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Abstract. End-member mixing analysis (EMMA) is a
method of interpreting stream water chemistry variations
and is widely used for chemical hydrograph separation. It
is based on the assumption that stream water is a conserva-
tive mixture of varying contributions from well-characterized
source solutions (end-members). These end-members are
typically identified by collecting samples of potential end-
member source waters from within the watershed and com-
paring these to the observations. Here we introduce a com-
plementary data-driven method (convex hull end-member
mixing analysis - CHEMMA) to infer the end-member com-
positions and their associated uncertainties from the stream
water observations alone. The method involves two steps.
The first uses convex hull nonnegative matrix factoriza-
tion (CH-NMF) to infer possible end-member compositions
by searching for a simplex that optimally encloses the stream
water observations. The second step uses constrained K-
means clustering (COP-KMEANS) to classify the results
from repeated applications of CH-NMF and analyzes the un-
certainty associated with the algorithm. In an example ap-
plication utilizing the 1986 to 1988 Panola Mountain Re-
search Watershed dataset, CHEMMA is able to robustly re-
produce the three field-measured end-members found in pre-
vious research using only the stream water chemical obser-
vations. CHEMMA also suggests that a fourth and a fifth
end-member can be (less robustly) identified. We examine
uncertainties in end-member identification arising from non-
uniqueness, which is related to the data structure, of the CH-
NMF solutions, and from the number of samples using both
real and synthetic data. The results suggest that the mixing
space can be identified robustly when the dataset includes
samples that contain extremely small contributions of one

end-member, i.e., samples containing extremely large con-
tributions from one end-member are not necessary but do re-
duce uncertainty about the end-member composition.

1 Introduction

End-member mixing analysis (EMMA) has been used to in-
terpret observed stream water chemical concentration vari-
ability in terms of time-varying contributions from unknown
end-member sources, each supplying water with a constant
concentration profile. This method has been applied in many
different hydro-climatic and geology settings (e.g., Bernal
et al., 2006; Hooper et al., 1990; Li et al., 2019; Liu et al.,
2008a, 2017; Lv et al., 2018; Jung et al., 2009; Neill et al.,
2011). EMMA has also been used to distinguish sources of
dissolved organic matter in natural streams (Hur et al., 2006;
Yang and Hur, 2014), specific conductance (Kronholm and
Capel, 2015), and other combinations of stream water at-
tributes that can be assumed to mix conservatively (Barthold
etal., 2011).

EMMA assumes that the chemical solute composition of
stream water can be explained by the conservative mixing of
a finite set of end-members (Hooper et al., 1990). These end-
members, therefore, are the most extreme points of a simplex
within which all stream water samples must lie (if the as-
sumptions of the method are valid). End-members are iden-
tified by collecting samples of candidate source water from
within the watershed, i.e., in addition to the mixture sam-
ples collected in the stream. The EMMA method assumes
that (1) solutes used in the mixing model are conservative,
(2) stream water consists of an identifiable number of end-
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member sources, (3) end-member compositions are distinct
for at least one tracer, and (4) end-member compositions are
spatiotemporally constant (or their variations are known or
can be reduced by adding additional end-members; Hooper
et al., 1990).

Christophersen and Hooper (1992) suggested that
“[ulnambiguous identification of the source solution com-
positions from the mixture alone is impossible”. In a strict
sense, this is likely true in that the underlying assumption
(streamflow as a conservative mixture of invariant sources)
is unlikely to be adhered to in a real watershed. However,
recent advances in statistical learning methods suggest that
some utility may exist in attempting to identify (perhaps not
free of ambiguity) a potential source solution composition
from the observed mixture alone (without additional candi-
date source water samples; Ding et al., 2008; Hyvérinen and
Oja, 2000; Thurau et al., 2011). Here we propose a method,
the convex hull end-member mixing analysis (CHEMMA),
which can in fact identify source solution compositions from
the mixture alone. We will also present an analysis of the
ambiguity, or uncertainty, in the identified end-members.

It is worth distinguishing CHEMMA from previous ap-
plications of statistical learning methods (such as maxi-
mum likelihood estimation, Bayesian inference, and Markov
chain Monte Carlo, MCMC) to estimate uncertainties of end-
member mixing analysis. Genereux (1998) presented a linear
estimator for uncertainties in end-member concentration and
mixing ratios. Carrera et al. (2004) achieved a similar ap-
proach by using the maximum likelihood method. By com-
bining likelihood methods, Bayesian inferences, or proba-
bilistic linear models with the MCMC algorithm, Barbeta
and Penuelas (2017), Beria et al. (2020), Delsman et al.
(2013), and Popp et al. (2019) were able to acquire time-
evolving uncertainty estimation. These contributions focus
on quantifying uncertainty resulting from the use of field-
sampled candidate end-members. In contrast, CHEMMA
aims to infer the end-members themselves.

Stream water concentrations of different conservative so-
lutes are naturally correlated. EMMA uses principal com-
ponent analysis (PCA) to convert the naturally correlated
stream water concentrations into a set of linearly uncorre-
lated variables (Christophersen and Hooper, 1992). Each new
variable, which is called a principal component (PC), is a
linear combination of the observed stream water attributes.
For a set of n variables, PCA first requires standardized ob-
servations (Xops) by subtracting the mean and dividing by
the standard deviation. Then it calculates a projection ma-
trix Pops (rows of which are eigenvectors of the correla-
tion matrix), which transforms from observation space to the
PC space, by decomposing correlation matrix of Xps. The
transformed columns of Yps (representing the n observa-
tions in the PC space) are uncorrelated, each of which ac-
counts for a portion of total variance as follows (Christo-
phersen and Hooper, 1992):
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Yobs = Xobspgbs- (1

Standardized end-member candidates Xy, can be projected
into the PC space by the same projection matrix Pgps and
then converted in the transformed space as Yep, as follows
(Christophersen and Hooper, 1992):

Yem = XemPl.. 2)

To find the parsimonious subset of appropriate end-
members, EMMA subsequently takes the information pro-
vided by PCA to determine the approximate dimensional-
ity of the stream water mixture and to screen end-members
(Hooper, 2003; Liu et al., 2008a). In the PC space, appropri-
ate end-member candidates (Y,,;,) are selected by choosing
ones that tightly bound the transformed observations (Yobs;
Christophersen and Hooper, 1992; Hooper et al., 1990;
Hooper, 2003). Christophersen and Hooper (1992) mathe-
matically proved that one end-member more than the number
of PCs is required to describe the rank of the stream water
observation. However, the number of retained PCs is usu-
ally determined using a heuristic, such as using the number
of PCs that explain at least the % proportion of the total vari-
ance because of the need to capture the variance (Hooper,
2003). In addition, Hooper (2003) suggests examining the
residual distribution pattern as an auxiliary technique for de-
termining the dimensionality revealed by the data.

Limitations to this approach exist, which can result in spu-
rious or incomplete source identification (Delsman et al.,
2013; Hooper, 2003; Valder et al., 2012; Yang and Hur,
2014). Specifically, the composition of a source cannot be
determined unless candidate end-member measurements are
obtained that are representative of it. In addition, determin-
ing the number of significant PCs , or the number of end-
members, is subjective to some degree, even with the aid
of diagnostic tool of mixing models (DTMMs). EMMA is
not able to deal with non-conservative mixing if a nonlinear
structure is not provided to replace the current simplex struc-
ture (Christophersen and Hooper, 1992); therefore, only trac-
ers that are believed to be approximately conservative should
be included because they entered the stream, thereby altering
their concentrations primarily by dilution rather than other
mechanisms. Finally, another limitation involves uncertain-
ties introduced by spatial and temporal variability in end-
member concentrations that may cause additional difficulties
(Delsman et al., 2013).

Here we focus on the first of these issues. In spite of
EMMA’s wide application (Ali et al., 2010; Bernal et al.,
2006; Burns et al., 2001; Delsman et al., 2013; Hooper and
Christophersen, 1992; James and Roulet, 2006; Jung et al.,
2009; Li et al., 2019; Lv et al., 2018; Neal et al., 1992; Neill
et al., 2011; Valder et al., 2012), no method exists to char-
acterize missing or unmeasured end-members purely based
on stream water observations, other than using baseflow to
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characterize groundwater (Liu et al., 2008b). Popp et al.
(2019) came close, introducing a residual end-member that
represents collective behavior of all other unobserved end-
members, though it still requires some a priori knowledge of
observed end-members to initiate a Bayesian mixing model.
In contrast, CHEMMA aims to identify the entire suite of
end-member compositions and their associated uncertainties.

The CHEMMA method depends on the idea inherited
from EMMA that the end-members are located near the most
extreme points in the mixing space of stream water samples.
Note that this does not imply that the concentration of any
particular solute is extreme in an end-member or that the end-
member composition is even distinct for all solutes. Rather,
it only implies that the linear combination of concentrations
in PC space is extremal at the end-member. This suggests
that we may be able to interrogate the observational data
projected in the end-member space to locate such extremal
end-members, even if no individual samples fully represent
that end-member. The approach we propose, CHEMMA, is
a data-driven method to exploit this possibility and to char-
acterize the end-members’ chemical composition and the
associated uncertainty. The capabilities of this method are
demonstrated by an application to the 1986 to 1988 Panola
Mountain Research Watershed dataset published in Hooper
and Christophersen (1992). We will further explore the ro-
bustness of this method using synthetic datasets generated
with three end-members.

2 Methodology

Convex hull end-member mixing analysis (CHEMMA) ap-
plies the matrix factorization method, convex hull nonneg-
ative matrix factorization (CH-NMF), along with the clas-
sification method, constrained K-means clustering (COP-
KMEANS), to determine end-member compositions under
EMMA assumptions. The CH-NMF method provides a nu-
merical iterative algorithm to search for end-member com-
positions that optimally enclose the stream water observa-
tions in the PC space. The CH-NMF algorithm is run many
times because each iteration of the search can result in highly
non-unique optima. We apply the COP-KMEANS method to
classify the CH-NMF numerical outputs into clusters. The
centroid of each represents our best estimate of an end-
member.

2.1 Adaption of CH-NMF to the EMMA problem

The concepts of convex combination and convex hull con-
nect CH-NMF with the idea of end-member mixing. A con-
vex combination is equivalent to a weighted sum. It is a lin-
ear combination of vectors where the weight associated with
each vector varies between zero and one, and the weights
sum to one. If we construct a simplex, which means a highly
dimensional polytope, with some distinct vectors at its ver-
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tices, then this simplex is a convex hull that encloses points
within the hull to be a convex combination of the vertices.
Similarly, if we conservatively mixed distinct end-members,
then the stream water chemical concentration observations
can be a weighted sum of end-members with their contribu-
tions. The ideas of convex combination and convex hull are
mathematically identical to end-member mixing.

The CH-NMF method describes a general methodology of
finding the most extreme points (end-members) that form a
simplex with k vertices around the n-dimensional observa-
tion data cloud by searching for a convex hull that encloses
the data (Thurau et al., 2011). CH-NMF requires the rank
k — 1 of the data to be determined independently first. PCA
can help with this. The top k — 1 PCs are retained, as with
EMMA, using standardized (zero mean and unit variance)
observations. The CHEMMA algorithm does not entirely
avoid this subjective choice of the number of end-members
retained and so does not resolve this criticism of EMMA.
The DTMMs can also be used in conjunction with EMMA
to determine the rank of the data. Next, the standardized data
are projected into the 2D subspace spanned by two of the PCs
(i.e.,PC; vs.PC;, wherei # j,i < j). Qualified points form-
ing a convex hull around the projected data are marked at
each pairwise 2D subspace. Finally, we interpolate between
convex hull vertices in each subspace to find k vertices that
define a (k — 1-)dimensional mixing simplex. This simplex
forms a convex hull, such that all the data points can be opti-
mally approximated as convex linear combinations of them.
The algorithm is summarized as follows:

Given the m standardized stream water samples, each with
n measured attributes X?bin and k desired end-members
(Step 1; Fig. 1a), CH-NMF decomposes the correlation ma-
trix of the observations to obtain at most d PCs (d is the
maximum number of linearly uncorrelated variables), which
is the same linear orthogonal projection as the PCA method
(in Step 2, from Fig. 1a to b, note the changing distribution
of the blue points). Instead of immediately reducing the di-
mensionality by discarding some PCs (as with EMMA), CH-
NMF examines the distribution of Xqp in all of the subspaces
spanned by PC pairs (Step 3; Fig. 1b; light blue points) and
marks the most extreme points (Fig. 1b; red crosses) that
construct the convex hull (Fig. 1b; red lines) to store in S
(Step 4). Then, a subset of S, SI = X, is found as a convex
combination of S (Step 5; Fig. 1c; square vertices of the sim-
plex) that minimizes the Frobenius norm |- |% (the entry-wise
Euclidean norm of the matrix). Inasmuch as SI may be any
possible points within the convex hull constructed using S,
J is needed to force SI to be chosen close to the convex hull
boundary. In practice, I and J are estimated iteratively, us-
ing an optimization procedure, until they converge (Egs. 1
and 2 from Thurau et al., 2011). Finally, the contribution H
is found by locating the convex combination of end-members
that reproduces the data with minimal error (again using the
Frobenius norm; Step 6).
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Algorithm 1: CH-NMF algorithm (Thurau et al., 2011) adapted to the end-member identification problem given m

stream water observations of n solutes

Result: i*" standardized end-member composition %!, and its contribution A", i = 1,2, ..,

L.

1. For each solute time series, subtract the mean (y¢;.,) and divide by the standard deviation (0., ) to obtain standardized

mxn

observation matrix X *

o8]

2. Compute d eigenvectors (PCs) e, ..., eq, where d = rank(Xps X,

The) <m

. Project X5 onto each of the (g) 2D-subspaces spanned by pairs of PCs (similar form as Eqns. 1 & 2)

4. Mark all convex hull vertices for each projection plane and store in matrix S™*P where p is the sum of the number of

points found to make a convex hull in each projection plane.

5. Define end-member matrix XL",,;j"‘ = [Tem1, Tem2s---s

Zemi) and let X, = SI. then minimize ||S — SI”X"'J"’XP||%.

st.Y 45 =1,4; €[0,1].and Y, 7; = 1.j;; € [0,1]. Matrix I limits the end-member (X,,,) to be within the

convex-hull construct by the stored extreme points S, and J constrains those extreme points within the convex-hull

formed by end-members.

6. Minimize || Xpps — H™*XT ||, s.t. > jhi = 1,hy; € 0,1], where H represents the fractional contribution of each

end-member.

Conc. Solute €

(b)
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Figure 1. Illustration of the CH-NMF algorithm using a three-dimensional space with four end-members. (a) The standardized observations
(dark blue) and its projection (light blue) on the observational space. (b) The projected observations (dark blue) and its projection (light
blue) on PC subspaces. The red crosses are the marked extreme points (S) that form a convex hull (the red polygons) in each PC subspace.
(c) Find the convex hull (the black simplex) and its associated vertices (the k vectors x¢pi) in the PC space, such that the vertices are convex
combinations of the extreme points S, and the distance between the simplex and S is minimized. The red crosses are the same extreme points

marked in (b) but are projected back in the three-dimensional PC space.

Step 5 is the essential step of the CH-NMF theory, and
it is a modification of convex nonnegative matrix factoriza-
tion (C-NMF) by adding a convexity constraint on J that en-
sures each component contributes a fraction between zero
and one, with the sum of all fractions being one (Ding et al.,
2008; Thurau et al., 2011). In the original setting of C-NMF,
the I and J are naturally sparse if the vertex search is in
PC subspaces (Ding et al., 2008). Adding the convexity con-
straint on J makes J an interpolation between each column
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of SI (i.e., each end-member composition xp,); however, the
sparse nature of I remains (Thurau et al., 2011).

We could interpret the objective function of Step 5 (min-
imize |S — SIP*KJkxp IZF) in three steps. First , the sparsity
of I results in the end-member composition Xep, close to
a subset of the extreme observations (S) projected in the
PC subspace. Second, J means that other extreme obser-
vations in S are expressed as a convex combination (inter-
polation) of Xem. Third, minimizing the Frobenius distance
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between S and XepnJ guarantees that end-member composi-
tions Xey Will be convex hull vertices because all other ex-
treme points can be written as convex combinations of ver-
tices but not vice versa. As a consequence, a well-supported
set of convex hull vertices tightly bound the observations and
are as unique as possible, which satisfies the original EMMA
assumption of the finite set of distinct end-members. The
sparse nature of I helps prevent overfitting because noise will
tend to be concentrated on superfluous vertices without de-
grading identification of the others. The noisy end-members
can be identified in the classification step given in the next
section.

The constraint requiring that the end-members be a con-
vex combination of the extreme observations implies that
CH-NMF may not accurately identify end-members that are
not a large fraction of any observation in the dataset. As the
synthetic example shown in Fig. 1 illustrates, the simplex
formed by joining the CH-NMF end-members lies inside the
shell formed by connecting the extreme points (red crosses in
Fig. 1c). Consequently, it is easier to identify end-members
when more points lie on or near the hull itself so that the
shape of the hull is clearly defined. In addition, if no samples
are anywhere close to being pure representatives of an end-
member, the apparent end-member identified by CH-NMF
may lie closer to the data centroid than the true end-member.
Methods to relax the constraint on Step 5 and better identify
end-members distant from the data in the mixing space will
be investigated in future work.

2.2 Quantifying the intrinsic uncertainty using
COP-KMEANS

Each run of CH-NMF may yield different end-member es-
timates. This is because the complex structure of the high-
dimensional stream water data results in a rough objective
function surface (Step 5). CH-NMF runs with different ini-
tial search locations may fall into different local minima.

Depending on the structure of the data cloud, each run’s
end-members may be nearly identical (if the end-member is
well-constrained by the dataset) or may vary widely. Poor
identification may result if the data cloud lacks the clear pla-
nar boundaries that the CH-NMF algorithm looks for. It may
also occur if more end-members are sought than the data can
support or if an end-member is variable in time. The time-
varying end-member blurs the planar boundaries and ver-
tices. Alternatively, the observations may not sample the true
mixing space sufficiently to identify an end-member in the
space as a convex hull vertex, perhaps because it never rep-
resents more than a small fraction of variance.

Even in the absence of these issues, the variability and un-
certainty of the stream concentration observations will con-
tribute to uncertainty in end-member identification. The vari-
ation in the CH-NMF-identified end-members can be as-
sessed by running the CH-NMF analysis a large number of
times and then using a clustering algorithm to extract the cen-
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troid and spread of areas consistently identified as an end-
member. We use the COP-KMEANS variant of the K -means
clustering algorithm, which allows us to require that end-
members predicted from the same CH-NMF run must not
be placed in the same cluster (Wagstaff et al., 2001). This
is achieved by assigning a “cannot link” constraint between
every pair of candidate end-members generated by the same
CH-NMF run. Apart from the cannot link constraints, COP-
KMEANS works identically to normal k-means clustering
(Wagstaff et al., 2001). For each cluster identified by COP-
KMEANS, we can qualitatively examine the spatial distribu-
tion of the associated end-members and quantitatively calcu-
late the centroid and variance of the cluster.

2.3 Assessing the goodness of fit

There are several metrics that arise naturally from the
CHEMMA framework that could be used to assess the good-
ness of fit of the inferred mixing subspace. The first and sec-
ond are the centroid and within-cluster variance of each in-
ferred end-member, which will tend to increase as the num-
ber of end-members increases. The third is the orthogonal
projection distance from the observation space to the mixing
subspace, which will be smaller when the end-member lies
closer to the linear subspace where the rest of the data live.
In this paper, we consider a new cluster to be tenable as a
proper end-member if (1) the spread of the previously iden-
tified clusters remains similar or decreases, (2) the cluster it-
self has a reasonable variance, and 3) the orthogonal projec-
tion distances of previously identified end-members do not
significantly increase after adding a new end-member.

We can also assess the degree to which CHEMMA and
field-sampled end-members are similar to the stream chem-
ical signatures. Field end-member candidate samples typi-
cally rely on a few grab samples (for example, in Hooper
et al., 1990, the groundwater was based on samples from
a single well), which may insufficiently sample the overall
source variability. CHEMMA end-members may provide a
better idea of the time—space-averaged chemical signature of
a source than the field samples. One way to examine this is
to look at the difference between an end-member’s compo-
sition and its composition when projected into the reduced
rank k£ — 1 principal component subspace. This can be done
for both field-sampled and CHEMMA end-members. A sum-
mary measure of that difference is the Euclidean distance
of the end-member from the reduced rank subspace. Where
that distance is shorter, the end-member has a chemical pro-
file that is aligned with that which is typically found in the
stream. This distance can be calculated from the loadings on
the remaining n — k + 1 principal components.
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2.4 Example Python implementation

An example Python implementation of CHEMMA, in-
cluding the application to Panola Mountain data, is
presented in the next section. The code is available
in a Jupyter Notebook on GitHub (https:/github.com/
Estherrrrrxu/CHEMMA/blob/master/CHEMMA .ipynb, last
access: 16 March 2022). Updates can also be found from
the GitHub page. The CH-NMF section uses a Python pack-
age, pymf.chnmf, detailed in Thurau et al. (2011). The COP-
KMEANS section uses a Python package, COP-Kmeans,
presented in Babaki (2017).

3 Application to the Panola Research Watershed
dataset

We applied CHEMMA to a test dataset of 905 samples of
six solutes (alkalinity, sulfate, sodium, magnesium, calcium,
and dissolved silica) collected from the stream in the Panola
Mountain research catchment, Georgia, USA, and described
in Hooper et al. (1990). The six solutes were specifically se-
lected to meet EMMA'’s assumption that their concentrations
vary significantly across the watershed (Hooper et al., 1990).
Hooper et al. (1990) suggested that the stream chemistry
could be interpreted as a mixture of hillslope, groundwa-
ter, and organic soil horizon (organic) end-members, which
are identified by sampling within the watershed. Hooper
(2003) suggested that the rank of the data (lower gauge in
Hooper, 2003 dataset) is at least three. There was consider-
able evolution over time in the interpretation of these end-
members (Hooper, 2001), but we will use the terminology
from Hooper et al. (1990) to avoid confusion. Here we ask
the following questions: (1) does CHEMMA recover the
same three end-members as Hooper et al. (1990) identified
in field-sampling? (2) Do the data support the existence of
additional end-members?

3.1 Results

We ran CHEMMA for three, four, and five end-member
cases (k=3, 4, and 5) because two and three PCs ac-
count for 94% and 97 % of the total variance, respec-
tively. In order to capture the intrinsic uncertainty associ-
ated with the identified clusters, we calculated the mean and
standard deviation (SD) for each case based on 100 CH-
NMF runs (Table 1). CHEMMA was able to recover the
three field-measured end-members reported by Hooper et al.
(1990, Fig. 2; three green diamonds). The mean of the three
CHEMMA identified clusters (Fig. 3 and Table 1) are very
similar to the median concentration of the field-measured
end-members (Table 2). The median concentration of the
hillslope field sample (Table 2) has much lower alkalin-
ity concentration compared with the mean concentration of
the CHEMMA-identified green cluster (Fig. 3 and Table 1);
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Data displayed in the Principal Components subspace
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% Field sample - Organic — 504
A Field sample - Hillslope Na
-6 @ Field sample - Groundwater Mg
& 3 CHEMMA predicted — Ca
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Principal Component 1

Figure 2. CHEMMA prediction (cluster centroids) for three end-
member (blue diamonds) and four end-member (red diamonds)
cases plotted in the PC2 vs. PC1 subspace. The colored lines that
connect those predicted end-members indicate the convex hull pro-
jected into the two-dimensional PC subspace formed by those end-
members. The observations (gray dots) inside of the convex hull can
be explained as linear combinations of the end-members. The col-
ored lines in the center of the plot are the projected original solute
axes in this PC subspace. Note that a three-dimensional subspace is
required for four end-members.

however, it is still within the cluster spread provided in Ta-
ble 1.

The three CHEMMA end-members are also located closer
to the subspace spanned by the k — 1 PC than the original
three field-sampled end-members. The orthogonal projection
distances are given in Table 3 and show that the CHEMMA
end-members are more similar to the stream chemistry than
the field samples, particularly for the groundwater end-
member (field sample distance is 0.814; CHEMMA sample
distance is 0.450). The differences in the chemical signatures
of the groundwater end-members and their projections in the
data subspace are shown in Fig. 4 (with concentrations given
in standardized units, with the left side for field samples and
right side for CHEMMA predictions). The CHEMMA end-
member’s alkalinity, SO4, and Ca values, in particular, are
much closer to those of the data subspace than the field-
sampled end-member, which is indicated by the shorter dis-
tance from the original 6D chemical profile in dots (blue
for field samples and red for CHEMMA predictions) to the
2D mixing space profile in flat caps (orange for field sam-
ples and green for CHEMMA predictions). Only for Si is
the field-sampled value closer. After PCA dimension reduc-
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Figure 3. The 100 random initialized CH-NMF run results for three (a), four (b, d), and five (¢) end-member cases. Panels (a)—(c) are in the
2D PC2 vs. PC1 subspaces. Panel (d) is in the 3D PC3 vs. PC2 vs. PC1 subspace. The color shade of each cluster reflects the concentration

of the vertices at its location.

tion, both field-sampled and CHEMMA-predicted profiles
are close in the standardized solute space. It is worth noting
that CHEMMA does not require dimensional reduction; PCA
is only needed to determine the number of end-members.

A fourth end-member could be robustly identified (Fig. 2;
four magenta diamonds), which explained more of the data
variability. Hooper (2003) also suggested the existence of
a fourth end-member. This end-member appeared to be a
mixture of hillslope and groundwater in some ways but had
a relatively high alkalinity and silica concentration com-
pared to those end-members (Fig. 2; brown and navy axes).
The fourth end-member captures variations along the third
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PC axis (Fig. 3d), which are not apparent in the 2D view
(Fig. 3b).

The spread of all end-member clusters (generated by
100 runs of CH-NMF) was small when four were sought, but
a fifth could not be clearly identified. As the number of end-
members was increased from three (Fig. 3a) to four (Fig. 3b),
the new cluster (cyan Cluster 4) was dense, while the other
three clusters (green, blue, and red) remained at similar lo-
cations to those clusters identified in the third end-member
case. Adding the fourth end-member reduced the spread of
the previously identified three clusters in the PC subspace
(Fig. 3a and b and Table 1), suggesting that they could now
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Table 1. The mean and standard deviation (SD) of each end-member cluster based on 100 random initialized CH-NMF runs. All values are
in micromoles per liter. The cluster color indications correspond to Fig. 3a to c.

No. of clusters Alkalinity SO4 Na Mg Ca Si
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
Red 35.05 27.02 216.75 30.72 48.14 20.28 92.48 7.92 192.37 22.36 90.88 53.51
Three  Blue 348.04 12.16 14.11 2.82 214.87 21.88 90.35 4.64 151.26 9.93 405.86 23.55
Green 33.43 32.27 7745 12.60 4470  20.01 32.03 5.84 47.14  10.75 100.34 55.85
Red 32.86 12.33 219.71  17.57 46.66 9.91 93.50 2.44 19392 15.11 87.25 28.64
Four Blue 345.01 23.29 1571 1491 211.26  26.22 92.02 5.88 157.14 11.86 385.44 50.57
ou Green 26.80 31.28 85.15 23.04 38.65 13.11 32.83 10.59 54.00 25.65 78.26 28.29
Cyan 207.96 92.01 38.45 40.07 141.51 46.76 61.89 18.02 91.57 42.03 342.13 122.07
Red 38.88 49.76 211.17  41.12 49.60 27.28 91.13 11.34 189.23  29.04 92.71 59.09
Blue 344.76 21.77 15.88  14.39 211.90 30.95 92.44 5.63 158.67 12.07 390.34 40.03
Five Green 29.62 33.35 85.37 13.38 4252  17.68 33.40 6.83 5232 16.99 84.20 29.38
Cyan 171.83 77.99 40.85 33.32 123.60 44.11 5477 15.08 75.69 29.17 329.06 138.29
Black 25345 107.65 44.10 47.45 161.55 58.00 75.81 17.47 125.51 38.38 278.05 123.41

Table 2. The median concentration of individual field-measured
end-members from Hooper and Christophersen (1992). All units are
in micromoles per liter.

Field Alkalinity SO4 Na Mg Ca Si
individual

samples

Organic 37 214 23 78 151 60
Groundwater 370 7 169 97 162 422
Hillslope 9 89 46 22 32 90

be identified with less uncertainty. However, the inclusion of
the fifth end-members (Fig. 3c) did not further tighten the
previously identified clusters; indeed, the fifth cluster was
poorly defined (black Cluster 5). Except for the cyan cluster
that generally decreased within cluster variation, the standard
deviations of other clusters increased for both the third and
fourth end-member cases (Table 1).

The results in Fig. 2 imply that identification of end-
members from the mixture alone may not be as impossible
as Hooper and Christophersen (1992) suggested. CHEMMA
is able to reproduce the three end-members that were identi-
fied in Hooper et al. (1990) and a fourth end-member, which
explains more variation in the data.

This is not to say that the estimates provided by
CHEMMA are unambiguous or even a complete set of con-
tributing sources. CHEMMA identifies sources that can be
found through their control on the boundary of the sample
space. For example, sources that never supply the plurality
of water but also that are never absent (or nearly never) may
not be identified by CHEMMA, in that they never produce a
vertex-like structure in the data cloud, nor do they constrain
the location of a face. Further work is needed to determine
the limits of end-member identification for a given dataset.

Hydrol. Earth Syst. Sci., 26, 1977-1991, 2022
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Figure 4. Comparison of orthogonal projection distance for field-
measured and CHEMMA -predicted groundwater end-member so-
lute concentrations (in standardized units). For each solute, the
blue and red dots are the observed and CHEMMA-estimated end-
member concentrations, respectively. The orange and green bars
show how these concentrations change when the end-members are
projected in the 2D subspace (formed by retaining only the first
two PC). The CHEMMA end-members lie closer to the 2D sub-
space that PCA analysis suggests the data principally occupy, so
their projection distances are smaller.

3.2 Dimensionality and DTMMs

For four CHEMMA end-member case in Table 3, the
orthogonal projection distances of organic, hillslope, and
groundwater end-members decrease/remain similar with the
third CHEMMA end-member case. Adding a fifth end-
member significantly increases the projection distance of
identified fourth end-member. In addition, the dispersed clus-
ter distributions in Fig. 3c suggest that a fifth end-member

https://doi.org/10.5194/hess-26-1977-2022



E. Xu Fei and C. J. Harman: A data-driven method for estimating the composition of end-members

Table 3. End-member distance from observational plane to Principal Component subspace.

Organic  Hillslope  Groundwater Fourth  Fifth
Field sample 1.217 0.298 0.814
Third EM CHEMMA 1.046 0.237 0.450
Fourth EM CHEMMA 0.816 0.223 0.482 0.377
Fifth EM CHEMMA 0.433 0.047 0.394 0.528  0.456

may be spurious. We cannot rule out the possibility that it
reflects only the noisy edges of the sample space and so
cannot be supported by the data. Indeed, CHEMMA does
not come equipped with an objective criteria for determin-
ing how many end-members can be supported by the data.
There are many mathematical methods, such as factor anal-
ysis and diffusion map spectral gaps, that could be used in
parallel with CHEMMA to estimate data dimensions (Ashley
and Lloyd, 1978; Coifman et al., 2008). It may be possible to
use the k-fold cross-validation of CHEMMA itself to try to
determine the best number of end-members. CHEMMA can
also be used in conjunction with the approach already devel-
oped for EMMA to assess dimensionality, i.e., the DTMM
presented in Hooper (2003)), which suggests choosing the
smallest possible number of end-members that gives uncor-
related residuals resembling random noise. Any correlation
structure in the residuals suggests a lack of fit in the model,
which could be caused by (among other things) outliers and
nonconservative solutes. An additional dimensionality (ad-
ditional eigenvector to be retained) can be added until the
residual structure is unseen or is not improved.

3.3 Uncertainty analysis

Because CHEMMA extracts end-members from the obser-
vations, the accuracy of the end-member’s composition is in-
fluenced by a range of sources of variability and uncertainty,
including how much noise exists from sample analysis er-
ror, how well the collected samples represent the full range
of sources in the catchment, how many end-members we as-
sume (as discussed above), how unique the CH-NMF and
COP-KMEANS analyses are, and how valid the assumptions
are that end-members are conservatively mixed and time in-
variant. For example, rare contributions from an end-member
may result in the dispersion of Cluster 3 (Fig. 3b). Temporal
variations of the end-member composition could produce the
kind of variations seen in PC 3 in Fig. 3d (Inamdar et al.,
2013). Fortunately, CHEMMA itself may be a basis for ex-
ploring the effects of time variability. For example, by par-
titioning the dataset into time periods (or hydrologic state,
etc.), the apparent temporal variability of end-members could
be explored.

Sampling uncertainty is a more tractable issue for the
present analysis. We can estimate the magnitude of this er-
ror using bootstrapping (resampling with replacement; Efron
and Tibshirani, 1994). We generated 1000 bootstrapped sets
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of the original Panola data and ran CHEMMA on each
of them. The end-members identified in these bootstrapped
datasets showed relatively little scatter compared to the over-
all variance in the stream water concentrations (Fig. 5), sug-
gesting that they are robust with respect to the sampling er-
ror. Even the organic end-member, which dominates a lim-
ited number of stream water samples (Fig. 2; the few gray
points towards the organic end-member) could still be iden-
tified with considerably small variance compared with the
original solute variation (as shown in Fig. 5). However, this
poorly represented end-member shows many more outliers
(end-member compositions substantially different from the
best estimate) than the other two. Figure 5 also re-emphasizes
that CHEMMA identifies end-members that collectively ex-
hibit unusual combinations of concentrations (i.e., vertex-
like structures in the overall data cloud). While many solute
concentrations of CHEMMA -predicted end-members are lo-
cated towards extremal values of the observations, they need
not be all individually extremes (e.g., the sulfate concentra-
tion of end-member 3 corresponding to the hillslope end-
member; Fig. 5; upper middle plot).

To see how robustly the end-members could be identified
with a smaller number of observations, we ran CHEMMA on
bootstrapped subsets of the original data. These subsets rep-
resented from 5 % to 100 % of the original data size (905),
and each subsetting experiment was repeated 1000 times.
Results are shown in Fig. 6. For this particular dataset, the
uncertainty is substantial when less than 40 % (362) of the
original data are used, decreasing greatly from 40 % (362) to
60 % (543). Further improvements in the robust identification
with more samples are mainly in the less well-constrained or-
ganic end-member (Fig. 6).

In addition, the overall number of samples may matter less
than the number of samples that are dominated by one end-
member or in which an end-member is entirely absent. Of
the varying effects of sampling uncertainty on CHEMMA,
four are illustrated in Fig. 6, where (1) some end-member
constitutes, such as SOy in the groundwater end-member
(EM 2), and alkalinity, Na, and Si in the hillslope end-
member (EM 3), are well identified regardless of whether
5% (45) or 100 % (905) of the total available sample size
is used. (2) For the well-represented groundwater and hill-
slope end-members, the uncertainty bounds do not vary as
dramatically with sample size as they do for the organic end-
member, which is less frequently important. (3) Even when
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Figure 5. Uncertainties of CHEMMA-predicted end-members (EM 1 to EM 3) compared with the total solute variances (stream water).
The four columns represent the stream water samples and three CHEMMA-identified end-members. Each CHEMMA end-member (EM 1
to EM 3, predicted without using the field end-member samples) is matched with a field-measured end-member, based on the similarity of
the concentration profile. The six subplots represents six stream water solute space.

using the full dataset, some of the end-member constituents
are not very well-constrained (e.g., SO4 of the organic end-
member/EM 1 has a larger variance than the well-constrained
end-members with a sample size as small as 45. (4) Clusters
of outliers (or multi-modality in the bootstrapped replicates)
may suggest poorly constrained end-members. For example,
SO4, Mg, and Ca in hillslope end-member/EM 3, identified
with sample sizes 45 and 90, exhibit clusters of outliers in
their tails. These clusters are within the range identified with
EM 1 using larger sample sizes.

3.4 A synthetic exploration on model robustness

We also examined uncertainties arising from the potential
non-uniqueness of the CH-NMF and COP-KMEANS anal-
yses. Intuitively, we can expect these to be the greatest when
the dataset lacks the vertex-like structures that the algorithm
seeks to identify. In Fig. 7, the algorithm standard deviation
denotes the variability amongst 100 CH-NMF runs (in one
CHEMMA run), and the data standard deviation represents
the variability amongst 100 bootstrapped CHEMMA runs.
The variability induced by the instability of these algorithms
is small compared to the overall variability of the dataset but
is much greater than that introduced by the sampling alone.
To explore this source of uncertainty further, we created
a relatively simple synthetic dataset of observations of two
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Gaussian-distributed independent variables (X and Y) that
can be represented as conservative mixtures of three true end-
members. As Fig. 8 shows, X and Y are chosen to center on
the conservative mixing triangle’s inner center. The variance
in the Gaussian distributions used to generate these data in-
creases from case 1 to 6 in Fig. 8. All marked estimated end-
members are outputs from 100 CH-NMF runs, which rep-
resent the end-member variation during one CHEMMA run
(Fig. 8).

As expected, when the observations have a low variance
compared to the spread of the end-members, CHEMMA does
a poor job at identifying the end-members. In the case with
the tightest cluster, case 1, the estimated end-members are
actually less variable than in the less tightly clustered case 2.
This suggests that variations between applications of CH-
NMF are sensitive to the particularities of a dataset’s ex-
tremal observations.

Between case 3 and case 4, the stability of the end-
members identified by CH-NMF becomes much better, even
though the distribution of observations in case 4 seems to
have been barely constrained by the mixing space. There is a
sufficient structure for the algorithm to anchor three unique
end-members (Figs. 8 and 9). However, the estimated end-
members are biased toward the centroid of the dataset and
do not accurately characterize the end-members. As the ob-
servations fill more of the conservative mixing space within
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Figure 7. The normalized uncertainty of predicted end-members,
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using the Panola data. The algorithm and the data are two groups
that used the bootstrap method. Normalized uncertainties are esti-
mated by dividing standard deviation of bootstrapped dataset over
the standard deviation of stream water solute measurements.
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the triangle (i.e. the convex hull), the CHEMMA-identified
end-members are closer to the true end-members.

Figure 9 confirms and expands the observations from
Figs. 7 and 8 in that the major uncertainty of CHEMMA pre-
dicted end-members comes from sampling errors when the
dataset has sufficient structure. For the synthetic dataset, the
algorithmic uncertainty becomes insignificant when the data
cloud just begins to be constrained by the end-members. In
case 4 in Fig. 8), less than 1 % of the random samples gener-
ated fell outside the mixing space (and were, thus, discarded).
Note that it is the edges, not the vertices, that have affected
the shape of the data cloud at this stage. This suggests that
the CHEMMA algorithm does not require that there be ex-
treme samples containing large contributions from only one
end-member (i.e., samples close to a vertex in the mixing
space). Rather, it can detect the mixing structure robustly
when the dataset includes samples containing very small con-
tributions of one end-member and intermediate contributions
of another (i.e., samples close to an edge/face of the mix-
ing space, but far from a vertex). However, an end-member
whose contribution is consistently low may not be effectively
detected because it does not sufficiently affect the shape of
the data cloud boundary to justify increasing the number of
end-members sought (i.e., the number of principal compo-
nents retained in the analysis plus one).
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Figure 8. Synthetic random mixture (blue dots) generated by three fixed true end-members (gray stars). All cases (1 to 6) have the same
number of samples (1000 samples) and are normally distributed around the inner center of the gray triangle. From case 1 to 6, the mixture
occupies more of the convex mixing space, as the standard deviation of the normal distribution used to generate those synthetic points
increases.
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Hydrol. Earth Syst. Sci., 26, 1977-1991, 2022 https://doi.org/10.5194/hess-26-1977-2022



E. Xu Fei and C. J. Harman: A data-driven method for estimating the composition of end-members

4 Conclusion

Here we have advanced a method of the end-member mixing
analysis that challenges Christophersen and Hooper (1992)’s
assertion that source solution compositions cannot be unam-
biguously determined from the mixture alone. The traditional
EMMA method requires potential end-member source wa-
ters to be sampled in the field and compared to the data.

The method presented, convex hull end-member mixing
analysis, or CHEMMA, uses a combination of recently de-
veloped statistical learning techniques to infer streamflow
end-members from the stream water solute concentration
data structure. The end-members are estimated by fitting a
simplex (k-dimensional polyhedron) to the data cloud and
identifying the end-members with the vertices of the simplex.
The method was tested by applying it to the Panola dataset
of Hooper et al. (1990). CHEMMA was able to accurately
reproduce the field-sampled end-members identified in the
original study solely from the stream water samples.

In total, two sources of uncertainty in the chemical profile
of the identified end-members were evaluated. The algorith-
mic error (variations between applications of the CHEMMA
algorithm) was estimated by re-running the algorithm mul-
tiple times on the same dataset. A sample error was esti-
mated by bootstrapping the original dataset and re-running
the CHEMMA analysis 1000 times. The results demon-
strated that the end-members in the Panola dataset were iden-
tified with relatively little variance compared to the overall
variance of the data. More of the error was due to algorith-
mic error rather than sampling error.

Subsampling of the Panola dataset demonstrated the sen-
sitivity of the CHEMMA method to the number of samples.
The results suggested that estimates of the end-members may
be uncertain when too few samples are available or when an
end-member is the major component of only a small pro-
portion of the sample set (as is the case with the organic
end-member in the Panola dataset). Some end-member con-
stituents were reliably identified with as few as 45 samples
(e.g., SO4 in the groundwater end-member and alkalinity,
Na, and Si in the hillslope end-member), while others needed
more than ~ 500 samples to be identified with similar robust-
ness (e.g., all the constituents of the organic end-member).

A synthetic dataset was used to examine how uncertainty
in the end-member identification was related to the data
structure. This showed that algorithmic uncertainty could be
large when the fringes of the data cloud were far from the
edges and constrained by the need to be a mixture of the
end-members. That is, when all the samples contained a non-
trivial portion of all the end-members, and no end-member
dominated any one sample, then the shape of the data cloud
did not provide usable information about the end-members.
This uncertainty dropped dramatically once the boundaries
of the data cloud contacted the boundaries of the mixing
space, and so at least a few samples contained a near-zero
contribution from at least one end-member. Notably, it was
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not necessary for some minimum number of samples to con-
tain the majority of contributions from each end-member.
However, estimates of the end-member composition were
biased toward the data cloud centroid unless such extremal
samples (i.e., ones that were almost entirely composed of one
end-member) were present in the dataset.

CHEMMA makes it possible to investigate stream chemi-
cal dynamics in terms of end-members, even when the sam-
ples of candidate source waters are not available. However,
even where such samples are available (or could be collected
in the future) CHEMMA may be a useful tool to augment the
traditional approach in the following ways: (1) reducing sub-
jectivity when selecting from field-measured end-member
candidates by comparing them to CHEMMA-identified end-
members, (2) serving as a check on missing sources by char-
acterizing end-members that are not represented in field sam-
ples, and (3) helping target candidate end-member field sam-
pling by suggesting source characteristics. However, the use-
fulness of CHEMMA is limited by the structure of the data
in mixing space. As Fig. 9 suggests, CHEMMA will fail for
datasets in which all end-members are present in all samples
to some non-trivial degree. Samples in which an end-member
is absent provide critical information and strongly control the
location of the face of the convex hull used to identify the
other end-members.

It should be noted that CHEMMA itself does not estab-
lish a systematic way to determine the appropriate number
of end-members k for which to search. This choice must
be made independently. However, it is compatible with the
DTMM method, presented by Hooper (2003), that has been
used to make this judgment in the past. DTMM (Hooper,
2003) was used to conclude that (1) the dimensionality of the
Panola dataset is at least 3 (i.e., at least four end-members are
required) and (2) the possible fourth source (end-member)
may be weathering products containing calcium and magne-
sium. CHEMMA was able to identify a fourth end-member
with such a characteristic without running through DTMM
analysis.

This method can be improved in a wide range of ways. Fu-
ture work should focus on (1) applying quantitative methods
to eliminate the subjective choice of k, such as the Akaike
information criterion (AIC) or Bayesian information crite-
rion (BIC or Schwarz information criterion; see Kuha, 2004),
(2) relaxing the constraints on the CH-NMF algorithm (e.g.,
forcing algorithm 1, Step 5 to construct a perfect convex hull)
so that extreme points in S also lie inside the simplex, thereby
allowing the method to better characterize end-members that
are never a large fraction of any samples, (3) further explor-
ing the data requirements and uncertainty of the method, in-
cluding a better understanding of the relationship between
the stability of COP-KMEANS clusters, the temporal vari-
ability of end-members, and the number of samples, and
(4) pre-conditioning a Bayesian CHEMMA with priors based
on field end-member measurements.
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