height 
Threshold plus the Maximum Error Tolerance in STADIA (Supple-
mental Table S1.1).

In the classical method results shown in Table 1, the Vgrowth and 
Vshort calculations relied on linear regressions fitted to each growth 
or shortening segment. Vgrowth was calculated as the arithmetic 
mean of the slopes of the regression lines for all growth segments 
whose linear regression had an R2 value of at least 95%. Vshort was 
calculated in the same manner using the shortening segments. Fcat 
was calculated as the total number of catastrophes divided by the 
total time spent in growth phases. Similarly, Fres was calculated as 
the total number of rescues divided by the total time spent in short-
ening phases. Note that linear regressions and R2 values are used 
here in our classical analysis but not in STADIA.

5.4. Using STADIA for the analyses in this article
5.4.1. Data input and preprocessing.  The simulation data (Section 
5.2) were inputted into STADIA as one long length-history time series 
from an individual MT. For each of the two in vitro data sets (Section 
5.1), individual length-history traces (which typically consisted of a 
growth phase followed by the beginning of a shortening phase; e.g., 
Figure 1D) were inputted from multiple MTs recorded over shorter 
periods of observation. As described below (Section 5.5.1.1), when 
multiple length-history traces are inputted into STADIA, STADIA 
“stitches” the traces into a single time-series representation, but with 
separators between the traces to avoid artifactually introducing 
rescues, catastrophes, or any other transitions. Thus, for our inputted 
in vitro data, STADIA automatically stitched all of the traces for all of 
the MTs within each experiment into a single time-series representation 
(one with CLASP2γ and one without).

5.4.2. Input parameter values (Supplemental Table S1.1).  In both 
Diagnostic and Automated Modes, STADIA analysis requires that 
the user provide values for the following five user-defined parame-
ters: Minimum Segment Duration, Maximum Error Tolerance, Nucle-
ation Height Threshold, Maximum Height Change Magnitude for 
Flat Stutters, and Maximum Slope Magnitude for Flat Stutters. The 
role of each of these parameters in STADIA is further described in 
Sections 5.5.1 and 5.5.2.1 below.

The Minimum Segment Duration and Maximum Error Tolerance 
parameters regulate the accuracy of the continuous piecewise lin-
ear approximations. For all analyses in the main text and Supple-
mental Material Section S1, they were set to the following values: 
Minimum Segment Duration = 0.5 s; Maximum Error Tolerance = 
20 dimer lengths. These segmentation parameters were varied 
over a range of values in Supplemental Material Sections S2 and 
S3 for the purposes of the sensitivity analysis, which is summarized 
in Section 2.6.

The Nucleation Height Threshold sets the minimum MT length 
required for further DI analysis. Segments where the MT length is 
entirely below the Nucleation Height Threshold are classified as 
“nucleation” at the beginning of the classification stage and then 
omitted from analysis thereafter. For all analyses in this article, we 
set the Nucleation Height Threshold to 75 dimer lengths.

STADIA identifies a segment as a flat stutter if the absolute value 
of its net height change is less than the user-input Maximum Height 
Change Magnitude for Flat Stutters and/or the absolute value of its 
slope is less than the Maximum Slope Magnitude for Flat Stutters. In 
our analyses, we set the Maximum Height Change Magnitude for 
Flat Stutters to 3 dimer lengths and the Maximum Slope Magnitude 
for Flat Stutters to 0.5 dimer lengths/second.

5.4.3. Determination of the number of clusters (i.e., values of k) 
for k-means clustering.  In Automated Mode, STADIA requires that 
the user provide the number of clusters (i.e., values of k) for the k-
means clustering step. As discussed more in Section 5.5.2, the value 
of k is set separately for the positive and negative slope line seg-
ments of each length-history data set and is informed by first running 
STADIA in Diagnostic Mode. Briefly, the Diagnostic Mode of STADIA 
outputs gap statistic plots and cluster plots (Supplemental Figures 
S1.4 and S1.5), which provide information that aids in choosing the 
optimal number of clusters (i.e., k-values) to input into Automated 
Mode. The gap statistic is a quantity that is calculated at each possi-
ble value of k to provide a measure of how well the data can be de-
scribed by k clusters. Though there are various ways to interpret gap 
statistic plots, one rule of thumb is to choose the k-value correspond-
ing to the first local maximum of the gap statistic plot (Maechler, 
2021) (see also Tibshirani et al., 2001; Hastie et al., 2009, for related 
information). However, because these plots can have ambiguities, 
visual examination of the gap statistic plots and cluster plots is useful 
for interpreting the results in the context of the particular application 
and thus determining an appropriate number of clusters.

In our analyses of the Diagnostic Mode outputs for each data set, 
the k-value corresponding to the first local maximum of the gap 
statistic plot was usually chosen as the optimal number of clusters. 
In particular, for the simulation data, we chose k = 3 for each of the 
positive and negative slope segment groups, as indicated by the 
first local maximum of the gap statistic plots (Supplemental Figures 
S1.4C and S1.5C). However, the situation was more complicated for 
the in vitro data. First, for the negative slope segments in each in 
vitro data set, we chose k = 2, consistent with the first local maxi-
mum of the gap statistic plots (Supplemental Figure S1.5, E and G); 
as discussed in Results Section 2.3.1, k = 2 for negative slope seg-
ments was appropriate for these data sets (in contrast to the k = 3 for 
negative slope segments in the in silico data set) because full depo-
lymerizations to the seed were not captured in the in vitro data sets 
for technical reasons. For the positive slope segments in the in vitro 
CLASP2γ data set, we chose k = 3, again consistent with the first lo-
cal maximum of the gap statistic plot (Supplemental Figure S1.4G). 
However, for positive slope segments in the in vitro control data set, 
we chose the second local maximum (k = 3) instead of the first local 
maximum (k = 1) based on qualitative inspection of the cluster pro-
files (Supplemental Figure S1.4, E and F). More specifically, the clus-
ter profile for the in vitro control positive slope segments (Supple-
mental Figure S1.4F) displays three appendages, similar to the 
cluster profiles for the positive slope segments in the in vitro 
CLASP2γ data set (Supplemental Figure S1.4H) and the in silico data 
set (Supplemental Figure S1.4D), where the gap statistic plots indi-
cate k = 3 (Supplemental Figure S1.4, C and G).

After choosing the k-values based on the results of running STA-
DIA in Diagnostic Mode, we inputted these k-values into Automated 
Mode to perform the full STADIA analysis.

5.5. STADIA’S analysis procedure
This section provides an in-depth description of the three major 
stages of STADIA analysis (Segmentation, Classification, and Phase 
and Transition Analysis; Figure 2; Supplemental Figure S1.1). For 
readers interested in a shorter overview of STADIA’s analysis proce-
dure, please see Results Section 2.2.

5.5.1. Segmentation stage.  In the segmentation stage, STADIA 
takes MT length-history data and generates a continuous piecewise 
linear approximation of the MT length-history plot (Figure 2, A–D). 
The approximation is a series of straight-line segments (i.e., the 
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approximation is “piecewise linear”), where the endpoint of each 
line segment coincides with the start point of the next line segment 
(i.e., there are no discontinuities in the approximation). The segmen-
tation stage includes a preprocessing step that prepares the user’s 
length-history data for input into STADIA and a postprocessing step 
that prepares the results of the segmentation stage for classification.

5.5.1.1. Preprocessing of input length-history data.  As an initial 
step, STADIA automatically formats the inputted MT length-history 
data into a single time series of length-history data points. MT 
length-history data can be inputted into STADIA either as a long-
time observation of a single MT (possible with simulations) or as a 
series of length histories of multiple MTs (common with experimen-
tal data). In the latter case, STADIA automatically connects, or 
“stitches,” the data from multiple MTs (with separators in between) 
into a single time-series representation of MT length-history data 
(e.g., Figure 1D). Note that special treatment of the stitching separa-
tor between observations allows STADIA to avoid misclassification 
of stitch boundaries as transitions. This preprocessing step allows 
STADIA to conduct analysis for both simulation data and experi-
mental data in a similar and consistent manner.

5.5.1.2. Segmentation process.  STADIA takes the single time-series 
length-history graph produced by the preprocessing step and per-
forms segmentation as an adaptive, iterative process. As described 
in this section, how closely the segmentation fits the length-history 
plot is regulated by two user-defined parameters: Maximum Error 
Tolerance and Minimum Segment Duration.

The segmentation process begins by identifying major peaks 
and valleys (i.e., local extrema) in MT length-history data using the 
“findpeaks” function in MATLAB. The “findpeaks” function uses in-
puts of minimum peak prominence (i.e., minimum vertical distance 
between a major peak and nearest major valley) and minimum peak 
height. The values that STADIA uses for the minimum peak promi-
nence and the minimum peak height in “findpeaks” are the same 
values, respectively, as the user-input values of the Maximum Error 
Tolerance and the Nucleation Height Threshold.

Consecutive extrema are connected by line segments to form an 
initial linear approximation of the length-history data (Figure 2C). An 
initial list of vertices is defined by these peaks and valleys.

New vertices are added to mark the locations where the MT 
length crosses the user-input Nucleation Height Threshold, gener-
ally chosen to be near the lower limit of observation in experimental 
conditions. When a MT crosses from below to above the threshold 
(i.e., a growing MT), the vertex is added at the last data point less 
than or equal to the Nucleation Height Threshold. When a MT 
crosses from above to below the threshold (i.e., a shortening MT), 
the vertex is added at the first data point less than or equal to the 
Nucleation Height Threshold. At the classification stage described 
below (Section 5.5.2), segments that are entirely below the Nucle-
ation Height Threshold are excluded from further analysis because 
these segments are generally not experimentally detectable (note 
that in our in vitro data sets none of the tracked lengths are below 
the nucleation threshold).

Then, the iterative process seeks to include new vertices to de-
fine line segment endpoints. This improves the approximation ac-
curacy by constructing a continuous piecewise linear approximation 
that satisfies the user-defined parameters of Maximum Error Toler-
ance and Minimum Segment Duration mentioned above (Figure 
2D). Note that the segmentation algorithm implemented in STADIA 
is similar, but not identical, to the “top-down” category of algo-
rithms reviewed in Keogh et al. (2001).

STADIA’s segmentation algorithm can be explained in the follow-
ing steps:

1.	 Let x x x, , , N1 2{ }…  represent the initial list of vertices (i.e., seg-
ment endpoints), where x1 and xN are the first and last points of 
the length-history data, respectively, and x x, , N2 1{ }… −  are the 
consecutive peaks, valleys, and nucleation threshold points de-
scribed above.

2.	 For any i = 1, …, N –1, define the ith region as the interval be-
tween the consecutive pair of initial vertices, xi and xi+1. Con-
struct a line segment with endpoints as x xi i

1 =  and x xi i
2

1= +  
such that the vertices corresponding to the ith region are 
x x, ,i

M
i

1 �{ }, where initially M = 2, but we seek to grow this list in 
the following steps.

3.	 For j = 1 …, M –1, consider the jth line segment in the ith region 
defined by x j

i  and x j
i

1+ . Calculate the error (absolute value of the 
difference) between this line segment and the corresponding 
points in the original length-history data.

◦◦ If the maximum error is greater than the user-defined Maxi-
mum Error Tolerance, then the error condition is not satisfied, 
and an additional data point needs to be included in the ver-
tex list. Proceed to step 4.

◦◦ If the maximum error from this segment is less than the user-
defined Maximum Error Tolerance, then the error condition is 
satisfied for the jth line segment in the ith region. Proceed to 
step 6.

4.	 Define the data point where the greatest error occurs in step 3 as 
xnew
i

◦◦ If xnew
i  violates the user-defined Minimum Segment Duration, 

attempt to choose the closest point in the length-history data 
that would satisfy both the Maximum Error Tolerance and 
Minimum Segment Duration.

5.	 Include the newly identified vertex into the list of vertices for the 
ith region. This will require reindexing to preserve ordering. For 
example, for the first new vertex added to the ith region, the 
original single segment in the ith region is now broken into two 
segments, and the list of vertices corresponding to the ith region 
is now defined as

x x x x x x, , , ,i i i i
new
i i

1 2 3 1 2{ } { }=

where the vertex list on the right side is indexed according to 
the preceding iteration and the updated vertex list on the left 
side replaces the list defined in step 2, such that < +x xj

i
j
i

1 for all 
j = 1, …, 1, M – 1.

6.	 Repeat steps 3–5 until the error condition is satisfied without 
adding more vertices into the ith region.

7.	 Repeat steps 2–6 for all i ≤ N – 1.

The final result is a continuous piecewise linear approximation 
of the inputted length-history data set (excerpts of the full length-
history approximation are illustrated in Figure 2D, orange lines, 
and Figure 2, G and J, black lines). The vertices of the piecewise 
linear approximations provide line segments with endpoints at 
moments where significant changes in slope occur in length-his-
tory plots. Thus, the activity covered by each segment between 
endpoints represents a consistent period of MT length-history be-
havior that can be identified as belonging to a DI phase in the 
classification stage.
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5.5.1.3. Justification for segmentation method.  To create a more 
accurate approximation of MT length-history data as compared 
with more classical methods that identify segment endpoints only 
at peaks and valleys (Figure 2, A–C), STADIA employs the iterative 
approach described above in Section 5.5.1.2 to create an im-
proved continuous piecewise linear approximation of the MT 
length-history data. The resulting approximation satisfies the user-
defined Maximum Error Tolerance and Minimum Segment Duration 
(Figure 2D). We chose this approach because it provides a simple 
method for identifying points that may not necessarily be peaks or 
valleys, but where a change from one sustained MT behavior to 
another occurs. Through the Maximum Error Tolerance choice, the 
user is able to regulate the accuracy of the linear approximation. 
Through the Minimum Segment Duration choice, the user is able to 
perform the analysis of MT length-history data at the desired times-
cale. An assumption of performing segmentation in this manner is 
that MT behavior follows a linear trend at the timescale being ana-
lyzed. Finally, we note that this segmentation method in STADIA 
produces a continuous piecewise linear approximation, whereas 
some other segmentation methods produce discontinuous approx-
imations (e.g., Zaliapin et al., 2003).

5.5.1.4. Postprocessing to prepare for classification.  For each line 
segment from the continuous piecewise linear approximation, STA-
DIA measures the slope, time duration, and height change of the 
segment (Figure 2D); this set of measurements provides a 3-D fea-
ture space where the segments reside (Figure 2E).

5.5.1.5. Justification for using all three of slope, time duration, and 
height change in the classification feature space.  Mathematically, 
knowing the values of any two of the segment variables (time dura-
tion, height change, and slope) provides sufficient information to 
calculate the value of the remaining third variable. However, we use 
all three variables in the clustering step because some data points 
that are well separated in the 3-D space would become indistin-
guishable for all practical purposes if only two of the variables were 
used (Supplemental Figures S1.2 and S1.3). Additionally, which data 
points become indistinguishable would depend on which pair of 
variables was used (time duration and height change, time duration 
and slope, or height change and slope).

The slope = height/time surface (Supplemental Figures S1.2A 
and S1.3E) could be parameterized with only two variables in a way 
that would maintain the separation present in the 3-D space. How-
ever, these two new variables would be some combination of the 
original three variables, and these combinations would not neces-
sarily have clear physical meanings. We therefore chose to use all 
three of the basic variables (time duration, height change, and 
slope) to maintain a more direct connection to the biology.

The inclusion of nonlinear combinations of variables (i.e., interac-
tion terms) is not uncommon in statistics (e.g., Rawlings et al., 1998; 
Karaca-Mandic et al., 2012; Matuschek and Kliegl, 2018). Additional 
combinations of our three basic variables as well as other variables 
may be worth exploring in future work that aims to further dissect 
MT length-history behaviors. For the purposes of the present work, 
the three basic variables are sufficient for verifying the existence of 
distinguishable clusters within the positive and negative slope 
groups.

5.5.2. Classification stage.  The purpose of the classification stage 
in STADIA is to group the segments from the segmentation stage 
into subsets that share similar attributes. In the classification proce-
dures, each segment from the approximation of the MT length-his-

tory data is represented as a point in the 3-D space generated by 
segment time duration, height change, and slope (Figure 2, D and 
E). The classification stage is where differences arise between the 
two modes of STADIA: Diagnostic Mode aids the user in selecting 
the number of clusters to use but ends after the clustering step, 
which is described below in Section 5.5.2.2; Automated Mode re-
quires that the number of clusters be provided as input but per-
forms all other stages of the analysis.

5.5.2.1. Classification first steps—identification of nucleation seg-
ments and flat stutters.  First, segments that are entirely below the 
user-input Nucleation Height Threshold described above (Section 
5.5.1.2) are classified as “nucleation.” These nucleation segments 
are excluded from further analysis and therefore are excluded from 
the 3-D plots of segment features (e.g., Figure 3).

Next, STADIA identifies any segments that satisfy either or both 
of the following criteria:

•	 the absolute value of the segment’s net height change is less 
than the user-input Maximum Height Change Magnitude for Flat 
Stutters;

•	 the absolute value of the segment’s slope is less than the Maxi-
mum Slope Magnitude for Flat Stutters.

These near-flat segments clearly lack the qualities characteristic 
of traditionally recognized growth or shortening and thus already 
qualify as a subset of points that share attributes different from the 
remaining points requiring classification. Therefore, STADIA assigns 
them into a class labeled “flat stutters.”

We remark that in comparison to the up stutters and down stut-
ters that are identified by the next step of classification (Section 
5.5.2.2), flat stutters are relatively rare, in terms of both number of 
segments and total time spent in each type of segment (Supple-
mental Figure S1.9). Thus, flat stutters account for only a small share 
of all stutter behaviors detected.

Removing flat stutters from the rest of the collection of points 
creates a clear boundary between points that represent positive 
and negative slope segments. However, we do not simply label 
the remaining segments as growth and shortening. Instead, fur-
ther analysis is warranted for two reasons. First, attempting to 
execute the rest of the classification procedures on the positive 
and negative slope segments together fails to produce conclu-
sive results (Supplemental Figure S1.6), suggesting that the posi-
tive and negative groups should be analyzed separately. Second, 
complex geometric structures of distinguishable appendages 
observed in both the positive and negative slope point groups 
(Figure 3, B and C) suggest that multiple types of behaviors are 
present within each subset.

5.5.2.2. k-means clustering step of the classification stage.  To con-
tinue the classification stage, STADIA takes the segments that are 
now segregated into positive and negative slope line segments and 
analyzes them using k-means clustering (Macqueen, 1967; Lloyd, 
1982), where the number of clusters, the k-value, is suggested by 
the gap statistic (Tibshirani et al., 2001).

Justification for using k-means clustering.  As an unsupervised 
clustering algorithm commonly used in machine learning, k-means 
does not require prior knowledge of the characteristics of the clus-
ters to be found in order for the algorithm to identify boundaries 
that separate them. Rather, k-means groups together data points 
that share similar characteristics (i.e., data points that are near each 
other in a relevant feature space). The k-means algorithm also has 
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the advantages of its ease of use and interpretability. Ideal data sets 
for k-means have globularly shaped clusters (i.e., each cluster would 
follow a Gaussian distribution). Although the clusters resulting from 
our data are not Gaussian per se, k-means still provides an objective 
methodology to find substructures in the overall data structure. The 
observation that k-means enables us to identify and quantify stut-
ters (behaviors that have been noted previously but not quantified 
in detail) indicates that it provides a useful methodology for catego-
rization and quantification of MT behavior.

Preprocessing of segment data for input into k-means cluster-
ing.  k-means clustering uses Euclidean distance (i.e., straight-line 
distance) between points in the feature space (3-D space for our 
data) as the primary measurement in its algorithm to classify data. 
Therefore, all features should exist on the same scale to give each 
feature equal weight in the k-means classification process. To meet 
this requirement, the segment features (slope, height change, and 
time duration values) are transformed by first being log-scaled and 
then standardized with respect to each feature’s statistics (i.e., by 
subtracting the mean and dividing by the SD) (Figure 3, B and C). 
Scaling and standardizing the data in this way is a common practice 
for analysis utilizing k-means clustering (Hastie et al., 2009).

Determining appropriate number of clusters for each data set.  As 
noted in Section 2.2.1, one of the goals for STADIA development 
was that it be impartial in determining the number of behaviors ex-
hibited by MTs, thus avoiding any assumptions about MT dynamics 
being restricted to two behaviors (i.e., only growth and shortening). 
The k-value (i.e., number of clusters to use in k-means) is deter-
mined for positive and negative slope segments separately and is 
informed by running the Diagnostic Mode of STADIA.

Though various approaches exist for determining the k-value 
with which to perform the clustering (reviewed by Pham et al., 2005; 
Steinley, 2006), STADIA utilizes a quantity called the gap statistic, 
which is calculated at each potential value of k (Supplemental 
Figures S1.4 and S1.5, left column) (Tibshirani et al., 2001). The gap 
statistic aids in answering the question, “what number of clusters 
results in the best separation between the clusters?” More techni-
cally, the gap statistic measures the within-cluster dispersion com-
pared with a null reference distribution.

When examining the values of the gap statistic at different val-
ues of k to seek the optimal number of clusters that best separates 
the data, higher values of the gap statistic indicate better separa-
tion between clusters. However, a significant increase in the value 
of the gap statistic is generally considered necessary to justify us-
ing an additional cluster. Tibshirani et  al. (2001) formalized this 
idea with the following criterion: choose the smallest value of k 
such that

Gap(k) ≥ Gap(k + 1) – one standard error of Gap(k + 1).

In words, this criterion means choose the smallest value of k such 
that the value of the gap statistic does not increase by more than 
one standard error when going to the next value of k. Other possi-
ble criteria include choosing the first local maximum of the gap sta-
tistic plot or the smallest k-value such that the gap value is within 
one standard error of the first local maximum (Hastie et al., 2009; 
Maechler, 2021). Depending on the particular data set, the different 
criteria may yield the same k-value as each other or different 
k-values.

The Diagnostic Mode of STADIA outputs the k-value chosen by 
the Tibshirani et al. (2001) criterion. However, when choosing k-val-
ues to input into Automated Mode, it is also recommended for the 

user to examine the gap statistic plots and cluster profiles (Supple-
mental Figures S1.4 and S1.5) to check how well the number of 
clusters suggested by the gap statistic describes the data set quali-
tatively. For example, in some cases, qualitative inspection of the 
data may suggest that the second local maximum of the gap statis-
tic plot describes the data better than the first local maximum (e.g., 
as seen in Supplemental Figure S1.4. E and F).

Measuring the gap statistic in Diagnostic Mode.  For the purpos-
es of informing the optimal k-value for use in k-means clustering, 
the Diagnostic Mode of STADIA repeats the clustering procedure 
for each potential value of k ranging from 1 through 12, using 
100 random starts for each value (a single run of k-means cluster-
ing does not necessarily converge to a global optimum, so mul-
tiple starts are required to determine optimal centroid locations). 
Using the clustering results at each k-value, STADIA measures 
the value of the gap statistic for each value of k (Supplemental 
Figures S1.4 and S1.5).

k-means clustering in Automated Mode.  As noted above, the pur-
pose of k-means clustering is to group together data points that 
share similar characteristics (i.e., data points that are near each other 
in the feature space of segment slope, height change, and time 
duration). Once the optimal number of clusters is determined for 
both positive and negative slope segments using the Diagnostic 
Mode of STADIA, the user inputs these k-values and runs STADIA in 
Automated Mode. In Automated Mode, STADIA performs k-means 
clustering, on the positive and negative slope segments separately, 
using 500 random starts. Centroid locations that attain the lowest 
sum of squared distances between the centroids and each point 
in their respective clusters are chosen for further analysis. The cho-
sen centroid locations are indicted by x-symbols in the cluster plots 
(e.g., Figure 3, D and E).

5.5.2.3. Phase/behavior bundling step of the classification 
stage.  After k-means clustering is performed on the log-trans-
formed and standardized data, the resulting cluster assignments 
are applied to the original segment data (i.e., the data before 
applying log-transformation and standardization; Supplemental 
Figure S1.7). Statistics such as average slopes, average time dura-
tion, and average height change are calculated for each cluster 
(slopes in Figure 4, C and F; slopes and time durations in Supple-
mental Figure S1.8) and then utilized for naming the clusters 
(Figure 3G). Clusters with similar average slopes are bundled to-
gether to form larger groups, which we refer to as “phase classes” 
or “behavior classes” (Figures 2H and 4I). Groups of clusters with 
large positive slopes are classified as growth, while those with 
large negative slopes are classified as shortening. The remaining 
clusters with segment slopes considerably smaller in magnitude 
(i.e., flatter) are grouped into the category of behaviors called 
“stutters” (along with the “flat stutters,” which were separated 
out before the clustering process).

At this point, every segment identified during the segmentation 
stage has been classified as growth, shortening, stutter, or nucle-
ation. Applying these phase class labels to each segment in the 
length-history plot is illustrated in Figure 2, G and J.

5.5.3. Phase and transition analysis stage.  After classifying seg-
ments into clusters and then bundling the clusters into larger phase/
behavior classes as described above (Section 5.5.2), classical 
methods of calculating DI metrics are adapted to account for stut-
ters in addition to growth and shortening.
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5.5.3.1. Phase analysis.  For each cluster, STADIA calculates the av-
erage velocity of the segments in the cluster (Table 1, bottom row of 
each subtable). STADIA also calculates the following cluster attri-
butes (Supplemental Figure S1.9):

•	 total number of segments (counts obtained from the piecewise 
linear approximation) in each cluster,

•	 percent time spent in each cluster 

= ×






sum of segment time durations in cluster

total time of data set
100% ,

•	 and percent height change corresponding to each cluster 

= ×






sum of segment height change magnitudes in cluster

sum of all segment height change magnitudes
100% .

These attributes can be determined for each of the larger phase/
behavior classes (i.e., growth, shortening, stutters) by combining the 
measurements for the clusters in each class (Figure 5A).

5.5.3.2. Transition analysis.  Transition frequencies are calculated in 
a manner similar to what has been done classically. However, when 
considering stutters in addition to growth and shortening, there are 
additional transitions to quantify (Figure 2I). In particular, it is neces-
sary to determine whether catastrophes and rescues are or are not 
directly preceded by stutters. Catastrophes and rescues are identi-
fied as either abrupt (occurring without detectable stutters) or tran-
sitional (occurring via a stutter) (Figures 5–7). Additionally, our analy-
sis quantifies interrupted growth (growth → stutter → growth) 
(Figures 5H, 6, and 7, H and I) and interrupted shortening (shorten-
ing → stutter → shortening) (Figure 5I).

As mentioned above in Section 5.5.2.1, MTs shorter than the 
user-defined Nucleation Height Threshold are considered to be in 
“nucleation” phases. Transitions into or out of nucleation phases are 
not analyzed by the current version of STADIA because such MTs 
would be difficult to detect in experiments, and their behavior might 
be influenced by proximity to the seed.

In agreement with what has been done in classic DI analyses, 
frequencies of catastrophe and rescue are calculated as the ratio of 
the number of catastrophe or rescue events to the total time spent 
in growth or shortening, respectively (Table 1). For the additional 
types of transitions identified by STADIA (Figure 2I), the frequencies 
are calculated in a similar manner: the frequency of each type of 
transition out of growth or shortening is calculated as the ratio of the 
number of transition events of that type to the total time spent in 
growth or shortening, respectively (Supplemental Figure S1.10). 
More specifically,

F
# of abrupt catastrophes

total time spent in growth
,AbruptCatastrophe =

F
# of transitional catastrophes

total time spent in growth
,TransitionalCatastrophe =

F
# of growth interruptions

total time spent in growth
,InterruptedGrowth =

F
# of abrupt rescues

total time spent in shortening
,AbruptRescue =

F
# of transitional rescues

total time spent in shortening
,TransitionalRescue =

F
# of shortening interruptions

total time spent in shorteningInterruptedShortening = ⋅

The total Fcat equals FAbruptCatastrophe + FTransitionalCatastrophe 
(Figure 7C; Supplemental Figure S1.10), and the total Fres equals 
FAbruptRescue + FTransitionalRescue (Supplemental Figure S1.10). Similarly, 
the total frequency of growth-to-stutter transitions equals FTransition-

alCatastrophe + FInterruptedGrowth (Figure 7C), and the total frequency of 
shortening-to-stutter transitions equals FTransitionalRescue + 
FInterruptedShortening.

5.6. Guidance for users: expectations for input data and 
effect of thresholds
STADIA is ideally intended for use on data sets with moderate or high 
temporal resolution, for example, at least 2 fps. For lower resolution 
data sets, we suggest that STADIA will provide more systematic anal-
ysis than manual methods, but the resolution of the data themselves 
will be a limiting factor in what conclusions can be supported.

We expect that the most common difficulty will be obtaining a 
total amount of data that is large enough for effective clustering 
during the classification stage. The clustering process performs bet-
ter as the amount of data increases; more specifically, determining 
the optimal number of clusters and assigning segments to the ap-
propriate cluster is done more accurately when there are more data 
points in the segment feature space (e.g., Figure 3). The total time 
duration of MT length-history data required will generally be on the 
order of hours, not minutes. To determine whether one has a suffi-
cient quantity of data, we recommend two possible tests. First, us-
ers should examine the error bars in the gap statistic plots gener-
ated by Diagnostic Mode; if the error bars are too large to 
conclusively choose an optimal k-value, then more data may be 
needed. Second, we suggest that users run STADIA on their entire 
data set and on half of their data set; if both cases yield similar clus-
tering results, this indicates that the user has a sufficient quantity of 
data. If one has an insufficient amount of data for effective cluster-
ing, STADIA can still be used to perform segmentation, detection of 
flat stutters with user-defined parameters, and clustering with k = 1 
(one cluster each for positive and negative slope segments), be-
cause these analyses do not depend on the number of data points 
in the feature space; on the contrary, the number of data points in 
the feature space depends on the number of segments in the seg-
mentation. However, DI metrics resulting from sparse data sets 
should be treated with caution.

As one specific example of the amount of data needed, in the in 
silico results presented here, we used 10 h of simulation time to 
ensure that enough segments were generated for effective cluster-
ing. Testing different total time durations of data yielded consistent 
results for simulations that ran for 7.5 h or longer when using STA-
DIA in Diagnostic Mode. However, using significantly shorter length-
history data sets (e.g., 2.5 h) did not provide acceptable clustering 
results. On the other hand, if the number of clusters (i.e., k-values) is 
preestablished (e.g., from a similar but larger data set), then STADIA 
can be used in Automated Mode to calculate DI metrics from signifi-
cantly fewer data (e.g., at least 2.5 h).

It is important for users to be aware that the values of inputted 
thresholds will affect the numerical values of results of STADIA (as 
well as any other DI analysis method; e.g., Odde et al., 1996; Gierke 
et al., 2010; Matov et al., 2010; Smal et al., 2010; Prahl et al., 2014; 
Guo et al., 2018). For examples of the effects of changing these 
values, see the analyses with varied values of the Minimum Segment 
Duration and Maximum Error Tolerance in STADIA and the data 
acquisition rate of the length-history data as shown in Supplemental 
Sections S2 and S3. We recommend that users try at least a few dif-
ferent values of thresholds to test the strength of any conclusions 
they draw. In articles using STADIA, users should report the values 
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of the input parameters that they use in STADIA, in addition to re-
porting the resolution of their measurements, quantity of data, and 
values of any other relevant quantities.

At the segmentation stage, users should examine the piecewise 
linear approximation to ensure that the approximation is not overfit-
ting or underfitting the raw data. The user’s choices for the values of 
the Minimum Segment Duration and Maximum Error Tolerance de-
termine how closely the piecewise linear approximation will fit the 
raw length-history data. When choosing the values of these thresh-
olds, the user should take into account the resolution and noise level 
of their data as well as the timescale of the dynamics that the user 
wishes to study. For example, there are small-amplitude stochastic 
fluctuations that occur within growth, shortening, and stutter seg-
ments; if the user is studying phases at a scale similar to what we 
study in this article, which is a larger scale than the small-amplitude 
fluctuations, then the Minimum Segment Duration and Maximum Er-
ror Tolerance should not be so small as to pick up these fluctuations.

Note that for certain combinations of the Minimum Segment Du-
ration and Maximum Error Tolerance, STADIA will produce “irrecon-
cilable errors.” These errors occur because it is not always possible 
to satisfy both the Minimum Segment Duration and the Maximum 
Error Tolerance. In such cases, STADIA outputs a warning to the user 
for each error. Such errors are most likely to occur if the user has 
chosen a long Minimum Segment Duration with a small Maximum 
Error Tolerance. The specific values of Minimum Segment Duration 
and Maximum Error Tolerance that result in irreconcilable errors will 
depend on the particular data set being analyzed. If such errors oc-
cur, the user should either change the parameter values or recog-
nize that some segments of the piecewise linear approximation will 
not meet the input criteria.

If the user is aiming to identify one set of input parameter values 
or a small number of parameter sets that are ideal for their particu-
lar data set, then we recommend that the user choose input para-
meter values that minimize the number of irreconcilable errors. Our 
parameter sensitivity analysis (Section 2.6 and Supplemental Mate-
rial Sections S2 and S3) indicates that the number of irreconcilable 
errors is more sensitive to the Maximum Error Tolerance than to the 
Minimum Segment Duration. For our in silico data set, the percent-
age of segments that have irreconcilable errors has a local mini-
mum at Maximum Error Tolerance = 20 dimer lengths. The percent-
age of segments that have irreconcilable errors is also low for 
Maximum Error Tolerance > 40 dimer lengths but is very high for 
Maximum Error Tolerance < 15 dimer lengths. If the user is perform-
ing a parameter sensitivity analysis with a large range of parameter 
values (similar to the range used in Supplemental Material Sections 
S2 and S3), then the user should be aware that some parameter 
combinations may result in a large number of irreconcilable errors.

For further instructions on how to use the STADIA MATLAB 
code, we refer readers to Patel et al. (2020). Note that the input 
parameter called the “Minimum Segment Duration” here was re-
ferred to as the “minimum time step” in Patel et al. (2020).

Software and data availability
STADIA software (MATLAB code) and tutorials can be downloaded 
from GitHub (https://github.com/GoodsonLab/STADIA/). Data ana-
lyzed in this paper are available from the authors upon request.
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Clustering Step of 
Classification Stage

Figure S1.1. Workflow diagram outlining main steps in each stage of STADIA. Note that Automated Mode performs all the
steps shown in the workflow diagram. Diagnostic Mode performs the steps through the end of the clustering step of the
classification stage. Running STADIA in Diagnostic Mode before Automated Mode provides information to aid the user in
choosing the optimal number of clusters (k-values) to input into Automated Mode. Additional information regarding the
technical details of STADIA can be found in Methods Sections 4.4 to 4.6 of the main text.

Input MT length-history data 
(e.g., in silico or in vitro data) 

Iteratively include new vertices 
to generate a final more 

accurate continuous piecewise 
linear approximation based on 

user-input parameters 
(Figure 2 D)

Also separately for the positive 
and negative slope line 

segments, group line segments 
into k clusters using the k-

means clustering algorithm 
(Figure 3 D,E); the value of k is a 
user input in Automated Mode

and chosen by STADIA in 
Diagnostic Mode

Obtain each segment’s 
features: slope, height change, 
time duration (visualized as a 
point in 3-dimensional space) 

(Figures 2 E, 3 A)

Separate positive and negative 
slope line segments

Separately for the positive and 
negative slope line segments, 
log-transform and standardize 

3-dimensional line segment 
features (Figure 3 B,C)

Sequester segments with near-
zero/flat slopes and segments 

below nucleation threshold

Consider all positive, negative, 
and flat segments, while still 

excluding nucleation segments 
(Figures 3 F, 2 F)

Calculate cluster metrics 
(average slope, average height 
change, average time duration 

of the segments in each cluster)

Conduct transition analysis by 
considering all possible 
combinations of phase 
orderings (Figure 2 I)

Identify local extrema (major 
peaks and valleys) as vertices 

(segment endpoints) in an initial 
approximation of the length-

history data (Figure 2 B,C)

Assign each cluster to a named 
DI behavior (Figure 3 G) and 
bundle clusters with similar 
average slopes into phase/ 

behavior classes (Figure 2 H)

Segmentation Stage Phase & Transition 
Analysis Stage

Conduct phase analysis by 
calculating percent time, 

percent height change, and 
total number of segments in 

each phase class 

Bundling Step of 
Classification Stage

Apply clustering assignments to 
original un-standardized & un-
log-transformed segment data

Locate regions where ‘MT 
length’ < ‘Nucleation Threshold’ 
and add vertices where the MT 

enters or exits nucleation
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approximation (Figure 2 D-F) and is colored according to the cluster identified by STADIA
(Figure 4). (A-C) Multiple perspectives of the segment feature data represented in two
dimensions (Height and Time (A), Slope and Height (B), Slope and Time (C)) demonstrate
the lack of separability between points when only two dimensions are considered (similar
to the example in Supplemental Figure S1.2 B). (D) Final clustering profile of all un-
standardized and un-log-transformed segment data following the Classification Stage,
provided to help visualize the 3-dimensional data. (E) An illustration of how the segment
points lie on the Z=Y/X manifold described in Supplemental Figure S1.2 A.
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Figure S1.4. Gap statistic plots (left column) and corresponding clustering profiles (right column) for positive slope
segments in each dataset. Within each of the cluster profiles (right column), the values of the segment features on
each axis are log-transformed and standardized. When using the gap statistic (left column) to suggest the best
number of clusters (k-value) to use in k-means clustering, a common rule of thumb is to use the first k-value where
the gap statistic plot shows a local maximum. However, the user should also take into consideration visual
examination of the cluster profiles and other local maxima in the gap statistic plots. Here, the 3-dimensional data
structure (right column) for each of the datasets shows multiple appendages, which indicates that k is greater than
one (in contrast, a single globular cloud of points would have supported k=1). Thus, for all the datasets we selected
k=3, which is the first local maximum in (C,G) and the second local maximum in (A,E). Consequently, for all positive
slope segment data, we performed k-means clustering by separating the data into 3 clusters.

These data for the positive slope segments also show that the clustering profile of the simulation data using the max
PF length, rather than the mean PF length, more closely resembles the clustering profile of the experimental data
(note that for the mean PF data, there are fewer rapid, short duration segments in cluster 2). Therefore, we chose to
use the max PF data instead of the mean PF data for presenting the STADIA results in the main text.
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Figure S1.5. Gap statistic plots (left column) and corresponding clustering profiles (right column) for
negative slope segments in each dataset. Within each of the cluster profiles (right column), the values of the
segment features on each axis are log-transformed and standardized. As noted in Figure S1.4, when using the
gap statistic (left column) to suggest the best number of clusters to use in k-means clustering, a common rule
of thumb is to use the first k-value where the gap statistic plot shows a local maximum. These data for the
negative slope segments show that for the two simulation datasets, the gap statistic attains the first local
maximum at k=3 (A,C), whereas the experimental datasets indicate k=2 for the negative slope segments
(E,G). We attribute this difference to the fact that in these experimental datasets, only the beginnings of
depolymerization phases were captured, thus omitting long time duration shortening segments from the
dataset. Therefore, for negative slope segments, we performed k-means clustering separating the dimer-
scale simulation data into 3 clusters (B,D) and the experimental data into 2 clusters (F,H).
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Figure S1.6. Gap statistic plots (left column) and segment feature plots
(right column) for an analysis where all slope segments in each dataset
were considered together (excluding flat segments), not separated into
positive and negative slopes as in Supplemental Figures S1.4 and S1.5.
Within each of the cluster profiles (right column), the values of the segment
features on each axis are log-transformed and standardized. The gap statistic
plots (left column) are generally increasing with no clear local maxima,
indicating that the initial dataset was too complex for effective calculation of
the gap statistic and that we needed to subdivide it before further analysis.
For this reason, the data are not color-coded as in the previous two figures.
Note that these plots are simply for demonstrating that consideration of all
segments together is not conclusive, thus providing justification for analyzing
positive and negative slope segments separately.
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Figure S1.7. Clustering profiles for ALL segments of in silico and in vitro data (not log-
transformed or standardized). Following separate classification of the positive and negative
slope segments (Supplemental Figures S1.4 and S1.5), cluster assignments were applied to
the original un-log-transformed and un-standardized segment data. Note that the
classification step has already taken place, and these figures are simply for visualizing how
the clusters exist in relation to each other in the original 3-dimensional space. Recall that
each data point in the 3-dimensional space represents the time duration, height change, and
slope of one line segment from the piecewise linear approximation of length-history data
(Figure 2 D-F).
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Figure S1.8. Motivation for cluster names and phase/behavior bundling. Left column: positive slope segments. Right column:
negative slope segments. The in silico and in vitro control data in A and C are the same as the data presented in Figure 4 C and
F, respectively. This figure also provides rate of length change data for the in vitro CLASP2γ dataset and time duration data for
all three datasets. (A-D) Box and whisker plots of the rates of length changes (i.e., slopes; A,C) and time durations (B,D) of the
segments in each cluster. Outliers were excluded from these plots using the default definition in MATLAB (i.e., any value that is
more than 1.5 times the interquartile range away from the bottom or top of the box is considered an outlier). Note that
positive slope cluster 3 and negative slope cluster 1 have slower rates of length change (i.e., shallower slopes) compared to
the other positive and negative slope segment clusters, respectively. (E) Clusters with similar average slopes are bundled
together into larger phase/behavior classes based on the results in the box plots. More specifically, clusters of shallow-slope
segments are grouped into ‘Stutter’. Clusters of segments with steeper positive and negative slopes are grouped into ‘Growth’
and ‘Shortening’, respectively. The descriptors ‘Brief’ and ‘Sustained’ are applied to clusters within the Growth and Shortening
classes to reflect the differences in their time durations. The descriptors ‘Up’, ‘Flat’, and ‘Down’ are applied to the clusters in
the Stutters category based on the segment slopes being positive, near-zero, or negative, respectively.
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Figure S1.9. Segment statistics for all in silico and in vitro datasets. Number of segments, percent time, and
percent height change for each cluster are recorded for each dataset. As noted throughout the paper, the in vitro
depolymerizations were not captured in their entirety, so the number of segments, percent time, and percent
height change attributed to shortening is largely underrepresented. In contrast, for the in silico datasets, the full
spectrum of DI behaviors including complete depolymerizations are present, so the measured values are more
accurate representations of the share attributable to each type of DI behavior.
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Figure S1.10. Detailed transition statistics for each dataset. Both in silico datasets as well as the control experimental
dataset demonstrate that a significant majority of catastrophes occur via stutter (i.e., transitional catastrophe), while the
CLASP2γ dataset shows a shift to MTs exhibiting abrupt catastrophes along with a decrease in total catastrophe frequency.
The presence of CLASP2γ markedly reduces the frequency of transitional catastrophe and increases the frequency of
interrupted growth (see also Figure 7 and Results Section 2.5). Rescue data for in silico MTs indicate that most rescues occur
abruptly. Note that frequencies of rescue and interrupted shortening were not determined (N.D.) for the in vitro data
because depolymerizations were not captured in their entirety for the in vitro MTs.

Transition Statistics

Transition Type Count Frequency (s-1)

Simulation Data (mean PF)

Abrupt Catastrophe 20 0.00071

Transitional Catastrophe 238 0.0084

Total Catastrophe 258 0.00911

Abrupt Rescue 39 0.0164

Transitional Rescue 6 0.0025

Total Rescue 45 0.0189

Interrupted Growth 75 0.0027

Interrupted Shortening 32 0.0135

Simulation Data (max PF)

Abrupt Catastrophe 67 0.0025

Transitional Catastrophe 231 0.0085

Total Catastrophe 298 0.0110

Abrupt Rescue 71 0.0307
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Total Rescue 75 0.0324

Interrupted Growth 293 0.0107

Interrupted Shortening 48 0.0207

Experimental Data (control)
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Transitional Catastrophe 629 0.0108
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Total time in Growth = 28,184 s
Total time in Shortening = 2,367.2 s

Total time in Stutter = 1,664.1 s 

Total time in Growth = 27,298 s 
Total time in Shortening = 2,299.5 s

Total time in Stutter = 2,910.0 s  

Total time in Growth = 58,070.7 s 
Total time in Shortening = 1,682.1 s 

Total time in Stutter = 11,400 s

Total time in Growth = 10,393.3 s 
Total time in Shortening = 234 s 
Total time in Stutter = 1,807.8 s

N.D.

N.D.
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STADIA: User-defined Parameters

Nucleation Height Threshold 75 dimer-lengths

Minimum Segment Duration 0.5 seconds

Maximum Error Tolerance 20 dimer-lengths

Maximum Height Change Magnitude for Flat Stutters 3 dimer-lengths

Maximum Slope Magnitude for Flat Stutters 0.5 dimer-lengths/sec

Number of centroids for positive slope segments (all datasets) k = 3

Number of centroids for negative slope segments (in silico data) k = 3

Number of centroids for negative slope segments (in vitro data) k = 2

Table S1.1. User-defined parameters for STADIA and classical analysis. See 
Supplemental Sections S2 & S3 for STADIA parameter sensitivity analysis. 

Classical Analysis: User-defined Parameters

Minimum peak height 95 dimer-lengths

Minimum rescue length 95 dimer-lengths

Minimum prominence for major peaks 20 dimer-lengths

Minimum prominence for minor peaks 0.1 dimer-lengths

Minimum regression R2 0.95
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Stochastic Dimer-Scale 13-PF MT Model Parameters

Number of protofilaments 13

Tubulin concentration 10 μM

Simulation time 10 hours

Seam shift 1.5 dimer-lengths

Compete for tubulin No

Hydrolysis rate 0.7 dimers/sec

HalfMax 200

kgrowT 250

kgrowD 250

kshortT 0.02

kshortD 20

kbondTT 100

kbondTD 100

kbondDT 100

kbondDD 100

kbreakTT 70

kbreakTD 90

kbreakDT 90

kbreakDD 400

Seam kbondTT 200

Seam kbondTD 200

Seam kbondDT 200

Seam kbondDD 200

Seam kbreakTT 140

Seam kbreakTD 180

Seam kbreakDT 180

Seam kbreakDD 800

Table S1.2. Computational model parameters used 
to generate the dimer-scale simulation data. 
Parameter values used are from Margolin et al. 
2012. Please see Methods Section 4.2 for more 
information about the model.
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Secondary Supplement to the manuscript “Quantification of
Microtubule Stutters: Dynamic Instability Behaviors that are Strongly
Associated with Catastrophe”

Note: The Secondary Supplement is intended for readers who are already familiar with the
material in the main text Results and Methods as well as the Primary Supplement.

Secondary Supplement Table of Contents

Section Topic Pages

Section S2 STADIA parameter sensitivity analysis pp. 2 – 23
- tests how varying the input values of STADIA’s
segmentation parameters affects STADIA’s outputs
(summarized in main text Results Section 2.6.1)

Section S3 Data acquisition rate sensitivity analysis pp. 24 – 39
- tests how varying the temporal resolution of
input length-history data affects STADIA’s outputs
(summarized in main text Results Section 2.6.2)

Section S4 Negative control: two-state model pp. 40 – 46
- analyzes data from simulations designed to have
only two states (growth and shortening) to verify that
stutters are not an artifact manufactured by STADIA
(summarized in main text Results Section 2.3.5)

The simulation data used in the main text and in Supplemental Sections S1, S2, and S3 were
generated from the stochastic dimer-scale 13-PF model described in the main text Methods.
In contrast, Supplemental Section S4 presents and analyzes simulation data from a different
model, which was designed to only have two states (growth and shortening) and uses user-
input values of Vgrowth, Vshort, Fcat, and Fres.
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Supplemental Section S2: STADIA Parameter Sensitivity Analysis

Section S2 Table of Contents

Overview and Table of Contents Page 2

Information on procedure for varying STADIA segmentation parameters Page 3

Subsection S2.1. Gap statistic plots –support conclusion (1) Pages 4-9
Pages 4-5 – Description and Interpretations of Figures S2.1–S2.4
Page 6 – Figure S2.1: Positive slope segments, in silico dataset
Page 7 – Figure S2.2: Positive slope segments, in vitro control dataset
Page 8 – Figure S2.3: Negative slope segments, in silico dataset
Page 9 – Figure S2.4: Negative slope segments, in vitro control dataset

Subsection S2.2. Cluster profiles of positive and negative slope segment data Pages 10-13
– support conclusion (1)

Pages 10-11 – Description and Interpretations of Figures S2.5–S2.6
Page 12 – Figure S2.5: in silico dataset
Page 13 – Figure S2.6: in vitro control dataset

Subsection S2.3. Labeled length-history plots – support conclusions (1) and (2) Pages 14-16
Page 14 – Description and Interpretations of Figures S2.7–S2.8
Page 15 – Figure S2.7: in silico dataset
Page 16 – Figure S2.8: in vitro control dataset

Subsection S2.4. Transition Analysis Pages 17-23
– Frequencies of abrupt & transitional catastrophe and interrupted growth 

Pages 17-18 – Description and Interpretations of Figures S2.9–S2.11
Page 19 – Figure S2.9: in silico dataset – supports conclusions (1) and (2)
Page 20 – Figure S2.10: in vitro control dataset – supports conclusions (1), (2), and (3)
Page 21 – Figure S2.11: in vitro CLASP2γ dataset – supports conclusions (1) and (3)
Page 22 – Description and Interpretations of Figure S2.12
Page 23 – Figure S2.12: in vitro control and CLASP2γ datasets – supports conclusion (3)

Overview: The analyses presented here serve two related purposes: one, to provide guidance to users of
STADIA regarding how changes to the STADIA input parameters affect the outputs of STADIA; two, to test
the robustness of the main conclusions of our manuscript to changes in the STADIA input parameters. To
perform these analyses, we varied the values of the user-input STADIA segmentation parameters Minimum
Segment Duration and Maximum Error Tolerance while keeping the inputted length-history data fixed. The
values of these two parameters directly affect the output of the segmentation stage of STADIA, and
consequently have downstream effects on the results of the classification stage and the phase & transition
analysis stage. We performed these analyses using the dimer-scale in silico and TIRF-imaged in vitro
datasets from the main text.

In brief, the conclusions being considered are as follows: (1) MTs exhibit more behaviors than just growth
and shortening, with stutters being distinguishable behaviors that are prevalent throughout length-history
data, (2) transitional catastrophes are more frequent than abrupt catastrophes, and (3) the anti-catastrophe
factor CLASP2γ reduces catastrophe frequency by promoting stuttering MTs to return to growth. The table
of contents below directs readers to the figures related to each of the above conclusions.
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Information on procedure for varying STADIA segmentation parameters

STADIA has two parameters that directly affect segmentation of MT length-history data and are determined
entirely by the user:
1) Minimum Segment Duration: the shortest time duration allowed for any line segment in the

approximation of MT length-history data;
2) Maximum Error Tolerance: the largest difference allowed between each data point and the

corresponding line segment in the approximation.

For the in silico dataset†, the parameter space considered is as follows:
• Minimum Segment Duration = 0.3, 0.5, 1.0, 1.5, 2.0, 3.0 seconds, and
• Maximum Error Tolerance = 5, 10, 15, 20, 25, 30, 35, 40, 63 tubulin dimer-lengths (i.e., 40-500 nm).
The parameter space considered for the in vitro datasets is identical except that because the Data
Acquisition Time Step was 0.5 seconds (i.e., 2 fps) for the in vitro data, these datasets were not analyzed
using a Minimum Segment Duration of 0.3 seconds (Minimum Segment Duration must be ≥ Data
Acquisition Time Step). For comparison, the specific segmentation parameter values used in the main text
and Supplemental Section S1 were Minimum Segment Duration = 0.5 seconds and Maximum Error
Tolerance = 20 dimer-lengths.

Throughout the range of values considered for each parameter, analysis was conducted for every possible
combination (i.e., every Minimum Segment Duration is used with every Maximum Error Tolerance).
Therefore, the layout of each figure is a grid where the columns correspond to fixed values of the Minimum
Segment Duration and the rows correspond to fixed values of the Maximum Error Tolerance.

A note for users of the STADIA code: it is not always possible for the segmentation to satisfy both the
Minimum Segment Duration and the Maximum Error Tolerance input parameters. More specifically, during
the iterative process of adding new vertices to improve the accuracy of the continuous piecewise linear
approximation of length-history data, it is not always possible to select new vertices such that new
segments satisfy both input parameters. Such ‘irreconcilable errors’ are especially likely in cases where the
user has chosen a long Minimum Segment Duration with a small Maximum Error Tolerance. For additional
information about irreconcilable errors and how to interpret them, please see the main text Methods
Section 4.6.

† All in silico data in this section use the max PF length from the full resolution data, which has dimer-scale
spatial resolution, and temporal resolution of one output per dimer-scale biochemical event (see the main
text Methods Section 4.2 for more information). In contrast, Supplemental Section S3 tests the effects of
varying the temporal resolution of the in silico data.
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Subsection S2.1: Gap Statistic Figures
The gap statistic plots aid in determining the k-values (number of clusters) to use in the clustering step of
STADIA (for more information, see main text Box 1 and Sections 4.4.3 and 4.5.2.2).
Figure S2.1: Positive slope segments, in silicomax PF dataset
Figure S2.2: Positive slope segments, in vitro control dataset
Figure S2.3: Negative slope segments, in silicomax PF dataset
Figure S2.4: Negative slope segments, in vitro control dataset

Description: Panel A of each figure: The gap statistic plots are outputs from running STADIA in Diagnostic
Mode with the values of Minimum Segment Duration and Maximum Error Tolerance as indicated by the
column and row headings, respectively.

Each gap statistic plot is labeled with the k-value that we selected based on examination of that gap statistic
plot and corresponding cluster profile. Our selected k-value usually corresponds to either the first or second
local maximum of the gap statistic plot. The k-value of the second local maximum was chosen if the k-value
at the second local maximum showed better agreement with the cluster profile AND the gap value at the
second local maximum was greater than at the first local maximum. Italics indicate cases where the
selected k-value differs from the k-value outputted by Diagnostic Mode, which uses the criteria from
Tibshirani et al. (2001) as described in the main text Methods. Green in Figures S2.1-S2.2 (positive slope
segments) and red in Figures S2.3-S2.4 (negative slope segments) are used to indicate agreement with the
k-values selected in the main text results (Figure 4, Supplemental Figures S1.4, S1.5); gray indicates
parameter combinations resulting in k-values different from the main text results; plots with * are
monotonically increasing, and therefore lack a clear local maximum and are inconclusive for suggesting an
optimal k-value.

The dark blue box indicates the parameter space for which cluster profiles (Figures S2.5-S2.6) and labeled
length-history plots (Figures S2.7-S2.8) are provided. These parameters combinations were chosen for
further analysis due to their physical relevance (i.e., they correspond to experimentally feasible spatial and
temporal scales, while also resulting in segmentations that do not underfit or overfit the data relative to
filament-scale DI behaviors). The gap statistic plots outside the dark blue box are included for completeness
in the exploration of the parameter space.

Panel B of each figure (bottom right): A representative gap statistic plot shows the axes for each plot in (A).
The x-axis (k-value) range is the same for all plots. The y-axis (gap value) has differing ranges (not shown) for
each plot, but the specific numerical values of the gap statistic are not relevant to interpreting the plots
because identification of the optimal k-value is based on local maxima within each gap statistic plot. In
other words, the pertinent information is the relationship between the values of the gap statistic at
different k-values within each plot, not the gap statistic values themselves.

Observations: In each of the four figures (S2.1-S2.4), there exists a range of values of Minimum Segment
Duration and Maximum Error Tolerance that yield the same k-values as the results in the main text (k=3 in
Figures S2.1-S2.3, and k=2 in Figure S2.4 where full depolymerizations were not available in the data).

The positive slope segment data, both in silico (Figure S2.1) and in vitro (Figure S2.2), show a clear trend
toward lower k-values at higher values of the Maximum Error Tolerance, while exhibiting very little
sensitivity to changing Minimum Segment Duration. It is worth noting that in many of the cases where k=1
was selected for the in vitro data (Figure S2.2), a second local maximum does occur at k=3.

For the negative slope segment data (Figures S2.3-S2.4), the k-values tend to vary at low values of the
Maximum Error Tolerance and high values of the Minimum Segment Duration, but the vast majority of
cases show agreement with the k-values selected in the main text results.
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Interpretations: The gap statistic plots (Figures S1.1-S1.4) support the robustness of the k-values selected
in the main text results and therefore support the conclusion that multiple types of behavior exist within
both the positive and negative slope segment data from our datasets. Furthermore, the gap statistic plots in
combination with the cluster profiles in Figures S2.5-S2.6 and the length-history plots in Figures S2.7-S2.8
support the robustness of the conclusion that stutters in particular exist as a distinct behavior within both
the positive and negative slope segments. Additionally, the complexity of behaviors, as observed in the
cluster profiles and length-history plots, may justify rejecting a first local maximum at k=1 in more cases
than we have done here, which further supports the robustness of the classification results.

However, analysis must be conducted using segmentation parameters that are reasonable for capturing
behaviors at the scale that stutters exist. Recall that the Minimum Segment Duration places a lower limit on
the timescale of behaviors being analyzed, while the Maximum Error Tolerance places an upper limit on the
difference between the continuous piecewise linear approximation and the inputted length-history data.
Small values of Minimum Segment Duration and intermediate values of Maximum Error Tolerance (e.g.,
parameter combinations in or near the dark blue boxes in Figure S1.1-S1.4) work well for both the positive
and negative slope segments.

Additional discussion: With regard to the gap statistic plots at long Minimum Segment Durations in Figure
S2.3, consider that shortening or depolymerization behaviors exhibited by MTs often do not last 3 seconds
(Figure S1.8), so it is conceivable that thresholds are interfering even with the appropriate detection of
shortening phases when analysis is conducted at this timescale. Thus, by the very nature of shortening
phases of MTs, it follows that the gap statistic plots at long Minimum Segment Durations should be treated
with caution.
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Figure S2.1. Gap statistic plots for the POSITIVE slope
segment data from the full resolution in silico dataset
support the conclusion of multiple types of growth behavior
when segmentation is conducted at relevant spatiotemporal
scales.

The dark blue box contains the parameter combinations used
to continue the analysis of this dataset (in silico clustering
profiles in Figure S2.5, labeled length histories in Figure S2.7).

Please see pages 4 – 5 for the description and interpretations
of the gap statistic figures (Figures S2.1 – S2.4).
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Figure S2.2. Gap statistic plots for the POSITIVE slope
segment data from the in vitro control dataset support the
conclusion of multiple types of growth behavior when
segmentation is conducted at relevant spatiotemporal scales.

The dark blue box contains the parameter combinations used 
to continue the analysis of this dataset (in vitro clustering 
profiles in Figure S2.6, labeled length histories in Figure S2.8). 

Please see pages 4 – 5 for the description and interpretations
of the gap statistic figures (Figures S2.1 – S2.4).
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Figure S2.3. Gap statistic plots for the NEGATIVE slope
segment data from the full resolution in silico dataset
support the conclusion of multiple types of shortening
behavior when segmentation is conducted at relevant
spatiotemporal scales.

The dark blue box contains the parameter combinations used
to continue the analysis of this dataset (in silico clustering
profiles in Figure S2.5, labeled length histories in Figure S2.7).

Please see pages 4 – 5 for the description and interpretations
of the gap statistic figures (Figures S2.1 – S2.4).
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Figure S2.4. Gap statistic plots for the NEGATIVE slope
segment data from the in vitro control dataset. The gray
shading over the plots is used to indicate the incompleteness
of these results (recall that depolymerizations were not
tracked in their entirety for the in vitro data).

The dark blue box contains the parameter combinations used
to continue the analysis of this dataset (in vitro clustering
profiles in Figure S2.6, labeled length histories in Figure S2.8).

Please see pages 4 – 5 for the description and interpretations
of the gap statistic figures (Figures S2.1 – S2.4).
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Subsection S2.2: Cluster Profile Figures
The cluster profiles show how segments are grouped together in the classification stage of STADIA.
Figure S2.5: in silicomax PF dataset
Figure S2.6: in vitro control dataset

Description: The cluster profiles represent the clustering results from using STADIA in Automated Mode,
where k-means clustering was performed using the k-values indicated by the corresponding gap statistic
plots in Figures S2.1-S2.4. Each data point in the cluster profiles corresponds to a line segment from the
segmentation stage of STADIA. Recall that the segment feature data are log-transformed and standardized
prior to running through k-means clustering (see main text Methods Section 4.5.2.2), as display in these
plots. *Flat stutters (segments with near-zero slope) are not included in the cluster profiles because flat
stutter segments are identified by user-defined thresholds, not by k-means clustering (see main text
Methods Section 4.5.2.1).

Observations: The cluster profiles maintain the same general shape over the range of Maximum Error
Tolerances and Minimum Segment Durations in Figures S2.5-S2.6. In particular, the cluster profiles still have
3 ‘appendages’ for the in silico positive and negative slope segment data and the in vitro positive slope
segment data. For the in vitro negative slope segment data, the appendage corresponding to segments with
longer time durations is missing because the experimentally obtained dataset contained only the
beginnings of depolymerization phases, but the overall shape of the cluster profile is fairly consistent across
the parameter space.

Significantly, the appendage corresponding to stutters (i.e., lower left appendage in the positive slope plots,
upper left appendage in the negative slope plots) is present in all cases, even when k<3 was suggested by
the gap statistic plots.

A difference across the varying parameter values is that the overall density of data points decreases as the
Maximum Error Tolerance and/or the Minimum Segment Duration is increased (i.e., highest density occurs
in the upper left of the 3x3 grid, and lowest density in the bottom right of the grid). Overall, there appears
to be less change in density for the in vitro dataset than the in silico dataset. However, for both the in silico
and in vitro datasets, when loss of density does occur, much of the loss appears to be among the more
rapid short-duration segments of the brief growth cluster.

Interpretations: The consistent presence of multiple appendages in the cluster profiles in Figures S2.5-S2.6
supports the conclusion that multiple behaviors exist within both the positive and negative slope segments.
In particular, the presence in all cases of the appendage corresponding to shallow-slope segments gives
strong support to the conclusion that stutters exist.

Relatedly, the cluster profiles bolster the k-values selected from the gap statistic plots (Figures S2.1-S2.4) in
most cases. The notable exception is the selection of k=1 for the in vitro positive slope segments when
using Maximum Error Tolerance = 25 dimer-lengths. The cluster profiles in this case still display multiple
appendages and a similar overall shape to the other positive slope segment cluster profiles, which indicates
that the first local maximum of the corresponding gap statistic plots at k=1 does not capture the presence
of the subgroups in the data. Thus, the second local maximum at k=3 may be a more viable option.
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Additional Discussion: With regards to the decrease in the density of the data points as the input
parameters increase, recall that the Minimum Segment Duration and the Maximum Error Tolerance directly
affect the accuracy of the piecewise linear approximation to the length-history data, and therefore also
affect the temporal scale of the dynamics being identified. Higher values of Minimum Segment Duration
and Maximum Error Tolerance result in a less accurate approximation and thus fewer line segments.
Because the segments in the piecewise linear approximation are represented as data points in the cluster
profiles, fewer segments in the approximation lead to cluster profiles with lower density. Thus, the
consequences of any overfitting or underfitting at the segmentation stage propagate into the classification
stage and can affect the clustering results. Note that such changes in density are only seen in a limited
capacity in the subset of the parameter space explored in Figures S2.5-S2.6.

Density can impact clustering results because k-means clustering, like most clustering algorithms, seeks to
exploit low density areas as the natural separations to identify boundaries between potential clusters
detectable by their higher density. Therefore, for clustering analysis to succeed in distinguishing MT
behaviors, a large enough amount of data is needed to cover the landscape of possible MT behaviors.

More specifically, users should be cautioned that using an insufficient amount of data can have at least two
potential outcomes. First, a low-density region may be artificially identified as a space between clusters,
which can result in identifying more cluster boundaries than actually exist. This situation is unlikely in the
data explored here since most cases yielded no more than k=3 as the ideal number of clusters (the
exception being some edge cases, or cases where no ideal k-value was found). A second potential outcome
of sparse data is when a region that should be associated with a particular behavior has relatively little
density and is therefore missed as a distinguishable cluster. This situation is more likely, especially when
considering parameter sets that deliver less accurate approximations incapable of capturing some nuanced
behaviors in MT dynamics (such as stutters). Indeed, this situation played out in cases using higher
Maximum Error Tolerance values in Figures S2.1-S2.2, which yielded lower k-values. This further justifies
using segmentation parameters in or close to the range of parameters values used in Figures S2.5-S2.6.
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Figure S2.5. The cluster profiles of the positive and negative slope segment data from the full
resolution in silico dataset support the existence of stutters. The cluster profiles result from
performing k-means clustering using the k-value displayed in the corresponding gap statistic plot in
Figures S2.1 and S2.3 for the positive and negative slope segments, respectively.

Please see pages 10 – 11 for the description and interpretations of the cluster profile figures (Figures
S2.5 – S2.6).
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Figure S2.6. The cluster profiles of positive and negative slope segment data from the in vitro control
dataset support the existence of stutters. The cluster profiles result from performing k-means
clustering using the k-value displayed in the corresponding gap statistic plot in Figures S2.2 and S2.4
for the positive and negative slope segments, respectively.

The gray shading over the cluster profiles for the negative slope segment data is used to indicate the
incompleteness of these results. More specifically, the sustained shortening cluster is missing because
depolymerizations were not tracked in their entirety for the in vitro data (e.g., Figure 1 D), as
explained in the main text Section 4.1.

Please see pages 10 – 11 for the description and interpretations of the cluster profile figures (Figures
S2.5 – S2.6).
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Subsection S2.3: Length-History Figures
The segments in the length-history plots are color-coded according to the classification results.
Figure S2.7: in silicomax PF dataset
Figure S2.8: in vitro control dataset

Description: The same portion of the inputted length-history data (white lines) is plotted in each panel. The
data were analyzed using STADIA in Automated Mode with each combination of input parameters (row and
column headings). Consequently, each panel shows a different continuous piecewise linear approximation
(black lines) resulting from the segmentation stage, which leads to different clustering results (colored
backgrounds) in the classification stage.

As indicated in the key at the bottom of the figures, the color of the background behind each segment
represents the cluster to which the segment was assigned. The cluster assignments (Figures S2.5-S2.6)
resulted from using k-means clustering with the k-values selected from the corresponding gap statistic plots
(Figures S2.1-S2.4) for each set of parameters.

The zoomed-in portraits in each panel show the catastrophe indicated by the black box in the top left panel.

Observations: The labeled length-history plots illustrate that detection of stutters is reduced when
segmentation is performed using higher values for Minimum Segment Duration or Maximum Error
Tolerance.

For increasing values of Maximum Error Tolerance, fewer stutters are detected throughout the plotted
region of length-history data.

To provide an example of the effect of the Minimum Segment Duration in each of Figures S2.7 and S2.8, the
zoomed-in portraits in the upper corner of each panel show a catastrophe that is clearly transitional in the
inputted length-history data (white line) but is miscategorized as abrupt when using Minimum Segment
Durations > 0.5 seconds. The miscategorization occurs because the piecewise linear approximation (black
line segments) does not segment the data with enough accuracy to detect the stutter when using Minimum
Segment Durations > 0.5 seconds.

In general, less diverse behavior is captured when using high values for both parameters, and the associated
underfitting is more obvious in the zoomed-in plots in cases where the segmented approximation (black
lines) does not closely follow the inputted data (white lines).

Interpretations: Labeled length-history plots provide a qualitative check on the classification and transition
analyses and provide further insight into appropriate parameter choices. While the gap statistic plots and
cluster profiles inform the k-value (i.e., the number of behaviors) and the robustness with which those
behaviors are detected (i.e., the consistency of the clustering results across an appropriate parameter
range), the labeled length-history data allow for visual inspection of the transitions between behaviors. For
example, the labeled length-history plots shown here indicate that the parameters chosen for the STADIA
analysis in the main text and Supplemental Section S1 (i.e., Minimum Segment Duration = 0.5 seconds,
Maximum Error Tolerance = 20 dimer-lengths) are appropriate for accurately detecting the stutter before
catastrophe shown here. The effect of the user-input parameters on the detection of transitional
catastrophes more generally is examined in Figures S2.9-S2.11.
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Figure S2.7. Labeled length-history plots for the full resolution in silico dataset demonstrate that fewer
stutters are detected when segmentation is performed using higher values for Minimum Segment Duration
or Maximum Error Tolerance. The colored background behind each segment represents the cluster to which
the segment was assigned in the k-means clustering results in Figure S2.5.

Please see page 14 for the description and interpretations of the length-history figures (Figures S2.7 – S2.8).
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Figure S2.8. Labeled length-history plots for the in vitro control dataset demonstrate that fewer stutters are
detected when segmentation is performed using higher values for Minimum Segment Duration or
Maximum Error Tolerance. The colored background behind each segment represents the cluster to which
the segment was assigned in the k-means clustering results in Figure S2.6.

Please see page 14 for the description and interpretations of the length-history figures (Figures S2.7 – S2.8).
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Subsection S2.4: Transition Frequency Figures
These figures compare the frequencies of the different types of transitions that begin from growth: abrupt
catastrophe (growth->shortening), transitional catastrophe (growth->stutter->shortening), and interrupted
growth (growth->stutter->growth). These results support the robustness of the conclusions that most
catastrophes are transitional in the in silico and in vitro control datasets, and that CLASP2γ reduces
catastrophe frequency by promoting growth of stuttering MTs.
Figure S2.9: in silicomax PF dataset
Figure S2.10: in vitro control dataset
Figure S2.11: in vitro CLASP2γ dataset

Description: For all combinations of Minimum Segment Duration and Maximum Error Tolerance shown,
these measured transition frequencies are the results from using STADIA in Automated Mode with the k-
values identified in the main text Results: k=3 for both positive and negative slope segments in the in silico
dataset (Figure S2.9); k=3 for positive and k=2 for negative slope segments in the in vitro control dataset
(Figure S2.10) and the in vitro CLASP2γ dataset (Figure S2.11).

Panels A-C of each figure: Transition frequencies across the full parameter space considered in
Supplemental Section S2. The frequency of abrupt catastrophe (FAbruptCat, A), frequency of transitional
catastrophe (FTransCat, B), and frequency of interrupted growth (FIntGrowth, C) are reported in table form. The
highlighted column (Minimum Segment Duration = 0.5 seconds) and row (Maximum Error Tolerance = 20
dimer-lengths) of each table correspond to the data plotted in (D-G).

Panels D,E of each figure: These plots compare the frequencies of the two types of catastrophes: abrupt
and transitional. FAbruptCat and FTransCat are plotted for varying Minimum Segment Durations while holding the
Maximum Error Tolerance constant at 20 dimer-lengths (D) and for varying Maximum Error Tolerances while
holding the Minimum Segment Duration constant at 0.5 seconds (E). The measured frequencies and their
total (Fcat = FAbruptCat + FTransCat) are plotted corresponding to the left-hand y-axes; the ratio of FAbruptCat to
FTransCat is plotted corresponding to the right-hand y-axes. Note that FAbruptCat/FTransCat < 1 indicates FTransCat >
FAbruptCat.

Panels F,G of each figure: These plots compare the fates of the two types of transitions that begin with
growth-to-stutter: transitional catastrophes and interrupted growth. FTransCat and FIntGrowth are plotted for
varying Minimum Segment Durations while holding the Maximum Error Tolerance constant at 20 dimer-
lengths (F) and for varying Maximum Error Tolerances while holding the Minimum Segment Duration
constant at 0.5 seconds (G). The measured frequencies and their total (FIntGrowth + FTransCat) are plotted
corresponding to the left-hand y-axes; the ratio of FIntGrowth to FTransCat is plotted corresponding to the right-
hand y-axes. For small Maximum Error Tolerances, please see the tables in (A-C) for the frequencies that are
too high to be visible in Figures S2.9(E,G), S2.10(G), and S2.11(E,G).

Observations regarding catastrophes (abrupt and transitional):
In all three datasets (Figures S2.9-S2.11), the total Fcat (which equals FAbruptCat + FTransCat ) is relatively steady over the range of
Minimum Segment Durations (D, Maximum Error Tolerance = 20 dimer-lengths), albeit nosier in the in vitro datasets than the in
silico dataset. With increasing Maximum Error Tolerance (F, Minimum Segment Duration = 0.5 seconds), the total Fcat decreases
in all three datasets, but levels off to fairly steady values in the in silico and in vitro control datasets at high Maximum Error
Tolerances.

More importantly, consistent with the results in the main text, in the in silico and in vitro control datasets (Figure S2.9-S2.10),
FTransCat is greater than FAbruptCat (i.e., FAbruptCat/FTransCat < 1) for sufficiently small Minimum Segment Durations in (D) and for a range
of Maximum Error Tolerances in (F). In particular, FTransCat > FAbruptCat holds for the in silico dataset with Minimum Segment
Duration < 1.5 seconds (D) and Maximum Error Tolerance between 10 and 40 dimer-lengths (E), and for the in vitro control data
with Minimum Segment Duration = 0.5 seconds (D) and Maximum Error Tolerance less than or equal to 40 dimer-lengths (E).

Also consistent with the results in the main text and in contrast to the in vitro control data, in the in vitro CLASP2γ dataset (Figure
S2.11), FTransCat is less than FAbruptCat (i.e., FAbruptCat/FTransCat > 1) for all Minimum Segments Durations in (D) and all Maximum Error
Tolerances in (E).

17



Observations regarding growth-to-stutter transitions (interrupted growth and transitional catastrophes):
In each of the three datasets (Figures S2.9-S2.11), the frequency of growth-to-stutter transitions FIntGrowth+ FTransCat (F,G) appears
to change more significantly than the total Fcat = FAbruptCat + FTransCat (D,E) when varying either the Minimum Segment Duration (D
versus F; Maximum Error Tolerance = 20 dimer-lengths) or Maximum Error Tolerance (E versus G; Minimum Segment Duration =
0.5 seconds).

Also in each of the datasets, FIntGrowth and FTransCat both decrease with increasing Maximum Error Tolerance (G); further, FIntGrowth
decreases more rapidly than FTransCat, resulting in a decrease in their ratio FIntGrowth /FTransCat (except in the CLASP2γ dataset at high
Maximum Error Tolerances). Additionally, FIntGrowth and FTransCat each individually change more with varying Maximum Error
Tolerance (G) than with varying Minimum Segment Duration (F)

In the in vitro CLASP2γ dataset (Figure S2.11), FIntGrowth is consistently greater than FTransCat (i.e., FIntGrowth /FTransCat > 1) for all data in
(F, G). In contrast, the ratio FIntGrowth /FTransCat in the in vitro control dataset (Figure S2.10) is much less than 1 for Minimum
Segment Duration = 0.5 seconds in (F) and for Maximum Error Tolerance > 15 dimer-lengths in (G).

Interpretations:
The above observations support the conclusion that catastrophes are more often transitional than abrupt in
both the in silico dataset and the in vitro control dataset. This conclusion is robust over a range of
intermediate Maximum Error Tolerances, provided that the Minimum Segment Duration is short enough
(Figures S2.9-S2.10).

The above observations also support the conclusions that catastrophes in the presence of CLASP2γ are
abrupt more often than transitional, and that growth-to-stutter occurrences with CLASP2γ result in
interrupted growth more often than they result in transitional catastrophes (i.e., CLASP2γ promotes growth
of stuttering MTs). These conclusions are robust across the segmentation parameters in (D-G) of Figure
S2.11.

The general decreases in each of FTransCat and FIntGrowth with increasing Minimum Segment Duration or
increasing Maximum Error Tolerance are indicative of a decrease in stutter detection. This effect of the
parameters on STADIA’s ability to detect individual stutter segments is also evidenced by the decreasing
density of the cluster profiles in Figures S2.5-S2.6 and by the loss of detection of particular stutters in the
labeled length-history plots in Figures S2.7-S2.8.

Additionally, the total frequency of transitions tends to decrease with increasing Minimum Segment
Duration or increasing Maximum Error Tolerance, consistent with a smaller total number of segments being
identified in the piecewise linear approximations as these segmentation parameters are increased. This
change is particularly dramatic when going from low to intermediate values of Maximum Error Tolerance
(e.g., 5 to 25 dimer-lengths; E,G).

Additional Discussion:
While FIntGrowth and FTransCat each decrease with increasing Maximum Error Tolerances, the decreases in both
the total frequency (FIntGrowth + FTransCat) and the ratio (FIntGrowth /FTransCat) can be attributed primarily to the
large decrease in the frequency of interrupted growth. This larger decrease in FIntGrowth than in FTransCat
suggests that detection of stutters interrupting growth is more sensitive to the Maximum Error Tolerance
than is detection of stutters preceding catastrophes.
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Figure S2.9. Transition analysis across Minimum Segment Durations and Maximum Error Tolerances
provides robust support for prevalence of transitional catastrophes in the full resolution in silico dataset.

Please see pages 17 – 18 for the description and interpretations of the transition frequency figures for each
dataset (Figures S2.9 – S2.11).

Frequency of ABRUPT CATASTROPHE
Max Error 
Tolerance 

(dimer-lengths)
Minimum Segment Duration (s)

0.3 0.5 1.0 1.5 2.0 3.0

5 0.0883 0.1107 0.1002 0.0642 0.0439 0.0186

10 0.0050 0.0067 0.0105 0.0149 0.0158 0.0151

15 0.0046 0.0029 0.0045 0.0061 0.0071 0.0075

20 0.0024 0.0025 0.0041 0.0059 0.0068 0.0070

25 0.0023 0.0031 0.0042 0.0057 0.0067 0.0068

30 0.0025 0.0027 0.0042 0.0059 0.0068 0.0068

40 0.0029 0.0031 0.0043 0.0059 0.0068 0.0066

63 0.0047 0.0048 0.0046 0.0060 0.0070 0.0057

Frequency of TRANSITIONAL CATASTROPHE
Max Error
Tolerance 

(dimer-lengths)
Minimum Segment Duration (s)

0.3 0.5 1.0 1.5 2.0 3.0

5 0.0607 0.0648 0.0402 0.0217 0.0127 0.0052

10 0.0131 0.0122 0.0094 0.0076 0.0068 0.0045

15 0.0101 0.0095 0.0071 0.0053 0.0042 0.0030

20 0.0090 0.0085 0.0060 0.0042 0.0030 0.0021

25 0.0083 0.0074 0.0055 0.0038 0.0026 0.0019

30 0.0075 0.0072 0.0052 0.0035 0.0024 0.0017

40 0.0067 0.0064 0.0049 0.0033 0.0023 0.0018

63 0.0045 0.0043 0.0040 0.0029 0.0019 0.0009

Frequency of INTERRUPTED GROWTH
Max Error 
Tolerance 

(dimer-lengths)
Minimum Segment Duration (s)

0.3 0.5 1.0 1.5 2.0 3.0

5 0.5378 0.3763 0.1998 0.1404 0.1000 0.0574

10 0.1321 0.1155 0.0758 0.0537 0.0431 0.0338

15 0.0332 0.0343 0.0290 0.0228 0.0198 0.0152

20 0.0104 0.0107 0.0092 0.0084 0.0079 0.0061

25 0.0033 0.0013 0.0035 0.0033 0.0032 0.0028
30 0.0015 0.0015 0.0015 0.0014 0.0014 0.0016

40 0.0003 0.0003 0.0004 0.0004 0.0004 0.0007

63 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001
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Frequency of ABRUPT CATASTROPHE
Max Error 
Tolerance 

(dimer-lengths)
Minimum Segment Duration (s)

0.3 0.5 1.0 1.5 2.0 3.0

5

Not 
Calcula
ted for 
In Vitro
data

0.0012 0.0072 0.0062 0.0047 0.0037

10 0.0013 0.0069 0.0059 0.0045 0.0038

15 0.0015 0.0065 0.0105 0.0047 0.0040

20 0.0018 0.0062 0.0098 0.0050 0.0041

25 0.0030 0.0072 0.0035 0.0051 0.0046

30 0.0028 0.0063 0.0059 0.0055 0.0050

40 0.0032 0.0067 0.0062 0.0057 0.0053

63 0.0061 0.0072 0.0068 0.0064 0.0063

Frequency of TRANSITIONAL CATASTROPHE
Max Error
Tolerance 

(dimer-lengths)
Minimum Segment Duration (s)

0.3 0.5 1.0 1.5 2.0 3.0
5

Not 
Calcula
ted for 
In Vitro
data

0.0166 0.0069 0.0061 0.0058 0.0059

10 0.0137 0.0049 0.0043 0.0045 0.0052

15 0.0121 0.0032 0.0051 0.0033 0.0043

20 0.0108 0.0025 0.0042 0.0026 0.0037

25 0.0077 0.0002 0.0072 0.0019 0.0030

30 0.0085 0.0020 0.0017 0.0018 0.0026

40 0.0067 0.0015 0.0014 0.0013 0.0019

63 0.0031 0.0006 0.0005 0.0005 0.0007

Frequency of INTERRUPTED GROWTH
Max Error 
Tolerance 

(dimer-lengths)
Minimum Segment Duration (s)

0.3 0.5 1.0 1.5 2.0 3.0

5

Not 
Calcula
ted for 
In Vitro
data

0.0846 0.0822 0.0739 0.0495 0.0325

10 0.0205 0.0202 0.0197 0.0178 0.0156

15 0.0077 0.0078 0.0058 0.0072 0.0064

20 0.0036 0.0038 0.0029 0.0035 0.0034

25 0.0006 0.0007 0.0006 0.0020 0.0019

30 0.0010 0.0010 0.0010 0.0009 0.0009

40 0.0003 0.0003 0.0002 0.0003 0.0002

63 0.0001 0.0001 0.0001 0.0001 0.0000

Figure S2.10. Transition analysis across Minimum Segment Durations and Maximum Error Tolerances
provides robust support for prevalence of transitional catastrophes in the in vitro control dataset.

Please see pages 17 – 18 for the description and interpretations of the transition frequency figures for each
dataset (Figures S2.9 – S2.11). Please see page 23 for Figure S2.12, which compares the transition
frequencies from the in vitro control and CLASP2γ datasets.
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Figure S2.11. Transition analysis across Minimum Segment Durations and Maximum Error Tolerances
provides robust support for reduced transitional catastrophe frequency and increased interrupted growth
frequency in the in vitro CLASP2γ dataset.

Please see pages 17 – 18 for the description and interpretations of the transition frequency figures for each
dataset (Figures S2.9 – S2.11). Please see page 23 for Figure S2.12, which compares the transition
frequencies from the in vitro control and CLASP2γ datasets.
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Frequency of ABRUPT CATASTROPHE
Max Error 
Tolerance 

(dimer-lengths)
Minimum Segment Duration (s)

0.3 0.5 1.0 1.5 2.0 3.0

5

Not 
Calcula
ted for 
In Vitro
data

0.0379 0.0412 0.0160 0.0078 0.0112

10 0.0176 0.0178 0.0165 0.0109 0.0059

15 0.0087 0.0082 0.0089 0.0083 0.0050

20 0.0049 0.0057 0.0055 0.0074 0.0050

25 0.0037 0.0041 0.0042 0.0048 0.0024

30 0.0042 0.0046 0.0049 0.0042 0.0025

40 0.0034 0.0033 0.0035 0.0059 0.0055

63 0.0023 0.0021 0.0054 0.0050 0.0054

Frequency of TRANSITIONAL CATASTROPHE
Max Error
Tolerance 

(dimer-lengths)
Minimum Segment Duration (s)

0.3 0.5 1.0 1.5 2.0 3.0

5

Not 
Calcula
ted for 
In Vitro
data

0.0148 0.0144 0.0124 0.0088 0.0053

10 0.0074 0.0063 0.0033 0.0032 0.0029

15 0.0046 0.0040 0.0029 0.0024 0.0017

20 0.0034 0.0024 0.0018 0.0022 0.0015

25 0.0032 0.0023 0.0026 0.0044 0.0030

30 0.0017 0.0019 0.0019 0.0028 0.0025

40 0.0011 0.0009 0.0010 0.0008 0.0008

63 0.0003 0.0003 0.0000 0.0000 0.0000

Frequency of INTERRUPTED GROWTH
Max Error 
Tolerance 

(dimer-lengths)
Minimum Segment Duration (s)

0.3 0.5 1.0 1.5 2.0 3.0

5

Not 
Calcula
ted for 
In Vitro
data

0.1129 0.0720 0.0760 0.0460 0.0279

10 0.0321 0.0291 0.0204 0.0162 0.0102

15 0.0137 0.0124 0.0100 0.0089 0.0061

20 0.0088 0.0075 0.0039 0.0071 0.0056

25 0.0050 0.0030 0.0022 0.0044 0.0013

30 0.0030 0.0018 0.0016 0.0042 0.0011

40 0.0020 0.0014 0.0010 0.0020 0.0008

63 0.0008 0.0008 0.0007 0.0020 0.0011
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Transition Frequency Comparison Figure
Figure S2.12: in vitro control and in vitro CLASP2γ datasets

Description: Each panel compares transition frequencies from the in vitro control dataset (orange dashed
lines, square markers) and in vitro CLASP2γ dataset (yellow solid lines, circle markers). These control and
CLASP2γ data are replotted from Figures S2.10 and S2.11, respectively, for the purpose of comparing the
frequencies from the two different datasets on the same graph.

The measured frequencies FCat (A,B), FTransCat (C,D), FIntGrowth (E,F) and the ratio FIntGrowth/FTransCat (G,H) are
plotted for varying Minimum Segment Durations while holding the Maximum Error Tolerance constant at 20
dimer-lengths (A,C,E,G) and varying Maximum Error Tolerances while holding the Minimum Segment
Duration constant at 0.5 seconds (B,D,F,H).

For the values of the frequencies that are too high to be visible in (B,F) at small Maximum Error Tolerances,
please see the tables in Figures S2.10 C and S2.11 A,B,C.

Observations: For most of the values of Minimum Segment Duration and Maximum Error Tolerance in (A,B),
the total Fcat is smaller in the in vitro CLASP2γ dataset than in the in vitro control dataset (the few
exceptions are at Minimum Segment Duration = 2 seconds in (A), and Maximum Error Tolerance < 15
dimers-lengths in (B)).

For all combinations of Minimum Segment Duration and Maximum Error Tolerance in (G,H), the ratio
FIntGrowth/FTransCat is greater in the CLASP2γ dataset than in the control dataset. In particular, the presence of
CLASP2γ reduces FTransCat (C,D) and increases FIntGrowth (E,F) compared to the control data in almost all cases
(the only exceptions are two data points in (C) where the values of FTransCat are very similar in the two
datasets).

Interpretations: The observations above demonstrate that the conclusion that CLASP2γ suppresses
catastrophe by promoting growth of stuttering MTs is robust to changes in the STADIA segmentation
parameters.
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Figure S2.12. Comparison of transition analysis results from the in vitro datasets for varying Minimum
Segment Durations and Maximum Error Tolerances supports the conclusion that CLASP2γ suppresses
transitional catastrophes and promotes interrupted growths.

Please see page 22 for the description and interpretations of this figure.
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Supplemental Section S3: Data Acquisition Rate Sensitivity Analysis

Overview: The analyses presented in the previous section (Supplemental Section S2) tested the effects of
varying the values of the user-input STADIA segmentation parameters Minimum Segment Duration and
Maximum Error Tolerance. Here in Supplemental Section S3, we examine sensitivity to the temporal
resolution of the inputted length-history data itself, in addition to varying the STADIA parameters Minimum
Segment Duration and Maximum Error Tolerance. This analysis uses the dimer-scale in silico dataset. The
analyses presented here serve two related purposes: one, to provide guidance to users of STADIA regarding
how changes to the temporal resolution of the inputted length-history data affect the outputs of STADIA;
two, to test the robustness of the main conclusions of our manuscript to changes in the temporal
resolution.

In this section, the conclusions being considered are as follows: (1) MTs exhibit more behaviors than just
growth and shortening, with stutters being distinguishable behaviors that are prevalent throughout length-
history data, and (2) transitional catastrophes are more frequent than abrupt catastrophes. The table of
contents below directs readers to the figures related to each of the above conclusions.



Information on procedure for varying temporal resolution of input length-history data

In Supplemental Section S2, we explored the impact of changing STADIA parameters on all three datasets
used in the main text. Here in Supplemental Section S3, we examine the effect of changing the data
acquisition rate (“frame” rate), which is a property of the input length-history data itself. This analysis uses
the in silico data to allow for varying the data acquisition rate across a wide range of values, including rates
faster than the in vitro frame rate. We achieve this variation by imposing various fixed data acquisition rates
on the original full resolution in silico dataset (“full resolution” defined in the next paragraph). We then
compare the results from STADIA analysis of these reduced resolution datasets to those obtained from the
full resolution dataset.

In the following figures, “Full Resolution Data” refers to the raw simulation output, which includes a data
point for every dimer-scale biochemical event. For the input simulation parameters used to generate the in
silico data in this manuscript, approximately 1650 events occurred per second. See main text Methods
Section 4.2 for more information. The in silico dataset used in the main text and in Supplemental Sections
S1 & S2 was also the full resolution dataset.

The setup of the following analyses is similar to the parameter sensitivity analyses presented in
Supplemental Section S2. However, here we vary the Data Acquisition Time Step, in addition to varying the
two STADIA parameters examined in Supplemental Section S2. Note that ‘data acquisition rate in frames
per second’ = 1/‘Data Acquisition Time Step in seconds’ (e.g., 2 fps corresponds to a Data Acquisition Time
Step of 0.5 seconds). As a result of the need to examine three variables, the layout of figures in
Supplemental Section S3 differs from Supplemental Section S2. Specifically, here in Supplemental Section
S3, there are three sets of three figures: gap statistic plots for positive slope segments (Figures S3.1-S3.3),
gap statistic plots for negative slope segments (Figures S3.4-S3.6), and cluster profiles for the positive and
negative slope segments along with labeled length-history plots (Figures S3.7-S3.9). Within each set, each
figure corresponds to a particular Minimum Segment Duration (0.5, 1.0, or 3.0 seconds). Within the gap
statistic figures, the columns correspond to varying values of the Data Acquisition Time Step and the rows
correspond to varying values of the Maximum Error Tolerance. Within the cluster profile and length-history
figures, the Maximum Error Tolerance is fixed at 20 dimer-lengths and the rows now correspond to varying
Data Acquisition Time Steps. For reference, the analysis in the main text and Supplemental Section S1 used
Minimum Segment Duration = 0.5 seconds and Maximum Error Tolerance = 20 dimer-lengths.
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Subsection S3.1: Gap Statistic Figures - in silico data with varying Data Acquisition Time Steps
The gap statistic plots aid in determining the k-values (number of clusters) to use in the clustering step of
STADIA.
Positive slope segments:

Figure S3.1:Minimum Segment Duration = 0.5 seconds
Figure S3.2:Minimum Segment Duration = 1.0 seconds
Figure S3.3:Minimum Segment Duration = 3.0 seconds

Negative slope segments:
Figure S3.4:Minimum Segment Duration = 0.5 seconds
Figure S3.5:Minimum Segment Duration = 1.0 seconds
Figure S3.6:Minimum Segment Duration = 3.0 seconds

Description: Panel A of each figure: The gap statistic plots are the result of analyzing the in silico data with
varying Data Acquisition Time Steps (column headings) using the Diagnostic Mode of STADIA with the
Minimum Segment Duration indicated in each figure legend and varying Maximum Error Tolerances (row
headings).

Each gap statistic plot is labeled with the k-value that we selected based on examination of that gap statistic
plot and corresponding cluster profile. Our selected k-value usually corresponds to either the first or second
local maximum of the gap statistic plot. The k-value of the second local maximum was chosen if the k-value
at the second local maximum showed better agreement with the cluster profile AND the gap value at the
second local maximum was greater than at the first local maximum. Italics indicate cases where the selected
k-value differs from the k-value outputted by Diagnostic Mode, which uses the criteria from Tibshirani et al.
(2001) as described in the main text Methods. Green in Figures S3.1-S3.3 (positive slope segments) and red
in Figures S3.4-S3.6 (negative slope segments) are used to indicate agreement with the k-values selected in
the main text results (Figure 4, Supplemental Figures S1.4, S1.5); gray indicates parameter combinations
resulting in k-values different from the main text results; plots with * are monotonically increasing, and
therefore lack a clear local maximum and are inconclusive for suggesting an optimal k-value.

The dark blue box indicates the parameter space for which cluster profiles and labeled length-history plots
are provided in Figures S3.7-S3.9. These parameter combinations were chosen for further analysis due to
their physical relevance (i.e., Maximum Error Tolerance of 20 dimer-lengths corresponds to spatial resolution
that is both experimentally feasible and sufficient to capture stutters, provided that the Data Acquisition Time
Step and Minimum Segment Duration are sufficiently small). The gap statistic plots outside the dark blue box
are included for completeness in the exploration of the parameter space.

Panel B of each figure (bottom right): A representative gap statistic plot shows the axes for each plot in (A).
The x-axis (k-value) range is the same for all plots. The y-axis (gap value) has differing ranges (not shown) for
each plot, but the specific numerical values of the gap statistic are not relevant to interpreting the plots
because identification of the optimal k-value is based on local maxima within each gap statistic plot. In other
words, the pertinent information is the relationship between the values of the gap statistic at different k-
values within each plot, not the gap statistic values themselves.

†The full resolution in silico data (first column) have temporal resolution of one output per dimer-scale
biochemical event (see main text Methods Section 4.2 for more information).
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Observations: The gap statistic plots resulting from the analysis of the in silico data with varying Data
Acquisition Time Steps are generally similar to the results from the full resolution data. The identification of
k=3 as the optimal k-value is upheld in most cases. The most notable exception is for the negative slope
segment data with Data Acquisition Time Steps of 1.5 or 3.0 seconds analyzed with Minimum Segment
Duration = 3.0 seconds; for these data, the gap statistic suggests k=1 across most of the Maximum Error
Tolerances tested (Figure S3.6).

Additional Observations: For the positive slope segment data (Figures S3.1-S3.3), the same general pattern
(i.e., k=3 for sufficiently small Maximum Error Tolerances and a diminishing number of clusters with
increasing Maximum Error Tolerance) is upheld across the Data Acquisition Time Steps and Minimum
Segment Durations considered. For the negative slope segment data (Figures S3.4-S3.6), the identification
of k=3 is generally less sensitive to the Maximum Error Tolerance than for the positive slope segment data,
but the prominence of the local maximum at k=3 for the negative slope segment data does vary across the
different Data Acquisition Time Steps and STADIA parameter combinations.

Interpretations: The stability of the k-value suggested by the gap statistic plots across most of the Data
Acquisition Time Steps (i.e., 0.1, 0.5, and 1.0 seconds) supports the robustness of the conclusion that
stutters exist and are not simply a result of analyzing data at fine resolution. The loss of detection of
multiple clusters in the negative slope segment data at the slow Data Acquisition Time Steps (i.e., 1.5 and
3.0 seconds) is not surprising. As was noted in the STADIA parameter sensitivity analysis with the full
resolution data (Supplemental Section S2), MT depolymerizations occur at relatively short time scales
(often less than 3 seconds). Therefore, when data are acquired with time steps this long, approximating
depolymerizations closely enough to detect multiple behaviors within the negative slope segments can
become challenging.
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Figure S3.1. Gap statistic plots for the POSITIVE slope segment
data from the in silico dataset with varying data acquisition
rates analyzed usingMinimum Segment Duration = 0.5 seconds
support the conclusion of multiple types of growth behavior.

Please see pages 26 – 27 for the description and interpretations
of the gap statistic figures (Figures S3.1 – S3.6).
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Figure S3.2. Gap statistic plots for the POSITIVE slope segment
data from the in silico dataset with varying data acquisition
rates analyzed usingMinimum Segment Duration = 1.0 seconds
support the conclusion of multiple types of growth behavior.

Please see pages 26 – 27 for the description and interpretations
of the gap statistic figures (Figures S3.1 – S3.6).
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Figure S3.3. Gap statistic plots for the POSITIVE slope segment
data from the in silico dataset with varying data acquisition
rates analyzed usingMinimum Segment Duration = 3.0 seconds
support the conclusion of multiple types of growth behavior.

Please see pages 26 – 27 for the description and interpretations
of the gap statistic figures (Figures S3.1 – S3.6).
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Figure S3.4. Gap statistic plots for the NEGATIVE slope segment
data from the in silico data with varying data acquisition rates
analyzed using Minimum Segment Duration = 0.5 seconds
support the conclusion of multiple types of shortening behavior.

Please see pages 26 – 27 for the description and interpretations
of the gap statistic figures (Figures S3.1 – S3.6).

31

M
ax
im

um
 E
rr
or
 T
ol
er
an

ce
 (d

im
er
-le

ng
th
s)

63

30

25

20

15

10

5

40

3

3

3

3

3

3

3

1

11

7

3

3

3

1

3

4

3

*

3

3

3

5

3

G
ap

-V
al
ue

k-value
(number of 
clusters)

1 12

3

0.1 0.5 1.0 1.5 3.0

Data Acquisition Time Step (seconds between frames)

NOT MEANINGFUL FOR THESE 
DATA ACQUISITION TIME STEPS

Note the absence of gap statistic plots 
for Data Acquisition Time Steps greater 
than 0.5 seconds (i.e., slower data 
acquisition rates) is due to the fact that 
analyzing data acquired at time steps 
larger than the Minimum Segment 
Duration does not make sense. 
Minimum Segment Duration must be ≥ 
Data Acquisition Time Step.

Full Resolution 
Data†

A

B



Figure S3.5. Gap statistic plots for the NEGATIVE slope segment
data from the in silico data with varying data acquisition rates
analyzed using Minimum Segment Duration = 1.0 seconds
support the conclusion of multiple types of shortening behavior.

Please see pages 26 – 27 for the description and interpretations
of the gap statistic figures (Figures S3.1 – S3.6).
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Figure S3.6. Gap statistic plots for the NEGATIVE slope segment
data from the in silico data with varying data acquisition rates
analyzed using Minimum Segment Duration = 3.0 seconds
support the conclusion of multiple types of shortening behavior
for data acquisition time steps up to 1.0 second.

Please see pages 26 – 27 for the description and interpretations
of the gap statistic figures (Figures S3.1 – S3.6).
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Subsection S3.2: Cluster Profile and Length-History Figures - in silico data with varying Data
Acquisition Time Steps
Each data point in the cluster profiles corresponds to a line segment from the segmentation stage of
STADIA. The cluster profiles show how segments are grouped together in the classification stage of STADIA.
The segments in the length-history plots are color-coded according to the classification results.
Figure S3.7:Minimum Segment Duration = 0.5 seconds
Figure S3.8:Minimum Segment Duration = 1.0 seconds
Figure S3.9:Minimum Segment Duration = 3.0 seconds

Description: The cluster profiles and labeled length-history plots represent results of analyzing the in silico
data with varying Data Acquisition Time Steps (row headings) using the Automated Mode of STADIA with
the Minimum Segment Duration indicated in each figure legend and Maximum Error Tolerance = 20 dimer-
lengths. The analysis was performed using the k-values suggested by the corresponding gap statistic plots in
Figures S3.1-S3.6 (except for the full resolution negative slope segment data in Figure S3.9, where k=3 was
used instead of the k=6 suggested by the gap statistic).

†The full resolution in silico data (first row) have temporal resolution of one output per dimer-scale
biochemical event (see Methods Section 4.2 in the main text for more information).

Observations regarding the cluster profiles: The cluster profiles maintain the same general shape with
varying Data Acquisition Time Steps, but some changes do occur. A notable difference is that the overall
density of data points decreases with increasing Data Acquisition Time Steps (i.e., moving down the rows).
Particularly for the longer Data Acquisition Time Steps in Figure S3.9, the density of (distinguishable) data
points is so minimal that drawing any conclusion about the shape of the data structure would be difficult
without the profiles from the smaller Data Acquisition Time Steps for comparison. Additionally, the data
points become arranged along lines corresponding to fixed values on the time duration axis, with the gaps
between these lines widening as the Data Acquisition Time Step increases.

Interpretations regarding the cluster profiles: The relative stability of the shape of the cluster profiles with
varying Data Acquisition Time Steps bolsters the conclusions about the number of clusters drawn from the
gap statistic plots in Figures S3.1-S3.6 (recall that the gap statistic drives the decision for the optimal k-
value, but cluster profiles are also used to inform the k-value).

The appearance of a loss of density (particularly in the shortening segments) is due, in part, to the data
points collapsing onto lines that correspond to multiples of the Data Acquisition Time Step. Furthermore,
with the longer Data Acquisition Time Steps, more loss of density occurs among the short-duration
segments (i.e., stutters and brief growth/shortening) than among the long-duration segments (i.e.,
sustained growth/shortening). Particularly for the negative slope segment data, it is evident that the
datasets at long Data Acquisition Time Steps (i.e., 1.5 and 3.0 seconds in Figure S3.9) are too sparsely filled
to draw conclusion about the number of behaviors; datasets that are this sparse would generally not be
considered good candidates for k-means clustering.
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Additional discussion regarding the cluster profiles: Similar to the analysis of the full resolution data with
varying Minimum Segment Durations (Figure S2.5), changing the data acquisition rate can affect the shapes
and centroid locations of the clusters even if the number of clusters remains the same (e.g., compare the
positive slope segment clusters in the first and last rows of Figure S3.9). Interestingly, the shapes of the
positive slope segment clusters for the longer Data Acquisition Time Steps appear more similar to the
results from the full resolution mean PF data than the full resolution max PF data (Figure S1.4). This
observation leads us to speculate that the most rapid brief growth segments may correspond to tip
extensions.

Observations regarding the length-history plots: For increasing values of the Data Acquisition Time Step or
the Minimum Segment Duration, fewer stutters are detected throughout the plotted region of length-
history data.

Interpretations regarding the length-history plots: The labeled length-history data illustrate that detection
of stutters is reliant on both the Minimum Segment Duration and the Data Acquisition Time Step (however,
choices of the Minimum Segment Duration are limited by the Data Acquisition Time Step because Minimum
Segment Duration must be greater than or equal to the Data Acquisition Time Step considered).

Although stutter clusters are identified at data acquisition rates slower than 2 fps, the clusters contain fewer
segments, and the corresponding length-history plots demonstrate that individual stutter segments are
missed. Thus, we conclude that data acquired at rates slower than 2 fps are not ideal for thorough
detection and analysis of stutter segments.

Additional observations regarding the length-history plots: The zoomed-in portraits in each panel provide
an example of how the Data Acquisition Time Step and Minimum Segment Duration affect detection of
transitional catastrophes, as follows: With Minimum Segment Duration = 0.5 seconds (Figure S3.7), STADIA
correctly identifies this catastrophe as transitional regardless of the Data Acquisition Time Step, but the
time duration of the stutter appears to decrease as the Data Acquisition Time Step increases. With
Minimum Segment Duration = 1.0 or 3.0 seconds (Figures S3.8-S3.9), the catastrophe is no longer identified
as transitional. In both Figures S3.8 and S3.9, the catastrophe as seen in the inputted length-history data
itself (white line) appears to become less transitional as the Data Acquisition Time Step increases, until the
catastrophe appears to be undeniably abrupt at Data Acquisition Time Step = 1.0 seconds. In Figure S3.9,
when the Data Acquisition Time Step is 1.5 seconds, the location of the catastrophe changes and, by
chance, the captured data points result in what appears to be a transitional catastrophe again but is not
detected as transitional using a Minimum Segment Duration of 3.0 seconds. When the data acquisition rate
is increased to 3.0 seconds, the catastrophe is completely abrupt in appearance.



Figure S3.7. Classification results for the in silico data with varying data acquisition rates analyzed
usingMinimum Segment Duration = 0.5 seconds and Maximum Error Tolerance = 20 dimer-lengths.
(A) Cluster profiles of positive and negative slope segment data. (B) Representative labeled length-
history plots.

Please see pages 34 – 35 for the description and interpretations of the cluster profiles and length-
history figures (Figures S3.7 – S3.9).
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Figure S3.8. Classification results for the in silico data with varying data acquisition rates analyzed
usingMinimum Segment Duration = 1.0 seconds and Maximum Error Tolerance = 20 dimer-lengths.
(A) Cluster profiles of positive and negative slope segment data. (B) Representative labeled length-
history plots.

Please see pages 34 – 35 for the description and interpretations of the cluster profiles and length-
history figures (Figures S3.7 – S3.9).
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Figure S3.9. Classification results for the in silico data with varying data acquisition rates analyzed using
Minimum Segment Duration = 3.0 seconds and Maximum Error Tolerance = 20 dimer-lengths. (A) Cluster
profiles of positive and negative slope segment data. (B) Representative labeled length-history plots.

Please see pages 34 – 35 for the description and interpretations of the cluster profiles and length-history
figures (Figures S3.7 – S3.9).



The analyses in this section aid in answering the following question: do the main conclusions of this
manuscript change when the temporal resolution of inputted length-history data is varied?

The results of these analyses indicate that the main conclusions of this manuscript are sound regardless of
temporal resolution so long as the Data Acquisition Time Step and Minimum Segment Duration are
sufficiently small. Based on the loss of density in the cluster profiles at slower data acquisition rates, we
recommend using Data Acquisition Time Steps less than or equal to 0.5 seconds. This recommendation is
also consistent with the Minimum Segment Duration results in Supplemental Section S2.

More specifically, the results of these analyses demonstrate that the detection of three clusters is upheld in
the positive slope segment data for Data Acquisition Time Steps up to 3 seconds, and in the negative slope
segment data for Data Acquisition Time Steps up to 1 second, assuming reasonable choices for Maximum
Error Tolerance and Minimum Segment Duration. However, even when three clusters are detected, fewer of
the shortest duration segments in the clusters of up/down stutters and brief growth/shortening are
detected as the Data Acquisition Time Step and/or the Minimum Segment Duration increase. For example,
detection of the particular stutter shown in the zoomed-in length-history plots is lost at Minimum Segment
Durations of 1 second or greater (Supplemental Figures S2.7-S2.9).

Ultimately, though the configuration of clusters and the abundance of stutters are impacted by changing the
acquisition rate of the input data, the analysis persists in identifying behaviors during which the MT length
changes more slowly than during classically recognized growth and shortening phases. Thus, the detection
of stutters is robust over a range of data acquisition rates.

Summary of Conclusions: Section S3, Data Acquisition Rate Sensitivity Analysis
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Supplemental Section S4:
Negative Control: Simulations of a Two-State (Growth-Shortening) Model
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Page 45 – Figure S4.2: Analysis of Negative Slope Segments
Gap statistic plots, cluster profiles, and segment feature box plots

Page 46 – Figure S4.3: Labeled length-history plots

Summary

As a negative control, we ran STADIA on length-history simulation data from a model designed to have only
two states: growth and shortening. In this two-state model, the traditional DI parameters (Vgrowth, Vshort, Fcat,
and Fres) are inputs into the model. This model simulates MT behavior at the scale of entire periods of
growth and shortening, in contrast to our dimer-scale 13-protofilament model, which simulates individual
dimer-scale biochemical reaction events and produces DI as an emergent behavior.

In the STADIA analysis of the two-state simulation data, we varied the values of the Minimum Segment
Duration and the Maximum Error Tolerance, as well as the time between data points in the length-history
data inputted into STADIA (see Supplemental Sections S2 & S3 for results of varying these parameter values
in the STADIA analysis of the datasets used in the main text). As discussed in the main text, the values of the
Minimum Segment Duration and the Maximum Error Tolerance determine how closely the piecewise linear
approximation produced by the segmentation stage of STADIA matches the length-history data inputted
into STADIA.

The results show that STADIA does not identify clusters of up stutters or down stutters when analyzing the
positive slope segments or the negative slope segments, respectively (Figures S4.1, S4.2). For data with
relatively large time steps between data points (0.5 seconds or more), STADIA did identify a small number
of flat stutters in rare cases where a time step between two consecutive data points happened to straddle a
catastrophe or rescue in such a way as to produce a near-flat segment (one example in Figure S4.3, row D,
right panel, orange bracket). However, the locations where such flat stutters were identified were not
robust across different data acquisition time steps. Furthermore, these artifactual flat stutters were very
short in duration and totaled to less than 0.09% of the total simulation time; this percentage is
approximately two orders of magnitude smaller than the percent time spent in stutters in the dimer-scale
13-PF simulation data (see Figures S1.9, S1.10).

Below we provide more details about the two-state simulation method and the STADIA analysis of the two-
state simulation data.
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Two-state simulation method

In the two-state simulations, each microtubule grows from a stable seed and is assumed to be in either a
growth state or a shortening state at each point in time. The traditional DI parameters are input parameters
in the two-state model; this is in contrast to the dimer-scale 13-PF model, where the DI parameters are
emergent properties resulting from dimer-scale biochemical reaction events and are measured from the
length-history data outputted by the simulation.

To generate the two-state length-history data, the DI parameter values measured from the “classical”
analysis of the dimer-scale 13-PF simulation data (first row of Table 1) were used as the values of the
inputted DI parameters in the two-state simulations. The time duration of each growth segment (i.e., the
time from the start of a growth segment until a catastrophe) was sampled from an exponential distribution
with rate parameter of Fcat = 0.659 min-1. The slope or growth velocity (Vgrowth) of each growth segment was
sampled from a normal distribution with mean of 46.1 nm/s and standard deviation of 5.1 nm/s. The height
change of each growth segment was calculated as the sampled time duration multiplied by the sampled
slope.

Similarly, the time from the beginning of a shortening segment until a potential rescue was sampled from
an exponential distribution with rate parameter of Fres = 2.483 min-1. The slope or shortening velocity (Vshort)
of each shortening segment was sampled from a normal distribution with mean of 540.0 nm/s and standard
deviation of 47.9 nm/s. The height change of each shortening segment was calculated as the sampled time
duration multiplied by the sampled slope. If this calculated height change would result in the MT length
becoming negative, then the sampled segment was truncated so that the depolymerization would
terminate when the MT length reached zero. In this case, the actual time duration of the segment was less
than, not equal to, the sampled time until a potential rescue; then, the actual time duration was calculated
from the sampled slope and the height change from the start of the shortening segment until the MT length
reached zero.

One MT was simulated for 10 hours of simulation time, chosen to produce a comparable amount of data as
the dimer-scale 13-PF simulation. To generate the length-history data to input into STADIA, the raw length-
history data from the two-state simulation were interpolated to have a fixed data acquisition rate (“frame”
rate) of 20 fps, 2 fps, or 1/3 fps. As in Supplemental Section S3, ‘data acquisition rate in frames per second’
= 1/‘Data Acquisition Time Step in seconds’.
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Main results and conclusions of STADIA analysis of the two-state simulation data

The results of the STADIA analysis of the two-state simulation data are shown in Figures S4.1-S4.3. In these
figures, the values of the Data Acquisition Time Step of the inputted length-history data, as well as the
Minimum Segment Duration and Maximum Error Tolerance used in the STADIA analysis, are indicated above
each row. The clustering results for the positive and negative slope segments are shown in Figures S4.1 and
S4.2, respectively. Specifically, Figures S4.1 and S4.2 provide the gap statistic plots (used to inform the
optimal k-value, i.e., number of clusters), cluster profiles plotted in the log-transformed and standardized
feature space, and box plots of the segment features (time duration, height change, and slope) for each
cluster. The clusters identified in Figures S4.1 and S4.2 are applied to label the length-history plots in Figure
S4.3.

Depending on the values of the indicated parameters (Data Acquisition Time Step, Minimum Segment
Duration, and Maximum Error Tolerance), the gap statistic plots suggest k=1 or k=2 in almost all cases
(Figures S4.1, S4.2; the one exception is in Figure S4.2 D where the gap statistic plot is monotonically
increasing and therefore has no clear local maximum to suggest a k-value). These results differ from the k=3
result that was observed for the dimer-scale 13-PF simulation data (positive and negative slope segments)
and the in vitro data (positive slope segments) (Figures S1.4, S1.5).

Furthermore, the 3-dimensional segment feature plots for the two-state simulation data (second column of
Figures S4.1, S4.2) show a cloud of points with no distinct appendages, thus supporting the k=1 selection;
however, the cloud is oblong, which could support k=2. In contrast, the 3 appendages visible in the segment
feature plots from the dimer-scale 13-PF simulation data and the positive slope segments of the in vitro
data support the selection of k=3 for those datasets (Figures 4 A,B,D, S1.4, S1.5).

Significantly, in the two-state simulation data, no clusters of shallow-slope segments that would correspond
to stutters were detected in any cases (see slope box plots in the fifth column of Figures S4.1, S4.2). In
contrast, for the dimer-scale 13-PF simulation data and the in vitro data, stutter clusters were detected in all
cases, and their slopes distinguished them from the other clusters (this held even for the incomplete in vitro
negative slope data with k=2) (Figures 4 A-F, S1.8).

The labeled length-history plots also aid in illustrating the conclusion that the two-state simulation data
(Figure S4.3) lack the complexity of the behaviors present in the dimer-scale 13-PF simulation data and the
in vitro data (Figures 4 G,H, 5 D-I, 6, 7 D-I).

In conclusion, STADIA did not detect any clusters of up or down stutters in the two-state simulation data.
Although STADIA did detect a few flat stutters, the locations of these artifactual flat stutters were not
reproduced across different Data Acquisition Time Steps (see next page). These two-state model results
contrast the robust detection of stutters in the dimer-scale 13-PF simulation data and the in vitro data (see
Supplemental Sections S2 & S3 for parameter sensitivity analyses testing robustness). Thus, comparison
with the two-state simulation data demonstrates that the stutters observed in the dimer-scale 13-PF
simulation data and the in vitro data are not artifacts produced by STADIA.
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Additional discussion

Flat stutters: As discussed in the main text, STADIA identifies near-zero slope segments called flat stutters
before performing the clustering step separately on the remaining positive and negative slope segments. In
the two-state simulation data at 20 fps (0.05 s between data points), no flat stutters were identified. At 2
fps (0.5 s between data points), STADIA identified 26 flat stutters, of which 25 had a time duration of 0.5 s
and one had a time duration of 1.5 s; these time durations total to 14 s, which is approximately 0.039% of
the total 10-hour simulation time. At 1/3 fps (3 s between data points), STADIA identified 10 flat stutters, all
with a time duration of 3 s, totaling to 30 s or approximately 0.083% of the total time. The segments
identified as flat stutters occurred in the rare cases when a time step between two consecutive data points
in the data with an imposed fixed frame rate happened to straddle a catastrophe or rescue from the original
raw data in a way that produced a near-flat segment (one example in Figure S4.3, compare right panel of
row D to right panels of the other rows). Furthermore, none of the flat stutters detected at 1/3 fps
overlapped with any of the flat stutters detected at 2 fps.

Brief and sustained growth/shortening: Examination of time duration alone could create the appearance
that the brief and sustained clusters of growth or shortening in the two-simulation data (Figures S4.1, S4.2
in cases with k=2) are equivalent to the brief and sustained clusters identified in the dimer-scale 13-PF
simulation data and the in vitro data (Figure S1.8 B,D). However, the brief and sustained clusters in the two-
state simulation data are essentially indistinguishable in slope (fifth column of Figures S4.1, S4.2). In
contrast, in the dimer-scale 13-PF simulation data and the in vitro data, the brief and sustained clusters
have noticeably different distributions of slopes (Figure S1.8 A,C); furthermore, most segments in the brief
growth/shortening clusters have steeper slopes than any segments in the sustained clusters, suggesting that
the faster velocities are sustainable for long time periods (Figure S1.8). Thus, while the two-state model
reasonably approximates the time duration differences between brief and sustained clusters, the two-state
model’s sampling of slopes from normal distributions fails to replicate the more complex distributions of
slopes that are present in each of these clusters in the dimer-scale 13-PF simulation data and the in vitro
data.

Negative slope segment feature plots: It is interesting to note that the 3-dimensional segment feature plots
for the negative slope segments at long Data Acquisition Time Steps and long Minimum Segment Durations
appear similar in the two-state simulation data (Figure S4.2, rows D,E, second column) and in the dimer-
scale 13-PF simulation data (Figure S3.9, bottom tow rows). However, at higher temporal resolutions, the
negative slope profiles for the two-state model (Figure S4.2, rows A-C, second column) are clearly different
from the negative slope profiles for the dimer-scale 13-PF simulation data (Figures S2.5, S3.7, S3.8, and first
four rows of S3.9) and the in vitro data (Figure S2.6). These observations demonstrate that performing data
acquisition and analysis with long time steps can produce the appearance of some similarities between the
two-state simulation data and the dimer-scale 13-PF simulation data. However, the positive slope profiles
from the two-state model (Figure S4.1, second column) are consistently different from the positive slope
profiles for the dimer-scale 13-PF simulation data (Figures S2.5, S3.7, S3.8, S3.9) and the in vitro data
(Figure S2.6).
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Two-state (Growth-Shortening) Simulations – POSITIVE Slope Segments
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Figure S4.1. Negative Control: STADIA analysis of positive slope segments from the two-state (growth-shortening) model. From
top (row A) to bottom (row E), the piecewise linear approximation to the original raw length-history data becomes coarser as the
parameter values in the row headings are varied (values altered from the top row are in bold). In the resulting gap statistic plots,
the first local maximum indicates either k=1 (row A) or k=2 (rows B,C,D,E). For the cases where k=2, the slopes of the two clusters
are indistinguishable. No cluster with shallower slopes (i.e., no cluster of up stutters) is detected in the positive slope segments. In
row B, the first local maximum at k=2 is not conclusively larger than the gap value at k=1 when considering the error bars; k=2 was
chosen for use in the cluster profiles and box plots to demonstrate that even when allowing two clusters, the two clusters do not
differ in slope. Please see pages 40-43 for additional information and interpretations.

Data Acquisition Time Step = 0.05 s, Min Segment Duration = 0.1 s, Max Error Tolerance = 10 dimer-lengths

Data Acquisition Time Step = 0.05 s, Min Segment Duration = 0.1 s, Max Error Tolerance = 20 dimer-lengths

Data Acquisition Time Step = 0.05 s, Min Segment Duration = 0.5 s, Max Error Tolerance = 20 dimer-lengths

Data Acquisition Time Step = 0.5 s, Min Segment Duration = 0.5 s, Max Error Tolerance = 20 dimer-lengths

Data Acquisition Time Step = 3 s, Min Segment Duration = 3 s, Max Error Tolerance = 20 dimer-lengths
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Two-state (Growth-Shortening) Simulations – NEGATIVE Slope Segments
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Figure S4.2. Negative Control: STADIA analysis of negative slope segments from a two-state (growth-shortening) model. The
parameter values in the row headings are the same as in Figure S4.1 (values altered from the top row are in bold). In the
resulting gap statistic plots, the first local maximum indicates either k=1 (row E) or k=2 (rows A,B,C), or the gap statistic plot is
generally increasing with no clear local maximum (*, row D, k=1 was used for displayed clustering and box plots). For the cases
where k=2, the slopes of the two clusters are nearly indistinguishable. No cluster with shallower slopes (i.e., no cluster of down
stutters) is detected in the negative slope segments. Please see pages 40-43 for additional information and interpretations.

Data Acquisition Time Step = 0.05 s, Min Segment Duration = 0.1 s, Max Error Tolerance = 10 dimer-lengths

Data Acquisition Time Step = 0.05 s, Min Segment Duration = 0.1 s, Max Error Tolerance = 20 dimer-lengths

Data Acquisition Time Step = 0.05 s, Min Segment Duration = 0.5 s, Max Error Tolerance = 20 dimer-lengths

Data Acquisition Time Step = 0.5 s, Min Segment Duration = 0.5 s, Max Error Tolerance = 20 dimer-lengths

Data Acquisition Time Step = 3 s, Min Segment Duration = 3 s, Max Error Tolerance = 20 dimer-lengths
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Two-state (Growth-Shortening) Simulations
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Figure S4.3. Negative Control: labeled length-history plots from STADIA analysis of two-state (growth-shortening) simulation
data. The parameter values in the row headings are the same as in Figures S4.1 and S4.2 (values altered from the top row are in
bold). The numbers of clusters (k-values) were determined from the gap statistic plots in Figures S4.1 and S4.2 The white x-symbols
mark the exact points of the transitions (catastrophes, rescues, and complete depolymerizations to the seed) in the raw two-state
simulation data (same points in all rows). The white lines show the length-history data inputted into STADIA after the indicated
data acquisition rate was imposed. The black lines represent the STADIA piecewise linear approximation. The small blue rectangles
(with the blue arrows) in the first column demarcate the regions shown in the zoomed-in plots in the second and third columns.
The orange bracket in row D, third column, indicates a rare artifactual detection of a flat stutter. Please see pages 40-43 for
additional information and interpretations.

Data Acquisition Time Step = 0.05 s, Min Segment Duration = 0.1 s, Max Error Tolerance = 10 dimer-lengths
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