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Abstract— Cardiovascular disease (CVD) has become the leading
cause of death worldwide. As a widely used method for diag-
nosing CVD, currently electrocardiogram (ECG) monitoring tends
to be implemented in wearable devices. This paper presents the
prototype an ECG delineation and arrhythmia classification (EDAC)
system suitable for wearable ECG biosensors. The proposed EDAC
system is intended to be implemented after the electrodes and
the analog front-end circuit, and its aim is signal processing at a
low hardware overhead. The system consists of a Delta-modulator-
based analog-to-feature converter (AFC), a corresponding ECG de-
tection/delineation/feature extraction algorithm (DDF), an automatic
gain controller (AGC) block, and a patient-dependent linear kernel
support vector machine (SVM) classifier. The AFC converts the input analog signal into digital data of the slope and
slope variation of the input signal, which is then used for detecting QRS complexes, localizing the fiducial points, and
extracting the feature vectors for each heartbeat in the DDF block. At the same time, the AGC sends out a gain control
signal based on the detected QRS complex to adjust the gain of the front-end amplifier. Finally, the SVM block performs
arrhythmia classification. The EDAC system performance is evaluated using the MIT-BIH arrhythmia database. The system
achieves 0.88% (0.93%), 99.1% (99.1%), 87.0% (92.8%), 99.6% (99.5%), and 89.3% (92.9%) in F1 score, accuracy, sensitivity,
specificity, and positive predictive values of the supraventricular ectopic beats (ventricular ectopic beats) versus normal
heartbeats classification while maintaining a low power dissipation (1.66 µW at 1kHz operating frequency in the front-end
AFC block). The proposed system is attractive to future wearable long-term ECG monitoring biosensors.

Index Terms— Electrocardiogram, Analog-to-feature converter, Delineation, Arrhythmia classification, Support vector
machine

I. INTRODUCTION

ACCORDING to the world health organization (WHO)
[1], 32% of the total worldwide deaths are caused by

cardiovascular disease (CVD). The American Heart Associa-
tion (AHA) also reports that the estimated direct and indirect
CVD expenditures are significant per year (e.g., $363.4 billion
in 2016-2017) [2]. Therefore, there is an urgent need for
early diagnosis techniques for CVD, which could significantly
reduce mortality and expenditures. Electrocardiogram (ECG)
monitoring for arrhythmia classification is an important tool
for CVD diagnosis. The conventional clinical diagnosis utilizes
a Holter monitor to record ECG data of the patients [3] so that
doctors can diagnose and classify different arrhythmia types
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for further treatment. However, the Holter monitor is bulky
and can only record data for 24 to 48 hours. Doctors can only
diagnose after the recording period by fetching and analyzing
all data. Nevertheless, an acute symptom that occurs during
the ECG recording is still dangerous and may threaten the
patient’s life since the signal cannot be observed by the doctor
in real-time.

An alternative class of ECG monitoring devices is wearable
biosensors, for example, in steering wheels for driving [4],
in armbands [5] or skintight T-shirts [6] for exercising, and
typical electrodes placement on the chest [7]–[9]. They provide
assistance for long-term ECG monitoring and can conduct
in-vitro and continuous ECG measurements through low-
power integrated circuit and system designs [10]. There are
two main types of ECG monitoring biosensors found in the
technical literature. The first type includes a low-power analog
front-end and a radio frequency (RF) transmitter [11]–[13]
that transmits all monitored data (i.e., raw data) to a remote
station for arrhythmia classification. However, the RF part is
typically the most power-consuming unit in the system, so
the transmission of all data wastes a significant amount of
power, because most data may not show anomalies. Another
type of ECG monitoring device has additional near-sensor
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signal processing functions, such as heartbeat detection and
partial arrhythmia classification [14]–[16]. In this case, a near-
sensor arrhythmia classification is performed, only abnormal
heartbeats are transmitted, so reducing system power for data
transmission. The challenge of such a system comes from the
computing and power overhead associated with the near-sensor
signal processing circuits and algorithms.

Machine Learning (ML) has provided attractive solutions
for performing arrhythmia classifications. For example, deep
neural network (DNN) [16]–[18], long short-term memory
(LSTM) [19], convolutional neural network (CNN) [20], [21],
combining CNN with LSTM [22], recurrent neural network
(RNN) [23], combining CNN with RNN [24], event-driven
artificial neural network (ANN) [25], multi-layer perceptron
(MLP) combined with CNN [26], and support vector machine
(SVM) with linear kernels [27], [28], non-linear kernels [29],
[30], and combining SVM with random forest (RF) and k-
nearest neighbors (KNN) classifiers [21] have been proposed
for remote diagnosis. However, without a preliminary step
of ECG delineation-based feature extraction, these ML al-
gorithms typically incur high hardware complexity as they
must perform continuous time series classification using raw
ECG data. This poses a critical issue when implementing ML-
based classification in ECG monitoring biosensor systems with
strict requirements on power and battery endurance. However,
existing ECG delineation methods are also difficult to be
implemented because using near-sensor processing units, the
detection of critical waves in the ECG waveform (e.g., P waves
with significantly low amplitude) usually applies the wavelet
transform that has a high computational complexity [27], [28],
[31].
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Fig. 1. Illustration of a wearable ECG monitoring device with near-
sensor delineation and arrhythmia classification (the scope of this work
is marked by the dashed block).

To address these issues, Delta modulator-based analog-to-
feature converter (AFC) chips have been designed for per-
forming feature extraction from the ECG data as per our
prior works [32], [33]. Once these features are extracted,
a patient-dependent rotated linear kernel SVM classifier has
been designed for classifying different types of abnormal
heartbeat [34]. Since a few critical features are extracted prior
to arrhythmia classification, the computational complexity of

the SVM algorithm is significantly reduced. Nevertheless, even
though such an ECG delineation and arrhythmia classification
(EDAC) system provides acceptable classification performance
at low-power dissipation as validated in many cases using
the MIT-BIH arrhythmia database [35], [36], there are two
major limitations in prior EDAC designs that may degrade the
classification performance:

1) In existing AFCs, features are selected primarily based
only on the morphology of the essential waves [34],
or the timing of fiducial points [33]. The unbalanced
feature selection may harm classifying certain types
of heartbeat. Compared with other feature extraction
methods (that use wavelet coefficients as features), the
essence of the feature selection process also remains
unclear;

2) For features extracted from some ECG data that have
significant amplitude variations (as commonly found in
practice), the existing AFCs lack automatic gain control
(AGC) and cannot generate satisfactory results.

All these issues may finally lead to an incorrect classification
when subsequently executing the SVM algorithm.

Therefore, this paper is an extension of our earlier work
in [32], [33]. In this paper, an improved EDAC system is
proposed. The goal is to achieve balanced extracted fea-
tures and perform classification while maintaining low power
dissipation. The significant contributions of this paper are
summarized as follows:

1) A novel AFC is proposed to generate a comprehensive
set of features, it generates both slope and slope variation
information of the input ECG signal. The obtained
features include QRS complex morphology and timing
of important fiducial points of the ECG signal.

2) An R wave slope variation sensitive AGC design is
proposed. It operates with the QRS detection algorithm
and alleviates the issue of amplitude variation of the
ECG signals to generate high-quality features.

3) Two importance scores are proposed, and the importance
of different ECG features used for performing classi-
fication is analyzed by considering these two scores.
Compared with prior methods, this analysis provides a
more informative emphasis on feature selection when
classifying supraventricular ectopic beats (SVEB) and
ventricular ectopic beats (VEB). They are of consider-
able benefit to future ECG monitoring biosensor system
design.

The rest of this paper is organized as follows. First, the most
relevant related work is briefly discussed in Section II. Then
Section III describes the proposed system and the details of
each block. The system performance is evaluated in terms of
QRS detection, hardware power dissipation, and arrhythmia
classification in Section IV. Section V analyzes and discusses
the importance of features using two proposed importance
scores. Limitations and future perspectives of this work are
discussed in Section VI. Finally, Section VII concludes the
paper.
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II. PRELIMINARIES

A typical wearable ECG monitoring biosensor with a near-
sensor machine-learning-based algorithm is depicted in Fig.
1, it consists of a low-power analog front-end (AFE), and
an EDAC system [33]. The analog front-end performs noise
filtering and amplification, and the AFC block performs the
analog-to-digital conversion and extracts critical features in the
digital format for the next stage of processing in the EDAC
system. In particular, the AFC block converts the input analog
signal into digital features in the form of a bitstream. Then,
the ECG detection and delineation block processes the digital
bitstream to detect critical ECG fiducial points, including the P
wave, the QRS complex, and the T waves. Such information is
important for abnormal heartbeat delineation [35]) as shown
in Fig. 1. As per such information, the shapes (e.g., slope
variations) and essential intervals (e.g., the PR/RR interval,
etc.) of the ECG signals are then extracted to form the final
features.

The subsequent heartbeat classification is performed in the
arrhythmia classification block, in which a low-complexity
ML algorithm such as a patient-dependent SVM classifier
[34] is implemented. If the captured ECG signal is finally
classified as a type of arrhythmia (e.g., SVEB or VEB), an
alert signal should be generated to trigger further attention
in the remote station for timely diagnosis or treatment. Thus,
instead of sending all raw data, only the important episode of
ECG data around the anomalies is recorded and transmitted to
the remote station for further analysis. Due to the significant
reduction in the transmitted data volume and the required
power dissipation, the system is expected to monitor ECG
continuously for long periods of time. The primary challenge
of the system comes from the amplitude variation of the ECG
signals, which may result in inconsistent feature extraction for
the same type of heartbeats and introduce unnecessary disturb-
ing data for arrhythmia classification. Such issues may cause
incorrect classifications and thus, it constrains the applicability
of the system.

III. PROPOSED SYSTEM

In this paper, an improved EDAC system is proposed
for achieving a comprehensive feature extraction that leads
to a better classification performance compared to existing
designs, while maintaining a low power dissipation. Except the
significant contributions mentioned above, the design of the
proposed system utilizes the new ECG delineation algorithm
based on the new AFC. Moreover, it has implemented the
output interface, and achieved new arrhythmia classification
models. Fig. 2 shows the proposed EDAC system. Individual
functional blocks are described in detail in this section.

A. Delta modulator based AFC
As shown in Fig. 2, compared with prior AFC designs

that are realized by the parallel first-order delta modulator
(DM1) [32] or parallel second-order delta modulator (DM2)
[33], the proposed AFC circuit is composed of one DM1
and the parallel DM2 blocks. The DM1 chip converts the
analog input signal to its slope information and is fabricated

using standard 0.13 µm CMOS technology with a 360 nW
power dissipation. The DM2 chip extracts the slope variation
information of the input and is fabricated with standard
0.18 µm CMOS technology with a 151 nW/channel power
dissipation. Both DM1 and DM2 are designed using an
operational transconductance amplifier (OTA) based switched-
capacitor discrete-time integrator. The integrator is controlled
by non-overlapping clocks (ϕ1,2,1e,2e,cmp) to form the negative
feedback. The residue voltage on the capacitor (Csub) is the
subtraction result between the feedback and the input, and is
compared with the thresholds (ThreshH, ThreshL) through
a ternary comparator (Ternary Comp). After that, the output
bits pair (+1, −1 channel) of the current clock are generated.
Since two blocks extracting the different feature information
are combined, the proposed AFC provides a comprehensive
feature extraction ability. This is analyzed next by considering
the example given in Fig. 3.

A standard ECG signal is processed by using the proposed
AFC as shown in Fig. 3. Since the pulse density in the output
bitstream of DM1 should be proportional to the slope of
the input signal, its output pulses are mainly concentrated
in the QR segment and the RS segment that contain the
steepest slope portion of the ECG signal. Therefore, we can
obtain the slope information features from this segment in
DM1 as shown in the dashed block of Fig. 3. At the same
time, DM2 is sensitive to the turning points of the input
signal (i.e., the Q/R/S wave peaks) that contain the most
significant slope variations of the input. Therefore, its output
pulses are more intensive around these peak locations. As per
this information, timing features are extracted on the fiducial
points (Fig. 3, dashed block). To achieve a more accurate QRS
detection, two parallel DM2 (namely DM2 qrs and DM2 pt)
are employed in the proposed AFC. As shown in Fig. 3,
DM2 qrs detects significant slope variations such as QRS
complexes that usually have large amplitudes. Meanwhile,
DM2 pt reacts to all small waves. DM2 pt cannot detect large
waves since it may fall in saturation conditions and result in
long consecutive +1/-1 bitstreams).

B. ECG detection/delineation and feature extraction
(DDF)

To perform near-sensor arrhythmia classification, low-
complexity feature extraction circuits are expected to work
prior to sending information to the classifier. Otherwise, the
system would consume significant power if the classifier
processes the raw digital data directly, which is unacceptable
for wearable devices [17]. To perform ECG delineation, the
detection of the QRS complex must be first achieved. In
the DDF block of the proposed system, this is performed
by analyzing the output bitstream of DM2 as shown in Fig.
2, in particular the result of DM2 qrs. By taking advantage
of DM2 qrs’s sensitivity to upward/downward turning points
(UTP/DTP, defined as +1/-1 pulses in Fig. 3), and setting a
defined timing window (Wdef) and a turning point detection
threshold (TPDTh, defined as the number of pulses [33]), the
QRS complex can be detected once a UTP-DTP-UTP pattern
is recognized in the bitstream. At the same time, the values of
the slope variation at these points are also recorded. Note that
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abnormal QRS complexes with different morphology forms
can be detected in parallel by checking different data patterns.
For example, for a common form of premature ventricular
contraction (PVC) heartbeat, the pattern of DTP-UTP-DTP
is used for QRS complex detection. In another case, in an
ECG wave with baseline wandering or wave morphology
change caused by the sensor placement issue, the typical UTP-
DTP-UTP pattern can be used but with a TPDTh setting
to different values. This QRS complex detection process is
enabled if no heartbeat is detected within a certain-bits window
in the proposed design. For example, Wdef is set to twice the
averaged RR interval as default.

Once the QRS complex is detected, the delineation is
performed by recording the timing information of the peaks of
the Q/R/S waves, the onset of the Q wave, and the endpoint
of the S wave from the bitstream of DM2 qrs. Following

this method, the system searches back in the data cache to
locate the fiducial points of the P wave and searches forward
to detect these points of the T waves from the bitstream
of DM2 pt to perform detection and delineation for these
waves. Moreover, with the slope steepness features of the
QRS complex extracted from the bitstream of DM1, the DDF
block can extract 50 types of features in total as summarized
in Table I. Combining DM1 and DM2 in the proposed AFC
block, the features obtained in the DDF block are significantly
more comprehensive compared to existing feature extraction
methods, which is better assisting the subsequent arrhythmia
classification.

C. QRS complex detection based AGC
To alleviate the influence issue of amplitude variation in

ECG signals encountered by existing feature extraction meth-
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TABLE I
DESCRIPTION OF THE 50-ELEMENT FEATURE VECTOR

Feature Description Category # of
Features

Source

Consecutive pulses weighted skewness
(2 channel, 6 windows: Skewp.b1-b6,
Skewn.b1-b6)

Morphology 12 DM1

Number of pulses in bitstream
(2 channel, 6 windows: Pulsep.b1-b6,
Pulsen.b1-b6)

Morphology 12 DM1

Number of Zeros bits during R peak
(last +1 in QR, to first -1 in RS:
Zerolength)

Morphology 1 DM1

Number of bits during QR/RS segment
(+1 in QR, -1 in RS: QRlen, RSlen)

Morphology 2 DM1

Slope pattern
(+/- or -/+: Skewpattern)

Morphology 1 DM2

Important waves morphology
(P/T waves, QRS complex: P.morph,
T.morph, QRS.morph)

Morphology 3 DM2

Turning points slope variation
(SV.Pon/Ppk/Qpk/Rpk/Spk/Ton/Tpk)

Morphology 7 DM2

Intervals and segments
(PonQon/PonQpk/PpkQpk/PpkRpk/
QonTpk/RpkTpk/SpkTon.interval,
QR/RS/QRS.duration;
RR intervals: RR.pre, RR.pos)

Timing 12 DM2

ods introduced previously, an automatic gain control (AGC)
is designed in the proposed system to adjust the amplitude
of the input signals as per the QRS complex detection result
of the DDF block. As shown in the AGC block of Fig. 2,
the AGC algorithm executes as follows: 1) Obtain the largest
slope variation. When a QRS complex is detected, the AGC
receives the related QRS complex pattern and checks the
largest slope variation within the ECG signal, i.e., the R wave
peak (SV.Rpeak); 2) Check the SV.Rpeak. If the SV.Rpeak
is out of the defined range (SV.th), the AGC controls the
gain of the VGA (GVGA) and adjusts the amplitude of the
subsequent input signal by uniforming the SV.Rpeak to SV.th.
3) No heartbeat detected condition. If no QRS complex is
detected within the defined bits window Wdef (as shown in
Fig. 2), the AGC assumes there is no sufficient gain. The AGC

then communicates with the VGA to adjust the gain of the
amplifier.

D. Patient-dependent SVM for arrhythmia classification

Performing arrhythmia classification is a challenge for ML
algorithms due to the large interpatient and intrapatient varia-
tions of ECG morphology. The arrhythmia classifier employed
in the proposed system follows the patient-dependent SVM
classification algorithm from [37] to enhance performance
for both the generalization and specificity using the compre-
hensive features generated by combining the DDF and AGC
blocks. The MIT-BIH arrhythmia database is used for training
and testing the classifier. According to the Association for the
Advancement of Medical Instrumentation (AAMI) standard
[38], heartbeats in the database are divided into five types,
i.e., normal beats (N), SVEB, VEB, fusion beats (F), and
unknown beats (Q). Except for the four data records from
patients who carry pacemakers, 44 records are involved in
training and testing the proposed classifier. The 44 records are
separated into two groups: i) the training dataset that includes
records 101, 106, 108, 109, 112, 114, 115, 116, 118, 119,
122, 124, 201, 203, 205, 207, 208, 209, 215, 220, 223, 230,
ii) the inference dataset that includes records 100, 103, 105,
111, 113, 117, 121, 123, 200, 202, 210, 212, 213, 214, 219,
221, 222, 228, 231, 232, 233, 234 [39].

The 22-fold recording-by-recording cross-validation method
proposed in [39] is utilized for assessing the classifier perfor-
mance and finding the optimum rotation angle to be used for
combining the global and the local classifiers. Then, the global
classifier is trained using the training dataset. After that, the
first 500 heartbeats in each record of the inference dataset
and base data (records 209 and 215) are used for training
the local classifier for each patient in the inference dataset.
With the method of [34], the intersection hyperplane between
the global and local classifiers can be determined by rotating
the global classifier towards the local classifier at a proper
angle. Therefore, both the specificity of the patient ECG and
the generalization performance of the SVM classifier can be
achieved.

E. Output interface (OI)

As shown in the OI block of Fig. 2, in addition to the ar-
rhythmia classification result/warning for VEB and SVEB, the
proposed system also reports the results of ECG delineation
including information of important intervals and morphology
of critical waves for abnormal heartbeats. They can be assessed
by doctors for a more detailed analysis. Thus, by transmitting
only the abnormal ECG data, the proposed system essentially
reduces power dissipation for RF circuits, extends battery life,
and reduces the burden of continuous technical analysis on
extensive volume data received at a remote station.

IV. PERFORMANCE EVALUATION

To validate the functionality of the proposed EDAC sys-
tem, a testbench is built as shown in Fig. 4. The testbench
consists of the DM2/DM1 chips, an FPGA that is used for
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Fig. 4. The measurement of the proposed EDAC system. Top left: package and microphotograph of DM2 chip; Top right: package and
microphotograph of DM1 chip; Bottom: testbench of the EDAC system (a: DM2, b: FPGA, c: peripheral circuits, d: DM1, e: PC platform).

corresponding algorithms implementation, peripheral circuits
for connecting the electrodes and the EDAC system, and a PC
for communicating with the FPGA. Since the proposed EDAC
system targets the improvement of feature extraction and then
arrhythmia classification while maintaining low power, these
metrics are evaluated and compared in this section to existing
works. The hardware testbench validates the functionality of
the proposed analog to feature conversion system, while simu-
lations are applied using the MIT-BIH database for evaluating
the classification performance. Ethical approval for this work
has been granted by the Office of Research Compliance of
New Mexico State University.

A. QRS Detection Performance

Since some records in the MIT-BIH arrhythmia database
have severe QRS complex amplitude variation such as record
106, which is also commonly occurring in practical ECG
measurements, the proposed AGC is implemented to improve
the performance of a heartbeat detection algorithm to handle
such cases. Moreover, the feature extraction algorithm of
the DDF block can also be benefited from the obtained
unified-amplitude ECG signal using the AGC. For example, as
shown in Fig. 5, the amplitude variation issue is significantly
alleviated. For example, the false-negative beats (FN) reduce
from 60 to 5 compared to a system without AGC [33]. This
makes the FN decrease from 3.0% to 0.2%. Meanwhile, false-

positive beats (FP) are not primarily affected (an increase from
2 to 4, i.e., from 0.1% to 0.2%).

The performance is compared between systems with and
without an AGC. For example, the heartbeat detection strategy
without an AGC in [33] uses a fixed amplification coefficient
and tries to make most of the QRS complexes amplified to
0.2V for increasing the detection accuracy. This may result in
a large number of normal heartbeats with abnormal amplitude
while introducing difficulties for arrhythmia classification with
features extracted from these normal “anomalies”. The perfor-
mance of the QRS detection algorithm with AGC is evaluated
using the MIT-BIH arrhythmia database; as shown in Table II,
the overall detection sensitivity (SE), the positive predictive
value (PPV), and the detection error rate (ER) are 98.67%,
98.84%, and 2.49%, respectively. SE, PPV, ER are defined as
per the following equations:

SE(%) =
TP

TP + FN
(1)

PPV (%) =
TP

TP + FP
(2)

ER(%) =
FN + FP

TP + FN
(3)

where TP is the number of true positive detection heartbeats.



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 7

0.3

0.4

0.5

0.1

0 0.80.2 10.4 0.6

0.2

A
m

p
lit

u
d

e
 (

V
)

Time (103 s)

0

-0.3

-0.4

-0.1

-0.2

1.81.2 21.4 1.6

0.3

0.4

0.5

0.1

0 0.80.2 10.4 0.6

0.2

A
m

p
lit

u
d

e
 (

V
)

Time (103 s)

0

-0.3

-0.4

-0.1

-0.2

1.81.2 21.4 1.6

(a)

(b)

Fig. 5. The amplitude variation issue of record 106: (a) without AGC;
(b) with AGC.

B. Arrhythmia classification

Targeting on the single lead arrhythmia classification (Mod-
ified Limb Lead II configuration for electrodes placement
on chest), with the proposed comprehensive feature extrac-
tion method, we apply the patient-dependent SVM algorithm
of [34] to perform arrhythmia classification, as for future
hardware implementation. For example, it requires only 50
multiplications and 51 additions per classification, which is
hardware efficient compared to other machine-learning-based
algorithms. The overall classification performance is evaluated
using the F1 score (F1), the classification accuracy (ACC),
sensitivity (SE, usually the most significant metric), specificity
(SP), and the positive predictive value (PPV); they are defined
as per Eqs. (1), (2), (4) to (6) respectively.

F1 =
2× TP

2× TP + FP + FN
(4)

ACC(%) =
TN + TP

TN + TP + FN + FP
(5)

SP (%) =
TN

TP + FP
(6)

The feature vector used in arrhythmia classification is gen-
erated from the DDF block, and only detected heartbeats in
Table. II are involved. The average classification performance
of different systems covering all considered data is shown in
Table III. The proposed system achieves comparable perfor-
mance to each of the best metrics among existing systems
found in the technical literature [34], [37], [39], [40], [44],
[48]–[50]:

TABLE II
QRS DETECTION PERFORMANCE OF THE PROPOSED SYSTEM

ID Total FN FP SE PPV ER
100 2273 1 1 99.96 99.96 0.09
101 1865 4 7 99.79 99.63 0.59
102 2187 4 5 99.82 99.77 0.41
103 2084 0 1 100.00 99.95 0.05
104 2229 66 35 97.04 98.41 4.53
105 2572 46 49 98.21 98.10 3.69
106 2027 5 4 99.75 99.80 0.44
107 2137 5 1 99.77 99.95 0.28
108 1763 323 331 81.68 81.31 37.10
109 2532 6 3 99.76 99.88 0.36
111 2124 5 16 99.76 99.25 0.99
112 2539 2 5 99.92 99.80 0.28
113 1795 1 1 99.94 99.94 0.11
114 1879 5 18 99.73 99.05 1.22
115 1953 0 1 100.00 99.95 0.05
116 2412 41 21 98.30 99.12 2.57
117 1535 1 3 99.93 99.80 0.26
118 2278 1 7 99.96 99.69 0.35
119 1987 1 4 99.95 99.80 0.25
121 1863 5 8 99.73 99.57 0.70
122 2476 2 3 99.92 99.88 0.20
123 1518 1 2 99.93 99.87 0.20
124 1619 4 2 99.75 99.88 0.37
200 2601 45 96 98.27 96.38 5.42
201 1963 46 29 97.66 98.51 3.82
202 2136 4 2 99.81 99.91 0.28
203 2980 116 146 96.11 95.15 8.79
205 2656 6 3 99.77 99.89 0.34
207 2332 366 114 84.31 94.52 20.58
208 2955 151 28 94.89 99.01 6.06
209 3005 10 18 99.67 99.40 0.93
210 2650 21 23 99.21 99.13 1.66
212 2748 4 9 99.85 99.67 0.47
213 3251 3 2 99.91 99.94 0.15
214 2262 7 5 99.69 99.78 0.53
215 3363 4 8 99.88 99.76 0.36
217 2208 6 5 99.73 99.77 0.50
219 2154 0 1 100.00 99.95 0.05
220 2048 0 0 100.00 100.00 0.00
221 2427 10 3 99.59 99.88 0.54
222 2483 76 88 96.94 96.47 6.60
223 2605 5 3 99.81 99.88 0.31
228 2053 37 137 98.20 93.64 8.48
230 2256 1 5 99.96 99.78 0.27
231 1571 1 3 99.94 99.81 0.25
232 1780 5 15 99.72 99.16 1.12
233 3079 9 5 99.71 99.84 0.45
234 2753 3 1 99.89 99.96 0.15

Total 109966 1465 1277 98.67 98.84 2.49

• Compared with [42] that has the best results for VEB
classification, the proposed system achieves similar per-
formance except for SE and PPV (5% less). [42] was
achieved by deep learning, and it has three hidden layers
with a structure 417–100–100–100–5. In addition, the
proposed work performs better when classifying SVEB.

• Compared with [40] which performs the best in SVEB
classification (considering especially SE that represents
the classified SVEBs over total SVEBs), the proposed
system also achieves comparable results, with a 3% re-
duction in PPV but it is still 1.5% better in SE. However,
[40] utilizes a GPU-based classification algorithm, which
is not fully applicable to wearable biosensors.
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TABLE III
COMPARISON OF CLASSIFICATION PERFORMANCE AMONG DIFFERENT

SYSTEM

Methods
SVEB VEB

F1 ACC SE SP PPV F1 ACC SE SP PPV

Li (2017) et.al [40] 0.89 99.4 85.5 99.4 92.3 0.90 98.9 88.0 98.9 92.6

Saadatnejad (2019) et.al [19] 0.87 98.6 75.2 99.9 99.8 0.97 99.3 96.0 99.8 98.3
Amirshahi (2019) et.al [41] - - - - - 0.88 97.9 80.2 99.8 97.3

Xu (2019) et.al [42] 0.87 99.1 78.4 99.9 98.7 0.98 99.7 97.4 99.9 97.8

Wang (2019) et.al [26] 0.87 99.4 79.5 99.9 96.3 0.94 99.1 91.8 99.6 95.3

Tang (2019) et.al [34] 0.83 98.8 79.3 99.6 88.2 0.92 99.0 92.8 99.4 91.6

Malik (2021) et.al [43] 0.79 97.3 76.0 99.6 82.2 0.97 99.0 95.3 98.9 97.9

Tang (2021) et.al [44] 0.82 98.5 88.8 98.9 76.1 0.95 99.4 95.1 99.7 95.2

Proposed method 0.88 99.1 87.0 99.6 89.3 0.93 99.1 92.8 99.5 92.9

C. Power Dissipation and Hardware Overhead

One important metric for evaluating the wearable ECG
monitor is the hardware overhead in terms of power dissipation
and hardware complexity, which can be translated to the chip
area. For the biosensor employing the proposed EDAC system,
the DM1 and DM2 chips were fabricated using 130 nm and
180 nm standard CMOS technologies, respectively. Under an
operating clock at 1 KHz, the power consumption of the AFC
is measured as 602 nW. The other digital blocks (AGC, DDF,
SVM, and OI) in the proposed system are designed using 180
nm standard CMOS technology, and chip area (0.4 mm2) and
power dissipation (1054 nW) are found using Synopsys Design
Compiler. SVM models are trained on a PC platform using
MATLAB.

Table IV compares different ECG biosensor systems. All
compared systems can perform heartbeat detection, but only
[46] and [44] can perform ECG delineation. [46] implements
the delineation algorithm in a microcontroller (MCU) that
consumes power at a mW level. Compared with a previous
design [44], the PPV of the SVEB classification of the
proposed system is greatly improved due to the proposed
comprehensive AFC with AGC. Compared with [47] and
[25] which provide the arrhythmia classification ability, the
proposed system is implemented with lower-complexity al-
gorithms, while achieving a good classification performance.
Overall, the proposed system is more attractive for low-power
near-sensor arrhythmia classifying scenarios.

V. IMPORTANCE OF FEATURES

Due to the higher quality of extracted features and the
comprehensive strategy of feature selection using the proposed
AFC and AGC, the proposed EDAC system achieves a bal-
anced performance when classifying arrhythmia heartbeats,
which is verified in Table III. For instance, when compared
with [34] which uses only morphology-based features, the
proposed EDAC achieves a significant improvement for SVEB
classification on SE (from 79.3% to 87.0%). In another exam-
ple, when compared with [44] which uses timing-based fea-
tures, the proposed EDAC improves the SVEB classification
on PPV from 76.1% to 89.3%.

The patient-dependent SVM classification algorithm of [34]
is employed in the proposed EDAC system. The system has
an extremely low computation complexity since it utilizes

the linear kernel function. Such a function makes the feature
importance analysis straightforward by sorting only the values
of the weights (WT ) in each classifier (i.e., global and local
classifier). However, as the values of the features may have dif-
ferent distributions, even though they are typically normalized,
considering only WT may result in an incorrect analysis of
the feature importance. This may degrade performance when
conducting a co-design between different blocks and circuits
in terms of feature extraction and classification.

To address this issue, two novel feature importance scores
IMPG and IMPL for feature selection of arrhythmia heart-
beats classification studies are defined for evaluating the global
and local classifier of the patient-dependent SVM algorithm,
respectively. The linear kernel makes such feature importance
analysis straightforward by sorting the value of the weights
(WT ) in each SVM model. However, to remove the distribu-
tion of elements in feature vectors, IMPG and IMPL are
defined using the following equations:

IMPG = WT,Global ·median(FVGlobal) (7)

IMPL =

22,Idata∑
n=1

(WT,Local ·median(FVLocal) ·
NTarget

NTotal
)

(8)
Here FVGlobal and FVLocal are the feature vectors used in
training the global and local classifiers. NTarget (NTotal) are
the total number of arrhythmia heartbeats in each record.
Idata denotes the inference dataset, and median() finds the
median of each element in the feature vectors set. Therefore,
for both models, the use of median() ensures to establish
the essential features, which may be masked by considering
only the weights. For example, for two normalized features
that have the same weight, but feature values are distributed
around different values, only sorting the weights cannot reveal
the importance of the features. By adjusting the feature values
using different normalization factors, the weights value also
change. Additionally, for the local classifier, IMPL covers
all 22 records by involving NTarget

NTotal
and addresses the issue of

variations in arrhythmia heartbeat number for different records.
The normalized feature importance for SVEB and VEB

heartbeats classification is obtained by calculating the pro-
posed two importance scores and are summarized in Fig. 6.
The table shows that the RR intervals play essential roles in
almost all models. Here the RR intervals include RR.pre which
is the interval between the prior R peak and the current R peak,
and RR.pos, which denotes the interval between the current
R peak and the post R peak. The importance of features in
SVEB classification shows a distinct difference between global
and local classifiers. Morphology features extracted from DM1
are more critical in global models while features from DM2
are more important in the local models. This indicates that
SVEB has more specific interpatient differences, and the RR
intervals are significantly more critical in interpatient features.
For VEB classification, the importance of features is close to
the classification of SVEB. The distribution shows that VEB
features are more balanced. For SVEB classification, there are
seven same features in the top 20 critical features and one
same feature in the top 10 critical features between the global
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TABLE IV
COMPARISON OF HARDWARE OVERHEADS AMONG DIFFERENT ECG MONITORING DEVICES

This
work

[45]
JSSC19

[46]
JBHI18

[44]
TBCAS21

[47]
TCASII18

[25]
TCASII21

Function* 1-5 2 1-4 1-5 2, 5 2, 5

Method Processing
Comprehensive

Delta
Modulator

Proportional
Derivative

Control

Second
Derivative

+ FIR Filter

Second
Order Delta
Modulator

Wavelet Level
Crossing

Classification Rotated
SVM - - Rotated

SVM
Hybrid
SVM ANN

Technology (nm) 180+130 65 MCU 180 40 180
Power Supply (V) 1.0 0.55 3.7 1.0 1.1 1.5

Frequency Sampling (KS/s) 1 0.25 0.25 1 0.36 0.36
Operating (KHz) 1 2 8000 1 10 250

Power Dissipation (µW) 1.66 1.06 1145 0.302 + FPGA 3.76 1.3
Area (mm2) 0.63 1.5 - 0.29 0.12 0.75

* Functions: (1) P wave detection; (2) R wave detection); (3) T wave detection; (4) onset/offset detection of P/T wave
and QRS complex; (5) arrhythmia classification.
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Fig. 6. Normalized feature importance for SVEB and VEB classification in global and local classifiers obtained by calculating the proposed scores
IMPG and IMPL (the top 20 critical features are marked in red and the remaining features are marked in blue)

and local classifiers. For VEB classification, the number of
the same features between the global and local classifiers are
nine in the top 20 and three in the top 10 critical features.
This indicates that VEB has less interpatient difference than
SVEB.

The analysis of feature importance using the proposed
scores provides important information for designing future

arrhythmia classification systems. For example, a more precise
RR interval detection circuit can be utilized for improving the
system classification since such a feature is very important as
shown by the above analysis. On the contrary, some feature
extraction circuits related to a few less important features can
be discarded to save power and further prolong the battery
lifetime. Moreover, the analysis of feature importance can
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be exploited to design targeted specific arrhythmia detection
systems by identifying some crucial features, such as detecting
ventricular flutter or fibrillation that are vital to human lives.
Due to the page limit, these interesting topics are beyond the
scope of this paper. They are left for our future investigation.

VI. DISCUSSION

TABLE V
MAJOR DIFFERENCE BETWEEN PRIOR WORKS AND THE PROPOSED

EDAC SYSTEM

Core
Function

QRS
detection

AGC Delineation
Feature extraction Arrhythmia

ClassificationMorphology Timing
Prior work [32] Ë é é Ë é é

Prior work [33] Ë é Ë é Ë é

Prior work [34] é é é Ë é Ë

This work Ë Ë Ë Ë Ë Ë

The proposed near-sensor EDAC system can report de-
lineated ECG information and VEB and SVEB warnings.
Compared with prior works, it can achieve all targeted func-
tions as shown in Table. V. Moreover, it has potential to be
integrated within future ECG monitoring biosensors. Although
it has been proven for its performance with an amplitude-
varied ECG input and resilience to baseline wandering, the
proposed system is still a prototype, and the biosensor scenario
faces more complicated environment issues that may limit
system performance, such as EMG, movement noise, and other
interferences. Several schemes have been proposed focusing
on wearable ECG detection under noise [51]–[54], ECG signal
quality assessment [55], and noise suppression [56], [57], and
this topic will also be investigated in the future. Also based
with a more experimental analysis, we plan to make the system
more robust to wearable applications. Low-power analog front-
end circuit (below 100 nW) [58], [59] to be integrated in the
EDAC system is also in our future research plan. Moreover,
based on the features importance analysis, lower hardware
cost arrhythmia classification algorithms (µW level) can be
implemented more efficiently.

VII. CONCLUSION

This paper has presented an ECG delineation and ar-
rhythmia classification (EDAC) system for wearable ECG
biosensors. Using the proposed analog to feature converter
(AFC) and automatic gain control (AGC) blocks, the EDAC
system combines the advantages of prior works and improved
the data quality for arrhythmia classification. The system has
achieved a comprehensive extraction of high-quality features
for ECG signals with large amplitude variations by generating
a 50-element feature vector that includes both morphology
and timing features. These advantages benefit the subsequent
arrhythmia classification when using a patient-dependent SVM
classifier. The evaluation results show that compared to ex-
isting designs, the EDAC system provides a comprehensive
and better classification performance while maintaining low
power and low complexity hardware. Two feature importance
scores have been defined in this paper for analyzing the impor-
tance of different ECG features when performing arrhythmia
classification. An improved classification algorithm that con-
siders such feature importance analysis and the related system
design/system-on-chip implementation are left for future work.
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[4] J. Gómez-Clapers and R. Casanella, “A fast and easy-to-use ECG
acquisition and heart rate monitoring system using a wireless steering
wheel,” IEEE Sensors Journal, vol. 12, no. 3, pp. 610–616, 2011.

[5] B. M. Li, A. C. Mills, T. J. Flewwellin, J. L. Herzberg, A. S. Bosari,
M. Lim, Y. Jia, and J. S. Jur, “Influence of Armband Form Factors
on Wearable ECG Monitoring Performance,” IEEE Sensors Journal,
vol. 21, no. 9, pp. 11 046–11 060, 2021.

[6] S. Masihi, M. Panahi, D. Maddipatla, A. J. Hanson, S. Fenech, L. Bonek,
N. Sapoznik, P. D. Fleming, B. J. Bazuin, and M. Z. Atashbar, “Devel-
opment of a Flexible Wireless ECG Monitoring Device with Dry Fabric
Electrodes for Wearable Applications,” IEEE Sensors Journal, 2021.

[7] S. Yin, N. Xue, C. You, Y. Guo, P. Yao, Y. Shi, T. Liu, L. Yao, J. Zhou,
J. Sun et al., “Wearable Physiological Multi-Vital Sign Monitoring
System With Medical Standard,” IEEE Sensors Journal, vol. 21, no. 23,
pp. 27 157–27 167, 2021.

[8] B. M. G. Rosa, S. Anastasova-Ivanova, and G. Z. Yang, “NFC-Powered
flexible chest patch for fast assessment of cardiac, hemodynamic, and
endocrine parameters,” IEEE Transactions on Biomedical Circuits and
Systems, vol. 13, no. 6, pp. 1603–1614, 2019.

[9] J. Wannenburg, R. Malekian, and G. P. Hancke, “Wireless capacitive-
based ECG sensing for feature extraction and mobile health monitoring,”
IEEE Sensors Journal, vol. 18, no. 14, pp. 6023–6032, 2018.

[10] C. Buaban, C. Ratametha, T. Limpisawas, T. Songthawornpong,
B. Pholpoke, and W. Wattanapanitch, “A Low-Power High-Input-
Impedance ECG Readout System Employing a Very High-Gain Ampli-
fication and a Signal-Folding Technique for Dry-Electrode Recording,”
IEEE Sensors Journal, vol. 21, no. 17, pp. 18 905–18 919, 2021.

[11] V. P. Rachim and W.-Y. Chung, “Wearable noncontact armband for
mobile ECG monitoring system,” IEEE Transactions on Biomedical
Circuits and Systems, vol. 10, no. 6, pp. 1112–1118, 2016.

[12] X. Zhang, Z. Zhang, Y. Li, C. Liu, Y. X. Guo, and Y. Lian, “A 2.89-µ
W Dry-Electrode Enabled Clockless Wireless ECG SoC for Wearable
Applications,” IEEE Journal of Solid-State Circuits, vol. 51, no. 10, pp.
2287–2298, 2016.

[13] W. Bai, Z. Zhu, Y. Li, and L. Liu, “A 64.8 µW >2.2 GΩ DC-AC
configurable CMOS front-end IC for wearable ECG monitoring,” IEEE
Sensors Journal, vol. 18, no. 8, pp. 3400–3409, 2018.

[14] S. M. Abubakar, M. R. Khan, W. Saadeh, and M. A. B. Altaf, “A
wearable auto-patient adaptive ECG processor for shockable cardiac
arrhythmia,” in 2018 IEEE Asian Solid-State Circuits Conference (A-
SSCC). IEEE, 2018, pp. 267–268.

[15] K. H. Lee and N. Verma, “A low-power processor with configurable
embedded machine-learning accelerators for high-order and adaptive
analysis of medical-sensor signals,” IEEE Journal of Solid-State Circuits,
vol. 48, no. 7, pp. 1625–1637, 2013.

[16] A. Ukil, L. Marin, S. C. Mukhopadhyay, and A. J. Jara, “AFSense-ECG:
Atrial Fibrillation Condition Sensing from Single Lead Electrocardio-
gram (ECG) Signals,” IEEE Sensors Journal, 2022.

[17] A. Y. Hannun, P. Rajpurkar, M. Haghpanahi, G. H. Tison, C. Bourn,
M. P. Turakhia, and A. Y. Ng, “Cardiologist-level arrhythmia detection
and classification in ambulatory electrocardiograms using a deep neural
network,” Nature Medicine, vol. 25, no. 1, pp. 65–69, 2019.

[18] S. S. Xu, M.-W. Mak, and C.-C. Cheung, “Towards end-to-end ECG
classification with raw signal extraction and deep neural networks,” IEEE
Journal of Biomedical and Health Informatics, vol. 23, no. 4, pp. 1574–
1584, 2018.

[19] S. Saadatnejad, M. Oveisi, and M. Hashemi, “LSTM-based ECG classi-
fication for continuous monitoring on personal wearable devices,” IEEE
Journal of Biomedical and Health Informatics, vol. 24, no. 2, pp. 515–
523, 2019.

[20] D. Lai, X. Fan, Y. Zhang, and W. Chen, “Intelligent and efficient
detection of life-threatening ventricular arrhythmias in short segments
of surface ECG signals,” IEEE Sensors Journal, vol. 21, no. 13, pp.
14 110–14 120, 2020.

https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)


AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 11

[21] E. Besler, P. K. Mathur, H. C. Gay, R. S. Passman, and A. V. Sahakian,
“Inter-Patient Atrial Flutter Classification Using FFT-Based Features and
a Low-Variance Stacking Classifier,” IEEE Transactions on Biomedical
Engineering, vol. 69, no. 1, pp. 156–164, 2021.

[22] M. Dey, N. Omar, and M. A. Ullah, “Temporal Feature-Based Classifi-
cation Into Myocardial Infarction and Other CVDs Merging CNN and
Bi-LSTM From ECG Signal,” IEEE Sensors Journal, vol. 21, no. 19,
pp. 21 688–21 695, 2021.

[23] E. Prabhakararao and S. Dandapat, “Myocardial infarction severity
stages classification from ecg signals using attentional recurrent neural
network,” IEEE Sensors Journal, vol. 20, no. 15, pp. 8711–8720, 2020.

[24] T. Pokaprakarn, R. R. Kitzmiller, R. Moorman, D. E. Lake, A. K.
Krishnamurthy, and M. Kosorok, “Sequence to Sequence ECG Cardiac
Rhythm Classification using Convolutional Recurrent Neural Networks,”
IEEE Journal of Biomedical and Health Informatics, 2021.

[25] Q. Cai, X. Xu, Y. Zhao, L. Ying, Y. Li, and Y. Lian, “A 1.3 µW Event-
Driven ANN Core for Cardiac Arrhythmia Classification in Wearable
Sensors,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 68, no. 9, pp. 3123–3127, 2021.

[26] N. Wang, J. Zhou, G. Dai, J. Huang, and Y. Xie, “Energy-efficient
intelligent ECG monitoring for wearable devices,” IEEE Transactions
on Biomedical Circuits and Systems, vol. 13, no. 5, pp. 1112–1121,
2019.

[27] K. Karboub, M. Tabaa, F. Monteiro, S. Dellagi, F. Moutaouakkil, and
A. Dandache, “Automated Diagnosis System for Outpatients and Inpa-
tients With Cardiovascular Diseases,” IEEE Sensors Journal, vol. 21,
no. 2, pp. 1935–1946, 2020.

[28] X. Bian, W. Xu, Y. Wang, L. Lu, and S. Wang, “Direct Feature
Extraction and Diagnosis of ECG Signal in the Compressed Domain,”
IEEE Sensors Journal, vol. 21, no. 15, pp. 17 096–17 106, 2021.

[29] J. Yang and R. Yan, “A Multidimensional Feature Extraction and
Selection Method for ECG Arrhythmias Classification,” IEEE Sensors
Journal, vol. 21, no. 13, pp. 14 180–14 190, 2020.

[30] Q. Li, C. Rajagopalan, and G. D. Clifford, “Ventricular fibrillation and
tachycardia classification using a machine learning approach,” IEEE
Transactions on Biomedical Engineering, vol. 61, no. 6, pp. 1607–1613,
2013.

[31] A. Kumar, R. Ranganatham, M. Kumar, and R. Komaragiri, “Hardware
emulation of a biorthogonal wavelet transform-based heart rate moni-
toring device,” IEEE Sensors Journal, vol. 21, no. 4, pp. 5271–5281,
2020.

[32] X. Tang, Q. Hu, and W. Tang, “A real-time QRS detection system with
PR/RT interval and ST segment measurements for wearable ECG sensors
using parallel delta modulators,” IEEE Transactions on Biomedical
Circuits and Systems, vol. 12, no. 4, pp. 751–761, 2018.

[33] X. Tang and W. Tang, “A 151nw second-order ternary delta modulator
for ecg slope variation measurement with baseline wandering resilience,”
in 2020 IEEE Custom Integrated Circuits Conference (CICC). IEEE,
2020, pp. 1–4.

[34] X. Tang, Z. Ma, Q. Hu, and W. Tang, “A real-time arrhythmia heartbeats
classification algorithm using parallel delta modulations and rotated
linear-kernel support vector machines,” IEEE Transactions on Biomed-
ical Engineering, vol. 67, no. 4, pp. 978–986, 2019.

[35] G. B. Moody and R. G. Mark, “The impact of the MIT-BIH arrhyth-
mia database,” IEEE Engineering in Medicine and Biology Magazine,
vol. 20, no. 3, pp. 45–50, 2001.

[36] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C.
Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E.
Stanley, “PhysioBank, PhysioToolkit, and PhysioNet: components of a
new research resource for complex physiologic signals,” Circulation,
vol. 101, no. 23, pp. e215–e220, 2000.

[37] A. S. Alvarado, C. Lakshminarayan, and J. C. Principe, “Time-based
compression and classification of heartbeats,” IEEE Transactions on
Biomedical Engineering, vol. 59, no. 6, p. 1641, 2012.

[38] Association for the Advancement of Medical Instrumentation and others,
“Testing and reporting performance results of cardiac rhythm and ST
segment measurement algorithms,” ANSI/AAMI EC38, vol. 1998, 1998.

[39] P. de Chazal and R. B. Reilly, “A patient-adapting heartbeat classifier
using ECG morphology and heartbeat interval features,” IEEE Transac-
tions on Biomedical Engineering, vol. 53, no. 12, pp. 2535–2543, 2006.

[40] P. Li, Y. Wang, J. He, L. Wang, Y. Tian, T.-s. Zhou, T. Li, and J.-s.
Li, “High-performance personalized heartbeat classification model for
long-term ECG signal,” IEEE Transactions on Biomedical Engineering,
vol. 64, no. 1, pp. 78–86, 2017.

[41] A. Amirshahi and M. Hashemi, “ECG classification algorithm based
on STDP and R-STDP neural networks for real-time monitoring on

ultra low-power personal wearable devices,” IEEE Transactions on
Biomedical Circuits and Systems, vol. 13, no. 6, pp. 1483–1493, 2019.

[42] S. S. Xu, M.-W. Mak, and C.-C. Cheung, “I-vector-based patient adap-
tation of deep neural networks for automatic heartbeat classification,”
IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 3, pp.
717–727, 2019.

[43] J. Malik, O. C. Devecioglu, S. Kiranyaz, T. Ince, and M. Gabbouj, “Real-
Time Patient-Specific ECG Classification by 1D Self-Operational Neural
Networks,” IEEE Transactions on Biomedical Engineering, vol. 69,
no. 5, pp. 1788–1801, 2022.

[44] X. Tang and W. Tang, “An ECG Delineation and Arrhythmia Classifi-
cation System using Slope Variation Measurement by Ternary Secon-
dOrder Delta Modulators for Wearable ECG Sensors,” IEEE Transac-
tions on Biomedical Circuits and Systems, 2021.

[45] S. Yin, M. Kim, D. Kadetotad, Y. Liu, C. Bae, S. J. Kim, Y. Cao, and
J.-s. Seo, “A 1.06-µ W Smart ECG Processor in 65-nm CMOS for Real-
Time Biometric Authentication and Personal Cardiac Monitoring,” IEEE
Journal of Solid-State Circuits, vol. 54, no. 8, pp. 2316–2326, 2019.

[46] J. M. Bote, J. Recas, F. Rincón, D. Atienza, and R. Hermida, “A modular
low-complexity ECG delineation algorithm for real-time embedded
systems,” IEEE Journal of Biomedical and Health Informatics, vol. 22,
no. 2, pp. 429–441, 2017.

[47] Z. Chen, J. Luo, K. Lin, J. Wu, T. Zhu, X. Xiang, and J. Meng, “An
energy-efficient ECG processor with weak-strong hybrid classifier for
arrhythmia detection,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 65, no. 7, pp. 948–952, 2017.

[48] Y. H. Hu, S. Palreddy, and W. J. Tompkins, “A patient-adaptable ECG
beat classifier using a mixture of experts approach,” IEEE Transactions
on Biomedical Engineering, vol. 44, no. 9, pp. 891–900, 1997.

[49] T. Ince, S. Kiranyaz, and M. Gabbouj, “A generic and robust system
for automated patient-specific classification of ECG signals,” IEEE
Transactions on Biomedical Engineering, vol. 56, no. 5, pp. 1415–1426,
2009.

[50] S. Kiranyaz, T. Ince, and M. Gabbouj, “Real-time patient-specific ECG
classification by 1-D convolutional neural networks,” IEEE Transactions
on Biomedical Engineering, vol. 63, no. 3, pp. 664–675, 2015.

[51] M. U. Zahid, S. Kiranyaz, T. Ince, O. C. Devecioglu, M. E. Chowdhury,
A. Khandakar, A. Tahir, and M. Gabbouj, “Robust R-Peak Detection in
Low-Quality Holter ECGs Using 1D Convolutional Neural Network,”
IEEE Transactions on Biomedical Engineering, vol. 69, no. 1, pp. 119–
128, 2021.

[52] Y. Bu, M. F. U. Hassan, and D. Lai, “The Embedding of Flexible
Conductive Silver-Coated Electrodes into ECG Monitoring Garment for
Minimizing Motion Artefacts,” IEEE Sensors Journal, vol. 21, no. 13,
pp. 14 454–14 465, 2020.

[53] D. Lai, Y. Bu, Y. Su, X. Zhang, and C.-S. Ma, “A flexible multilayered
dry electrode and assembly to single-lead ECG patch to monitor atrial
fibrillation in a real-life scenario,” IEEE Sensors Journal, vol. 20, no. 20,
pp. 12 295–12 306, 2020.

[54] C. Lin, C.-H. Yeh, C.-Y. Wang, W. Shi, B. M. F. Serafico, C.-H.
Wang, C.-H. Juan, H.-W. V. Young, Y.-J. Lin, H.-M. Yeh et al.,
“Robust fetal heart beat detection via R-peak intervals distribution,”
IEEE Transactions on Biomedical Engineering, vol. 66, no. 12, pp.
3310–3319, 2019.

[55] L. Smital, C. R. Haider, M. Vitek, P. Leinveber, P. Jurak, A. Nemcova,
R. Smisek, L. Marsanova, I. Provaznik, C. L. Felton et al., “Real-time
quality assessment of long-term ECG signals recorded by wearables in
free-living conditions,” IEEE Transactions on Biomedical Engineering,
vol. 67, no. 10, pp. 2721–2734, 2020.

[56] J. Lázaro, N. Reljin, M.-B. Hossain, Y. Noh, P. Laguna, and K. H. Chon,
“Wearable armband device for daily life electrocardiogram monitoring,”
IEEE Transactions on Biomedical Engineering, vol. 67, no. 12, pp.
3464–3473, 2020.

[57] N. T. Bui, D. T. Phan, T. P. Nguyen, G. Hoang, J. Choi, Q. C. Bui, and
J. Oh, “Real-time filtering and ECG signal processing based on dual-
core digital signal controller system,” IEEE Sensors Journal, vol. 20,
no. 12, pp. 6492–6503, 2020.

[58] C. Sawigun and S. Thanapitak, “A Compact Sub-µW CMOS ECG Am-
plifier With 57.5-MΩ Z in, 2.02 NEF, 8.16 PEF and 83.24-dB CMRR,”
IEEE Transactions on Biomedical Circuits and Systems, vol. 15, no. 3,
pp. 549–558, 2021.

[59] X. Yang, J. Xu, M. Ballini, H. Chun, M. Zhao, X. Wu, C. Van Hoof,
C. M. Lopez, and N. Van Helleputte, “A 108 dB DR ∆Σ-ΣM Front-End
With 720 mV pp Input Range and¿±300 mV Offset Removal for Multi-
Parameter Biopotential Recording,” IEEE Transactions on Biomedical
Circuits and Systems, vol. 15, no. 2, pp. 199–209, 2021.


	Introduction
	Preliminaries
	Proposed System
	Delta modulator based AFC
	ECG detection/delineation and feature extraction (DDF)
	QRS complex detection based AGC
	Patient-dependent SVM for arrhythmia classification
	Output interface (OI)

	Performance Evaluation
	QRS Detection Performance
	Arrhythmia classification
	Power Dissipation and Hardware Overhead

	Importance of Features
	Discussion
	Conclusion
	References

